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ABSTRACT
3D meshes are widely used in Virtual Reality as essential graphical
elements for creating immersive virtual environments. In practice,
the 3D meshes being used are often subject to some manipulations,
where some details may be lost and some noise could be introduced,
e.g., due to the limited transmission bandwidth. While existing
studies have considered 3D mesh quality measures in the desktop
setting, we consider how different 3D distortion types affect the
perceptual quality of 3D shapes when viewed in a Virtual Reality
setup (with users wearing a Meta/Oculus headset). Our experiment
collected mean opinion scores (MOS) for each distorted shape by
showing both distorted and reference shapes to users, and compared
the results with meshes viewed in the traditional display. This paper
aims to understand the effect of different types and levels of 3D
mesh distortions on perceived quality and user experience in VR.
We analyse correlations of two settings (VR and desktop) using
the Pearson and Spearman correlation coefficients, which show a
positive relationship between the two settings. However, in virtual
reality, perception appears more sensitive to particular distortions
than others, compared with the desktop setting, which can provide
helpful guidance for downstream applications.
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1 INTRODUCTION
Recent advances in 3D mesh modelling, representation, and ren-
dering have progressed to the point that they are now extensively
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employed in many applications, such as networked 3D gaming, 3D
virtual reality (VR) and augmented reality (AR). With VR, users
can experience high-quality, immersive virtual environments in
real-time using the latest advancements in computer graphics hard-
ware and software [29]. Increasing the visual quality of a mesh by
using a large number of vertices and faces provides a more detailed
representation. However, the added complexity leads to increased
requirements for data storage, processing power (CPU and GPU),
and network bandwidth, especially for real-time applications and
when data needs to be transmitted over the network. As a result, a
trade-off between graphical model visual quality and processing
time frequently arises, necessitating determining the quality of 3D
graphic resources.

Several geometric modifications may be applied to 3D mesh
models like compression, simplification, and watermarking. These
processing procedures may influence the appearance and visual
quality of the 3Dmodels and, as a result, the quality of the user expe-
rience (QoE). Thus, subjective quality evaluation tests are essential
for evaluating visual quality as perceived by human observers. Sub-
jective methods involve a group of human participants being asked
to rate the quality of a collection of 3D meshes that have been sub-
jected to different types and levels of distortion. The output of the
subjective method is a set of Mean Opinion Scores (MOS), which
enables predictive models to be developed and evaluated, taking
subjective scores as ground truth. Some subjective methods can
be used in 2D image and 3D graphical areas, for example, single
stimulus, double stimulus, subjective assessment methodology for
video quality, and pairwise comparison (PC) [2, 5, 22]. Nevertheless,
choosing the appropriate subjective technique is not easy since
we must verify that such methods produce accurate and reliable
findings. Previous subjective tests in the field of computer graphics
were conducted to evaluate the visual quality of static and animated
3D models [7, 9, 15]. As shown in most papers, there is no agree-
ment on the appropriate approach to assessing the quality of 3D
models [18]. As we focus on the human visual system (HVS), which
is strongly linked with perceptual quality measures, we concen-
trate on perceived 3D mesh perceptual quality measures using a VR
headset, not on purely geometric measurements that ignore human
perception. Bulbul et al. [3], Lavoué and Mantiuk [15] and Muzahid
et al. [17], are mostly working in the perceptual area, and provide
reviews of more broad 3D visual quality evaluation techniques.

