
BuRnSNet: BURN REGION SEGMENTATION NETWORK FROM COLOR IMAGES WITH 

TWO-WAY CNN 

 

Joohi Chauhan1,3, Paul L. Rosin2, Puneet Goyal3,4 

 
1Motilal Nehru National Institute of Technology Allahabad, India.  2Cardiff University, UK.   

3Indian Institute of Technology Ropar, India.  4NIET, NIMS University, India. 
 

ABSTRACT 

 

Burn injury is a serious health issue leading to several 

thousands of annual fatalities. The color image-based 

automated burns diagnostic and assessment methods hold 

the potential for timely diagnosis and treatment. However, 

the research is limited in this domain which remains a major 

challenge. In this work, we explore and address the complex 

task of burn region segmentation in color images of burn 

patients. We present a semantic segmentation network that 

has two parallel sub-networks: a spatial-stream network for 

extracting low-level features and a contextual-stream 

network for generating a larger receptive field. Our network 

utilizes the pre-trained ResNet101 network, global average 

pooling, and instance normalization for better encoding and 

fusion of the network outputs. This dual-stream approach 

optimizes the performance in situations where data scarcity 

poses a challenge, facilitating robust semantic segmentation 

despite limited training samples. We prepared a pixel-wise 

labeled dataset for burn region segmentation and the 

experimental results on this dataset show that our proposed 

network outperforms several state-of-the-art semantic 

segmentation methods. Our method achieved mIOU and 

Matthews’ correlation coefficient (MCC) of 74.3% and 

81.7%, respectively, approximately 4.5% higher than the 

second-best performing method. The Extended Burn Image 

Segmentation (EBIS) dataset and our model are available at 

https://github.com/VEDAs-Lab/EBIS 

 

Index Terms— Burn injury, Semantic image 

segmentation, Convolutional neural network, Instance 

Normalization, Matthews’ correlation coefficient. 

 

1. INTRODUCTION 

 

Burns are amongst the most life-threatening injuries 

globally. As per the WHO 2018 Burns report, approximately 

180,000 deaths occur annually due to burns, making it a 

leading cause of mortality and physical disabilities in many 

countries. In the United States, emergency departments care 

for over 400,000 patients with burn-related injuries 

annually, and approximately 3275 of these result in death 

[1]. In the UK, a concerning statistic reveals that 7335 

children experienced burns or scalds in 2022. Also, in 

January 2023, 631 children suffered from burn injuries or 

scalds. Among them, 256 were in the 0-2 age group, with 

hot drinks being the primary source of burns [3]. Some 

reports in India estimate that there are around 7 million burn 

injury cases annually, with around 70% of cases in the most 

productive age group (15-35 years), particularly those 

belonging to poor socio-economic strata [2]. These reports 

highlight the severe consequences and challenges associated 

with burn injuries. 

 

 
Fig. 1. Some sample images from the Extended Burn Image 

Segmentation (EBIS) dataset. The first row presents the 

original images, and the second row shows the 

corresponding labeled images.  

 

       Burn injuries can generally result from various sources 

such as fires, scalding, electricity, radiation, and chemicals. 

Automated burn diagnosis has the potential to expedite 

treatment and improve outcomes for burn injuries, 

addressing challenges associated with the limited 

availability of burn units and the prevalent use of manual 

methods in burn care. In this work, we study the complex 

task of efficiently performing burn region segmentation in 

color images of burn patients, aiming to contribute to 

developing low-cost, easily deployable computer-aided burn 

diagnosis systems. Considering the remarkable proven 

performance and widespread adoption of Artificial 

Intelligence (AI) techniques in various computer vision and 

medical applications, we explore deep learning-based pixel-

level segmentation approaches to address the burn region 

segmentation challenges. While active interest exists in 

semantic pixel-level segmentation research [4-19] with 

some methods exhibiting impressive performance across 

various benchmark datasets [4-6], these methods have not  
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been extensively explored in the medical domain. This 

research aims to bridge this gap and leverage the potential of 

AI in improving burn diagnosis and assessment. To 

summarize, our main contributions are as follows:  

• We prepared a labeled dataset of 600 burn images, 

where each pixel is assigned to either the burn or non-

burn class; we refer to this dataset as the Extended Burn 

Images Segmentation (EBIS) dataset and is now made 

publicly available. Fig. 1 shows some of the sample 

images and their annotations from the dataset. 

