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A B S T R A C T

This paper presents the results of SHREC’21 track: Quantifying Shape Complexity.
Our goal is to investigate how good the submitted shape complexity measures are (i.e.
with respect to ground truth) and investigate the relationships between these complexity
measures (i.e. with respect to correlations). The dataset consists of three collections:
1800 perturbed cube and sphere models classified into 4 categories, 50 shapes inspired
from the fields of architecture and design classified into 2 categories, and the data from
the Princeton Segmentation Benchmark, which consists of 19 natural object categories.
We evaluate the performances of the methods by computing Kendall rank correlation
coefficients both between the orders produced by each complexity measure and the
ground truth and between the pair of orders produced by each pair of complexity mea-
sures. Our work, being a quantitative and reproducible analysis with justified ground
truths, presents an improved means and methodology for the evaluation of shape com-
plexity.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Shape complexity is studied across several fields such as psy-2

chology [1], design [2, 3], computer vision [4]. In the con-3

text of 3D shapes, it has the potential to be useful in shape4

retrieval [5, 6], measuring neurological development and dis-5

orders [7, 8], in determining the processes and costs involved6

for manufacturing products [2, 9], etc. Early work on shape7

complexity appears in the literature of experimental psychol-8

ogy as well as in literature related to design and aesthetics. The9

classical aesthetic notions of “unity” and “variety” [10], or com-10
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parably, “order” and “complexity” [11] are directly connected 11

to the complexity of spatial objects. One of the first measures 12

of complexity for polygonal shapes can be found in [11]. At- 13

tneave [1] conducted human experiments to seek correlations of 14

shape complexity with scale, curvedness, symmetry and num- 15

ber of turns. On the basis of the variety in the responses from 16

human subjects, Attneave states that shape complexity is ill- 17

defined. With the premise of circles being the simplest shapes, 18

a natural candidate for the quantification of shape complexity 19

is P2/A. In several works ([1, 3]) it is used as a measure of the 20

complexity along with other indicators. In most other works 21

[4, 12, 13, 14, 15, 16], tools from information theory, on top 22

of various geometric features are used to quantify complexity. 23

Work that relates complexity to algorithmic information theory 24

and is applied to objects of art and design can also be found 25

http://www.sciencedirect.com
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in Stiny and Gips [17]. Rossignac [18] provides a classifica-1