In our case, we used a pairwise comparison (PC) approach of
3D meshes, where participants were asked to rate a collection of
different levels of 3D mesh distortion in terms of visual quality,
compared with the reference undistorted shape, which is presented
to the user along with the distorted shape. PC is simpler and more
intuitive for users, which ensures that users can concentrate on
judging the quality of the distorted shape in comparison to the given

7

https://doi.org/10.1145/3603421.3603423
https://doi.org/10.1145/3603421.3603423
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603421.3603423&domain=pdf&date_stamp=2023-10-30


ICVARS 2023, March 03–05, 2023, Sydney, Australia Dalia A. ALfarasani, Yu-Kun Lai, and Paul L. Rosin

reference shape. We propose to measure how different distortions
(noise, smoothing, etc.) of 3D shapes affect the perceptual quality of
3D objects in a VR environment by collecting subjective scores for
distorted shapes. We compare the MOS between VR and desktop
settings. Moreover, we analyse different 3D mesh distortion types
with different 3D shapes to determine which distortion type/shape
shows significant results. To make the comparison between VR and
desktop settings easier, we used an existing database evaluated on
the desktop display. As VR is becoming a popular way of consum-
ing and visualising 3D content with high resolutions, we build an
application to carry out VR experiments using Meta/Oculus Quest
2 as one of the most popular headsets.

2 RELATEDWORK
Immersive virtual reality (IVR) enables users to establish deeper
connections with 3D environments by integrating immersion as a
significant element [16]. According to some scholars, IVR can be
classified into low and high IVR. The low IVR only provides low
immersion using techniques such as 2D computer screens, while
the high IVR achieves high immersion, benefiting from techniques
such as Head Mounted Displays (HMD) and Cave Automatic Vir-
tual Environment (CAVE) [10]. Many subjectively rated databases
have been released during the last few years. Winkler et al. [28]
provided an overview and a comparison of publicly available im-
age databases. The first studies on subjective quality assessment
of 3D static meshes were led by Watson et al. [27], who tried to
measure the visual fidelity of simplified meshes. Corsini et al. [7] at-
tempted to adopt existing experimental protocols to the subjective
quality assessment of watermarked 3D meshes. Lavoué et al. [13]
used multi-linear regression to optimise the weights of numerous
mesh descriptors, including curvature values, dihedral angles, and
the geometric Laplacian. Chetouani et al. [6] suggested employ-
ing a Support Vector Regression (SVR) model to combine various
commonly used full-reference quality measures to increase the
correlation between prediction and human observations.

Torkhani et al. [23] utilised their proposed TPDMmeasure (Tensor-
based Perceptual Distance Measure) and proposed a machine learn-
ing method to train an SVR model to determine the link between
the distortion distribution and quality scores. The existing stud-
ies like Lavoué et al.’s MSDM2 [13], Wang et al.’s FMPD [25], and
Váša and Rus’ DAME [24] are strong predictors of visual quality.
Váša and Rus [24] studied dihedral angle discrepancy, whereas
Lavoué et al. [12] suggested metrics based on local variances in
curvature statistics. Local changes of attribute values at the vertex
or edge level are included in these metrics, which are subsequently
aggregated into a global score. On the other hand, Corsini et al. [8],
calculated global roughness values per model before working out
global roughness differences as measures. Torkhani et al. [23] incor-
porated perceptually motivated methods such as visual masking,
which are similar to bottom-up image quality measurements. There
is existing research that utilised 3Dmodels to estimate quality in 3D
distorted meshes like [7, 12, 14, 22, 24], which conducted subjective
assessments using 3D static or dynamic models, but none of them
used a VR setting.

Bulbul et al. [3] conducted a subjective assessment survey to
determine how downsampling or introducing coordinate noise to

a 3D point cloud impacts perceived quality. They also present a
subjective analysis of 3D point cloud denoising algorithms using
the Double Stimulus-Impairment-Scale (DSIS) approach and the
correlation with objective measures. However, this research aims
to evaluate the performance of denoising methods rather than the
quality of other types of distortions, such as compressed mesh
geometry. Recently Nehme et al. [18] used a VR experiment to see
how the explicit reference affects the quality evaluation of coloured
3D models. They conducted a psycho-visual study to compare the
performance of two methods: ACR-HR (Absolute Category Rating
with hidden references) and DSIS (with explicit references). They
used two sets of observers, and two tests were given to each group
in a different order. The experiment utilised the VR HTC Vive Pro
in fixed position mode in an immersive virtual world. Their focus is
to analyse the subjective quality assessment methods for coloured
meshes, whereas our work measures subjective quality assessment
for meshes with geometry only and compares the results with
desktop setting.