• We examine the performance of several state-of-the-art 

semantic image segmentation methods for burn region 

segmentation. 

• We present a dual-stream network that captures and 

fuses contextual information with encoded rich spatial 

information. Our method outperforms the state-of-the-

art CNNs on the EBIS dataset. 

 

2. BACKGROUND 

 

Segmentation methods are designed to differentiate between 

burn regions and normal regions in an RGB image of a burn 

patient. Achieving precise segmentation of the burn region 

from the normal one is crucial for accurately assessing total 

burn surface area, burn depth, and other related burn 

diagnosis parameters. Unfortunately, visual assessments by 

burn specialists yield only 40-70% accuracy in estimating 

these parameters during the first few days following a burn 

[20, 21]. Also, the accurate assessment of injury during the 

initial days is much needed to avoid the delay in the 

treatment of the patient. 

       Different imaging techniques, such as laser Doppler 

imaging (LDI), thermal imaging, and photographic imaging 

have been proposed for developing automated burn 

diagnosis tools [22-31]. Research shows that compared to 

thermal imaging, LDI achieves better diagnostic accuracy, 

probably because of the susceptibility of thermal imaging to 

environmental factors. Several research studies support LDI 

to be the most reliable technique for burn depth assessment, 

but unfortunately, its real-world use is limited due to its 

higher costs, associated delays, and limited portability [22-

24]. 

       In recent decades, many automatic image analysis 

algorithms have been developed for healthcare professionals 

to provide precise clinical decisions and assessment ability 

through medical images [32, 33]. Varying skin 

color/characteristics, varying background/illumination 

conditions, varying burn degrees and different causes of 

burns make burn color image segmentation problems quite 

challenging. Earlier explored image processing and 

traditional ML-based approaches on color images for burn 

diagnosis parameters estimations have achieved very limited 

accuracy [25-30]. Acha et al. [25-28] contributed to the 

domain of burn depth assessment methods using color 

images, and they also demonstrated a psychophysical 

experiment and multidimensional scaling analysis to 

determine the physical characteristics employed by 

physicians for the diagnosis of burn depth [28]. Cirillo et al. 

[30] recently proposed a burn images segmentation 

approach using tensor decomposition followed by GLCM 

for feature extraction and fuzzy C-means for cluster analysis 

and found this to be better than PCA and ICA-based 

methods. They also explored SegNet [7] but unsurprisingly 

noted it to be ineffective given the limited training data of 

11 images. However, not much research has been done on 

burn image segmentation using deep learning approaches. A 

2017 summary paper discussing over 300 deep learning 

works for medical imaging did not include burn diagnosis 

[34]. Some of the possible reasons are the lack of any 

publicly available labeled burn images dataset, limited 

awareness, and the challenging aspects of this problem. Jiao 

et al. [35] proposed a deep learning segmentation 

framework that is based on Mask R-CNN (regions with 

convolutional neural network). In their work, they used 

ResNet-101 with atrous convolution in a feature pyramid 

network as the backbone and tested it on the burn image 

dataset they prepared using the smartphone camera. That 

labeled dataset is however not publicly available. A recent 

work by Cirillo et al. [44] created a dataset of 100 polarized  

 

Fig. 2. Overview of Spatial Stream Network; A shallow network comprises of 5 convolutional blocks, where each block has 

a convolutional layer (Conv), Instance Normalization (IN), and ReLU activation function. 
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high-performance light camera images of burn wounds of 

age group less than 4 years old, they utilized the U-Net 

model for the burn depth assessment based on semantic 

segmentation, though the dataset is not publicly released.  

 
3. BURN REGION SEGMENTATION NETWORK 

FRAMEWORK 

 

Pixel-level image segmentation involves assigning a unique 

label to each pixel in an image from a set of K classes. 

