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A B S T R A C T

Deep learning has enabled image style transfer to make great strides forward. However,

unlike many other styles, transferring the watercolor style to portraits is significantly

challenging in image synthesis and style transfer. Pixel-correlation-based methods do

not produce satisfactory watercolors. This is because portrait watercolors exhibit the so-

phisticated fusion of various painting techniques in local areas, which poses a problem

for convolutional neural networks to accurately handle fine-grained features. More-

over, the common but problematic way of coping with multiple scales greatly impedes

the performance of existing style transfer methods with fixed receptive fields. Although

it is possible to develop an image processing pipeline mimicking various watercolor

effects, such algorithms are slow and fragile, especially for inputs of different scales.

As a remedy, this paper proposes WCGAN, a generative adversarial network (GAN)

architecture dedicated to watercolorization of portraits. Specifically, a novel localized

style loss suitable for watercolorization is proposed to deal with local details. To handle

portraits of different scales and improve robustness, a novel discriminator architecture

with three parallel branches of varying sizes of receptive fields is introduced. In ad-

dition, the application of WCGAN is expanded to video style transfer where a novel

kind of video training data based on random crops is developed to efficiently capture

temporal consistency. Extensive experimental results from qualitative and quantitative

analyses demonstrate that WCGAN generates state-of-the-art, high quality watercolors

from portraits.

1. Introduction

Watercolor paintings with various distinctive effects are

made by delicately controlling the distribution of water and

pigments. However, due to its complexity, even artists with

long-term professional training need to spend enormous time

and effort to complete high-quality watercolor paintings, not to

mention ordinary people.

Many works [1, 2, 3] in the field of non-photorealistic ren-

dering (NPR) have studied how to transfer images into differ-

ent styles such as sketch, paper-cut and oil painting. In par-

ticular, Rosin and Lai [4] developed a specific image process-

ing pipeline that tries to mimic different effects of watercolor.

The method achieved high-quality watercolor stylization of por-

traits. However, its slow run-time seriously hinders its applica-

tion, and the method may fail to produce good results for chal-

lenging input.

Gatys et al. [5] discovered that the features extracted from
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Fig. 1: Style Variation comparison

convolutional neural networks (CNNs) can characterize visual

styles. The subsequent works have spent considerable effort to

enhance the style transfer performance from different perspec-

tives, which can be roughly divided into: generic and specific

style transfer.

Generic style transfer works [6, 7, 8, 9, 10] can be catego-

rized into three directions: minimizing specific measures for

content and style dissimilarities, aligning feature distributions

between the content and style images, and learning to transfer

between different domains. While these methods have made

great progress, the trade-off between generalization and quality

limits their performance in portrait watercolorization.

A few works [11, 12, 13, 14] center on simulating specific

style characteristics, where local fusion and multi-scale inputs

are general problems. These components play a particularly

important role in the portrait watercolorization task. The fluid-

ity of water and the transparency of pigment allow watercolors

to display extraordinary beauty, which is the result of sophisti-

cated fusion of multiple effects (wobbling, diffusion, edge dark-

ening, etc.). This makes the quality of local multi-effect fusion

directly affect the aesthetic feeling of watercolor. Moreover,

faces may be of varying sizes in the image, e.g. depending

on the distance to the camera, which requires the portrait wa-

tercolor to pay extra attention to multi-scale input processing.

These high requirements make portrait watercolorization chal-

lenging for existing neural style transfer methods.

To demonstrate the challenges of watercolorization, we

quantify the style variation (SV) of style datasets (StyleD),

where a larger SV indicates a more inconsistent style. Seven

different real style datasets are collected from [11] and [15]. To

accurately measure the style inconsistentment, the Gram ma-

trix of pre-trained VGG-19’s feature maps, widely employed in

the field of image style transfer [5], is utilized to represent style

features. Then, the SV within StyleD is characterized by the

trace of the covariance matrix of all style features. As shown

in Fig. 1, blue, orange, and gray represent the SV results corre-

sponding to the r21, r31, and r41 layers, respectively. The SV

values of watercolor rank 2nd, 2nd, and 3rd in the r21, r31 and

r41 layers, respectively, which indicates that watercolor paint-

ings exhibit a high degree of stylistic variation. Note that the

only style with noticeably higher SV is comics. However, this

is understandable as comics in the database are highly varied,

from black-and-white line drawings to color comics.

To the best of our knowledge, there are no neural style trans-

fer works specifically for portrait watercolorization. Although

generic style transfer methods can perform portrait watercol-

orization, due to the complexity of the watercolor effects, ex-

isting general purpose methods cannot achieve satisfactory per-

formance. This is particularly crucial for portraits where even

minor defects can be detrimental.

(a) WCGAN results (b) professional watercolor

Fig. 2: Comparison with self-portrait by Enrique Campo Sobrino (1890-1911)

Considering the aforementioned problems, this paper pro-

poses WCGAN, a novel GAN-based [16] approach to transform

portraits to watercolor while preserving the original content and

performing watercolor effects. As shown in Fig. 2, the gener-

ated results of WCGAN and a professional watercolor painting

both exhibit typical watercolor characteristics, namely edge-

darkening, wobbling, diffusion and the unique texture, which

effectively demonstrates the superiority of WCGAN. Our main

contributions are summarized below:

• We propose a novel block-based loss term named local-

ized Gram Matrix loss (LGML), which provides an extra

fine-grained constraint in local areas, significantly boost-

ing local stylization performance.