3 SUBJECTIVE EXPERIMENT
In our experiment, we use a public database to evaluate the 3D
mesh quality level of distortion using a VR headset (HMD). Figure 1
presents the LRIS/EPEL general-purpose database, which contains
four reference models (Armadillo, Venus, Dyno and Rocker Arm)
and 84 distorted meshes (21 distorted meshes for each reference
mesh) [14]. This dataset used two different types of degradation,
noise and Taubin smoothing [21], to simulate typical degradation
of mesh quality due to e.g., compression and watermarking [14].
These distortions have different levels of strength and four types of
locations on meshes: uniformly on the whole mesh, smooth areas,
rough areas, intermediate areas, where different areas are identified
based on local curvature variations. Note that Taubin smoothing
is not applied to the smooth areas as the effect is hard to notice.
For noise addition, subjective quality scores are provided for each
distorted mesh in the form of MOS, ranging from 0 (worst quality)
to 10 (best quality). Lavoué et al. [14] created noise by altering the
three coordinates of the mesh’s vertices with a randomly calculated
offset between 0 and the specified maximum deviation. Smoothing
was accomplished by applying Taubin [21] smoothing filter to the
mesh’s vertices.

These distortions were applied at three distinct intensities (vi-
sually selected): high, medium, and low (these levels correlate to
the number of smoothing iterations and the maximum deviation
value for noise addition). Finally, these distortions were applied in
different locations on the meshes: evenly (across the whole object),
only to smooth areas, rough regions, and intermediate regions. Each
model generated 21 degraded versions: three noise strengths in four
types of locations and three Taubin smoothing strengths in three
types of locations (i.e., excluding smooth areas).

In this work, we compare VR and desktop settings. In the desktop
setting experiment, Lavoué et al. [14] used a 1280 × 720 resolution
monitor, such that different types and levels of distortions could
be observed, and each model was displayed in a 600 × 600-pixel
window. All models have a resolution of between 50,000 and 100,000
triangles, so the details of the model can be viewed well. They used
rotation, interaction and zoom operations to allow the participant
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Figure 1: Examples of 3Dmeshes belonging to the LIRIS/EPFL
General-Purpose database. The top row shows the four ref-
erence meshes, and the remaining rows show that we have
21 distorted models for each shape, so the total number of
shapes is 88.

to interact with the model (e.g. mouse clicks) in their experiment.
Also, [14] showed themodels (both reference and distorted versions)
to the participants on the desktop setting. The participants were
allowed to browse through shapes so that they could memorise the
worst/best quality shapes.

Our study uses a VR setting that does not allow participants to
see all the models simultaneously. However, we show participants
a trailer with a different dataset to make sure the participant has an
idea of how the experiment will be. These models were obtained
from different sources which used different scanners. For example,
the Armadillo model is a manifold/simplified version of the orig-
inal model that was created from scanning data by the Stanford
Computer Graphics Laboratory. The Dinosaur model is courtesy of
Cyberware Inc. The Venus and Rocker Arm models are courtesy
of the AIM@SHAPE project. Our subjective study was conducted
using a pairwise comparison (PC) method in a VR setting.

3.1 Evaluation methodology
In our experiment, we used a PC approach to evaluate the quality
of distorted meshes with respect to the reference (undistorted) 3D
mesh. More precisely, throughout the experiment, each participant
was provided with a distorted version to compare against the ref-
erence version. Then, each participant was asked to measure the
quality of the distorted version compared with the reference by us-
ing a slider bar (0 worst quality, 10 best quality). Such PC is simpler
to perform and requires less mental effort from the participants
than DSIS, ACR-HR, etc. This experiment shows a new approach to
using a VR setting to compare how different platforms (VR versus a
desktop display) affect perceived mesh quality, which has not been
done before. We will provide a new comparison approach between
VR and desktop settings to simulate real environments and identify
similarities and dissimilarities between human perception in these
settings.