tion of shape complexity that focuses on measuring different2

aspects of computer representations for 3D shapes. The variety3

of approaches taken in the quantification of shape complexity4

further supports the claim that complexity can obtain a variety5

of meanings based on the approach that one chooses to take in6

a particular research area and for the particular task at hand.7

There is a lack of benchmark datasets for shape complexity.8

Even the methodologies in the literature need improvements.9

For example, in many cases just visual results are reported with-10

out quantitative analysis [19, 13]. The methods are neither11

compared to other methods nor evaluated in terms of statisti-12

cal consistency. In this track paper, we aim to account for and13

investigate different aspects of complexity that can help other14

researchers to develop and test their methods. In particular, we15

investigate how good the submitted shape complexity measures16

are (i.e. with respect to ground truth) and investigate the rela-17

tionships between these complexity measures (i.e. with respect18

to pairwise correlations). Due to the ill-defined nature of com-19

plexity, a linear order may not make sense. Hence, we propose20

to explore complexity using multiple tasks and multiple shape21

collections.22

The first collection is composed of subgroups obtained by23

introducing additive or subtractive noise to two basic shapes:24

sphere and cube. The purpose is to investigate the relation of25

complexity to noise level. The second collection is composed of26

artificial 3D shapes constructed by transforming and combining27

multiple elements, and evaluated by experts to provide ground28

truth. The purpose is to investigate the complexity methods29

in relation to perceptual categories. The final collection is an30

already existing 3D shape dataset which was originally devel-31

oped as a segmentation benchmark. We repurpose this data and32

use the segmentation ground truth as a means to investigate 3D33

shape complexity via a proxy (secondary) task. The main con-34

tributions of this work are as follows:35

• Generation of two novel shape collections with associated36

ground truth, and repurposing of a previous segmentation37

benchmark for assessing complexity measures.38

• Systematic evaluation of the performance of a selection39

of both 2D and 3D classical and recent shape complexity40

measures.41

• Assessment of similarities and differences between differ-42

ent measures by using pairwise correlations and cluster-43

ing based on their performance with respect to multiple44

ground truths.45

Note that due to the ill-defined nature of shape complexity our46

dataset contains three shape collections with different character-47

istics. Each collection in the dataset contains a different type of48

3D object with ground truth defined and obtained in a different49

manner.50

The paper is organized as follows: In Section 2 the dataset51

is introduced. In Section 3 the ground truths and the evaluation52

strategy are explained. In Section 4 the short descriptions of the53

participating methods are included. In Section 5 the the eval-54

uation results for each collection in the dataset are presented.55

Finally, Section 6 is Discussion and Section 7 is Conclusion.56

2. Dataset 57

The used dataset consists of three collections each aiming to 58

account for a different aspect of shape complexity. The first 59

two collections are created synthetically, and the third is an ex- 60

isting collection consisting of natural shapes. The ground truth 61

for the first collection is based on the parameters used in creat- 62

ing the collection. For the second collection, the ground truth 63

is provided by two design experts on the final design object. 64

The purpose of the third collection is to investigate how esti- 65

mated complexity is related to the number of parts perceived by 66

humans, which we hypothesise is related to shape complexity. 67

2.1. Collection 1 – Perturbed basic shapes 68

In this collection we aim to explore the correlation between 69

shape complexity and magnitude of perturbations of a cube and 70

a sphere. 71

A cube of side length 199 voxels and a sphere of radius 72

100 voxels are stochastically perturbed additively and subtrac- 73

tively, separately. This forms four families (additively perturbed 74

cubes, subtractively perturbed cubes, and so on). The algorithm 75

used in perturbing a shape introduces a perturbation at a ran- 76

dom location on the shape’s boundary in each application. The 77

algorithm has two parameters: i) width (w) determining the area 78

of effect of the perturbations and ii) number of times of appli- 79

cation (c) determining how many times a local perturbation is 80

introduced. Both parameters are set to three different values, 81

w ∈ {3, 4, 5} and c ∈ {25, 50, 75}. This results in a group of 82

nine shapes. A sample group for an additively perturbed cube 83

is displayed in Fig. 1. Fifty such groups form a family. 84

c = 25 c = 50 c = 75

w = 3

w = 4

w = 5

Fig. 1. A sample group of additively perturbed cubes.

The shapes in this collection were distributed to the participants 85

as both volumetric data and triangular meshes. 86

2.2. Collection 2 – Parametric shape families 87

The second collection is made up of two distinct families of 88

shapes and each family contains twenty five shapes. The shapes 89

in this collection are inspired from 3D models and designs that 90

are commonly found in the fields of architecture and urban de- 91

sign. The shapes were created with two primary objectives in 92

mind. The first objective was to have shapes that vary para- 93

metrically in terms of a few spatial features. The set of spatial 94
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features is different for each family (see below), but in both fam-1

ilies, these features guide the generation of the shapes in a sys-2

tematic way via algorithms. The second objective was to have3

shapes that on the one hand are spatially “rich”, in the sense4

that they can be deployed in a variety of realistic design scenar-5

ios and problems, and on the other hand, are abstract enough6

to not suggest fixed typological interpretations or the shapes of7

everyday objects. While such shapes make the task of measur-8

ing complexity significantly more challenging, they present an9

opportunity for a broader exploration of what constitutes com-10

plexity of spatial objects.11

The shapes in both families are generated with the built-12

in scripting language of the Rhinoceros 3D software package13

(Robert McNeel & Associates, USA). All shapes are repre-14

sented as watertight triangle meshes and were distributed to the15

workshop’s participants in this format.16

In the first family, the shapes are generated by stacking17

cuboids. The main spatial features that control the generation18

are the number of cuboids and the length of the side faces of19

each cuboid. An additional rotational factor is used for eleven20

out of twenty five shapes in the family. In more detail, for each21

shape in the family the opposite faces of each cuboid are equal22

and all cuboids have constant height (heights are adjusted au-23

tomatically based on the number of cuboids, for a fixed total24

height). The sizes of the cuboids are controlled by varying the25

length of the side faces according to the function of a prede-26

fined curve (either a sine or a Bezier curve). For the shapes that27

are controlled by a rotational factor, variation is also achieved28

by varying the angle of rotation of the cuboids around a central29

vertical axis. The resulting shapes can be understood as design30

objects ranging anywhere between pedestals and columns, to31

high-rise buildings and towers.

Fig. 2. Sample shapes from the first family of Collection 2.

32

In the second family, the shapes are generated by aggregating33

three, four or five cuboids within a predefined rectangular area34

in the plane. All the resulting shapes form connected config-35

urations (that is to say, there are no gaps between neighboring36

cuboids) and the cuboids are merged in a single solid. The main37

spatial features that control the generation are the number of38

cuboids, the locations of the cuboids within the rectangular area39

and their individual heights. The lengths of the side faces of all40

cuboids are equal. Variation in the way cuboids are aggregated41

in the plane is achieved mainly by varying the locations and the42

heights of the cuboids. This is done by randomly sampling val-43

ues from the allowable ranges specified for the locations and44

the heights. The resulting shapes can be understood as designs45

ranging anywhere between furniture and stairs, to volumes of46

buildings that form city blocks.47

Fig. 3. Sample shapes from the second family of Collection 2.

2.3. Collection 3 – Manually segmented shapes 48

Collection 3 is the dataset for Princeton mesh segmentation 49

benchmark [20]. We use this set with the primary objective of 50

exploring how shape complexity measures correlate with the 51

uniformity of the number of segments of the segmentations of 52

the shape. The benchmark consists of 380 shapes across 19 cat- 53

egories and their human-generated segmentations. As opposed 54

to the synthetic shapes in the first two collections, the shapes 55

in the benchmark are natural. As such, they have a particular 56

semantic content, which may affect the perception of complex- 57

ity. The availability of manual segmentations for this collection 58

makes it an ideal candidate to be used in exploring complexity 59

by using segmentation as a proxy task. 60

The shapes in this collection were distributed to the partici- 61

pants as triangular meshes. 62

2.4. 2D Collections 63

Most of the shape quantifying methods in the literature work 64

exclusively in 2D. To include such methods into this study 65

we have created the 2D analogues of the shapes. We cre- 66

ate twelve 2D silhouettes of each shape in the above col- 67

lections from the views determined by the azimuthal angles 68

({0◦, 30◦, 60◦, . . . 330◦}) and the elevation angle (30◦). The re- 69

sulting silhouettes of a shape are similar in size, thus, the col- 70

lections do not pose a challenge in terms of scale-invariance. 71

The contributing 2D methods report the averaged score over 72

the twelve silhouettes as the measure of complexity for the cor- 73

responding 3D shape. 74

The families consisting of subtractively perturbed spheres 75

and cubes are excluded because the resulting silhouettes highly 76

depend on whether the perturbations appear on the 2D boundary 77

of a given view or not, rather than the controlling parameters. 78

3. Ground truths and evaluation 79

3.1. Collection 1 80

For the first collection, the two parameters w and c used in creat- 81

ing the shapes constitute the ground truth. We expect the com- 82

plexity scores to increase as either of the parameters increase. 83

The performance of the methods are measured in a controlled 84

experiment manner: we keep one of the parameters fixed and 85

let the other vary. The performance of a method is then mea- 86

sured by averaging the Kendall rank correlation coefficient over 87

the groups. This results in six measures of performance (one 88

for each value of the parameters) for a family. 89
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3.2. Collection 21