• We develop a new Adaptive Discriminator architecture

(ADA dis), which better preserves original image infor-

mation at different scales. Thanks to this architecture and

a multi-scale training dataset, we can adequately handle

portraits of different sizes.

• This paper expands WCGAN to video style transfer tasks,

where a novel method for generating video training data

based on still images can help our network effectively

achieve temporal consistency.

The structure of the paper is described as follows: Section 2

introduces the current status of existing style transfer research,

especially highlighting research closely related to ours. Sec-

tion 3 provides corresponding implementation details of WC-

GAN. Section 4 validates our design by comparison with state-

of-the-art networks. The conclusions and future work are in

Section 5.

2. Related Work

2.1. Non-photorealistic rendering

Non-photorealistic rendering (NPR) focuses on the computer

generation of various styles, where a wide variety of stylizations

have been applied to portraits in NPR. For example, [1, 2, 3, 4]
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focus on sketch, paper-cut, watercolor and oil painting, respec-

tively. Traditional NPR methods can produce high-quality styl-

ized results based on accurate feature simulation, but they are

often slow. In particular, such simulation of real-world process

often leads to a complex pipeline, which can be less robust.

Neural Style Transfer (NST), especially the methods based on

feedforward networks, is faster but the quality is largely depen-

dent on the training data. In this paper, we propose a GAN

based method that combines the strengths of NPR and NST

where the NPR method [4] is applied to produce a high qual-

ity training dataset. This enables the complicated watercolor

appearance to be properly and quickly depicted.

2.2. Neural style transfer

The pioneering work [5] formulated the NST task as gener-

ating an image that optimizes both a style and a content loss.

There are many follow-up works that improve NST both in

quality and efficiency, which can be divided into generic and

specific style transfer.

Generic Style Transfer aims to transfer multiple arbitrary

artistic styles using the same architecture, which can be divided

into three strategies:

(1) Perceptual Loss Optimization: These methods aim to

produce an output image that minimizes the content loss w.r.t.

the content image and style loss w.r.t. to the style image.

Follow-up works have further improved this strategy, includ-

ing using a feedforward network for real-time generation and

better handling multiple styles [6, 8, 9]. Taking a holistic view

for the style loss handles lack of correspondence between the

output and style image. However, it cannot well capture spatial

variation of styles, which limits their application in portrait wa-

tercolorization. As a remedy, we propose LGML specifically

focusing on the fine-grained style pattern.

(2) Feature Distribution Alignment: This category con-

ducts the alignment process between the feature distributions

of content and style images. The works [17, 18, 19, 20] gen-

erate stylized images by matching the mean/variance, whiten-

ing/coloring feature transforms, relaxed cross-correlation and

manifold alignment, respectively. But the pre-trained networks

in [19] are trained by normal (non-stylized) images, which can-

not achieve satisfactory results in style transfer tasks. More-

over, scale-adaptivity in [20] is achieved through their hour-

glass network, which may not be easily generalized to other

style transfer studies. In this paper, the proposed ADA dis en-

ables WCGAN to be scale-adaptive.

(3) Domain Transfer: Other research like GAN-based

methods, addresses the style problem as transferring between

two (or more) domains. Among the numerous applications

of GANs [21, 22, 23, 24, 25], Pix2Pix [7] develops a generic

framework for achieving paired image translation tasks. Cycle-

GAN [10] introduces the cycle consistency losses to deal with

unpaired image translation tasks. However, neither have suf-

ficient flexibility to learn spatially varying style features due

to the lack of a specific learning mechanism for regional fea-

tures. Facing the above problems, additional masks and dis-

criminators for corresponding areas have been added in WC-

GAN which enhance the flexibility of style feature learning.

Recently, methods [26, 27] based on probabilistic diffusion

models have become increasing popular for style transfer. Al-

though such methods show excellent performance when there

are a large number of training examples, the performance may

drop with limited training data.

In addition, generic style transfer papers show some impres-

sive stylization results, and then make an implicit assumption

that their methods can also achieve good performance on any

other styles. However, in practice these methods cannot achieve

acceptable performance for all styles, so some research consid-

ers developing dedicated methods for certain styles.

Specific Style Transfer: A few works have been designed

for specific style transfer tasks. PairedCycleGAN [11] and

Beauty-GAN [13] focus on transferring the makeup style by

two asymmetric networks. CartoonGAN [12] proposes two

specific losses for cartoon style: high-level semantic loss and

edge loss, respectively. APDrawingGAN [14] applies an ex-

tra distance transform loss which focuses on stroke lines. The

work [28] further extends it to learn from unpaired training

data, by introducing an asymmetric cycle consistency loss to

cope with the substantial information gap between photos and

line drawings. Similarly, portrait watercolor contains unique ef-

fects that are challenging for existing NST works, as discussed

in Section 1. Considering the above limitations, WCGAN is

proposed specifically for the portrait watercolorization task, al-

though key ideas developed can also be generalized to other

challenging style transfer tasks.

2.3. Video Style Transfer

Video style transfer differs from image style transfer in tem-

poral consistency. Ruder et al. [29] attempt to capture this

by applying temporal losses guided by optical flow, but their

optimization-based method is time-consuming. Chen et al. [30]

achieve long-range consistency via a recurrent neural network

architecture, which requires slow optical flow calculation in the

inference stage. The stylization process of [31] is faster than

[29, 30] which require optical flow calculation, but [31] only

calculates content loss based on one layer (relu4-2), which can-

not capture subtle textures and strokes. Gao et al. [32] improve

the temporal stability by adding an extra luminance constraint.