Figure 2: (a) Example of the home page showing our experi-
mental environment and (b) example of the main page. The
user can interact with the models in the experiment environ-
ment. The reference model is on the left, and the distorted
model (B) is on the right side.

3.2 Display
We have considered different types of VR devices such as Valve
Index and HTC Vive, and Meta/Oculus Quest 2 has the highest mar-
ket share with a decent resolution. This ensures the study is more
consistent with the common user experience. In our experiment,
the display technology consists of a Meta/Oculus Quest 2 HMD
with Qualcomm Snapdragon XR2 Platform, a single Fast-Switch
LCD 1832 × 1920 pixels per eye with refresh rate 72Hz and tracking
inside and outside 6 DOF (degrees of freedom). The experiment was
built as an application in Unity3D and rendered with a resolution of
1832 × 1920, as shown in Figure 2. The experiment is based on the
PC method; the participants rate the quality between two models
where one is the (undistorted) reference and the other is a distorted
version. Participants were allowed to explore the 3D mesh object
by using touch controllers. In the experiment, the participant’s
head’s position and rotation are used in the Unity3D application to
provide a first-person perspective to explore the object [20]. Since
depth perception could also play a significant role in the selection,
we presented the objects equidistantly at (20cm) distance from the
participants’ eyes and they could freely move closer and further
from the objects to explore them.

3.3 Participants and training
Before we started the experiment, we began with a trial session, as
recommended by the ITU-R BT.500 [19], in order that participants
became acquainted with the virtual environment and task, such
that they fully comprehend the experiment’s task. This stimulus
outcome was not recorded. The main reason for this trailer is to
enable participants who are not familiar with VR devices to learn
how to rotate, scale and transform 3D objects. The experiment was
conducted at Cardiff University and involved students aged between
20 and 40, with twenty females and thirty males. All participants
reported normal or corrected-to-normal vision.

3.4 Procedure
The experiment used a Meta/Oculus Quest 2 headset, and asked
participants to rate the quality of the 3D distorted models. The
experiment showed several 3D scanned meshes from the LIRIS
General-purpose database, along with distorted versions. Every
participant was expected to take 20-25 minutes to finish viewing
the models. The experiment was carried out through a computer
application that presents the 3D objects on the VR headset in a
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random order, with paired 3D objects appearing side by side. At
each comparison, participants compare the reference model with
the distortedmodel by using a VR touch controller to scroll the slider
bar score as illustrated in Figure 2. This way allows us to collect
the MOS scores and analyse correlations of individual distortion
types by using Pearson and Spearman coefficient correlation. The
settings used in an experiment are critical because they can bias
the results significantly, especially for computer-generated stimuli,
where almost every element can be controlled.

3.5 Duration
The overall length of the experiment affects the efficiency of the
experimental method, especially in VR where most of the subjects
have not used the VR headset before and tend to exhibit symptoms
of cybersickness both during and after the virtual environment
experience [11]. To avoid these issues, we chose to display the refer-
ence and the test stimulus simultaneously side by side in the same
scene. In this way, the number of presentations is halved. To avoid
fatigue, boredom and cybersickness, we allow the participant to
move around the lab or sit in a chair to reduce any motion sickness.
Each subject’s session took place on a single day in order to prevent
any learning effect between stimuli. The stimuli were displayed in a
random order (i.e. reference models, distortion types and distortion
levels) to each participant. Each stimulus was presented once; the
participant was not able to replay the scene.

4 DATA ANALYSIS
4.1 Screening participants and computing mean

opinion scores (MOS)
Before performing any data analysis, we have tested the partici-
pants’ performance to ensure the collected data is meaningful. We
follow the ITU-R BT.500-13 recommendation [19], where we show
a trailer with a different dataset to the participants to make sure
they understand how the experiment works. Computing the In-
terquartile Range (IQR) [19] of our data, we identified outliers as
values either greater than the third quartile plus 1.5×IQR or less
than the first quartile minus 1.5×IQR. One outlying participant was
found in both settings, and was rejected from the dataset.

