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Abstract In this paper we present a novel automatic

background substitution approach for live video. The

objective of background substitution is to extract the

foreground from the input video and then combine it

with a new background. In this paper, we use the

color line model to improve the Gaussian mixture model

in the Background Cut method to obtain a binary

foreground segmentation result that is less sensitive

to brightness difference. Based on the high quality

binary segmentation results, we can automatically

create a reliable trimap for alpha matting to refine

the segmentation boundary. To make the composition

result more realistic, an automatic foreground color

adjustment step is added to make the foreground look

consistent with the new background. Compared to

previous approaches, our method can produce higher

quality binary segmentation results, and to the best of

our knowledge, this is the first time such an automatic

and integrated background substitution system has

been proposed to run in real time, which makes it

practical for everyday applications.

Keywords Background substitution, Background

replacement, Background subtraction,

Alpha Matting.

1 Introduction

Background substitution is a fundamental post-

processing technique for image and video editing. It
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has extensive applications in video composition [2, 8],

video conferencing [25, 42] and augmented reality [37].

The process of background substitution can be basically

separated into two steps. The first step is to extract

the foreground from the input video, and the second

step is to combine the original foreground with the new

background. Given limited computational resources

and time, it is even more challenging when we want

to achieve satisfying background substitution results in

real time for live video. In this paper, we focus on

background substitution for live video and especially

live chat video, in which the camera is monocular and

static, the background is also basically static.

Foreground segmentation, also known as matting,

is a popular fundamental problem in the literature.

Formally, foreground segmentation takes as input an

image I, which is assumed to be a composite of a

foreground image F and a background image B. The

color of the ith pixel can be represented as a linear

combination of the foreground and background colors,

where α represent the opacity value:

Ii = αiFi + (1− αi)Bi. (1)

This is an ill-posed problem which needs assumptions

or extra constraints to become solvable.

Generally, existing works on foreground

segmentation can be categorized into automatic

approaches or interactive approaches. Automatic

approaches mostly assume that the camera and the

background is static, and a pre-captured background

image is available. They try to model the background

using either generative methods [1, 4, 26, 36], or

non-parametric methods [3, 19]. Those pixels which

are consistent with the background model will be

labeled as background, and the remainder will be

labeled as foreground. Some recent works incorporate

a conditional random field to include color, contrast

and motion cues and use graph-cut to solve an

optimization problem [14, 34, 39]. Most of the

online automatic approaches only produce a binary
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foreground segmentation instead of fractional opacities

for the sake of time, and then use feathering [34]

or border matting [14] to compute rough fractional

opacities along the boundary. Feathering is a relatively

crude, but efficient, technique that fades out the

foreground at a fixed rate. Border matting is an

alpha matting method that is significantly simplified

to only collect the nearby foreground/background

samples for each unknown pixel for fitting a Gaussian

distribution, which is later used to estimate the

alpha value for that pixel. Although border matting

also uses dynamic programming to minimize an

energy function that encourages alpha values varying

smoothly along the boundary, the result of border

matting is far from the global optimal. On the

other hand, interactive approaches are proposed to

handle more complicated camera motion [2, 12, 18].

Since strictly real-time performance is unnecessary

for these kinds of applications, they compute more

precise fractional opacities along the segmentation

boundary from the beginning. These kinds of methods

require the user to draw some strokes or a trimap

in a few frames to indicate if a pixel belongs to the

foreground/background/unknown region. They then

solve for the alpha values in the unknown region and

propagate the alpha mask to other frames.

In contrast to the large amount of foreground

segmentation publications, there are fewer studies on

techniques for compositing the original foreground

and a new background for background substitution.

Since the light sources of the original video and the

new background may be drastically different, directly

copying the foreground to the new background will

not achieve satisfying results. Some seamless image

composition techniques [20, 29] may seem relevant at

a first glance, but they require the original background

and the new background to be similar. Other color

correction techniques based on color constancy [6,

10, 11, 16] are more suitable in our context. Color

constancy methods first estimate the light source color

of the image, and then adjust pixel colors according to

the specified hypothetical light source color.