In Collection 2 the ground truth is provided manually. Two ex-2

perts on the topics of Computer-Aided Design and 3D Shape3

Modeling determined the ground truth complexities of the4

shapes in the two families. The shapes in each family were5

presented to an expert in a random presentation order.6

The evaluation of the experts was based on a qualitative com-7

parison of the shapes in each collection that aimed to deter-8

mine how simple or difficult it would be to model or execute9

a shape in three-dimensional space in a finite number of steps.10

The shapes in a family were divided into groups of shapes of11

comparable executional difficulty. Shapes in different groups12

were considered incommensurate from this standpoint.13

For the first family, the evaluation produced the following14

five groups in which shapes are listed in increasing order of15

complexity:16

Group 1: (16, 14, 12, 17, 18, 19, 20)17

Group 2: (15, 13, 24, 22)18

Group 3: (23, 21, 25)19

Group 4: (11, 10, 7, 1, 2)20

Group 5: (9, 8, 4, 5, 6, 3)21

For the second family, the evaluation produced the following22

six groups in which shapes are considered to be of equal com-23

plexity:24

Group 1: (18, 24, 17, 20)25

Group 2: (25, 21, 22, 19)26

Group 3: (5, 3, 2)27

Group 4: (23, 16, 15)28

Group 5: (6, 4, 14, 12, 13)29

Group 6: (7, 9, 10, 1, 11, 8)30

As the shapes from different groups are incommensurate, we31

provide ground truths only for the shapes in the same group.32

While many qualitative notions of complexity could equally ap-33

ply to shapes of the kind we use in this collection, we consider34

the aforementioned notion of executional complexity one of the35

best determinants of complexity for 3D models representing de-36

sign objects (i.e. objects that can be used for design purposes).37

It is also an approach to the characterization of complexity that38

has not been investigated in the literature.39

Since we have a total order on the groups of the first family,40

we measure the performance of the methods using the Kendall41

rank correlation coefficient between the complexity order indi-42

cated by the assigned complexity scores and the ground truth.43

For the second collection, we measure the uniformity of in-44

group scores. The scores are first normalized to the range [0, 1].45

The pairwise absolute differences of the normalized scores are46

summed to yield the performance measure of a group. Note that47

the lower score indicates a better performance, in contrast to the48

rest of the performance measures.49

3.3. Collection 350

The shapes in the third collection are segmented by both hu-51

mans and computer algorithms in [20]. We consider the data52

collected from humans to be an indicator of a shape’s complex-53

ity. The fact that these human annotations differ is consistent54

with the ill-posed nature of specifying both segmentation and 55

complexity. For each shape, there are 11 human-generated seg- 56

mentations and 7.90 segments, on average. We use two ground 57

truths: one is the order induced on the shapes by the mean num- 58

ber of segmentations (µ) and the other is the order acquired by 59

the standard deviation (σ) of the number of segments. For each 60

ground truth, we calculate i) Kendall rank correlation coeffi- 61

cient over all the shapes in the collection which we refer to 62

as τµall and τσall in Table 4 ii) the averaged coefficients 1
N

∑
i τi 63

where τi is the correlation coefficient for the ith category, re- 64

ferred to as τµcat and τσcat . 65

4. Methods 66

We present the examined methods in this section. A total of 19 67

methods are presented in 6 groups: 68

1. A multi-scale measure of complexity for arbitrary dimen- 69

sional discrete shapes [16] by M. F. Arslan, § 4.1, 70

2. Alpha-shape complexity [21] by J. Gardiner and C. 71

Brassey, § 4.2 72

3. Discrepancy [15] by A. Genctav, § 4.3, 73

4. PARCELLIN distance [14] by M. Genctav, § 4.4, 74

5. 2D multi-view based shape convexity measures C1, C2, 75

[22], [23] by P. L. Rosin § 4.5 76

6. 2D multi-view based shape complexity measures [24], [4], 77

CCRE ([25]), [26] and Cσ, [27], [28], [29], CPC ([19]) from 78

the literature, § 4.6. 79

4.1. A Multi-scale Measure of Complexity for Arbitrary Dimen- 80

sional Discrete Shapes (M.F. Arslan) 81

Assuming the space (of any dimensions) in which the shape S
is embedded has uniform grid, we solve the following partial
differential equation (PDE) inside S(