To analyse user ratings, a common method is to compute the
MOS for each stimulus.

𝑀𝑂𝑆𝑒 =
1

10 × 𝑁

𝑁∑︁
𝑖=1

𝑠𝑖𝑒 , (1)

where 𝑠𝑖𝑒 refers to the score assigned by participant 𝑖 to the stimulus
𝑒 , and 𝑁 denotes the number of (valid) subjects. We further divided
the scores by 10 to normalize them in the range of [0, 1]. We follow
most of the existing work [1, 4] and set the scores such that 0 means
the worst quality, and 1 is the best quality. So we expect the MOS to
decrease as the distortion level increases. In Armadillo, we notice
a strong consistency between the VR and desktop settings, as the
participants in both settings showed almost the same behaviour for
each type of distortion. However, for the rest of the models, we may
see some disparities in the rating scores of the two settings. In fact,
in some cases, desktop participants’ scores are not consistent with
the stimuli, i.e., the quality does not always drop when the level of

distortion increases (e.g. for the Venus model), but VR viewers give
accurate ratings.

Furthermore, we found that VR observers were able to detect
several distortions that desktop observers missed. These initial
findings suggest some discrepancies in the human perception w.r.t.
different display techniques. In the next section, we will examine
whether these differences are statistically significant and seek to
explain their origins.

4.2 Observer agreement analysis
Prior to analysing the experiment’s outcomes, it is critical to assess
the subjects’ agreement and check if they remained attentive during
the experiment. We calculated the standard deviation 𝜎 values of
the MOS scores from both the VR and desktop settings. In the VR
setting 𝜎𝑉𝑅 = 0.0220 whereas in the desktop setting 𝜎𝐷 = 0.0278.
Since the standard deviation in the VR setting 𝜎𝑉𝑅 is lower than
that of the desktop setting 𝜎𝐷 , it shows that the user ratings are
more consistent for the VR setting.

In order to further analyse the similarity and dissimilarity be-
tween subjective mesh quality, we look at the correlations between
subject evaluations. To begin with, we examine the correlation of
the VR setting and desktop setting for distortions of each 3D object
of the dataset. We also check the correlation for each type of distor-
tion. In this paper, the following two measures are used to measure
the correlation between VR and desktop settings. The Pearson linear
correlation coefficient (PLCC or 𝑟𝑝 ) measures the prediction accu-
racy of MOS, while the Spearman rank-order correlation coefficient
(SROCC or 𝑟𝑠 ) measures the prediction monotonicity [26]. Both
values of PLCC and SROCC range from -1 to 1, where 1 indicates a
total positive correlation, -1 indicates a total negative correlation,
and 0 indicates no correlation. Suppose in our case we have two (VR
& desktop) settings 𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛},
both containing 𝑛 values. The Pearson linear correlation coefficient
𝑟𝑝 between settings 𝑥 and 𝑦 is calculated as follows.

𝑟𝑝 =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2
√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2
(2)

where 𝑥 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖 and𝑦 = 1

𝑛

∑𝑛
𝑖=1 𝑦𝑖 are themean values of 𝑥 and

𝑦. MOS scores 𝑥 and𝑦 are sorted in the same order (either ascending
or descending). Let 𝑋𝑖 be the rank of 𝑥𝑖 in 𝑥 , and 𝑌𝑖 be the rank of
𝑦𝑖 in 𝑦. We generate two new sequences 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑛} and
𝑌 = {𝑌1, 𝑌2, . . . , 𝑌𝑛}.

Let 𝑑𝑖 = 𝑋𝑖 −𝑌𝑖 , the Spearman rank-order correlation coefficient
𝑟𝑠 between settings 𝑥 and 𝑦 is calculated as follows.