However, fine-grained texture features are not captured due to

the lack of local style constraints.

Moreover, there are no existing video training datasets avail-

able for portrait watercolorization. This paper proposes a new

method to generate video training data using still images in a

self-supervised manner, which can meet the requirements for

availability and accuracy of the video training dataset.

3. Watercolor transfer of portrait photography

This paper proposes a GAN framework specifically for por-

trait watercolorization which contains a generator G and a dis-

criminator D. We regard the process of transferring a portrait

photograph in domain P into a watercolor painting in domain

W , whilst preserving the content of the original portrait photo-

graph, as a mapping function. This watercolorization mapping

function is learned from the paired training dataset Ttraining =
{(pi, wi) |pi ∈ P, wi ∈ W, i = 1, 2, . . . , N}, where N is the

total number of portrait-watercolor pairs and i is the index num-

ber. Denote L as the overall loss function, which contains three

3
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(a) Generator (b) Discriminator

Fig. 3: Overview of the WCGAN architecture

(a) Input (b) Eyebrow (c) Eye (d) Innermouth (e) Outermouth (f) Nose (g) Face (h) Skin

Fig. 4: Seven masks corresponding to semantic regions important for portrait stylization.

Fig. 5: Adaptive Discriminator Architecture

terms: LL1, LLGM and Ladv , corresponding to pixel-wise L1
loss for content preservation, local Gram matrix loss for style

preservation, and adversarial loss. WCGAN is trained by solv-

ing the following min-max problem:

min
G

max
D

L(λ1LL1(G)+λ2LLGM (G)+λ3Ladv(G,D)), (1)

where λ1, λ2 and λ3 are weights that balance the importance of

the loss terms.

In the following sections, this paper introduces the detailed

architecture of the Generator and Discriminator in section 3.1

and section 3.2 respectively. As shown in Fig. 3, both of

the Generator and Discriminator are fully convolutional, which

means the same network can learn to handle input images of

different resolutions. The hybrid loss function L is described

in section 3.3. Moreover, a new way generating video training

data using still images for temporal consistency is introduced in

section 3.4.

3.1. Generator

The aim of G is to render a portrait photograph in a water-

color style, while keeping the content structure of the original

portraits. To capture multiple abstraction degrees meaningful

for portrait watercolors, we generate 7 semantic masks (M∗,

where * refers to individual regions) in advance and directly

add them to the input of G, which enables G to learn multi-

ple independent features. The seven corresponding areas are:

eyebrows, eyes, nose, inner-mouth, outer-mouth, face, skin as

shown in Fig. 4. Based on OpenFace [33], the first five masks

accurately indicate specific facial regions. The face mask refers

to the entire face region in the OpenFace results. Additionally,

the Skin mask serves as a supplement to the OpenFace results,

providing additional skin information such as the neck and ears.

Fig. 3(a) shows the structure of the Generator, which is a tradi-

tional Encoder-Decoder structure. The encoder part consists of

8 down-sampling convolution layers with stride 2 and 4 × 4
kernels. The desired watercolor paintings are reconstructed af-

ter 8 up-sampling convolution layers with the same stride 2 and

4× 4 kernels. Eight skip connections between the encoder and

decoder can effectively recover fine-grained details.

3.2. Discriminator

3.2.1. Hierarchical Discriminator Architecture

A hierarchical Discriminator structure D is proposed in WC-

GAN, following [14]. D returns multiple scores corresponding

to different regions used in G, which provides a more compre-

hensive judgment compared with returning only one score. This

method is also in line with artists who adopt different draw-

ing techniques for different parts. D = {Dglobal, DL}, where

Dglobal judges whether the input is real or fake based on the

whole image. DL consists of 7 separate discriminators which

focus on the performance of the local facial regions listed in

section 3.1.

3.2.2. Adaptive Discriminator Architecture

The multi-scale problem in image processing is common as

faces may vary in size depending on the distance to the camera.

Obviously, a neural network with only one fixed receptive field

cannot accurately recognize features at different scales. Dilated

convolution [34], can change the receptive field while still keep-

ing the total number of parameters unchanged. Based on these

observations, we propose a novel adaptive discriminator archi-

tecture with three parallel branches as shown in Fig. 5, which

have different dilation rates enabling different receptive fields.

In addition, different regions of the same image may require

different receptive fields in real-life scenarios. For example, an

image may contain background objects at a distance (so would

benefit from small receptive fields) along with faces which are

much closer (requiring larger receptive fields). Thus, the max-

pooling result of the three branches’ outputs is regarded as the

final output to preserve the strongest responses from different

4
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branches, which flexibly enables suitable receptive fields to dif-

ferent regions.

Some existing works [35, 36] also proposed multi-scale dis-

criminators that apply three identical discriminators but oper-

ate at different image scales, where simple down-sampling op-

erations are used, which lose a lot of important information.

Moreover, assigning weights manually to different branches’

outputs often requires manual tuning. Although the weights

are adjusted using a predetermined formula during training in

[35], fixed weights are still used in each training iteration to

fuse multi-scale features [35, 36], lacking flexibility to handle

different image scenarios. Our proposed ADA dis processes

images of the same scale with branches of different scales, and

merges features with max-pooling, flexibly assigning suitable

receptive fields for different regions and bypassing the issue of

weight assignment.

