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WSCNet: Weakly Supervised Coupled Networks for
Visual Sentiment Classification and Detection

Dongyu She, Jufeng Yang, Ming-Ming Cheng, Yu-Kun Lai, Paul L. Rosin and Liang Wang

Abstract—Automatic assessment of sentiment from visual
content has gained considerable attention with the increasing
tendency of expressing opinions online. In this paper, we solve
the problem of visual sentiment analysis, which is challenging
due to the high-level abstraction in the recognition process.
Existing methods based on convolutional neural networks learn
sentiment representations from the holistic image, despite the fact
that different image regions can have different influence on the
evoked sentiment. In this paper, we introduce a weakly super-
vised coupled convolutional network (WSCNet). Our method is
dedicated to automatically selecting relevant soft proposals from
weak annotations (e.g., global image labels), thereby significantly
reducing the annotation burden, and encompasses the following
contributions. First, WSCNet detects a sentiment-specific soft
map by training a fully convolutional network with the cross
spatial pooling strategy in the detection branch. Second, both
the holistic and localized information are utilized by coupling
the sentiment map with deep features for robust representation
in the classification branch. We integrate the sentiment detection
and classification branches into a unified deep framework, and
optimize the network in an end-to-end way. Through this joint
learning strategy, weakly supervised sentiment classification and
detection benefit each other. Extensive experiments demonstrate
that the proposed WSCNet outperforms the state-of-the-art
results on seven benchmark datasets.

Index Terms—Visual sentiment analysis, weakly supervised
detection, convolutional neural networks

I. INTRODUCTION

Visual sentiment analysis from images has attracted great
attention with an increasing tendency of expressing opinions
via posting images on social media platforms, e.g., Flickr
and Twitter. Assigning image sentiment automatically has
various applications, e.g., affective computing [2], opinion
mining [3], [4], emotion-based image retrieval (EBIR) [5],
[6], entertainment [7], [8], etc. Recently, due to the success
of convolutional neural networks (CNNs), numerous deep
approaches have been proposed to predict sentiment [9], [10].
The effectiveness of machine learning based deep features
has been demonstrated over hand-crafted features (e.g., color,
texture, and composition) [11]–[13] on visual sentiment pre-
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Fig. 1. Examples from the (a) EmotionROI [14] and (b) EMOd datasets [15]
with the human annotation. The ground-truth sentiments are also given. The
normalized maps indicate the regions that influence the evoked sentiments
and emotional attention. As can be seen, the sentiments can be evoked by
specific regions.

diction. However, several issues exist when using CNNs to
address such an abstract task, which are explained as follows.

First, compared with conventional recognition tasks, visual
sentiment analysis is more challenging due to a higher level
of subjectivity in the human recognition process [2]. Neu-
roimaging and behavioral studies find that human attention
is attracted by emotional relevance of a stimulus [16]–[18],
which is also proved as the emotion prioritization effect in
computer vision studies [15]. Fig. 1 shows examples from the
EmotionROI [14] and EMOd datasets [15]. As can be seen,
specific regions show strong influence on evoked sentiment.
It is necessary to take such an effect into consideration
for visual sentiment prediction, while most existing methods
employ CNNs to learn representations only from entire images
[19], [20]. Second, precise annotations (e.g., bounding boxes)
can provide more discriminative information than image-level
labeling, which also lead to better performance in recognition
tasks [21]. However, there are two limitations for visual
sentiment classification using region-based annotations. On
the one hand, collecting such precise annotations can be
very labor-intensive and time-consuming, whereas achieving
only image-level annotations is much easier, especially for
such a subjective task. On the other hand, different regions
contribute differently to the viewer’s evoked sentiment, while
crisp proposal boxes only tend to find the foreground objects
in an image.

To address these problems, this paper proposes a weakly
supervised coupled network (WSCNet) framework for joint
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sentiment detection and classification with two branches,
namely detection and classification branches. The first branch
is designed to generate region proposals evoking sentiment.
Instead of extracting multiple crisp proposal boxes, we use a
soft sentiment map to represent the probability of evoking the
sentiment for each receptive field. In detail, we make use of a
Fully Convolutional Network (FCN) followed by the proposed
cross-spatial pooling strategy to summarize the feature maps
into image-level scores. Thus, the network can be trained
with image-level sentiment labels, which significantly reduces
the annotation burden. Then sentiment map is generated and
utilized to highlight the regions of interest that are informative
for classification. In addition, the second branch captures the
localized representation by coupling the sentiment map with
the deep features, which is then combined with the holistic
representation to provide a more semantic vector.

Our contributions are summarized as follows:
• First, we present a weakly supervised coupled network

to integrate visual sentiment classification and detection
into a unified CNN framework, which learns the discrim-
inative representation for visual sentiment analysis in an
end-to-end manner.

• Second, we exploit sentiment maps to provide image-
specific localized information with only image-level la-
bels, with which both holistic and localized representa-
tions are fused for robust sentiment classification.

• Extensive experiments demonstrate that the proposed
framework performs favorably against the state-of-the-
art methods and off-the-shelf CNN classifiers on seven
benchmark datasets.

This paper is an extended version of our conference pa-
per [1], to which we enrich the contributions in the following
four aspects: (1) We provide useful details of our weakly
supervised framework, and distinguish it from comparative
methods, e.g., salience detection and weakly supervised detec-
tion framework. (2) We add a comprehensive review of related
work in Sec. II, making the manuscript more self-contained.
(3) We conduct an exhaustive analysis on the weakly super-
vised detection framework for visual sentiment prediction and
add evaluation on the eye-tracking dataset [15]. For compari-
son, recent learning based salience detection methods are also
trained and evaluated on such datasets. (4) We carefully study
the capability and failure mode of our approach, and highlight
the difference between the sentiment map and other attention
and salience work.