In this paper we present a novel practical

automatic background substitution system for live

video, especially live chat video. Since real-

time performance is necessary and interaction is

inappropriate during live chat, our method is designed

to be efficient and automatic. We first accomplish

binary foreground segmentation by a novel method

which is based on Background Cut [34]. To make

the segmentation result less sensitive to brightness

differences, we introduce a simplified version of the

color line model [28] during the background modeling

stage. Specifically, we build a color line for each

background pixel and allow larger variance along the

color line than in the perpendicular direction. We

also include a more recent promising alpha matting

method [24] to refine the segmentation boundary

instead of feathering [34] or border matting [14]. To

maintain real-time performance when including such

complicated alpha matting process, we do foreground

segmentation at a coarser level and then use simple but

effective bilinear upsampling to generate a foreground

mask for the finer level. After foreground segmentation,

in order to compensate for any lighting difference

between the input video and the new background, we

estimate the color of the light sources in both the

input video and new background, and then adjust

the foreground color based on the color ratio of the

light sources. This color compensation process follows

the same idea as the white-patch algorithm [23],

but to our knowledge this is the first time this

kind of color compensation step has been applied

to background substitution. Compared to previous

approaches, thanks to its invariance to luminance

changes, the binary segmentation result of our method

is more accurate, and, thanks to the alpha matting

border refinement and foreground color compensation,

the appearance of the foreground in our result is more

compatible to the new background.

In summary, the main contributions of our paper are:

• A novel practical automatic background

substitution system for live video.

• Introduction of the color line model to the

Gaussian mixture model at the background

modeling stage, which makes the foreground

segmentation result less sensitive to brightness

differences.

• Application of the color compensation step

to background substitution, which makes the

inserted foreground look more natural in the new

background.

2 Related work

2.1 Automatic Video Matting

Different from interactive video matting methods [2,

12, 18, 41] which need user interaction during the

playing of videos, automatic video matting is more

appropriate for live video. The earliest kind of

automatic video matting problem is constant color

matting [32], which uses a constant backing color,
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often blue, and its solution is often called blue screen

matting. Although excellent segmentation results can

be achieved by blue screen matting, it needs extra

equipment such as a blue screen and careful setting

of light sources. More recent video matting methods

loosen the requirement that the background has

constant color, and only assume that the background

can be pre-captured and remains static or only contains

slight movements. They model the background using

either generative methods, such as a Bayesian model [1],

self-organized map [26], Gaussian mixture model [4],

independent component analysis [36], foreground-

background mixture model [27] or non-parametric

methods [3, 19]. Using these models, we can predict

the probability of a pixel belonging to the background.

These methods will create holes in the foreground

and noise in the background if the colors of the

foreground and background are similar, because they

only make local decisions. Some recent techniques

utilize the power of graph-cut to solve an optimization

problem based on a conditional random field using

color, contrast and motion cues [14, 34, 39], which are

able to create more complete foreground masks since

they constrain the alpha matte to follow the original

image gradient. There are also some works [40] that

focus on foreground segmentation for animation. In our

case, in order to acquire real-time online matting for live

video, it is inappropriate to include motion cues. Thus

our model is only based on color and contrast like Sun

et. al [34]. We also find that stronger shadow resistance

can be achieved by employing the color line model [28].

Another drawback of existing online methods is that

they only acquire a binary foreground segmentation

and then use rough border refinement techniques such

as feathering [34] or border matting [14] to compute

fractional opacities along the boundary. In this paper,

we will show that more precise alpha matting technique

can be incorporated while real-time performance can

still be achieved by doing foreground segmentation at a

coarser level and then using simple bilinear upsampling

to generate a finer level foreground mask.