3.3. Loss Function

The hybrid loss function L consists of three parts: LL1, Ladv

and LLGM as shown in Eq.(1). With the help of L, the hier-

archical adaptive structure of D can drive G to produce water-

color paintings with a variety of subtle effects and more detailed

local area performance.

3.3.1. L1 loss

Least Absolute Deviations (L1) is widely used as a loss term

in machine learning, which compares the similarity of two pic-

tures from a pixel-wise perspective. According to the follow-

ing Eq.(2), we calculate the sum of all absolute differences to

judge the quality of the generated watercolor painting at the

pixel level.

LL1
(G,D) = E(pi,wi)∼Ttraining

[∥G (pi)− wi∥1] (2)

3.3.2. Ladv adversarial loss

Ladv applied in this paper contains Lglobal and Llocal for

global and local discrimination.

Lglobal: helps G approximate the optimal result through a

neural network (Dglobal), thereby avoiding the difficult prob-

ability calculation problem for generative models. Lglobal is

defined as:
Lglobal(G,Dglobal) = E(pi,wi)∼Ttraining

[log (Dglobal (pi, wi)

+ log (1−Dglobal (pi, G (wi)))]

(3)

Dglobal, as the global discriminator, determines the authen-

ticity based on the entire input image at coarse granularity. In

real portrait watercolors, certain facial features are much more

important, and artists tend to draw them differently. However,

only using semantic masks and one global discriminator cannot

guarantee multiple abstract degrees to be properly captured,

due to the absence of necessary constraints on key areas. Thus,

parallel local discriminators DL are proposed which contains 7

local discriminators each corresponding to a mask region.

Llocal: as a supplement of Dglobal, DL focuses on the style

transfer quality in the regions specified by M∗, and Dm is an

individual local discriminator. M∗ refers to all the 7 masks.

These have the same resolution as the input image. Local dis-

criminators transform the input image into a high-dimensional

feature map, denoted as FM img, which is of lower resolution

than the input image. M∗
ds is the down-sampled version of M∗

to match the resolution of FM img. We can then perform ele-

ment wise multiplication to only retain part of the feature map

that is within the masks. Llocal is defined as:

Llocal(G,DL) =
∑

Dm∈DL

E(pi,wi)∼Ttraining
[log (Dm (pi, wi)

+ log (1−Dm (pi, G (wi)))] . (4)

Table 1: Time consumption between [4], Updated [4] and WCGAN in

Section 4.1

Resolution [4] Updated [4] WCGAN

(seconds) (seconds) (seconds)

2562 50.37 119.60 0.04

5122 82.10 120.21 0.15

10242 213.03 119.73 0.62

(a) Input (b) [4] (c) Updated[4] (d) WCGAN

Fig. 6: Comparison with the NPR method for portrait watercolor stylization

[4] and its updated version to cope with different scales.

3.3.3. LLGM loss

The sophisticated fusion of local effects creates the distinc-

tive beauty of watercolors. However, it is particularly prob-

lematic for watercolor stylization where different painting tech-

niques are often applied to individual regions. To address this,

we propose a novel loss term LLGM based on a localized Gram

matrix to improve the style transform quality in local regions.

Given an input image pair A and B, to calculate LLGM ,

we first split them into Z same-sized blocks respectively:

{(Ai,Bi) |Ai ∈ A,Bi ∈ B, i = 1, 2, . . . , Z}. Secondly, the

style loss of each pair of corresponding blocks is calculated

by the Styleloss() function. Finally, the average value of style

losses for all corresponding blocks is used as the corresponding

LLGM between A and B. The definition is as follows:

LLGM (A,B) =
1

Z

Z
∑

i=1

Styleloss (Ai,Bi) (5)

Styleloss (Ai,Bi) =
∑

l∈{ls}

∥

∥Gram
(

F l (Ai)
)

−

Gram
(

F l (Bi)
)∥

∥

2

(6)

Gram(F l)ij =
∑

k

F l
ikF

l
jk (7)

where F l is the feature map from layer l of VGG network [37].

Gram() is the Gram matrix calculated based on the corre-

sponding input, where its (i, j) element is essentially the inner

product between the vectorized i-th and j-th feature maps.

Although Gram matrices are commonly applied to entire im-

ages as a way to extract texture features, recent works also

5
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applied Gram matrices to reflect the texture quality of the re-

gion of interest, where the feature maps of region-based meth-

ods [38, 39] come from the local discriminator, and those of

mask-based methods [40] come from semantic masks. How-

ever, the above region/mask-based methods just deliver the

overall texture quality on the region of interest, which are not

fine-grained enough to handle the sophisticated multi-effect

fusion. The block-based LGML in this paper provides fine-

grained texture quality assessment that can accurately evaluate

the quality of multi-effect fusion.

3.4. Video style transfer

To achieve video style transfer, three extra techniques are ap-

plied: a novel method for generating video training data called

Multi-Crop Video Training data, a temporal loss term and a

consecutive-frame-pair training mechanism, where the latter

two techniques widely applied in other works, are explained

in detail in the supplementary material.

This paper proposes a novel method for generating video

training data by cropping still images. Given a still image, the

cropped areas after multiple random cropping operations can

be regarded as consecutive video frames. Consequently, the

ground truth optical flow between any two cropped areas can

be calculated based on the known cropping positions. Based on

the above method, a video training dataset containing ground

truth optical flow can be established based on only still im-

ages, which greatly reduces the difficulty of obtaining video

training data. As we will later show by experiments, Multi-

Crop video training data can help the network capture temporal

consistency. Furthermore, this novel kind of training data does

not conflict with the existing training data (based on real video

frames). Related experiments verify that the optimal dataset is

a collection of video training data generated by both methods.