II. RELATED WORK

In this section, we review methods for image sentiment
prediction [22]–[25] and weakly supervised detection [26] that
are closely related to our work.

A. Visual Sentiment Prediction

Existing approaches to visual sentiment prediction are
generally based on hand-engineered features [11] and deep
learning frameworks [6]. In the early years, numerous methods
have been used to design different groups of hand-crafted
features inspired by psychology and art theory. Machajdik et

TABLE I
STATISTICS OF THE AVAILABLE AFFECTIVE DATASETS. MOST DATASETS

DEVELOPED IN THIS FIELD CONTAIN A FEW THOUSAND SAMPLES, MAINLY
DUE TO THE SUBJECTIVE AND LABOR INTENSIVE LABELING PROCESS. AS

THE LAST COLUMN SHOWS, NONE OF THESE DATASETS EXCEPT
EMOTIONROI AND EMOD PROVIDE GROUND TRUTH REGIONS THAT

EVOKE SENTIMENTS.

Dataset #Images #Classes Regions

IAPSa [12] 395 8 N
Abstract [12] 228 8 N
ArtPhoto [12] 806 8 N
Twitter I [19] 1,269 2 N
Twitter II [34] 603 2 N
EmotionROI [14] 1,980 6 Y
EMOd [15] 1,019 10 Y
Flickr&Instagram [10] 23,308 8 N
Flickr [35] 60,745 2 N
Instagram [35] 42,856 2 N

al. [12] define a combination of low-level features that repre-
sent the emotional content, e.g., color, texture, composition,
while more robust features according to art principles are
investigated in [13]. Zhao et al. [27], [28] further propose the
multi-task hypergraph learning to predict personalized emotion
perceptions, which is the pioneering work towards the emotion
subjectivity challenge. Different factors that may influence
emotion perceptions are considered, i.e., visual content, so-
cial context, temporal evolution and location influence. More
recently, several approaches exploit deep models for learning
sentiment representations. DeepSentiBank [29] constructs a
visual sentiment concept in terms of classification on adjective-
noun pairs (ANP) for detecting sentiment depicted in im-
ages. To cope with limited training data, most approaches
incorporate the CNN weights learned from a large-scale
general dataset [30] and fine-tune the model for sentiment
prediction [19], [20], [31]. To utilize sentiment ambiguity,
Yang et al. [32] propose to learn a deep representation in a
multi-task CNN, which jointly optimizes the classification and
distribution prediction. A general survey is provided in [33].

Psychology study findings indicate that human attention
usually prioritizes emotional content (e.g., smiling babies)
over emotionally neutral stimuli [16], [38], [39]. While most
CNN-based methods for sentiment classification extract deep
features from the entire image, significantly less attention has
been paid to utilize the localized information for sentiment
prediction [40]. Recently, Sun et al. [41] and Yang et al. [42]
discover affective regions based on an off-the-shelf object pro-
posal algorithm and combine deep features for classification.
However, such methods are sub-optimal since the objectness
algorithm is separate from the prediction method, and regions
that are not object-like may be excluded at the very beginning.
In [43], a method based on an attention model is developed in
which local visual regions induced by sentiment related visual
attributes are considered. In addition, Peng et al. [14] train a
supervised network FCNEL to predict the emotion stimuli map
(ESM) with manually labeled pixel-level ground truth. Fan et
al. [44] investigate how attention influences visual sentiment
and further propose a novel DNN model with a subnetwork
that is able to encode the relative importance of regions
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Fig. 2. Illustration of different architectures. (a) plain CNN, (b) MIL [36] (c) CAM [37], (d) our proposed architecture. In (a), a fixed-size image is fed into
the CNN. In (b), a set of patches only requires image-level annotations for training, while the candidate bounding boxes are generated in multiple stages. In
(c), the object localization information comes from viewing the convolutional filters as detectors in a unified network, which is ignored for learning sentiment
representation. The proposed WSCNet in (d) introduces cross-spatial pooling for summarizing the information from the deep feature maps and combines the
advantages of utilizing both holistic representation and localized information.

within an image [15]. However, such fully supervised methods
would be extremely labor intensive if they were extended
to large-scale datasets. The existing datasets in this field are
summarized in Tab. I, most of which only contain limited
samples with image-level annotation. Different from existing
methods in the literature, we propose a weakly supervised
model to learn a discriminative sentiment representation for
both classification and detection. Experimental results show
the superiority of the proposed framework over the state-of-
the-art methods.

B. Weakly Supervised Detection

With the recent success of deep learning on large-scale
object recognition [45], several weakly supervised CNNs have
been proposed for the object localization task [46]. The objec-
tive of these methods is to localize object parts that are visually
consistent with the semantic image-level labels across the
training data. One of the most common approaches for tackling
this task is to formulate it as a multiple instance learning
(MIL) problem [36], [47]–[49]. MIL defines images as a
bag of regions, and assumes that images labeled as positive
contain at least one object instance of a certain category and
images labeled as negative do not contain an object from
the category of interest, as shown in Fig. 2 (b). Cinbis et
al. [50] consist of generating object proposals and extracting
features from the proposals in multiple stages, and employ
MIL on the features to determine the box labels from the
weak bag labels. In [51], a weakly-supervised deep learning
pipeline is proposed to localize objects from complex cluttered
scenes by explicitly searching over possible object locations
and scales in the image. Since the training process of the MIL
alternates the stages of object extraction and classifier training,
the solutions are non-convex and as a result are sensitive
to the initialization. Li et al. [52] introduce a class-specific
object proposal generation method based on the mask strategy
of [53], in order to have a reliable initialization. However,
such multistage nature of the framework limits their potential,
which might not be optimal for sentiment detection.