2.2 Interactive Video Matting

Interactive video matting is an other popular kind

of video matting method. It releases the requirement

of known background and static camera, and takes a

user drawn trimap or strokes to tell if a pixel belongs

to the foreground/background/unknown region. For

images, previous methods often use sampling-based

methods [17], affinity-based methods [24], or the

combination of both [9] to compute alpha values

for the unknown region based on the known region

information. For videos, Chuang et al [12] use optical

flow to propagate the trimap from one frame to

another. Video SnapCut [2] maintains a bunch of

local classifiers around the object boundary, where

each classifier subsequently solves a local binary

segmentation problem, and classifiers of one frame will

be propagated to next frames according to motion

vectors estimated across frames. However, they need

to take all frames all at once for computing reliable

motion vectors and the time complexity is huge,

which makes it unsuitable for online video matting.

Gong et al [18] use two competing one-class support

vector machines (SVM) to model the background and

foreground separately for each frame at every pixel

location, use the probability values predicted by the

SVMs to solve estimate the alpha matte, and update

the SVMs over time. Near real-time performance is

available with the help of a GPU, but they still need

user input trimap and an extra training stage, which

makes it inconvenient for live video application.

There are three main categories of methods for

color adjustment to improve the realism of image

composites. The first category focuses on color

consistency or color harmony. For example, Wong

et al [38] adjust foreground colors to be consistent

with nearby surrounding background pixels, but their

method fails when the nearby background pixels do

not correctly represent the overall lighting condition;

Cohen-Or et. al [13] and Kuang et. al [22] consider

overall color harmony based on either aesthetic rules

or models learned from a dataset, but they tend to

focus on creating aesthetic images rather than realistic

images. The second category of methods focuses on

seamless cloning based on solving a Poisson equation

or coordinate interpolation [7, 8, 15, 20, 29]. There is a

major assumption in these approaches that the original

background needs to be similar to the new background,

which we cannot guarantee in our application. The

third category of methods is color constancy, which

estimates the illuminant of the image first and then

adjust colors accordingly [6, 10, 11, 16]. In this paper,

we choose to utilize the most basic and popular color

constancy method, the white-patch algorithm [23],

to estimate the light source color, since we need its

efficiency for real-time application.



4 Haozhi Huang et al.

3 Our approach

3.1 Overview

We now outline our method. Its pipeline can be

separated into three steps: foreground segmentation,

border refinement, and final composition. Firstly,

for the foreground segmentation step, we suppose

the background can be pre-captured and maintains

static. Inspired by Background Cut [34], we build a

global Gaussian mixture background model, local single

Gaussian background models at all pixel locations, and

a global Gaussian mixture foreground model. But

unlike Background Cut, instead of using an isotropic

variance for the local single Gaussian background

models, we make the variance along the color line larger

than that in the direction perpendicular to the color

line. Here the concept of a color line is borrowed

from [28]. The original color line model built multiple

curves to represent all colors of the whole image, and

assumed that colors from the same object lie on the

same curve. To check which curve a pixel belongs

to is a time consuming process. In order to achieve

real-time performance, we adapt the color line model

to a much simpler and more efficient version. In our

basic version of the color line model, for each pixel

we build a single curve color line model, which avoids

the process of matching a pixel to one of the curves

in the multiple curves model. Furthermore, instead

of fitting a curve, we fit a straight line that intersects

the origin in the RGB space, which means we ignore

the non-linear transform of the camera sensor. In our

experiments, we find this simplified model is sufficient

and effective. By utilizing this color line model, we

can avoid misclassifying background pixels which suffer

color changes due to a shadow passing by, since the

color changes caused by the shadow still remain along

the color line. Using this Background Cut model, we

can build an energy function that can be optimized by

graph-cut and get a binary foreground segmentation

matte. Secondly, we carry out border refinement

for this binary foreground matte. Specifically, we

use morphology operations to mark the border pixels

between foreground and background. Considering these

border pixels as the unknown region, we got a trimap

and then carry out closed-form alpha matting [24],

which computes fractional alpha values for these border

pixels. It is important to emphasize that only when

the binary foreground segmentation result is basically

correct, is it reliable to automatically generate a trimap

in this way. Lastly, for the final composition, we

estimate the light source colors of the original input

video and the new background separately, and adjust

foreground colors accordingly to make the foreground

look more consistent with the new background.