4. Evaluation

The comparison with traditional NPR work is shown in Sec-

tion 4.1. The datasets and implementation details are shown in

Section 4.2. The comparison with representative paired works

is displayed in Section 4.3. Extra analyses about ADA dis and

LGML are shown in Section 4.4 and Section 4.5, respectively.

The analysis of the contribution of every component is shown in

Section 4.6. The evaluation in video style transfer is presented

in Section 4.7. Our method can also be extended to other styles

with similar characteristics. The experimental results of artistic

portrait drawing (APDrawing) style transfer tasks are displayed

in the supplementary material.

4.1. Compared with traditional NPR method [4]

The NPR method [4] proposed an image processing pipeline

specifically for portrait watercolorization, which struggles with

low resolution images. Thus, this paper proposes an updated

version of [4] where images are initially resized to a fixed size

with the face, and then [4] is applied to generate watercolor

results, before resizing them back to the original resolution.

Directly applying [4] or Updated [4] to portrait watercol-

orization task has clear drawbacks. Firstly, both [4] and Up-

dated [4] require a long processing time. The average time

consumption on the test dataset is shown in Table 1, where

WCGAN greatly improves the processing speed by more than

two orders of magnitude. Secondly, Fig. 6 shows the results of

[4], Updated [4] and WCGAN at 2562. [4] produces an over-

stylized effect especially for eyes under low resolution. Up-

dated [4] cannot handle images with multiple faces of varying

sizes due to difficulties in achieving different rescalings for each

face simultaneously. In contrast, WCGAN can stably generate

proper results even for challenging inputs (multiple faces, mul-

tiple scales).

4.2. Dataset and Implementation details
It is challenging to obtain a valid watercolor training dataset

due to the wide variation of style in the real watercolors as

shown in Fig. 1. To obtain a watercolor training dataset with

consistent style features, [4] is applied to generate watercolor

style in portraits. To enhance scale-adaptivity, an adaptive train-

ing dataset Ttraining , which expands each original training im-

age to three different sizes, is created based on Updated [4].

2000 portrait images with various skin colors and back-

grounds are collected from the internet. Each portrait is firstly

resized to three resolutions: 2562, 5122, and 10242. Then, we

partition all images into Ttraining of size 1600×3 and Ttest

of 400×3. In addition, 100 photos containing faces of different

sizes are collected as a multi-face test dataset Tmultiface, which

can better test different methods when handling faces of differ-

ent sizes. The Adam optimizer is used, where the learning rate

= 0.0002, β1 = 0.5, β2 = 0.999.

4.3. Comparison with state of the art

WCGAN is compared with five latest paired data based

works: Gatys et al. [5], Pix2Pix [7], I2ICDAE [42], pSp [41]

and BBDM [27]. The following content is conducted from three

aspects: qualitative analysis (Figs. 7 and 9), quantitative analy-

sis (Table 2 to Table 4) and results of user studies (Fig. 10).

4.3.1. Qualitative analysis

Fig. 7 shows the test results of three portraits at different res-

olutions, where the corresponding close-ups are shown below

the full images.

Gatys et al. [5] require as input both a content image and

a style image. In our implementation of Original Gatys, for

one content image, the watercolor picture in Ttraining with the

smallest perceptual loss with this content image is regarded as

the corresponding style image. Furthermore, a variant of [5]

called Collection Gatys uses the average Gram matrix of all

watercolor paintings in Ttraining to measure watercolor style

features. The 2nd and 3rd columns of Fig. 7 show the results

of Original Gatys and Collection Gatys, respectively. Original

Gatys exhibits serious color mismatching at all scales due to

its reliance on similar structures between the style and content

images, even if the ones with minimum structure difference are

picked. Compared with Original Gatys, Collection Gatys im-

proves the performance for details to a certain extent. However,

under the same transfer mechanism, Collection Gatys still can-

not cope with the color mismatching problem.

I2ICDAE achieves domain transfer by embedding a fully

connected layer (FCL) between a pre-trained encoder and de-

coder, which cannot handle multi-scale inputs. Thus, three in-

dependent I2ICDAE models for different input sizes are trained,

6
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(a) Input (b) Original Gatys (c) CollectionGatys (d) I2ICDAE (e) Pix2Pix (f) pSp (g) BBDM (h) WCGAN

Fig. 7: Comparison with five representative works in Section 4.3.1. 1st-2nd rows: resolution 256
2; 3rd-4th rows: resolution 512

2; 5th-7th rows: resolution 1024
2

(a) Input (b) pSp (c) WCGAN

Fig. 8: Comparison with pSp [41] trained and tested on the aligned version of

Ttraining and Ttest

respectively. The test results of I2ICDAE are shown in the 4th

column of Fig. 7. The unacceptable quality of multiple effects

fusion affects the overall aesthetics due to the lack of specific

loss term or mechanism focusing on local features.

The 5th column in Fig. 7 displays the results of Pix2Pix. The

complicated fusion of local effects and independent degrees of

abstraction of different regions are not learned properly, which

greatly affects the aesthetic feeling, and indicates that Pix2Pix

does not have sufficient flexibility to simulate watercolor style.

The 6th column in Fig. 7 displays the results of pSp [41].