∆∞ −
1
ρ2

)
fS = −1 subject to fS

∣∣∣∣
∂S

= 0 (1)

where ∆∞ is the Laplace operator in L∞. The term ∆∞ f is the 82

minimizer of
∫
|∇ f |p as p → ∞. The parameter ρ is chosen as 83

the maximum of the L∞ distance transform of S (the field is re- 84

ferred to as t from now on). This choice ensures the robustness 85

of solutions under changes in scale. 86

We construct fS using the iterative scheme given in [16].
However, as the 3D shapes in the collections contain high num-
ber of voxels, instead of applying the convergence conditions
used there, we start with a guided initial assumption and solve
for a fixed number of steps. For the shapes in Collection 1, we
solve for 200 steps, whereas for the shapes in Collection 2 and
3 (sampled to fit into a rectangle of total volume 300×300×300
voxels) we solve for 600 steps. The guided initial assumption is
the analytical solution of (1) for an axis-aligned origin-centered
rectangle whose value at the point (x, y) ∈ S is given as:

f (0)
S (x, y) = ρ2−ρ2 e

e2 + 1
×(

exp
{

max {|x|, |y|}
ρ

}
+ exp

{
−max {|x|, |y|}

ρ

})
.
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In vague terms, fS can be regarded as a well-behaving dis-1

tance transform. The discrepancy between fS and t is due to the2

smoothed propagation of the level sets of fS in comparison to3

those of t. We use the entropy of the values of f̂S ( fS normal-4

ized to [0, 1]) collected from a level set t = t0 to measure the5

discrepancy at the scale t0. We construct a pseudo-probability6

distribution acquired from f̂S
∣∣∣
t=t0

by partitioning it into 10247

bins and normalizing it to have a total sum of 1. The entropy of8

this distribution gives the complexity of the shape at the scale9

t = t0.10

The submitted scores are the summation of the complexities11

at scales t ≤ 0.1.12

4.2. Alpha-shape Complexity (J. Gardiner and C. Brassey)13

Model pre-processing. All data collections were pre-processed14

to produce the prerequisite 3D point clouds for subsequent15

alpha-shape complexity analysis. Each model’s original vol-16

ume and a reference length (to be used as a metric of the17

model’s scale) were also calculated during pre-processing.18

Models in Collection 1 were stored in a 3D voxel format, and19

the points clouds were produced by taking the row, column and20

depth of each voxel’s location as the x, y and z coordinates21

respectively and randomly down-sampling to 100,000 points.22

Previous analyses [30, 21, 31] have found 100,000 points to be23

a good compromise between retaining sufficient detail of the24

original model and minimising calculation times. The volume25

of each model in Collection 1 was calculated as the sum of the26

number of voxels in the original model. The models in Collec-27

tions 2 and 3 were stored as watertight surface meshes. Point28

clouds were produced by generating a spatially random distri-29

bution of 100,000 points inside each mesh (Fig. 4). The volume30

of each model in Collections 2 and 3 was calculated as the vol-31

ume of the original watertight mesh.32

Fig. 4. Example generation of a point cloud from an original watertight
mesh by filling the internal volume of the mesh with a random distribution
of 100,000 points.

Across all models, a reference length was calculated to be33

used for model scaling within the complexity algorithm. Ref-34

erence length was calculated as the mean of the distance from35

10,000 random points (10% of the point cloud) to their nearest36

100 neighbors.37

Alpha-shape complexity algorithm. Once model point clouds,38

and their associated volumes and reference lengths, had been39

calculated, the alpha-shape complexity algorithm (originally 40

developed for analysing biological datasets lacking homolo- 41

gous landmarks [30, 21, 31]) was run. Alpha-shapes [32] are a 42

suite of shapes fitted to underlying point clouds, with the ‘tight- 43

ness’ of their fit being determined by the value of the radius α. 44

For large values of α, the fit is coarse and tends to a convex 45

hull as α approaches infinity (Fig. 5). For smaller values of α 46

the fit conforms tightly to the underlying ‘shape’ of the object, 47

until the single alpha shape fit breaks down and begins to form 48

multiple separate objects as α approaches the smallest distance 49

between any two points within the point cloud, where no fit will 50

be achieved. 51

To calculate the shape complexity of each model, ten separate
alpha-shapes were fitted to each point cloud across a range of
α values (Fig. 5), from highly refined (corresponding to fine
scale complexity) to very coarse (corresponding to gross scale
complexity). To account for differences in the absolute size of
models, the α used for each model was scaled by the reference
length such that

αm = k × Iref

where αm is the model-specific alpha radius, k the refinement 52

coefficient and Iref the point cloud reference length calculated 53

in pre-processing. For the ten alpha-shape fits calculated, 54

the same ten values of k (equally spaced on a logarithmic 55

scale) were used, ensuring fits are equivalent across each 56

model despite differences in absolute scale. Alpha-shapes 57

were fitted using the “alphavol” function of Jonas Lundgren 58

(www.mathworks.co.uk/matlabcentral/fileexchange/28851- 59

alpha-shapes). 60

Following shape fitting, ‘volume ratios’ were calculated for 61

each of the fits as the ratio of alpha-shape volume to the orig- 62

inal model’s volume (calculated in pre-processing). Relatively 63

larger volume ratios therefore correspond to greater complex- 64

ity in the model at any given scale. To further boil down the

Fig. 5. Example chair model illustrating the ten alpha-shape fits used in the
complexity analysis, ranging from highly refined (top left) to very coarse (
bottom right). Particular underlying details of the model’s point cloud are
resolved at the different scales of fit, from only gross shape at the coarsest
fits to details of the chair’s legs and back at finer scales.