3.2 Foreground Segmentation

3.2.1 Basic Background Cut Model

In this section we briefly describe the Background

Cut model proposed in [34]. The Background Cut

algorithm takes a video and a pre-captured background

as the input, and the output is a sequence of binary

foreground masks, in which each pixel r is labelled 0 if it

belongs to the background or 1 otherwise. Background

Cut solves the foreground segmentation problem frame

by frame. For each frame, the process of labelling

can be transformed into solving a global optimization

problem. The energy function to be minimized is in the

form of a Conditional Random Field:

E(X) =
∑

r

Ed(xr) + λ1

∑

r,s

Ec(xr, xs), (2)

where X = {xr}, xr denotes the label value, r, s are

neighbouring pixels in one frame, Ed represents per-

pixel energy (usually called the data term), Ec is a

contrast term computed from the neighbouring pixels.

Here λ1 is a predefined constant balancing Ed and Ec,

which is empirically set to 30 in our experiment. This

is a classic energy function which can be minimized by

graph-cut [5].

Now we explain how to construct Ed and Ec. First

we model the foreground and the background using

Gaussian models. For the foreground, we build a global

Gaussian mixture model (GMM). For the background,

we not only build a global GMM, but also a local single

Gaussian distribution model at each pixel location

(called a per-pixel model). The two global GMMs are

defined as:

p(vr|xr = i) =

ki
∑

k=1

wi
kN(vr|µ

i
k,Σ

i
k), i = 0, 1, (3)

where i = 0, 1 stands for background and foreground

respectively, vr denotes the color of pixel r, ki denotes

the number of mixture components, wi
k denotes the

weight of the kth component, N denotes the Gaussian

distribution, µi
k denotes the mean, Σi

k denotes the

covariance matrix. The single Gaussian distribution at

every pixel location is defined as:

ps(vr) = N(vr|µ
s
r,Σ

s
r), (4)

where Σs
r = σs

rI, which means, following [34], that

the variance of the per-pixel model is isotropic. The

background global GMM and the background per-pixel

model are initialized using pre-captured background

data. The foreground global GMM is initialized using

4
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(a) (b) (c) (d)

Fig. 1 (a) pre-captured background. (b) one frame of the input video. (c) binary foreground matte after graph-cut. (d) foreground

matte after filling holes.

pixels whose probabilities are lower than a threshold

in the background model. After initialization, these

Gaussian models will be updated frame by frame

according to the segmentation result.

Based on the Gaussian models, the data term Ed is

defined as:

Ed(xr) =

{

− log (λ2p(vr|xr) + (1− λ2)ps(vr)) , xr = 0

− log p(vr|xr), xr = 1.

(5)

Here λ2 is a predefined constant balancing the

global GMM and the local per-pixel model, which is

empirically set to 0.1 in our experiments. The contrast

term is

Ec(xr, xs) = |xr−xs| exp(−β||vr−vs||
2/dB(r, s)), (6)

dB(r, s) = 1 + (||vBr − vBs ||/K)2 exp(−z2rs/σz), (7)

where dB(r, s) is a contrast attenuation term

proportional to the contrast with respect to the

background, zrs=max(||vr−vBr ||, ||vs−vBs ||) measures

the dissimilarity between the pre-captured background

and the current frame; β, K, σz are predefined

constants. In our experiment, we set β = 0.005, K = 1,

σz = 10. The introduction of the contrast attenuation

term makes the calculation of Ec rely on the contrast

from the foreground instead of the background.

The energy function Eq. (2) can be optimized using

the graph-cut algorithm [5]. For more details of the

model, please refer to [34]. One major drawback of

this Background Cut model is that, when the color

of a background pixel changes due to changes in

illumination, it will have extremely low probability in

the per-pixel model, which will cause the pixel to be

misclassified from background to foreground.

3.2.2 Background Cut with Color Line

Model

Now we will show how the color line model [28] can

improve the effectiveness of the Background Cut model

in the presence of shadows.