To alleviate this shortcoming, in view of the promising
results of CNNs for visual recognition, methods have also
been proposed to use a unified network framework to perform
localization, viewing the convolutional filters as detectors to
activate locations on the deep feature maps [37], [54], [55].
Zhou et al. [37] utilize the global average pooling layer after
the top convolutional layer to aggregate class-specific activa-
tion maps (CAM), as shown in Fig. 2 (c). Durand et al. [54]
propose the WILDCAT method to learn multiple localized
features related to different class modalities (e.g., object parts).
Considering the object evidence, Zhu et al. [55] propose the
soft proposal network (SPN) to generate soft proposals and
aggregate image-specific patterns by coupling the proposal and
feature maps, which tends to distinguish the foreground objects
from the surroundings with a graph propagation algorithm.
More recently, Wei et al. [26], [56] propose an adversarial
erasing (AE) approach to mine dense object regions for
supervision. These work also use localization information for
object classification by finding the corresponding semantic
regions and then comparing their appearance. The former
requires that localization are shared across object classes
leading to the similar representations, while the latter requires
the representations to be distinguishing across categories. Such
conflict leads to a trade-off between the classification ability
and localization ability, which may result in the suboptimal
classification performance for the integrated network.

Different from the existing methods, as shown in Fig. 2
(d), we integrate sentiment-related proposals into CNNs for
utilizing local information under weak supervision. Instead
of using class-specific activation [37], [54], this work detects
a unified sentiment map considering all the activation maps
by a weighted sum pooling strategy, due to the ambiguity
information between the sentiments. Moreover, the detected
sentiment map is coupled on the feature maps, which are then
combined with the global representation as a more semantic
vector. Thus, the detection and classification branches can
boost each other during the end-to-end training process.
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Fig. 3. Illustration of the proposed WSCNet for visual sentiment analysis. The input image is first fed into the convolutional layers of FCN, and the response
feature maps are then delivered into two branches. The detection branch employs the cross-spatial pooling strategy to summarize all the information contained
in the feature maps for each class. The generated sentiment map is then coupled with the original deep feature maps in the classification branch, resulting in the
localized representation of the input image. Then, both holistic and localized representations are concatenated as a semantic vector for sentiment classification.
These two branches only require image-level supervisions for training.

III. WEAKLY SUPERVISED COUPLED NETWORK

Fig. 3 illustrates the proposed weakly supervised coupled
network, which aims to detect soft proposals that evoke
sentiment, only requiring image-level labels as the manual
supervision. Specifically, WSCNet jointly optimizes both de-
tection and classification tasks with two network branches,
i.e., detection branch and classification branch. The detection
branch is employed to generate a sentiment map providing the
localized information, which is then fed into the classification
branch, fusing the holistic as well as the localized representa-
tions to form the semantic vector for classification.

A. Sentiment Map Detection Branch

A sentiment image is defined as a person’s disposition
to respond to visual inputs according to the psychological
theory [57]. While attention and salience works aim to find
salient objects in images, this paper focuses on the regions
evoking sentiment, which may contain not only salient objects
but other related areas [14]. As mentioned above, there are
only a few end-to-end CNN frameworks for weakly super-
vised object detection that do not use additional localization
information. In order to infer the sentiment map directly in
the CNN, the convolutional filters are viewed as the detector
that produces the feature maps as the response. Different from
the object detection methods that employ the RoI pooling [58]
operation on the bounding box [59], a form of soft proposal is
used to represent the probability of evoking the sentiment for
each receptive field. We first propose a cross-spatial pooling
strategy to summarize the feature maps to the categorization-
level information.
Cross-spatial pooling strategy. For a collection of N training
examples {(xi, yi)}Ni=1, let xi denote an affective image,

yi ∈ {1, · · · , C} denotes the corresponding sentiment label,
and C is the number of affective categories. For each instance,
let F ∈ Rw×h×n be the feature maps of the last convolutional
layer in the CNN, where w and h are the spatial size (width
and height) of the feature maps, respectively, and n is the
number of channels. We first add a 1× 1 convolutional layer
to capture multiple information (e.g., views) for each sentiment
category, which has a high response to certain discriminative
regions. Suppose k detectors are applied to each sentiment
class, we obtain feature maps F ′ with the dimension of
w × h × kC. We propose to summarize all the information
as a single image-level score for each of the sentiment classes
independently, regardless of the input size, which is achieved
by the cross-spatial pooling strategy:

vc =
1

k

k∑
i=1

Gmax(fc,i), c ∈ {1, · · · , C}, (1)

where fc,i represents the i-th feature map for the c-th label
from F ′, and Gmax(·) denotes the Global Max Pooling
(GMP). Here, GMP is employed to identify just one discrim-
inative part for each feature map in the same sentiment class
inspired by [37], which results in a 1×1×kC vector. Then k
responses for each label are unified with the average pooling
operation, where the value can be maximized by finding all
discriminative regions of the specific sentiment, as all low
activations reduce the output of the particular map. The pooled
vector v ∈ RC is then fed into a C-class softmax layer as the
sentiment detection loss:

Ldec = −
1

N

N∑
i=1

C∑
c=1

1(yi = c) log vc, (2)

where 1(s) = 1 if the condition s is true, and 0 otherwise.
Thus, the filter weights can be updated during the training
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Fig. 4. Overview of the (a) sentiment map generation and (b) class activation
mapping [37]. The sentiment map can be generated by mapping the predicted
class scores of the input image to the deep feature maps during the training
phrase, while the CAM needs an unnatural way for visualization only in the
test phase by using the weights from the trained network.

process, which yields the discriminative location in the feature
maps for each class. We use the cross-spatial pooling strategy
to represent the GMP layer followed by a class-specific
average pooling as a convenient term.
Generating the sentiment map. Different from object lo-
cations [51] or class activation maps [37], the activation
feature maps for different sentiments are dependent due to
the ambiguity existing in the sentiment labels [32]. Thus, this
paper proposes to capture the regions evoking sentiment by
considering all the class activation maps with corresponding
weights.