65

results of the alpha-shape analysis, the ten volume ratios pro- 66

duced for each model were subject to principal component anal- 67

ysis (PCA) as a dimension reduction technique. PCAs were run 68

for each collection separately and the first two principal com- 69

ponent scores were taken as the complexity metrics for each 70

model. All data pre-processing and analysis were performed in 71
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Matlab R2020b (Mathworks Inc., Natick, USA).1

4.3. Discrepancy (A. Genctav)2

Discrepancy [15] is a field D : Ω → R defined over shape do-3

main Ω. At each shape point p, it measures local deviation from4

a reference disk shape. Radius of the reference disk is defined5

using a global shape property A that is radius of maximally in-6

scribed circle of Ω. The deviation is measured indirectly using7

an auxiliary field, which is selected as solution of the following8

screened Poisson equation:9 (
∆ −

1
A2

)
v = 0 subject to v

∣∣∣∣
∂Ω

= 1 (2)

The auxiliary field is obtained numerically for Ω and analyti-10

cally for the reference disk. For each shape point p, discrepancy11

D(p) is computed as the difference between value of the auxil-12

iary field at p and value of the auxiliary field at the correspond-13

ing point of p in the reference disk. For each shape point p, the14

corresponding point in the reference disk is specified using its15

minimal distance to the shape boundary ∂Ω. Due to uniform16

inhomogeneous boundary condition in (2), the auxiliary field17

is circularly symmetric for the reference disk, so it takes the18

same value at each point with the same minimal distance to the19

boundary. For more information including the implementation20

details, the reader is referred to [15].21

Discrepancy is uniformly zero for a perfect disk and, hence,22

the entropy is 0. As shape deviated from a disk, discrepancy23

takes its highest positive values on central regions and lowest24

negative values on appendages, protrusions and boundary de-25

tail, and the entropy increases.26

In this work, we used discrepancy entropy for measuring27

shape complexity. As discrepancy is presented in [15] for 2D28

shapes, our method works on the 2D views of 3D shapes.29

4.4. PARCELLIN Distance (M. Genctav)30

In this method, following the idea presented in [14], (3) is
solved simultaneously with different source functions, which
are designed for exploration of the shape volume, subject to ho-
mogeneous Dirichlet boundary conditions.

(∆ − α) Φi = − fi (3)

where ∆ denotes the Laplace operator, and α is a small damp-31

ing parameter introduced for numerical conditioning and i =32

1, 2, . . . , n.33

By design, each source function represents an initial hypoth-
esis for a decomposition of the shape volume into central and
outer regions which correspond to positive and negative sets
in the steady state distribution, respectively. Specifically, the
source function selected for the ith solution is

f (x)i = sign (d(x) − i × s)

where s = 1/n is the step size and d(x) is the normalized signed34

distance between the location x and the boundary point near-35

est to x. The normalization is performed by dividing the raw36

distances to their maximum value.37

Once a set of n = 70 equations are solved, the shape informa- 38

tion contained in the solutions Φi are aggregated by assigning 39

each shape location the number of solutions in which the loca- 40

tion falls into the outer region, i.e. attains a negative value. 41

Finally, to obtain a measure of complexity, the entropy is 42

computed on the 70 bin histogram of function values near shape 43

boundary. 44

4.5. 2D Multi-view Based Shape Convexity (P.L. Rosin) 45

Several methods for measuring convexity were tested as it is 46

hypothesised that a convexity measure can act as a shape com- 47

plexity measure. It is likely that oscillations and irregularities in 48

a shape’s boundary which lead to scores indicating lower con- 49

vexity will also indicate high complexity. 50

The method [22] measured convexity by applying a polyg- 51

onal convexification process which applies a flip operation that 52

reflects a polygon’s concavities about their corresponding edges 53

(termed lids) in the convex hull. The process is guaranteed to 54

converge to a convex polygon in a finite number of flips. To 55

ensure repeatability for similar shapes, the order of flipping is 56

standardised. At each iteration the maximum deviation between 57

each pocket and its lid is determined, and the pocket with the 58

largest deviation is selected for flipping. Convexity is measured 59

as the ratio of the areas of the original and convexified polygon. 60

An alternative version is also considered, in which the pocket is 61

flipped and also has the order of its vertices reversed (a flipturn). 62

To improve computational efficiency and also reduce sensitivity 63

to digitisation effects, polygonal approximation is first applied 64

to the shape boundaries [33] using a small error tolerance (0.5). 65

The convexity measure [23] of shape S is given by

C(S ) = min
θ∈[0,2π]

P2(R(S , θ))
P1(S , θ)

where P1(S , θ) denotes the l1 perimeter of S after rotation by 66

angle θ, and P2(R(S , θ)) is the l2 (Euclidean) perimeter of the 67

minimum area bounding rectangle of S . Polygonal approxi- 68

mation is first applied to the shape boundaries, using an error 69

tolerance of 2. 70

The two standard convexity measures in the literature are in-
cluded: If we denote the convex hull of polygon S by CH(S )
then the measures are defined as

C1(S ) =
area(S )

area(CH(S ))

and
C2 =

P2(CH(S ))
P2(S )

.

4.6. 2D Multi-view Based Shape Complexity 71

The method [24] attempts to capture global and local aspects 72

of a shape in order to measure its complexity. It uses a linear 73

combination of three quantitative terms: the number of notches 74

(non-convex vertices) normalized to be in the range [0, 1], and 75

two terms similar to C1 and C2. 76

The method [4] uses the entropy of boundary turning angles 77

(i.e. the subtended angle at each point); this is used as a discrete 78

alternative to curvature. We use Sturges’ rule to select the bin 79
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size for estimating the probability distribution. An alternative1