Given an input color image 𝑥 of size M × N × 3, the output 

of the segmentation network is defined as 𝑦 ∈ ℝ𝑀×𝑁×𝐾. At 

the pixel location (𝑖, 𝑗) the class probability distribution 

output by the Convolutional Neural Network (CNN) is 

represented as a vector 𝑦(𝑖, 𝑗) ∈ ℝ𝐾. 

       The proposed framework, BuRnSNet, employs a multi-

path architecture that is capable of effectively encoding rich 

spatial and contextual information. It combines these feature 

maps to generate high-resolution segmentation predictions. 

The spatial stream network focuses on spatial information, 

while the contextual stream network extracts high-level 

features that help in category recognition. 
  
Spatial stream network (SSN) learns visual information 

such as texture, shape, detailed boundaries, etc. from an 

input image. The network takes an image size of 512×512×3 

as input, this network utilizes the principle of convolutional 

neural network and comprises of 5 convolution blocks 

(ConvBlock). Each ConvBlock contains a convolutional 

layer with a kernel size of 3 × 3, followed by a Rectified 

Linear Unit (ReLU) activation function [36] and an instance 

normalization layer. Instance Normalization [37] is 

employed to normalize each channel independently across 

the spatial dimensions, introducing invariance to contrast 

shifts and intensity variations, thus making the feature 

vector adaptable for each image. Moreover, Instance 

Normalization alleviates the problem that occurs due to 

images with varying intensities. Further, to preserve the 

majority of spatial information, the stacked ConvBlocks are 

set to generate a feature map that is 1/8 of the original input 

image resolution. This large size of the feature map ensures 

that rich spatial details are retained, thus enhancing the 

ability of the network to capture a larger set of visual 

features. An overview of this stream of the network is 

presented in Fig. 2. 
 

Contextual stream network (CSN) is designed to provide 

a sufficient receptive field and focus on global and local 

information. Theoretically, it is proven that the receptive 

field of ResNet [38] is already larger than the input image. 

However, Zhuo et al. [39] presented that the empirical 

receptive field of a CNN is smaller than the theoretical 

value. Therefore, for generating a large receptive field and 

maintaining a computationally efficient network, we use 

pre-trained CNN (ResNet101) as the backbone 𝐶𝑝 that down 

samples the feature map of each 𝑖𝑡ℎ stage and obtains a 

large receptive field 𝑅𝑖. The feature map generated from the 

adopted approach is denoted as 𝑓𝜁(𝑅). We believe that the 

features from the middle and high-level stages are of great 

importance for encoding global contextual information. So, 

we add a global average pooling layer 𝜉𝑔𝑎 at the end of each 

convolution block of middle and high-level stages of 𝐶𝑝 for 

obtaining maximal receptive field 𝑅𝑚𝑎𝑥 having the global 

context information. ResNet network has generally 4 stages, 

each comprising multiple residual blocks. For the 𝑖𝑡ℎ stage, 

the feature map 𝑓𝛹𝑖
 is element-wise multiplied with the 

feature map of the corresponding 𝜉𝑔𝑎  denoted as 𝑓𝜉𝑔𝑎𝑖
, for 

computing the output feature map 𝑓𝑜𝑢𝑡𝑖
 of that stage, 

illustrated in Fig. 3. 
 

                         𝑓𝑜𝑢𝑡𝑖
= 𝑓𝛹𝑖

 ⊙  𝑓𝜉𝑔𝑎𝑖
                                  (1) 

 

       Finally, the feature maps of the up-sampled output of 

the convolution blocks are concatenated, shown in Fig. 4. 

The adopted approach aims to refine the final output 

 

Fig. 3. Illustration of the Contextual Stream Network (CSN) that utilizes the output of the intermediate layers of ResNet101; 

a global average pooling (GAP) followed by a 1×1 Conv layer and sigmoid activation is applied to the output of each stage. 

 

3174

Authorized licensed use limited to: Cardiff University. Downloaded on October 07,2024 at 17:18:59 UTC from IEEE Xplore.  Restrictions apply. 



features of each convolution block and extract the global 

context information at high resolution without excessive 

computational cost. 