We first obtain a single map from the k feature maps
for each sentiment, here the average pooling operation is
employed to take multiple information into consideration. All
the C class-wise feature maps with corresponding weights
are then considered to capture the comprehensive localized
information, instead of using the feature maps with the largest
response from a specific class (see also Fig. 4 (a)). Thus, our
sentiment map M ∈ Rw×h is generated using vc as the weight
of the response map of class c:

M =

C∑
c=1

vc

(
1

k

k∑
i=1

fc,i

)
. (3)

Intuitively, based on prior methods [60], we expect that each
unit vc is activated by some visual patterns within its receptive
field. The sentiment map is a weighted linear sum of the
presence of these visual patterns at different spatial locations.

(a) Input (c) Sentiment map(b) Ground truth

(d) Average class activation map
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  joy
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  surprise
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Disgust

Fig. 5. The sentiment map generated from the top 6 classes for the given
“disgust” image. The predicted class label and its score from the detection
branch are shown in each activation map. We observe that the highlighted
regions vary across predicted classes.

By simply up-sampling the activation map to the size of the
input image, we can identify the regions most relevant to the
evoked sentiment.

B. Coupled Sentiment Classification Branch

The original convolutional feature can be viewed as the
holistic representation from the perspective of image repre-
sentation [61]. While the sentiment map highlights the image-
specific discriminative regions, such a map can be utilized to
produce a local representation that is informative for image
classification. Inspired by [55], the Hadamard product is
employed to couple each feature map from the original feature
maps F with M . Thus, we obtain the coupled feature maps
U = [U1, U2, · · · , Un], where the element Ui = M ◦Fi, and ◦
denotes the element-wise multiplication. For fusing the multi-
view information, we use vector fusion in the classification
branch, which can benefit from end-to-end learning. Then the
coupled feature maps and the original feature maps can be
encoded to form a more informative semantic feature d ∈ R2n

by:

d = Gavg(F ] U), (4)

where ] denotes the concatenation of different convolutional
features. In the above equation, Gavg(·) is the global average
pooling (GAP) operation, which outputs the average value of
each feature map.

We then add a fully-connected layer to compute the pre-
dicted scores of the input image for different classes. And the
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Fig. 6. Examples from three large-scale datasets, i.e., FI [10], Flickr [35], Instagram [35], which are collected from different social platforms.

sentiment scores s(yi = c|d,wc) are defined as:

s(yi = c|d,wc) =
exp(w>c d)∑C

c′=1 exp(w
>
c′d)

, (5)

where W = {wc}Cc=1 is the set of model parameters. Thus,
the classification is carried out by minimizing the following
log likelihood function:

Lcls = −
1

N

N∑
i=1

C∑
c=1

1(yi = c) log s(yi = c|d,wc). (6)

In this network, the C-way classification layer is determined
by the number of classes in the affective dataset.

C. Joint Training Process

As shown in Fig. 3, our WSCNet will produce two outputs
for sentiment detection and sentiment classification tasks.
Given the training set, we explicitly train the proposed deep
model to optimize the joint loss function:

L = Ldec(x, y) + Lcls(x, y). (7)

Since derivatives w.r.t. all the parameters can be derived, we
can conduct an effective end-to-end representation learned
using stochastic gradient descent (SGD) to minimize the joint
loss function. With this scheme, we can detect the sentiment
map using weakly supervised learning, and utilize the localized
information for discriminative classification.

D. Discussion

In order to utilize the image-level label for training, the
cross-spatial pooling strategy is employed to summarize the
information of feature maps into image-level scores, which
includes no parameters to learn compared to others, e.g., the
attention-based strategy [62], [63]. This kind of architecture
is also reversed in the CAM-based methods [37], [64], which
employ global pooling before the last fully connected layer.
For example, the whole network needs to be trained first,
and fully-connected weights of the corresponding class are
then extracted to combine the feature maps from the previous
convolutional layer, as shown in Fig. 4 (b). This order needs
an unnatural way for visualizing class-specific heatmaps, while
the proposed cross-spatial pooling layer can be visualized with
direct localization of discriminating regions. In addition, due
to the ambiguity information existing in the sentiments, we
generate the sentiment map taking all the response feature

maps into consideration. In Fig. 5, we highlight the differences
for utilizing different classes to generate the maps. Note that
the sentiment scores reported are from the detection branch,
corresponding to the pooled vector vc. For the input disgust
image, the high scores are all from related classes (e.g., other
negative sentiments like anger and sadness), providing the
complementary information.

IV. EXPERIMENTS

In this section, we evaluate the proposed WSCNet on visual
sentiment classification and detection tasks. The datasets and
experimental setup are described in Sec. IV-A and Sec. IV-B,
respectively. We evaluate the effectiveness of our method for
classification and discuss important parameters in Sec. IV-C.
Finally, we evaluate the detection performance on two datasets
and visualize the quality of detection results in Sec. IV-D and
Sec. IV-E.