version was tested, where cumulative residual entropy [25] was2

used instead of Shannon entropy, and is denoted as CCRE .3

Another approach that considers curvature is [26], who use4

the sum of absolute Gaussian curvature to calculate the com-5

plexity of curved surface shapes. We apply a version to two-6

dimensional shapes, and also calculate the standard deviation7

of signed curvature as another measure of complexity, denoted8

as Cσ. In order to make these measures scale invariant, the9

shapes are first scaled to a fixed area (100,000) and uniformly10

sampled along the interpolated boundary at a fixed resolution11

(single unit steps).12

The method [27] measures k-regularity (i.e. wiggliness or
fractal dimension) of curves based on a ratio between lines
lengths (distances between points on the curve) at different
scales. The local value at point pi of S is given as

rs,k(S )(i) =
‖pi+ks − pi‖∑k

j=1 ‖pi+ js − pi+( j−1)s‖

and the k-regularity of the shape is the mean value of rs,k(S )(i)13

over S . Our experiments used the values s = 2 and k = 3.14

The method [28] computes the fractal dimension of a curve15

by estimating a shape’s perimeter using a series of ruler lengths.16

We use the hybrid (Clark) method which is a combination of17

two other methods, the fast and exact algorithms. Fractal di-18

mension is then estimated as the slope of the regression line19

computed for log versus log plots of ruler length versus perime-20

ter.21

Another fractal approach (the averaged mass dimension22

method) is given by [29] who use a version of box counting23

but replace the box with a circular neighborhood. To obtain a24

more robust line fit, we find the line with least median absolute25

error rather than least mean squared error.26

We have implemented a method, denoted as CPC , that is a27

simplified version of [19]. Their insight was that simple shapes28

lead to similar views whereas complex ones result in dissimilar29

views. In our version this is measured by performing a pairwise30

comparison of the boundaries of all the views for a given model,31

and returning the mean score across all comparisons. Arkin et32

al.’s [34] method for comparing polygons is used since it is33

invariant under translation, rotation, and scaling.34

5. Results35

Since ground truths provide only the order information, we are36

interested in the order relations rather than linear relationship37

between actual values that could be measured by Pearson cor-38

relation coefficient or any other parametric relation. Even for39

pairwise comparison of measures in Section 6, order correlation40

seems as a more meaningful measure rather than some preas-41

sumed parametric relation which may or may not exist. Hence,42

we use only Kendall rank correlation as a robust rank correla-43

tion measure. We report Kendall rank correlation coefficients44

between the participating methods and the ground truths in Ta-45

bles 1-4. In the tables, we mark the scores of the best perform-46

ing methods with red, the second best performers with green,47

and the third best performers with blue.48

5.1. Collection 1 49

The Kendall rank correlation coefficient (τ) for the additively 50

perturbed cubes and spheres are given in Table 1. For the 51

cubes [16], and for the spheres [15] induce the correct order on 52

all considerations. In both cases, [14] and [21]-1 follow very 53

closely. Some of the methods ([4], [27], CCRE , [23], [22]-1, 54

[22]-2 and C2) achieve strong correlations when the parameter 55

c is varied, yet the correlations weaken when the parameter w is 56

varied. This suggests that it is easier to account for the number 57

of perturbations than it is for the magnitude of perturbations. 58

Likewise, performances of some of the methods are sensitive to 59

the base shape. Notable are [15], [28], [29] and C1. 60

Comparing 3D methods with 2D ones, we see that 3D meth- 61

ods [16], [14] and [21]-1 consistently score highly whereas the 62

best performing 2D methods performs only partially well. For 63

example, [15] only achieves high scores for the sphere-related 64

tasks and [24], [4], CCRE , CPC , and so on, score high only when 65

the width parameter w is kept fixed. 66

Table 1. The averaged Kendall τ for the additively perturbed cubes (the
first value) and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[16] 1.00 / 1.00 1.00 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
[14] 0.87 / 0.93 0.95 / 0.97 0.93 / 1.00 0.89 / 0.93 0.92 / 1.00 0.96 / 1.00

[21]-1 0.99 / 0.97 0.99 / 1.00 0.99 / 1.00 1.00 / 0.99 1.00 / 1.00 1.00 / 1.00
[21]-2 0.17 / 0.57 0.24 / 0.80 0.52 / 0.88 -0.09 / 0.35 0.03 / 0.69 0.39 / 0.69

[15] 0.25 / 1.00 0.31 / 1.00 0.68 / 1.00 0.13 / 1.00 0.39 / 1.00 0.52 / 1.00
[29] 0.67 / 0.91 0.84 / 0.99 0.80 / 0.97 0.84 / 0.68 0.95 / 0.71 0.93 / 0.68
[28] 0.45 / 0.97 0.65 / 0.99 -0.11 / 0.96 0.44 / 0.83 0.43 / 0.89 0.04 / 0.84
[27] -0.97 /-1.00 -0.96 /-1.00 -0.97 /-1.00 -0.29 /-0.08 -0.29 / 0.05 -0.24 / 0.28
CCRE 0.97 / 1.00 0.95 / 1.00 0.96 / 1.00 0.33 / 0.12 0.47 /-0.07 0.47 /-0.35
[4] 0.93 / 1.00 0.96 / 1.00 0.96 / 1.00 0.20 / 0.28 0.39 / 0.17 0.32 /-0.21
[26] 0.79 / 0.87 0.87 / 0.93 0.87 / 0.93 0.83 / 0.83 0.88 / 0.83 0.88 / 0.79
Cσ 0.51 / 0.72 0.60 / 0.80 0.64 / 0.87 0.68 / 0.60 0.68 / 0.63 0.69 / 0.64
C1 -0.73 /-0.97 -0.83 /-0.97 -0.76 /-0.95 -0.77 /-0.89 -0.81 /-0.95 -0.93 /-0.96
CPC 0.93 / 0.96 0.91 / 0.93 0.88 / 0.97 0.61 / 0.53 0.71 / 0.51 0.64 / 0.36
[24] 0.93 / 1.00 0.95 / 0.99 0.91 / 0.99 0.73 / 0.69 0.83 / 0.77 0.79 / 0.64
[23] -1.00 /-0.99 -0.96 /-0.99 -0.91 /-0.96 -0.68 /-0.59 -0.77 /-0.68 -0.76 /-0.61
C2 -0.95 /-0.99 -0.96 /-0.99 -0.93 /-0.99 -0.67 /-0.53 -0.80 /-0.63 -0.77 /-0.51