Three separate pSp networks are trained for different scales:

2562, 5122, and 10242. For the 2562 and 5122 pSp models,

input and output were maintained at the same scale, similar to

WCGAN’s setup. The 1024-scale pSp model is implemented

with the recommended settings by authors to achieve the proper

(a) Input (b) I2ICDAE (c) Pix2Pix (d) WCGAN

Fig. 9: Comparison with other works on Tmultiface

Fig. 10: Stylisation preferences captured by the user study in Section 4.3.3
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performance of pSp and alleviate the computational burden of

training with 10242 input and output (by scaling the input to

lower-resolution 2562 size, and generating output stylized im-

ages to 10242). The results at 2562 and 5122 show that pSp’s

output cannot present reasonable faces with watercolor style.

The results at 10242 demonstrates that, despite adhering to the

recommended default settings, pSp consistently exhibits unde-

sirable inconsistencies in facial regions compared to the input

portraits. The underlying cause is that the pSp model is lim-

ited by the pre-trained StyleGAN2 model which is trained on

aligned inputs (i.e. the portraits are rotated and cropped to nor-

malize the face orientation and scale), and fails to cope with

unaligned inputs present in our watercolor dataset.

Table 2: Quantitative comparison with state-of-the-art methods at resolution

256
2 in Section 4.3.2

Resolution MSE PSNR SSIM LPIPS FID

256× 256 ×10
−2 dB ×10

−2
×10

−2

Original Gatys[5] 13.32 15.88 42.76 40.21 129.15

Collection Gatys[5] 7.39 17.83 48.37 34.57 140.33

Pix2Pix[7] 1.37 25.12 74.34 13.78 46.45

I2ICDAE[42] 1.34 25.22 75.65 13.31 44.58

pSp[41] 10.00 16.29 35.52 45.05 150.45

BBDM[27] 3.12 21.33 61.89 31.87 86.76

WCGAN 1.07 26.28 81.23 11.37 40.62

Table 3: Quantitative comparison with state-of-the-art methods at resolution

512
2 in Section 4.3.2

Resolution MSE PSNR SSIM LPIPS FID

512× 512 ×10
−2 dB ×10

−2
×10

−2

Original Gatys[5] 9.21 17.15 49.27 41.32 87.81

Collection Gatys[5] 5.82 18.89 52.30 37.76 84.62

Pix2Pix[7] 1.11 26.00 73.21 18.33 38.60

I2ICDAE[42] 1.09 26.12 75.55 17.34 36.83

pSp[41] 9.27 16.66 45.98 48.45 223.53

BBDM[27] 2.99 21.52 63.58 40.95 82.43

WCGAN 0.90 26.96 78.59 15.55 33.18

Table 4: Quantitative comparison with state-of-the-art methods at resolution

1024
2 in Section 4.3.2

Resolution MSE PSNR SSIM LPIPS FID

1024× 1024 ×10
−2 dB ×10

−2
×10

−2

Original Gatys[5] 6.36 18.67 52.21 40.55 76.27

Collection Gatys[5] 5.66 19.04 52.83 40.43 80.92

Pix2Pix[7] 1.07 26.00 69.85 21.13 35.79

I2ICDAE[42] 0.98 26.44 74.29 18.02 37.27

pSp[41] 9.81 16.44 49.78 61.84 126.36

BBDM[27] 2.94 21.55 65.42 57.21 97.89

WCGAN 0.97 26.55 75.69 19.47 33.75

Moreover, we further create an aligned version of both

Ttraining and Ttest. By eliminating the confounding factors

introduced by unaligned images, we comprehensively validate

the performance of pSp. As shown in Fig. 8, the pSp model

trained and tested on aligned images still fails to produce results

with stable facial consistency compared to the input portraits.

Furthermore, it also struggles to accurately simulate watercolor

painting textures and complex multi-effect fusion. These find-

ings further corroborate the limitations of the pSp model in

achieving high-quality watercolor style transfer.

The 7th column in Fig. 7 displays the results of BBDM

(Brownian Bridge Diffusion Model) [27]. To ensure fairness,

the official implementation is used, where BBDM can only han-

dle images of 2562. Thus, each image is initially resized to 2562

before further processing. For images of 5122 and 10242, the

generated images are up-sampled to its original scale. This pro-

cess may lead to some loss of details. One of the advantages

of BBDM is its ability to generate multiple plausible outputs

given a single input due to the inherent ambiguity of domain

transfer. BBDM generates five slightly different outputs, and

the one with the best performance is selected as the final re-

sult. BBDM fails to produce results with acceptable quality, in

terms of fusion of local effects, locally varying facial abstrac-

tion levels, and watercolor texture. The underlying reason is

that BBDM as a diffusion based method has the advantage of

learning more effectively from a large amount of training sam-

ples, but the performance may not be satisfactory when training

data is limited.

Since I2ICDAE and Pix2Pix have relatively similar perfor-

mance to WCGAN, to prove the superiority of WCGAN more

convincingly, the generated results of I2ICDAE, Pix2Pix and

WCGAN on Tmultiface are shown in Fig. 9. The first photo

contains faces of different sizes. Although the trained I2ICDAE

and Pix2Pix can generate tolerable results for simple photos,

both methods cannot achieve the desired facial results in com-

plex situations that include multiple faces of different scales.

The second photo contains complicated local areas, i.e., con-

tinuous small areas with different colors. Due to the lack of

a specific mechanism to thoroughly learn the feature of local

areas, both I2ICDAE and Pix2Pix cannot present proper effect

simulation for the above situation.