A. Datasets

We evaluate the proposed WSCNet on seven public affec-
tive datasets including the Flickr and Instagram (FI) [10],
Flickr [35], Instagram [35], Twitter I [19], Twitter II [34],
EmotionROI [14], EMOd datasets [15].

FI dataset: labeled by a group of 225 Amazon Mechanical
Turk (AMT) participants. Each one is asked to label the images
from social websites that are queried with eight sentiment
categories as keywords, i.e., anger, amusement, awe, content-
ment, disgust, excitement, fear, sadness. And 23,308 images
receiving at least three agreements finally form the dataset.

Flickr and Instagram datasets: contain 60,745 and 42,856
images from Flickr and Instagram, respectively, each image
of which is annotated with a sentiment polarity (i.e., positive,
negative) label.

The above three datasets are the current largest datasets in
the domain, as shown in Fig. 6. In addition, we also evaluate
on four small-scale datasets.

Twitter I and Twitter II datasets: collected from the social
websites and labeled with sentiment polarity categories by
AMT participants, which consist of 1,269 and 603 images,
respectively.

EmotionROI dataset: created for a sentiment prediction
benchmark, which is assembled from Flickr resulting in 1,980
images with six sentiment categories (i.e., anger, disgust, fear,
joy, sadness, surprise). Besides, each image is also annotated
with 15 regions that evoke sentiments, which are normalized to
range between 0 and 1 as an emotion stimuli map (ESM) [14].



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

TABLE II
CLASSIFICATION ACCURACY (%) ON THE TESTING SET OF FI, FLICKR, INSTAGRAM, TWITTER I, TWITTER II, EMOTIONROI, EMOD DATASETS. WE

EVALUATE THE PROPOSED WSCNET AGAINST THIRTEEN BASELINE METHODS INCLUDING THE TRADITIONAL FEATURES, CNN-BASED METHODS AND
WEAKLY-SUPERVISED FRAMEWORKS. NOTE THAT SUN et al.’S METHOD AND YANG et al.’S METHOD ARE PROPOSED FOR BINARY CLASSIFICATION AND
MULTI-CLASS CLASSIFICATION, RESPECTIVELY, AND THUS DATASETS WITH INCOMPATIBLE CLASS NUMBERS CANNOT BE EVALUATED, DENOTED AS ‘–’.

Method FI Flickr Instagram EmotionROI Twitter I Twitter II EMOd
Zhao et al. [13] 46.13 66.61 64.17 34.84 67.92 67.51 17.20
SentiBank [34] 49.23 69.26 66.53 35.24 66.63 65.93 18.93
DeepSentiBank [29] 51.54 70.16 67.13 42.53 71.25 70.23 21.79
ImageNet-AlexNet [45] 38.26 69.05 56.69 34.26 65.80 67.88 20.68
ImageNet-VGG16 [65] 41.22 69.88 63.44 37.26 67.49 68.79 22.54
ImageNet-Res101 [66] 50.01 72.26 67.28 40.79 72.55 70.42 28.77
Fine-tuned AlexNet 58.13 73.11 69.95 41.41 73.24 75.66 40.13
Fine-tuned VGG16 63.75 78.14 77.41 45.46 76.75 76.99 43.21
Fine-tuned Res101 66.16 80.03 79.33 51.60 78.13 78.23 46.56
Sun et al. [41] – 79.85 78.67 – 81.06 80.84 –
Yang et al. [32] 66.79 – – 52.40 – – –
WILDCAT [54] 67.03 80.67 80.31 55.05 79.53 78.81 46.83
SPN [55] 66.57 79.71 79.53 52.70 81.67 77.96 47.25
WSCNet 70.07 81.36 81.81 58.25 84.25 81.35 48.95

TABLE III
CLASSIFICATION ACCURACY (%) OF WSCNET USING DIFFERENT

NUMBERS OF FEATURE MAPS ON THE TEST SET OF THREE LARGE-SCALE
DATASETS, i.e., FI, FLICKR, INSTAGRAM. IN THE REMAINING

EXPERIMENTS, WE SET k = 4 IN OUR FRAMEWORK.

Dataset k = 1 k = 2 k = 4 k = 8 k = 16
FI 68.23 69.36 70.07 68.80 67.19
Flickr 81.46 81.87 81.36 81.15 81.98
Instagram 79.67 79.24 81.81 79.60 78.53

EMOd dataset: constructed from two sources: (1) a subset
(321) photos of the International Affective Picture System
(IAPS); (2) a set of 698 photos collected by the authors.
The emotion annotation includes anger, amusement, awe,
contentment, disgust, excitement, fear, sadness, joy, surprise.
The EMOd dataset is the first to include eye-tracking data.
Subject eye movements are recorded by asking sixteen subjects
to observe each image freely for 3 seconds, followed by a drift
correction that requires subjects to fixate at the screen center.
For each image, a fixation map is generated by placing at each
fixation location a Gaussian distribution with sigma equal to
one degree of visual angle and then normalizing the map to
have a maximum value of 1.