 

                      𝑓𝜁(𝑅)   = 𝑓𝑜𝑢𝑡2
𝑠   𝑓𝑜𝑢𝑡4

𝑠                                  (2) 

 

Fig. 4. Contextual Stream Network (CSN): Concatenation of 

the 2𝑛𝑑 and 4𝑡ℎ  stage feature maps obtained from eq. 1. 

Fig. 5. Fusion module of the proposed network, which 

performs fusion of the outputs from SSN and CSN modules.  

 

       In this network, we use the concept of an incomplete U-

shape structure. The hierarchical features of the pre-trained 

network are fused along with the features obtained from 

global average pooling. The U-shape structure [40] 

increases the spatial resolution of the feature map and 

recovers most of the missing details. Both the network 

outputs are finally fused together into a high-resolution 

feature map, as shown in Fig. 5. The final output 𝐹𝑠 of the 

combined network is obtained by upscaling with a factor 

Sc= 8. We use bilinear interpolation ℬ𝐼(𝑧, 𝑠) (where 𝑧 is the 

input and 𝑠 be the scale factor) for resizing the feature map. 

 

4. EXPERIMENTS 

 

4.1. Dataset Description 

 

Due to the non-availability of open access pixel-wise 

labeled datasets of burn images, we developed a new dataset 

comprising high-resolution burn images with varied 

illumination conditions, different source cameras, and 

varying distances between the patient and the camera. This 

dataset was created using semi-automated scripts on the 

Google search engine with queries such as ‘skin burn’, ‘burn 

wounds’, ‘burn injuries’, ‘full thickness burns’, ‘partial 

thickness burns’, ‘deep burn’, etc. The images include burns 

on the back, hand, face, and inner forearm body parts. 

Further, we manually annotated these images pixel-wise, 

classifying each pixel as either burn or non-burn. The 

annotations are done under the consultation of a medical 

expert who has over three decades of experience in burns 

diagnosis and treatment. The sample images from the 

prepared dataset and their corresponding labeled images are 

illustrated in Fig. 1. The dataset consists of 316 images in 

the training set, 76 images in the validation set, and 208 

images in the test set.  

 
4.2. Implementation Details 

 
We utilize the ResNet-101 [38] network pre-trained on the 

ImageNet [41] dataset to downsample the feature map. We 

executed our proposed approach on a system with an Intel® 

Core i7-8700 CPU @ 3.20 GHz, 32 GB DDR4 RAM, and 

an NVIDIA GTX1080 (8 GB) Graphics card. The resolution 

of the output feature map generated by the network is the 

same as that of the input image and due to the limited GPU 

memory, input images are resized to 512×512 during the 

training phase. In our model, a convolutional layer with 1×1 

kernel size is employed to predict the label feature map, 

followed by bilinear interpolation-based up-sampling of 

output logits by a factor of 8 to facilitate the final 

computation and prediction task. We adopt the Adam 

optimizer [42] with an initial learning rate of 1.0×10-4 and 

weight decay of 1.0×10-5. The learning rate follows a 

polynomial decay policy, where the initial learning rate is 

multiplied by (1 − 𝑒𝑝𝑜𝑐ℎ

𝑚𝑎𝑥𝐸𝑝𝑜𝑐ℎ𝑒𝑠
)

0.9

. Additionally, we employ 

data preprocessing techniques to deal with the problem of 

overfitting. As part of this preprocessing step, basic data 

augmentation techniques are implemented, including 

random horizontal flipping, vertical flipping, and random 

intensity jittering on the training dataset.  

       For evaluating the performance of the proposed method 

and some of the existing state-of-the-art semantic image 

segmentation methods, we consider the following metrics:  

 

𝑃𝑃𝑉 =  
1

𝑟
∑ (

∑ 𝑇𝑃ͼͼ

∑ (𝑇𝑃ͼ+ 𝐹𝑃ͼ)ͼ
)                                                   (3) 𝑟

𝑖=1   

𝑇𝑃𝑅 =  
1

𝑟
∑ (∑

𝑇𝑃ͼ

(𝑇𝑃ͼ+ 𝐹𝑁ͼ)ͼ )𝑟
𝑖=1                                                  (4)  