𝑟𝑠 = 1 −
6
∑𝑛
𝑖=1
𝑑

2

𝑖
𝑛(𝑛2 − 1) (4)

5 RESULTS
In this section, we divide our results into two parts, distortion by
shapes as illustrated in Figure 3 and distortion by types as illustrated
in Figure 4.
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Figure 3: Comparison of MOS for both VR and desktop settings in the pairwise comparison (PC) experiment for all the stimuli
shapes (the blue curve is for VR and red for desktop).

5.1 Distortion by shape
We now analyse MOS scores between VR and desktop settings
on the basis of individual test shapes. Since the two modes of dis-
play have their own characteristics, as illustrated in Figure 3, the
perceived quality is more consistent on some shapes than others.
The 𝑥-axis corresponds to different distortion types, locations and
strengths, and the 𝑦-axis shows the (normalised) MOS scores. We
can see that Armadillo has the highest correlations in both Pearson
linear coefficient correlation (PLCC) and Spearman coefficient cor-
relation (SROCC) (𝑟𝑝 = 0.754, 𝑟𝑠 = 0.685) compared with the rest
of the models.

Armadillo contains some details, which means it is easy for
participants to notice the different quality between the reference
model and the distorted version. In comparison, the Venus model
has a lower linear relationship and a higher nonlinear relationship
(𝑟𝑝 = 0.698, 𝑟𝑠 = 0.701) because a participant in the VR setting
is easy to zoom and rotate the model compared with the desktop,
which helps the participant to notice small areas that might not
appear well on the desktop. The third model is Rocker Arm, which
shows a fair relationship between VR setting and desktop setting
(𝑟𝑝 = 0.623, 𝑟𝑠 = 0.513). In both settings, participants often did not
notice if there was a distortion in the shape because the shape did
not have much details they could detect. The last model is Dyno
which has the worst result compared with the rest of the models.
The linear coefficient correlation is better than nonlinear coefficient
correlation (𝑟𝑝 = 0.624, 𝑟𝑠 = 0.499). The reason behind the worst
correlation is that the Dyno model does not have a smooth area
which makes it hard to detect the quality even if the reference is
available. All the correlation results are listed in Table 1.

5.2 Distortion by type and location
As we explained in the previous section, this dataset has two main
distortion types: adding noise and Taubin (smoothing), but each
type has different levels of strength and different locations. We
now group the results based on type and location (see Figure 4),
and for each type, show different distorted shapes and levels of
distortion strength. The PLCC and SROCC correlations between
VR and desktop settings for different distortion types and locations
are summarized in Table 2, with a detailed breakdown given in
Table 1. People in the VR settings perceived differently compared
to the desktop setting. As the VR has a higher resolution which
makes it easy to interact with models, as a result, the MOS scores
appear to be more sensitive to where distortions are applied. Firstly,
Noise Uniform distortion is the most obvious distortion for the
participants as noise is added uniformly to the whole shapes; they

can easily notice and detect the distortion and the results are more
consistent in both settings, as evidenced by high correlations (𝑟𝑝 =

0.732, 𝑟𝑠 = 0.753).
For Noise Rough and Noise Intermediate, noise is only added to

rough and intermediate regions. As these regions contain details
already, added noise can be less noticeable. As shown in Figure 4,
each group of 3 samples in the 𝑥-axis corresponds to three levels of
distortion strength (low, medium and high) for each of the 4 shapes.
Although adding more noise tends to lead to lower MOS scores
in the VR settings, the drop is significantly smaller compared to
adding noise uniformly. In the case of adding noise to the smooth
regions, the MOS scores have larger drops with increasing strength
of noise, close to the Noise Uniform case. This shows that with better
observation/interaction, subjective scores are more sensitive to
where distortion, especially noise, is applied. In contrast, the results
of the desktop setting show little difference between locations.