B. Experiment Setup

1) Implementation details: Our method is built on the pre-
trained ResNet-101 [66] on the ImageNet dataset. To deal with
the limited training data, we apply random horizontal flips and
crop a random 448×448 patch as a form of data augmentation
to reduce overfitting. We replace the last layers (global average
pooling and fully connected layer) by the proposed multi-
branch layer. The added layers are initialized using Gaussian
distributions with mean 0 and standard deviations 0.01, and the
biases are initialized to 0. The momentum and weight decay
are set to 0.9 and 0.0005 respectively. During training, the
mini-batch size for SGD is set to 32, the learning rates of the
convolutional layers and the last fully-connected layers on both
branches are initialized as 0.001, 0.01 respectively. The total

TABLE IV
ABLATION STUDY ON THE FI DATASET. THE BASELINE IS WSCNET

(k = 1) WITHOUT THE COUPLING OPERATION, DENOTED AS Base. NOTE
THAT SM DENOTES USING THE SENTIMENT MAP AS THE GUIDANCE, Local

DENOTES THAT ONLY THE COUPLED FEATURE MAP (WITH LOCALIZED
INFORMATION) IS USED FOR CLASSIFICATION, AND Coupling DENOTES

CAPTURING BOTH THE HOLISTIC AND LOCALIZED INFORMATION IN
EQ. 4.

Base k = 4 SM Local Coupling FI√
66.57√ √
67.96√ √ √
67.69√ √ √
68.23√ √ √ √
70.07

number of iterations is 20 epochs, while the learning rate drops
by a factor of 10 every 10 epochs. The FI datasets are split
randomly into 80% training, 5% validation and 15% testing
sets. For the Flickr dataset and Instagram dataset, we randomly
sample the same number of images for each class following
the same configuration in [35], which are split randomly into
90% training, 10% testing sets. The small-scale datasets are
split into 80% training and 20% testing sets randomly except
those with specified training/testing splits [14], [34]. At test
time we average the predictions of ten images (i.e., the five
crops and their horizontal reflections) from the classification
branch as final results. The sentiment map is extracted from
the detection branch according to Eq. 3 as the probability
of regions evoking sentiment for detection evaluation. Our
framework is implemented based on the PyTorch deep learning
framework [67]. All of our experiments are performed on an
NVIDIA GTX Titan X GPU with 32 GB on-board memory.

2) Baseline: We evaluate the proposed WSCNet against
thirteen baselines including methods using traditional features,
CNN-based methods and weakly-supervised frameworks. For
the traditional methods, we extract the principle-of-art fea-
tures [13] from the affective images. We use a simplified
version provided by the author to extract 27 dimensional
features and use LIBSVM [71] for classification. We use



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE V
EMOTIONAL ATTENTION PREDICTION (RANK) ON THE EMOD DATASET USING DIFFERENT METHODS, INCLUDING THE BASELINES, OBJECTNESS

DETECTION ALGORITHM, SALIENCY DETECTION METHODS, WEAKLY SUPERVISED FRAMEWORKS AND THE SUPERVISED MODEL. NOTE ‘*’ DENOTES
THE CASNET IS PRE-TRAINED ON THE DATASET WITH FULLY SUPERVISION. “AVG” INDICATES THE AVERAGE RANK OF EACH WEAKLY SUPERVISED

METHOD. HERE, WE USE THE NORMALIZED FIXATION MAP AS THE GROUND-TRUTH FOR EVALUATION.

Algorithm AUC-J AUC-B CC SIM KL EMD AVG

Random Map 0.50(7) 0.50(7) 0.00(7) 0.30(7) 1.88(3) 4.25(4) 5.83(6)
Center Crop 0.68(4) 0.59(4) 0.33(5) 0.39(4) 9.58(7) 3.71(3) 4.50(4)
Objectness [68] 0.61(5) 0.56(5) 0.17(6) 0.31(6) 7.51(6) 5.04(7) 5.83(6)
GBVS [69] 0.80(1) 0.66(1) 0.46(2) 0.47(2) 5.96(5) 4.59(6) 2.83(2)
IttiKoch [70] 0.73(3) 0.63(3) 0.37(3) 0.43(3) 2.09(4) 3.16(1) 2.83(2)
WILDCAT [54] 0.55(6) 0.52(6) 0.37(4) 0.32(5) 1.66(2) 4.52(5) 4.67(5)
WSCNet 0.76(2) 0.64(2) 0.48(1) 0.48(1) 1.23(1) 3.63(2) 1.50(1)

CASNet* [15] 0.86 0.72 0.64 0.56 0.85 1.98 -

the 1,200 dimensional mid-level representation from the ANP
detector of SentiBank and apply the pre-trained DeepSen-
tiBank to extract 2,089 dimensional features. For the basic
CNN models, we report the results of using three classical
deep learning methods pre-trained on ImageNet and fine-tuned
on the affective datasets: AlexNet [45], VGGNet [65] with
16 layers and ResNet101 [66]. We also show the results of
fully-connected features extracted from the ImageNet CNN
with LIBSVM. Empirically, we find that different cost values
(parameter C in LIBSVM) perform equally well, and thus we
use the default value and employ the one v.s. all strategy fol-
lowing the same evaluation routine described in [12]. We also
report the results from three state-of-the-art deep methods for
sentiment classification. For the binary datasets, we use Sun’s
method [41] to select top-1 regions and combine the holistic
feature with the region feature from the fine-tuned VGGNet.
For the multi-class datasets, we employ Yang’s method [32]
to transform the single label to a sentiment distribution and
report the classification performance using ResNet. Moreover,
we also evaluate our method against the state-of-the-art weakly
supervised frameworks, i.e., the WILDCAT and SPN methods,
which are also based on ResNet-101 with the same input size
of 448× 448 as our method.