Based on the basic color line model, we make the

assumption that colors of a certain material under

different intensities of light form a linear color cluster

that intersects the origin in the RGB space. Suppose

the average color at a pixel location is µs
r = (r, g, b).

When the illumination of the same pixel location

changes, its color will also change from µs
r to vr.

According to the color line model, vr will approximately

lie on the line connecting the origin and µs
r in the RGB

color space. With this insight, we can decompose vr as

vr = v⊥ + v‖ (8)

such that v⊥ ⊥ µs
r and v‖ ‖ µs

r. Define

f(vr, µ
s
r) = N

(

‖v⊥‖
∣

∣ 0, σpe

)

N
(

‖v‖‖
∣

∣ ‖µs
r‖, σpa

)

, (9)

where σpe and σpa are the respective variances of the

Gaussian distributions for the perpendicular direction

and parallel direction. Then the per-pixel single

Gaussian distribution Eq. (4) is modified as

ps(vr) = f(vr, µ
s
r). (10)

As discussed before, the color of an object is more likely

to fluctuate in the parallel direction rather than in

the perpendicular direction. Therefore, we set σpe =

σs
r , σpa = λ3σpe, λ3 > 1 to constrain variance in

the perpendicular direction and tolerate variance in

the parallel direction, which gives our model a strong

resistance to shadow. Here we do not build a global

color line model as in [28], which has multiple color

lines for the whole image to replace the global GMM,

because it takes a long time to determine which line

each pixel belongs to when the number of lines is large

(e.g. a model of 40 lines are used in [28]), and it will

hinder the real-time performance.

3.3 Border Refinement

After graph-cut, we add an extra hole filling step

by applying the morphology close operation to fill

small holes in the foreground mask. See Fig. 1 for an

example. However, what we currently have is still a

binary foreground matte (Fig. 1d). In this subsection,

we explain how to automatically compute fractional

alpha values for the segmentation border.

First, we automatically generate a mask covering the

segmentation border as the unknown region:

Ui = 1− (erode(F )i or erode(B)i). (11)

Here Ui denotes the value of the ith pixel of the

unknown mask, erode() denotes the morphology erode
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(a) (b)

Fig. 2 (a) automatically generated trimap. (b) alpha matting

result.

operation, F is the binary foreground matte, B is the

binary background matte where Bi = 1 − Fi. The

morphology operation radius is set to 2 for 640 ×

480 input. The eroded foreground mask, eroded

background mask, unknown region mask are separately

painted in white, black and gray in the final trimap.

Using this trimap with one of the most popular alpha

matting methods [24], we calculate the fractional alpha

values for the unknown region. See Fig. 2 for an

example of the generated trimap and alpha matting

result.

3.4 Final Composition

For an ideal final composition, the new composite

image should be:

Inew = αFold + (1− α)Bnew. (12)

Here Inew denotes the new composite image, Fold

denotes the original foreground, Bnew denotes the new

background (Fig. 3(c)). For previous methods whose

pre-captured background (Fig. 3(a)) is unavailable, Fold

is approximated by Iold:

Inew = αIold + (1− α)Bnew. (13)

However, in our case, since the pre-captured

background Bold is available, we can calculate the

original foreground more accurately:

Fold = (Iold − (1− α)Bold)/α. (14)

So the final composition formula should be:

Inew = Iold + (1− α)(Bnew −Bold). (15)

Directly applying the above composition will create

unrealistic results due to the difference of the light

source colors between the original input and the new

background. Thus, we propose a color compensation

process to deal with this problem.

First, we need to estimate the light source colors of

the original input video and the new background image.

The white-patch method [23], which is a popular color

constancy method, assumes that the highest values

in each color channel represent the presence of white

in the image. In this paper, we use the variant of

white-patch method which is designed for CIE-Lab

space, a color space that is naturally designed to

separate lightness and chroma. We first calculate the

(a) (b)

(c) (d)

Fig. 3 (a) pre-captured background. (b) estimated light source

mask of the pre-captured background(a). (c) new background.