4.3.2. Quantitative analysis

Five common metrics (mean squared error (MSE), peak

signal-to-noise ratio (PSNR), structural similarity index mea-

sure (SSIM), Fréchet inception distance (FID score) and per-

ceptual metric (LPIPS)) are applied to quantitatively measure

all methods on Ttest. Table 2 – Table 4 respectively show the

results of all methods for portraits of different sizes, and the

following conclusions can be made:

• Due to the severe color mismatching appearing in both

variants of the Gatys method, WCGAN greatly outper-

forms both Gatys methods under all evaluation criteria.

• Pix2Pix still has a certain gap compared with WCGAN.

In particular, the performance of Pix2Pix under the three

scales is worse than that of WCGAN 15.91% in LPIPS and

12.24% on FID on average.

• WCGAN achieves an overall improvement under all scales

compared with I2ICDAE. The LPIPS score of I2ICDAE

at resolution 1024 is slightly better than that of WCGAN.

However, it is undoubtly clear that WCGAN can more pre-

cisely simulate watercolor style, whereas each I2ICDAE

model only needs to deal with the style transfer task of a

single scale.

8
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• Due to the unacceptable issue of facial inconsistency and

poor simulation of watercolor painting features in pSp’s

generated results, the quantitative analysis of pSp experi-

ment results are worse than other methods.

• WCGAN outperforms BBDM by a significant margin in

all evaluation metrics, which is consistent with the conclu-

sions drawn from the qualitative analysis.

Overall, WCGAN achieves the best portrait watercoloriza-

tion on different scales. This is consistent with aforementioned

qualitative analysis results.

Table 5: Quantitative comparison with [35, 36]

2562 5122 10242

LPIPS FID LPIPS FID LPIPS FID

[36] 20.20 61.38 20.09 47.04 26.11 41.78

[35] 13.41 43.59 18.67 37.47 21.26 37.35

WCGAN 11.37 40.62 15.55 33.18 19.47 33.75

(a) Input (b) [36] (c) [35] (d) WCGAN

Fig. 11: Qualitative comparison with [35, 36]

4.3.3. User Study

A user study is performed for a more convincing evaluation.

Due to the most recent publication of BBDM, there was insuf-

ficient time to incorporate its results into the user study. How-

ever, the above qualitative and quantitative analysis have proved

WCGAN outperforms BBDM in portrait watercolorization.

Fig. 10 presents the statistical results of the comparison with

state of the arts. In Fig. 10, blue, orange and gray represent

three resolutions of 256, 512 and 1024 respectively. The sum

of bars with the same color is 100%, where the larger the value,

the more competitive this method is at this resolution.

Under three resolutions, we compare WCGAN to four com-

peting methods: Original Gatys, Collection Gatys, Pix2Pix, and

I2ICDAE. For each resolution, 10 randomly selected portraits

from Ttest and Tmultiface are applied to show the performance

of all five methods. In each question, we simultaneously dis-

play five randomly ordered watercolor pictures generated by

different methods, and ask the participants to tick the best wa-

tercolor picture based on their subjective feeling. We finally

received 1530 votes (51 participants) from two platforms: PC

and mobile phone, and more detailed analysis is provided in the

supplementary material. The results plotted in Fig. 10 indicate

that the WCGAN method, receiving 58.46% votes on average,

achieves the best performance among all evaluated methods.

Due to their color-mismatching, Original Gatys and Collection

Gatys receive the least votes, 6.41% and 8.95% respectively.

4.4. Compared with other multi-scale discriminators

To demonstrate the superiority of the proposed ADA dis,

we conducted comparative experiments by replacing the pro-

posed discriminator architecture in WCGAN with the multi-

scale discriminator in [35, 36]. Table 5 shows that our proposed

ADA dis quantitatively outperforms the multi-scale discrimi-

nators from [35, 36] in all evaluation scenarios. The second

column of Fig. 11 shows that applying the multi-scale discrim-

inator from [36] results in visible blurring effects due to dif-

ferent branches having the same impact, leading to a compro-

mise among three scales. Applying the multi-scale discrimina-

tor from [35] brings about over-stylization in the eye area due to

overemphasis on fine-grained features in the latter part of train-

ing and reliance on feature feedback by fixed-weight fusion dur-

ing the whole training. In contrast, our proposed ADA dis flex-

ibly merges different scale features by activating the strongest

responses in different branches through max-pooling.

Fig. 12: Ablation studies in Section 4.6.1. Close-ups are provided for the

regions in the red boxes.

4.5. Analysis of Local Gram Matrix Loss (LGML)

To prove the necessity of the local Gram matrix

loss (LGML), we conduct and compare four experiments:

R LGML, Traditional GML, LGML whole and WCGAN.

WCGAN is the full version of WCGAN; R LGML re-

moves LGML from WCGAN; Traditional GML replaces

LGML applied in WCGAN with traditional Gram matrix loss;

LGML whole extends the application range of LGML in WC-

GAN from only the background to the entire picture (including

the face). As shown in Fig. 13, compared with the full ver-

sion WCGAN, R LGML and Traditional GML lack sufficient

capability to fine-tune the stylization quality of local areas, re-

sulting in severe blur in the background. LGML whole has a
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(a) Content Images (b) R GML (c) Traditional GML (d) LGML whole (e) WCGAN

Fig. 13: Ablation study of LLGM loss. (a) content images, (b) removing Gram matrix loss entirely (R GML), (c) replacing local Gram matrix loss with traditional

(global) Gram matrix loss, (d) expanding local Gram matrix loss to the whole image, (e) our model where local Gram matrix loss is applied to non-face regions.