For the detection task, we evaluate the performance of senti-
ment map detection against different methods. Three baseline
methods are employed to generate regions of interest for
affective images, i.e., random map, center crop and objectness
region generated by [68] and faster RCNN [58]. To generate
these baseline maps, we assign random probability to each
pixel, crop half of the image from the center, and use the
objectness tool [68] to generate one object region for each
image. We also use the Graph-Based Visual Saliency model
(GBVS) [69] and Itti-Koch model (IttiKoch) [70] to compute
the saliency map. For the weakly supervised methods, we
directly extract CAM (class activation maps) from the fine-
tuned ResNet-101 following [37], and also evaluate against
the final feature maps from the WILDCAT and SPN methods.
In addition, two fully supervised methods, i.e., FCNEL [14]
and CASNet [15], are also tested on the EmotionROI and
EMO=datasets, respectively, providing the upper bound for
weakly supervised detection. Note that CASNet is trained on
the SALICON [72] to achieve their best possible performance,

Fig. 7. Sentiment detection performance on the test set of EmotionROI dataset
by the baseline methods, objectness detection algorithm, weakly supervised
frameworks and the supervised model. Note that ‘*’ denotes that the method
is supervised, using the bounding box annotation for training.

directly tested on the EMOd without training/fine-tuning on
them following [15].

3) Metrics: For the classification performance, we use the
universally-agreed metric: accuracy. For evaluation of senti-
ment detection, we use four commonly used metrics: MAE,
precision (P ), recall (R), and F−score. Before the evaluation,
we first binarize the predicted map using Otsu thresholding
following [14]. MAE is the mean absolute error between the
value of the predicted map and the ground truth map at all
locations. The precision is defined as

P =
1

N

N∑
i=1

|bi ∩ gi|
|bi|

, (8)

where | · | is used to measure the number of pixels within the
given set. Note that gi and bi are the ground truth emotion and
the detected proposal of the i-th image. The recall is defined
as

R =
1

N

N∑
i=1

|bi ∩ gi|
|gi|

. (9)
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(c) CAM (d) SPN (e) WSCNet(a) Input (b) Ground truth

Joy
MAE=0.23   Precision=0.21   Recall=0.17 MAE=0.17   Precision=0.40   Recall=0.88MAE=0.10   Precision=1.00   Recall=0.42

MAE=0.29   Precision=0.19   Recall=0.47 MAE=0.18   Precision=0.85   Recall=0.80MAE=0.10   Precision=0.98   Recall=0.59

MAE=0.24   Precision=0.61   Recall=0.40 MAE=0.19   Precision=0.89   Recall=0.83MAE=0.16   Precision=0.96   Recall=0.51

Fear

Anger

Sadness MAE=0.19   Precision=0.56   Recall=0.70 MAE=0.17   Precision=0.82   Recall=0.61MAE=0.21   Precision=0.49   Recall=0.29

Fig. 8. Weakly supervised detection results using different methods on the EmotionROI testing set. The input images and the ground truth are given in (a)
and (b). The detected regions and metrics of weakly-supervised methods (i.e., CAM, SPN, WSCNet) are shown in the last three columns. By activating the
sentiment-related areas, our method achieves the most accurate results compared to the ground truth. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Thus, F−score is computed using F = 2× R×P
R+P . In addition,

for the attention prediction, we use 6 metrics for compre-
hensive evaluation following [15], including two variants of
AUC and four similarity metrics. AUC-J and AUC-B [73] treat
the saliency map as a binary classifier, which alleviates the
effects of center bias. Linear Correlation Coefficient (CC) [74],
histogram intersection (SIM) [75], the Earth Movers Distance
(EMD) [76] and the Kullback-Leibler divergence (KL) [77]
are used to measure the similarity between the saliency map
and fixation map. Note that for the first four metrics, larger is
better, while for the last two metrics smaller is better.

C. Classification Performance

We first evaluate the classification performance on seven
affective datasets, followed by a detailed discussion. We set
the hyper-parameter k = 4 in the proposed WSCNet as the
default setting. Tab. II shows that the deep representations
outperform the hand-crafted features, while the fine-tuned
CNNs have the capability to recognize sentiment from images.
The weakly supervised frameworks improve the performance
of Fine-tuned Res101 utilizing the regional information. Our
proposed method consistently performs favorably against the
state-of-the-art methods for sentiment classification, e.g., about
3.3% improvement on FI and 5.8% on EmotionROI, which
illustrates that WSCNet can learn more discriminative repre-
sentation for this task.

1) Hyper-parameter k: We now analyze the effect of the
only hyper-parameter k of our framework in Eq. 1, which is

the number of the response feature maps for each sentiment
category. We report the classification accuracy of WSCNet
with different k in the detection branch on three large-scale
datasets, i.e., FI, Flickr, Instagram. Tab. III shows that with
an increasing number of feature maps, our method is able
to achieve better performance compared with the standard
classification strategy in the CNN (i.e., k = 1), which captures
multiple views for each sentiment category. However, over-
amplifying the feature maps results in suboptimal performance
mainly due to overfitting, which is similar to the finding
reported in WILDCAT [54]. For the FI and Instagram datasets,
our method achieves the best performance with k = 4, and
for the Instagram dataset, the best performance is achieved
with k = 16, although the performance is fairly stable with
changing k. Therefore, we set k = 4 in our framework for a
trade-off between efficiency and effectiveness.

2) Different Branch Accuracy: We report the classification
performance of the classification and detection branches, since
both branches use the image-level annotations for training.
On the FI dataset, the classification branch achieves 70.07%,
while the detection branch achieves a sub-optimal performance
of 68.51%. When fusing features from the detection and
classification branches, the LIBSVM result shows similar
performance (70.18%) as the classification branch. Thus, we
only use the classification branch as the final results.

3) Ablation Study: We perform an ablation study to illus-
trate the effect of each contribution. Our baseline is WSCNet
with k = 1 and without the coupling operation, where the
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Fig. 9. Examples of class-specific units from the proposed WSCNet on the EmotionROI dataset [14]. Both binarized ground truths and sentiment maps are
shown. The proposed weakly supervised method can achieve comparable results as the human annotations without the labeling burden.