[22]-1 -0.96 /-0.99 -0.93 /-0.99 -0.92 /-0.99 -0.59 /-0.68 -0.76 /-0.76 -0.76 /-0.64
[22]-2 -0.96 /-0.99 -0.95 /-0.99 -0.92 /-0.99 -0.65 /-0.68 -0.76 /-0.76 -0.75 /-0.63

MA 0.79 / 0.94 0.83 / 0.96 0.82 / 0.97 0.60 / 0.65 0.68 / 0.69 0.68 / 0.68

Four submissions have been run on the subtractively per- 67

turbed cubes and spheres. The performances of these are re- 68

ported in Table 2. For the cubes, [14] ranks the first in all mea- 69

surements, and for the spheres there is no clear winner. 70

In the last rows of Tables 1 & 2 we provide the mean of 71

the absolute scores, denoted as MA. The mean absolute scores 72

show that the most challenging case is the cubes with c = 25 73

for both the additive and subtractive cases. We also note that 74

for the additive perturbations it is significantly harder for the 75

considered methods to correlate with the ground truth when the 76

parameter w is varied. 77

Table 2. The averaged Kendall τ for the subtractively perturbed cubes (the
first value) and spheres (the second value).

Method w = 3 w = 4 w = 5 c = 25 c = 50 c = 75

[16] 1.00 / 0.99 1.00 / 0.99 1.00 / 1.00 0.67 / 0.92 0.89 / 1.00 0.91 / 0.97
[14] 1.00 / 0.89 1.00 / 0.88 1.00 / 0.93 0.97 / 0.97 0.97 / 1.00 0.99 / 1.00

[21]-1 0.68 / 0.81 0.81 / 0.95 1.00 / 1.00 0.77 / 0.83 0.91 / 1.00 0.97 / 1.00
[21]-2 0.21 / 0.48 0.48 / 0.83 0.87 / 0.96 0.37 / 0.61 0.69 / 0.80 0.81 / 0.95

MA 0.72 / 0.79 0.82 / 0.91 0.97 / 0.97 0.70 / 0.83 0.87 / 0.95 0.92 / 0.98
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5.2. Collection 21

For the first family of Collection 2, the top five methods are2

CCRE , CPC , [27], [4] and C2 according to the summed scores3

given in Table 3. Note that all of these are 2D methods, three of4

which are convexity measures. The best performing 3D method5

is [14] and places the sixth. [26] and [21]-2 perform the poor-6

est on this family both having almost no correlations with the7

ground truth considering all of the groups.8

For each group except the fifth, there is at least one method9

that completely agrees (or disagrees) with the ground truth. It10

seems that none of the considered methods is able to capture the11

notion of complexity that induces the order given by the ground12

truth for Group 5. The MA scores are in alignment with this,13

indicating that Group 5 is the most challenging group. We also14

note that the highest MA is attained by Group 3 that consists15

only of three elements which is the minimum number required16

to attain a non-trivial Kendall rank correlation coefficient (τ).17

Strangely, some of the methods ([28], [29], [15] and [21]-2)18

have both strongly positive and strongly negative correlations19

with the ground truth.20

Table 3. The Kendall τ for the first family (the first value) and the non-
uniformity measurements for the second family (the second value) of Col-
lection 2.

Method Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Sum

[16] 0.33 / 2.91 0.67 / 2.08 0.00 / 0.16 1.00 / 0.66 0.47 / 2.53 – / 2.75 2.47 / 11.09
[14] 0.81 / 1.82 1.00 / 1.31 0.00 / 0.02 0.80 / 0.28 0.33 / 2.78 – / 0.52 2.94 / 6.73

[21]-1 -0.52 / 0.88 -0.33 / 1.65 -1.00 / 0.41 0.80 / 0.06 0.60 / 0.75 – / 1.05 -0.46 / 4.79
[21]-2 0.62 / 0.87 0.33 / 1.83 -1.00 / 0.53 -0.60 / 0.09 0.73 / 0.49 – / 1.46 0.09 / 5.27

[15] -0.81 / 0.86 0.33 / 1.60 1.00 / 0.38 -0.20 / 0.63 -0.60 / 0.67 – / 3.33 -0.28 / 7.47
[29] -0.81 / 1.37 0.67 / 1.91 1.00 / 0.31 0.40 / 0.35 0.47 / 1.00 – / 1.62 1.72 / 6.56
[28] -0.43 / 1.57 -0.67 / 0.71 1.00 / 1.93 0.00 / 0.08 0.33 / 0.12 – / 0.24 0.24 / 4.65
[27] -1.00 / 1.75 -1.00 / 2.15 -1.00 / 1.08 -0.40 / 0.34 -0.47 / 1.43 – / 5.55 -3.87 / 12.31
CCRE 0.90 / 1.72 1.00 / 2.10 1.00 / 0.99 0.60 / 0.26 0.47 / 0.86 – / 4.28 3.97 / 10.21
[4] 0.81 / 2.01 0.67 / 2.98 1.00 / 1.76 0.80 / 1.63 0.47 / 0.80 – / 6.04 3.74 / 15.23