(d) estimated light source mask of the new background(c)

(a) (b)

Fig. 4 (a) composite result without color compensation. (b)

composite result with color compensation.

accumulated histogram in the lightness channel L of an

image in CIE-Lab space, and consider the 10% pixels

with the largest lightness values as the white pixels.

Fig. 3 shows an example of the light source masks. The

estimated light source color is then computed as the

mean color value of all light source pixels. Denote the

estimated light source color of the input video as cold,

that of the new background image as cnew, the new

composite image after color compensation is:

Inew = rIold + (1− α)(Bnew − rBold), (16)

r = cnew/cold. (17)

Fig. 4 shows a comparison between results with and

without light source color compensation. We can

clearly see that the result with color compensation is

more realistic.

4 Results and discussion

In this section, we report results generated under

different conditions. All results of our method are

generated using fixed parameters.

Results for different frames of the same input

video. Fig. 5 shows that our method can create

generally good background substitution results for

different frames, no matter what the gesture is.

Sometimes there may be residual background between

the fingers (e.g. Fig. 5c) due to the holes filling post-

processing, but it does not do much harm to the overall

6
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 (a-d) input video frames. (e-h) background substitution results.

(a) (b) (c)

(d) (e) (f)

Fig. 6 (a-c) input frames from different videos. (d-f) background substitution results.

effect.

Results for different input video. Fig. 6 shows that

our method can deal with different kinds of foreground

and background. Color compensation works fine for

various lighting condition. Although the matting

border is not 100% perfect for Fig 6b due to mixing

up of hair and the background, the composition result

is generally good.

Comparison with previous methods. We compare

Fuzzy Gaussian [31], Adaptive-SOM [26], Background

Cut [34] using RGB color space, CIE-Lab color space

and our color line model. For the implementation

of Fuzzy Gaussian and Adaptive-SOM, we use the

code in BGSLibrary [33]. There are also other

background subtraction methods shown in BGSLibrary,

we choose these two methods because they show the

most promising results under real time conditions.

Fig. 7 shows foreground masks created by different

methods. After the person walks into the picture, some

shadow will be cast onto the wall. Fuzzy Gaussian

and Adaptive-SOM creates lots of noise and holes since

they have not utilized the gradient information between

neighbouring pixels. Background Cut in RGB color

space does a better job by using the graph-cut model to

introduce gradient information. However, it is sensitive

to brightness difference, which causes shadow to be

misclassified as foreground. If we set the variance of the

Gaussian to be larger to tolerate some shadow, part of

the true foreground will be misclassified as background.

Background Cut in CIE-Lab space also suffers from

the same issue. Although allowing a larger variance

in the L channel can also give greater tolerance to

brightness changes, in actual test cases, even when we

only increase the variance in the L channel by a small

amount, part of the collar will disappear. In contrast,

using our color line model with the Background Cut

can constantly create a better foreground segmentation

result.

To further quantitatively evaluate the comparison,

we create a large number of ‘ground truth’ foreground

masks following a similar idea to [30]. The key idea is

to use some balls as the moving foreground objects,

and use a circle detection technique to detect the

balls, which will automatically create ‘ground truth’

masks for evaluation of our foreground segmentation

methods. Specifically, we first calculate the difference
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 (a) input frame. (b) foreground mask created by Fuzzy Gaussian. (c) result created by Adaptive SOM. (d) result created

by Background Cut in RGB space with a smaller variance (σs
r = (5/255)2) of the Gaussian model. (e) result created by Background

Cut in RGB space with a larger variance (σs
r = (20/255)2). (f) result created by Background Cut in CIE-Lab space with σL = σa =

σb = (5/255)2. (g) result created by Background Cut in CIE-Lab space with a larger variance in L channel (σL = 5 ∗ (5/255)2). (h)

result of our method (σpe = (10/255)2, σpa = 10 ∗ (10/255)2).

image between the pre-captured background and the

current frame (where one or more balls appear).

Then we perform circle detection using the Hough

Transform [21] on the difference image, which generally

produces reliable and accurate detection results.