𝐷𝑆𝐶 =
1

𝑟
∑ (

1

𝐾
∑

2𝑇𝑃ͼ

(2𝑇𝑃ͼ+𝐹𝑃ͼ+ 𝐹𝑁ͼ)ͼ )𝑟
𝑖=1                                      (5)  

𝑚𝐼𝑜𝑈 =
1

𝑟
∑ (

1

𝐾
∑

𝑇𝑃ͼ

(𝑇𝑃ͼ+𝐹𝑃ͼ+ 𝐹𝑁ͼ)ͼ )                                     (6)𝑟
𝑖=1   

where PPV refers to Positive Prediction Value, TPR: True 

Positive Rate, DSC: Dice Similarity Coefficient, and mIoU 
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is the mean Intersection over Union. TP, FP, TN, and FN 

denote True Positive, False Positive, True Negative, and 

False Negative, respectively. We additionally employ 

Matthews’ correlation coefficient [43] (MCC) as a metric, 

which measures the correlation between the ground truth 

and the predicted binary mask with a value ranging from -1 

to +1. It is defined as: 
 

𝑀𝐶𝐶

=  
1

𝑟
 ∑

𝑇𝑃𝑖 × 𝑇𝑁𝑖 − 𝐹𝑃𝑖 × 𝐹𝑁𝑖

√(𝑇𝑃𝑖 + 𝐹𝑃𝑖)(𝑇𝑃𝑖 + 𝐹𝑁𝑖)(𝑇𝑁𝑖 + 𝐹𝑃𝑖)(𝑇𝑁𝑖 + 𝐹𝑁𝑖)

𝑟

𝑖=1

     (7) 

 

where r is the number of samples in the set on which the 

performance of the network is to be evaluated. 
 

4.3. Experimental Results and Analysis 

 

In this section, we present the results achieved by our 

proposed segmentation frameworks on the EBIS test set, 

along with a comparative analysis of its performance against 

existing state-of-the-art semantic segmentation methods. To 

ensure a fair comparison, all the methods are trained on the 

same dataset, i.e., the EBIS training set, and their 

performance is subsequently evaluated on the EBIS test set. 

The detailed experimental results, including the average 

performance metrics of our proposed methods and the other 

methods, are presented in Table 1. 

       BuRnSNet outperforms other state-of-the-art methods 

with an average performance improvement of 9.6%, 12.2%, 

and 10.7% in DSC, mIoU, and MCC, respectively, in 

comparison to RefineNet [18]. Furthermore, this method 

shows a significant improvement of around 3.8%, 5.4%, and 

4.5% in DSC, mIoU, and MCC, respectively, in comparison 

to the MSAC-SNet [45]. 

 

Table 1. Performance (in %) of the proposed methods and 

other state-of-the-art methods on EBIS test set. All results 

are achieved by training only on Burn Image training set. 
 

Method PPV TPR DSC mIoU MCC 

DenseASPP [8] 61.4 85.4 66.2 52.1 61.4 

AdapNet [5] 65.3 80.0 68.1 53.1 62.7 

SegNet [7] 64.4 79.7 68.2 53.3 62.5 

BiSeNet [9] 73.8 69.7 68.2 53.3 63.3 

PSPNet [10] 64.8 83.9 69.2 54.9 64.7 

DeepLabV3 [4] 70.2 83.4 74.1 60.3 68.9 

UNet [46] 79.3 74.5 73.4 61.0 69.5 

DeepLabV3+[11] 67.7 89.3 74.7 61.5 70.5 

RefineNet [18] 66.7 92.5 75.2 62.1 71.0 

MSAC-SNet [45] 82.4 82.2 81.0 68.9 77.2 

BuRnSNet (ours) 82.8 88.7 84.8 74.3 81.7 

 

Fig. 6 and 7 show the distribution comparison of our 

proposed methods with other state-of-the-art segmentation 

methods, on the EBIS test set, in terms of mIoU and DSC, 

respectively. The BuRnSNet achieves mIoU of 80% or 

higher for around 39% of test set images, while the 

RefineNet and MSAC-SNet yield that for only around 13% 

of the total images. With respect to DSC also, the proposed 

network BuRnSNet yields a value of 0.9 or above for 35% 

of the images and the other methods best achieve so for only 

13% of the images (by UNet). The analysis of the 

distribution of mIoU and DSC indicates the robustness and 

potential applicability of our proposed method BuRnSNet 

for burn region segmentation, as the segmentation results 

with high mIoU and DSC are obtained for the majority of 

EBIS dataset by using BuRnSNet, with significantly better 

performance than the other methods considered. 