Table 6: Quantitative Analysis of Ablation Study in Section 4.6.2

Quantitative Analysis of Ablation study
LPIPS FID

256 512 1024 256 512 1024

WCGAN 11.37 15.55 19.47 40.62 33.18 33.75

Removing Adaptive Discriminator Architecture 13.50 17.56 20.46 46.93 37.56 36.54

Removing Adaptive Training Dataset 33.68 25.89 20.68 128.84 63.15 36.84

Removing Localized Gram Matrix Loss 12.83 17.34 20.66 44.04 36.62 36.75

clear drop in the performance of the facial area, especially the

eyes.

4.6. Ablation Study

The following abbreviations are used to separately represent

three ablation study experiments: R Ada data for removing

Ttraining; R Ada dis for removing ADA dis; R LGML for

removing Localized Gram Matrix Loss term. Qualitative analy-

sis is shown in Fig. 12. LPIPS and FID are provide quantitative

analysis (Table 6).

4.6.1. Qualitative Analysis

Fig. 12 separately shows the results of R Ada data,

R Ada dis, R LGML and WCGAN in the 2nd to 5th rows.

For R Ada data, the rendering quality of facial parts and de-

tailed areas is significantly reduced. For complicated local ar-

eas in the background, R Ada dis and R LGML present a

visible drop in the multi-effect fusion and boundary process-

ing compared with WCGAN. The above qualitative analysis

demonstrates that each component is essential for the best per-

formance. More examples can be found in the supplementary

material.

4.6.2. Quantitative Analysis

Quantitative analysis in the ablation study is conducted

through LPIPS and FID. As shown in the first row of Table

6, the full model (WCGAN) containing all techniques reaches

the lowest values (i.e., best performance) at any scale, which

illustrates the necessity of each component. In the remaining

part of this subsection, ablated versions are compared with the

full model shown in the first row of the table, and the following

conclusions can be made:

• Disabling Ttraining has caused a noticeable quality degra-

dation, especially at 2562 resolution compared to the full

model, an increase of 196.30% under LPIPS and 217.17%
under the FID.

• R Ada dis performs significantly worse than the full

model at all comparisons, with an average increase of

12.28% in LPIPS and 12.33% in FID.

• Although its performance outperforms R Ada data,

R LGML is worse than the full version WCGAN at any

scale on both evaluation criteria.

4.7. Video Style Transfer

We collected 10 videos from videvo.net as the training data

set. Flow2 [43] is applied to calculate the bidirectional optical

flow between consecutive video frames. The ground truth with

watercolor style are generated by our WCGAN trained by still

images. Furthermore, a temporal error measure is defined to

reflect the coherence, which is calculated as:

Etemporal =
1

T · I

T
∑

t=1

I
∑

k=1

Ck

(

Sk
t − Sdk

t )
)2

(8)

where T denotes the total number of consecutive frame pairs. I

means the total number of all pixels in the trackable area, which

is marked as value 1 in C. C (confidence mask) sets all motion

boundaries and occluded regions to value 0 and other regions

to value 1. The stylized results St and St−1 corresponding to

frame Ft at time t and frame Ft−1 at time t − 1 separately are

generated by G. The desired stylized result Sd
t with temporal

consistency at time t is generated by warping St−1 based on
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pre-calculated optical flow. Etemporal takes the average tem-

poral error of all consecutive video frame pairs as the perfor-

mance of the temporal consistency. Lower Etemporal indicates

smoother results.

The temporal errors of four methods under three different

scales are shown in Table 7. The first row shows the tempo-

ral error of WCGAN aiming for image style transfer, where the

biggest errors are achieved under all scales since this version

does not take temporal consistency into consideration. WC-

GAN trained by real video frames or Multi-Crop video training

data can both reduce temporal errors as shown in the second and

third rows. The versions of WCGAN jointly trained with both

real video frames and Multi-Crop video training data achieves

the smallest temporal errors under all scales as shown in the

fourth row. This demonstrates that real video frames and our

created Multi-Crop video training data can both enhance the

temporal consistency. Furthermore, these two kinds of video

training data provide complementary information and work to-

gether effectively to further improve temporal consistency.

Table 7: Comparison of temporal errors under changing training strategies.

Temporal Error 256 512 1024

Without Temporal Consistency 0.1849 0.2542 0.3771

Real Video Frames 0.1408 0.2216 0.3602

Multi-Crop Training data 0.1391 0.2432 0.3554

Both Real Frames and Multi-Crop 0.1339 0.2028 0.3418

5. Conclusion

In this paper, we propose WCGAN, a GAN-based model to

transfer portrait images to high-quality watercolor paintings.

Local Gram matrix loss enables detailed style characteristics

to be properly captured. Moreover, the novel adaptive archi-

tecture and adaptive training dataset enable WCGAN to cope

with portraits of different sizes. The Multi-Crop video training

data further enhances the temporal consistency in video style

transfer tasks. Our experimental results show that WCGAN can

faithfully transfer watercolor style to portraits and achieve bet-

ter temporal performance in video style transfer tasks, outper-

forming existing state-of-the-art methods. In the future work,

facing inconsistent styles in real watercolor datasest, we can

explore new methods to deal with mixed watercolor style trans-

fer.
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