A visual example is shown in Figure 5 where (b) is the shape
with high-level noise applied on the rough regions, whereas (c)
is with medium-level noise applied on the smooth regions. It is
obvious that the distortion in (c) is more visible than (b), which is
correctly reflected in the MOS scores in the VR setting, but not so
in the desktop setting, where the strength of distortion rather than
the location has more impact on the perceptual quality. Because of
such differences, the correlations in these locations are significantly
lower than in the uniform case.

We now compare smoothing (Taubin) and adding noise. As
shown in Figure 4, MOS scores where smoothing is applied tend to
be higher than with noise added, especially when distortions are
applied uniformly. In contrast, in the desktop setting, these types
of distortions have a similar impact. Similarly, different strength
levels also have less impact on MOS scores, compared with the
desktop setting. These also lead to lower correlations between VR
and desktop settings in the case of smoothing. Nevertheless, if we
consider all samples (shapes, distortions, locations and strength
levels), the MOS scores remain highly correlated between VR and
desktop settings (𝑟𝑝 = 0.929, 𝑟𝑠 = 0.929).
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Table 1: Pearson and Spearman correlation analysis comparing VR and desktop MOS scores for different stimuli (the distortion
type followed by distortion location

.
Distortion Type and Location Armadillo Venus Dyno Rocker Arm

PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC
Noise Uniform 0.850 1 0.934 1 1 1 0.549 0.500
Noise Rough 0.993 1 0.882 1 0.657 0.500 0.093 0

Noise Intermediate 0.925 1 0.828 0.500 -0.348 0.500 0.729 0.500
Noise Smooth 0.667 0.500 0.981 1 0.667 0.866 0.995 1
Taubin Uniform 0.564 0.500 0.686 0.500 0.975 1 0.183 0.500
Taubin Rough 0.873 1 0.269 0.500 0.500 0.500 -0.660 -0.500

Taubin Intermediate 0.538 0.500 0.995 1 0.829 1 -0.868 -1
All 0.754 0.685 0.698 0.701 0.624 0.499 0.623 0.513

Figure 4: Comparison of MOS scores between the VR and desktop settings. Each subfigure shows a type of distortion (Noise
or Taubin smoothing) applied to certain locations (Uniform, Rough, Intermediate and Smooth). The 𝑥-axis corresponds to
each distorted shape (12 altogether for each subfigure corresponding to a combination of 4 shapes and 3 levels of distortion
strength), and the 𝑦-axis shows the (normalized) MOS scores averaged over all subjects for the distorted shape. The blue and red
curves correspond to the VR and desktop settings, respectively.

Table 2: Pearson and Spearman coefficient correlations be-
tween MOS scores from VR and desktop settings, grouped
based on distortion types and locations.

Distortion Type/Location Pearson Correlation (PLCC) Spearman Correlation (SROCC)
Noise Uniform 0.732 0.753
Noise Rough 0.441 0.448

Noise Intermediate 0.273 0.266
Noise Smooth 0.335 0.387
Taubin Uniform 0.526 0.413
Taubin Rough 0.307 0.123

Taubin Intermediate -0.078 -0.004
All 0.929 0.929

6 CONCLUSION
This paper proposed a subjective study using linear and nonlinear
correlation coefficients to compare VR and desktop settings. Our
analysis indicates the actual perceived mesh quality varies and is
sensitive to different types/locations of distortion. We notice that
overall MOS score distributions are highly correlated between the
VR and desktop settings. However, in the VR setting, noise is more
noticeable than a loss of details, when compared with the desktop
setting. In particular, noise added to the entire shapes or smooth
regions tends to be more noticeable than in other regions, and
the differences are much more significant in the VR setting. The
findings can provide useful guidance when processing 3D shapes

Figure 5: An example of the distortion types. (a) Original
Venusmodel and illustration of the different types of regions;
(b) high-level noise applied on rough regions; (c) medium-
level noise applied on smooth regions.

for VR applications. In future work, we aim to construct a larger-
scale database of perceptual quality under different combinations
of distortions and build an objective quality assessment model to
predict visual quality in VR.
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