 

 
Fig. 6. Distribution comparison of different segmentation 

methods (on EBIS test set images) in terms of Intersection 

over Union (IoU). 

 

 
Fig. 7. Distribution comparison of different segmentation 

methods (on EBIS test set images) in terms of Dice 

similarity coefficient (DSC). 

 

       Our proposed method effectively predicts burn 

segments from color images of burn patients across diverse 

conditions, including patchy burn regions, irregular 

boundaries, and variations in the color and texture of burns. 

These conditions pose significant challenges for existing 

semantic segmentation methods, as evident from the 

analysis of original and predicted sample images presented 

in Fig. 8. Upon analyzing images generated by other best-

performing methods, such as RefineNet [18] and 

DeepLabV3+ [11], we observe that while these models 

excel in identifying true positives, they also tend to produce 

an increased number of false positives. Despite their efforts 

to effectively encode semantic information and consider 

low-level features, these methods struggle to capture 

detailed information related to object boundaries. This 
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limitation compromises the discriminatory ability of these 

networks, particularly at the boundaries of objects. As 

shown in Fig. 8, MSAC-SNet [45], inspired by DeepLab 

which uses the atrous convolution, improvises the output 

prediction and reduces the number of false positives in 

comparison to DeepLabV3+ but it still misses similar burn 

regions. For example, in the third row of Fig. 8, blister in the 

image is predicted as background by both these methods. 

 

 

Fig. 8. Some qualitative results as obtained by the proposed 

segmentation method BuRnSNet and other best performing 

existing methods on EBIS test set. 

4.4. Ablation Study 

 

Table 2. Performance (in %) of the proposed network with 

different network settings. 
 

Method PPV TPR DSC mIoU MCC 

SSN_only 76.2 74.9 72.4 58.5 68.1 

CSN_f4_only 81.7 79.9 78.4 66.5 75.1 

CSN (f3+f4) 78.6 87.9 80.4 68.5 77.6 

SSN+CSN_f3_only 81.1 84.5 80.8 69.0 77.4 

SSN+CSN_f4_only 81.2 85.3 81.8 71.0 78.7 

Our 82.8 88.7 84.8 74.3 81.7 

 

For a more detailed evaluation and interpretation of the 

proposed network, we conducted multiple experiments with 

different network settings. The evaluation results on the test 

set of the EBIS dataset are summarized in Table 2. In our 

experiments, we utilized ResNet101 as the backbone 

network. Overall, we observe that the Contextual Stream 

Network (CSN) outperforms the Spatial Stream Network 

(SSN) by 10% and 9.5% in terms of mIoU and MCC, 

respectively. However, combining both sub-networks: SSN 

and CSN, with CSN considering output from both stages 3 

and 4 (i.e. both mid-level and high-level features) helps in 

achieving the best performance. 
 

5. CONCLUSIONS 

 

This paper presents a new framework, BuRnSNet, designed 

specifically for pixel-level segmentation of burn regions 

from the color images of burn patients. The primary 

motivation behind this work and the proposed network was 

the limited exploration in this domain and the need for an 

efficient segmentation network that can better assist in the 

burn diagnosis and assessment process. We evaluated the 

performance of BuRnSNet and compared it with other state-

of-the-art models on the prepared EBIS dataset. Extensive 

experimental results showcase that our proposed model 

significantly outperforms existing state-of-the-art models. 

BuRnSNet effectively encodes and fuses spatial and 

contextual information, resulting in superior segmentation 

accuracy. To ensure reproducibility and facilitate further 

research, both the codes and the labeled dataset of this work 

are made publicly available. In the future, we plan to expand 

the dataset and explore customized approaches to enhance 

performance even further. We hope that this work will serve 

as a benchmark for future research in developing advanced 

visual image-based automated burns diagnostic systems. 
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