Finally, we manually eliminate the small number of

outliers that occur when the circle detection fails. In

total, 4105 frames and their circle detection results

are collected as the ‘ground truth’. Fig. 9 shows a

few examples. We did not use the ‘ground truth’

from the VideoMatting benchmark [35], because their

synthesized test images do not have shadows cast

on the background, which is one of the fundamental

aspects we wish to test. Using the ground truth we

generated, we test different methods including Fuzzy

Gaussian, Adaptive-SOM, Background Cut using RGB

color space, CIE-Lab color space and our color line

model. For Fuzzy Gaussian and Adaptive-SOM, we

use the default parameters provided by BGSLibrary.

For the Background Cut method using different color

spaces, we test several parameters and show those with

the highest F1 score. From Table 1, we can see that

Background Cut with our color line model acquires the

highest F1 score, CIE-Lab space follows closely, others

are substantially worse. However, as we have already

shown in Fig. 7, CIE-Lab space shows an obvious

drawback in actual application scenarios. We also test

an outdoor scene with different methods to show the

effectiveness of our model in Fig. 8. In conclusion, our

color line model generally creates a better foreground

segmentation boundary, and is effective at coping with

differences in brightness.

Results with different new background. We

also test our color compensation method under new

Tab. 1 Methods Comparison on Ground Truth Dataset

Method Precision Recall F1

Fuzzy Gaussian 0.252 0.993 0.402

Adaptive-SOM 0.510 0.963 0.667

BC-RGB 0.839 0.962 0.896

BC-Lab 0.900 0.968 0.933

BC-Colorline 0.907 0.964 0.935

backgrounds with different light sources. In Fig. 10

the first row shows the new input backgrounds, and

the second row shows the light source pixel masks.

The third row contains the composition results; we can

see that the color of the foreground varies correctly

according to different backgrounds.

Acceleration. Although we restrict the alpha matting

computation to a very small unknown region, it is

still computationally expensive. In order to make our

algorithm run at real time, we first downsample the

input frame by a scale of two, carry out foreground cut

and alpha matting on the downsampled images, and

then upsample the matting result to the original scale.

We finish the final composition step at the original

scale. Let us call this process ‘sampling acceleration’.

As we can see in Fig. 11, the matting result with

sampling acceleration is very similar to the original one.

If we do not used alpha matting to refine the border,

apparent jags will appear along the border (Fig. 11c).

Performance. We have implemented our method in

C++ on a PC with an Intel 3.4GHz Core i7-3770

CPU. For a 640 × 480 input video, our background

substitution program can run at 10 frames per second

using just the CPU, and it can run at a real-time frame

8
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(a) (b) (c)

(d) (e) (f)

Fig. 8 (a) input frame. (b) result created by Background Cut in RGB space with a smaller variance (σs
r = (5/255)2) of the

Gaussian model. (c) result created by Background Cut in RGB space with a larger variance (σs
r = (20/255)2). (d) result created by

Background Cut in CIE-Lab space with σL = σa = σb = (5/255)2. (e) result created by Background Cut in CIE-Lab space with a

larger variance in L channel (σL = 5 ∗ (5/255)2). (f) result of our method (σpe = (10/255)2, σpa = 10 ∗ (10/255)2).

(a) (b) (c) (d)

Fig. 9 Example frames for creating ground truth.

rate with GPU parallelization.

5 Conclusions

In this paper, we have presented a novel background

substitution method for live video. It optimizes a

cost function based on Gaussian mixture models and

Conditional Random Field by graph-cut. The color

line model is introduced when computing the Gaussian

mixture model to make the model less sensitive to

brightness differences. Before final composition, we use

alpha matting to refine the segmentation border. Light

source colors of the input video and new background

are estimated by a proposed simple method, and we

adjust the foreground colors accordingly to give more

realistic composition results. Compared to previous

methods, our approach can automatically produce more

accurate foreground segmentation masks and more

realistic composition results, while still maintaining

real-time performance.
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