(a) Input (b) Human (c) Objectness (d) WSCNet (e) CASNet 

Fig. 10. Qualitative results generated by our model in comparison with the
objectness methods and fully supervised method (CASNet) on the EMOd
dataset.

classification branch is the original classification layer in
the CNN (i.e., global pooling and fully connected layer).
From Tab. IV, we can draw the following conclusions: First,
using both multiple feature maps (k = 4) and the sentiment
map coupled representation improve classification accuracy by
about 1% on FI, illustrating the effectiveness of local repre-
sentation. Second, utilizing the coupling operation combining
multiple view information improves the base performance by
1.7%. Third, we achieve the best accuracy by utilizing the
components to train our model in an end-to-end manner, which
shows the complementarity of all the contributions.

D. Sentiment Detection

Fig. 7 reports the detection performance of different meth-
ods on the EmotionROI dataset. As shown, our WSCNet per-
forms favorably against the baselines and weakly supervised
methods (i.e., WILDCAT, CAM, SPN), and also achieves
comparable performance with the supervised FCNEL on most
evaluation metrics. We notice that FCNEL benefits from
supervised training with bounding box annotation, and has
significantly better recall than other methods. The reason is
that the regions evoking sentiments contain both the primary
objects and additional contextual background, while Object-
ness [68] only focuses on the foreground objects and thus
achieves a reasonable precision. Compared with the weakly
supervised methods, our method improves the recall to 0.60,
which illustrates the effectiveness of taking the sentiment
characteristic into consideration for generating the sentiment
map.

We also evaluate the performance on the EMOd dataset in
Tab. V. We compare our method with six baselines without
training on ground truth regions. As can be seen, the saliency
models perform better on the AUC metrics, however, such
metrics cannot distinguish between cases where models predict
different relative importance values for different regions of
an image [15]. The proposed WSCNet has the best overall
performance among the baselines on the CC, SIM, KL metrics,
as well as the average rank (AVG), demonstrating its advantage
on emotional attention.
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EmotionROI
Positive Negative Positive Negative

Instagram

Excitement Anger Fear

FI

Flickr

Fig. 11. Visualization of our detected sentiment maps on four datasets, i.e., FI, EmotionROI, Flickr, Instagram. Our detected locations are not limited to
foreground objects, but also include sentiment-related background.

Fig. 12. Per-class frequency of error modes, and averaged across all classes
on the EmotionROI dataset.

E. Visualization

We provide qualitative results and failure analysis in Figs. 8-
12. We first show more detection results using different weakly
supervised methods on the EmotionROI. As shown in Fig. 8,
compared with the ground truth, WSCNet is able to detect
the relevant regions that influence the evoked sentiment, while
CAM and SPN may only focus on the salient objects leading
to a reasonable precision but a low recall. For example, on
the third row, SPN only responds to the foreground objects,
which leads to 0.96 precision but only 0.51 recall. In contrast,
our detected sentiment map extends the object regions into
the sentiment related background, which achieves the recall
of 0.83.

Fig. 9 shows the class-specific units for different sentiment
categories on the EmotionROI dataset as in [37]. Both the
detected sentiment maps as well as the ground truth are
generated using the Otsu thresholding for binarization. From
the figure we can identify the regions of the images that

are most discriminative for classification and exactly which
units detect these regions. The results show that the proposed
weakly supervised method can achieve comparable results as
the human annotations without the labeling burden. In addi-
tion, we also compare the prediction results with emotional
attention in Fig. 10, where the weakly supervised model can
also match human emotion prioritization.

For better understanding the detection errors, we categorize
each of our sentiment maps into one of the following five
cases similar to [78]: (i) correct detection (Recall>50%),
(ii) hypothesis completely inside ground-truth, (iii) reversed
inclusion, (iv) none of the above, but non-zero overlap, and
(v) no overlap. For the EmotionROI dataset, we show the
frequency of these five cases for each sentiment class and
averaged over all classes in Fig. 12. We have the following
observations. Most failures have low overlap and none of the
samples belong to the fifth case due to the soft proposal format.
In average, our method predict the correct localization for
about 60.27% images. About 37.54% images are detected with
low overlap due to the low overlap, and only a few images
are detected overwhelmingly or partially.

We also show more detection results on other affective
datasets in Fig. 11. As mentioned before, for images with
clear foreground and background, some predicted sentiment
maps may be similar with the salient regions. However, there
are also significantly different regions. For example, the first
“fear” image in Fig. 11 highlights the scary face but not the
other one. Meanwhile, the sentiment-related background can
also be detected in our sentiment maps. For example, the
second “positive” image detects the sea in the background
rather than the foreground chair. Moreover, for more complex
user-contributed images, the detected sentiment maps achieve
comparable results to human annotations as shown in Fig. 11.
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V. CONCLUSIONS

In this paper, we present a weakly supervised framework for
both sentiment detection and classification, which addresses
the problem of time- and labor-consuming annotation process
in this domain. We develop an end-to-end coupled network
to take multiple information into consideration, which learns
the robust representation with two branches. The detection
branch is designed to automatically exploit the sentiment
map, which can provide the localized information of the
affective images. Then the classification branch, leveraging
both holistic and localized representations, can predict the
sentiments. Experimental results show the effectiveness of our
method against state-of-the-art algorithms on seven benchmark
datasets. In addition, analyses on EmotionROI and EMOd
show the effectiveness of the weakly supervised sentiment
detection.
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