[26] -0.71 / 1.06 -0.33 / 0.84 0.33 / 0.24 0.40 / 0.21 0.33 / 0.80 – / 1.33 0.02 / 4.47
Cσ -0.81 / 1.44 0.00 / 1.29 0.33 / 0.17 0.40 / 0.17 0.33 / 0.61 – / 1.19 0.26 / 4.87
C1 0.05 / 1.31 -0.33 / 1.88 -0.33 / 0.10 -0.80 / 0.09 -0.73 / 0.45 – / 0.59 -2.15 / 4.41
CPC 0.62 / 1.19 0.67 / 1.49 1.00 / 0.20 1.00 / 0.14 0.60 / 1.13 – / 0.62 3.89 / 4.78
[24] 0.43 / 1.17 0.33 / 1.66 1.00 / 0.16 0.60 / 0.10 0.47 / 0.33 – / 0.92 2.83 / 4.33
[23] -0.52 / 0.98 -0.33 / 1.37 -1.00 / 0.10 -0.60 / 0.25 -0.47 / 0.75 – / 1.42 -2.92 / 4.88
C2 -0.43 / 1.28 -0.33 / 1.41 -1.00 / 0.19 -0.80 / 0.18 -0.47 / 0.29 – / 1.02 -3.03 / 4.37

[22]-1 0.14 / 0.93 -0.33 / 1.59 -1.00 / 0.11 -0.80 / 0.20 -0.47 / 0.43 – / 1.00 -2.46 / 4.27
[22]-2 -0.05 / 1.12 -0.33 / 1.85 -1.00 / 0.13 -0.80 / 0.16 -0.60 / 0.43 – / 0.82 -2.78 / 4.51

MA 0.57 / 1.38 0.51 / 1.67 0.79 / 0.47 0.62 / 0.31 0.49 / 0.88 – / 1.88 2.11 / 6.59

For the second family of Collection 2, we start by remark-21

ing that the reported scores indicate better performances when22

they are close to 0, in contrast with the other reported scores.23

Similar to the case in the first family, 2D methods take the lead24

(listed from best to worst: [22]-1, [24], C2, C1, [26]), with the25

best performing 3D method ([21]-1) placing the 8th. The worst26

performing method is [4]. This is interesting because it is also27

the third best performing method in the first family. In a similar28

manner, we note that there is no overlap between the top five29

performers of the two families except for C2.30

The top three performers for both families are 2D methods31

based on the summed scores. The highest scoring 3D method32

for the first family is [14] and [21]-1 for the second family.33

5.3. Collection 334

The Kendall rank correlation coefficients computed for Collec-35

tion 3 are reported in Table 4. The best performers are [21]-2,36

[26], [4] and [4] for τµcat , τµall , τσcat and τσall , respectively.37

All of the methods, except [21]-1, perform better when the 38

correlations are computed over the whole collection, regardless 39

of the ground truth. 40

For the tasks of this collection we observe that [21]-2 out- 41

performs [21]-1. This is interesting because [21]-1 is a better 42

performer for the majority of tasks involving the other two col- 43

lections. Since these two are the first two principal components 44

of the method of [21], this suggests that the segmentation ac- 45

counts for an aspect of shape complexity different than those of 46

the other collections. 47

We note that all of the top three performers are 2D methods, 48

except for τµcat . 49

Table 4. Kendall τ when the ground truth is the mean and the standard
deviation of the number of segments of the human segmentations.

Method τµcat τµall τσcat τσall

[16] 0.148 0.346 0.072 0.234
[14] 0.041 0.354 0.018 0.203

[21]-1 0.110 0.105 0.055 -0.006
[21]-2 0.151 0.417 0.065 0.262

[15] -0.022 0.251 0.013 0.138
[29] 0.061 0.401 0.027 0.202
[28] 0.140 0.375 0.087 0.167
[27] -0.082 -0.458 -0.089 -0.282
CCRE 0.110 0.585 0.083 0.331
[4] 0.132 0.600 0.117 0.350

[26] 0.131 0.671 0.066 0.283
Cσ 0.075 0.540 0.077 0.244
C1 -0.037 -0.255 -0.037 -0.078
CPC 0.099 0.464 0.078 0.217
[24] 0.041 0.326 0.029 0.123
[23] -0.105 -0.486 -0.056 -0.219
C2 -0.112 -0.501 -0.084 -0.227

[22]-1 -0.069 -0.372 -0.085 -0.168
[22]-2 -0.079 -0.395 -0.090 -0.188

MA 0.092 0.416 0.065 0.206

6. Discussion 50

Despite the lack of full shape information, 2D methods are ob- 51

served to perform unexpectedly well when compared with 3D 52

methods, especially for Collection 3. However, it should be 53

noted that for the results presented in this paper, the participat- 54

ing 3D methods also do not make use of the full shape informa- 55

tion because some of them ([14, 21]) down-sample the shapes 56

in Collection 1 and they all need to voxelize the shapes in Col- 57

lection 2 and 3. Also, [16] solves for only a limited number of 58

steps for all of the collections due to the size and the number of 59

the shapes and relatively costly computation. 60

One of the interesting observations is that [4], [27] and [26] 61

perform poorly under the changes of the parameter w despite 62

their high scores under the changes of the parameter c. This 63

might be explained by the fact that changing the width parame- 64

ter w has a greater impact on the local changes in curvature than 65
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the parameter c and that these methods are inherently curvature-1

dependent. Similar results for the methods that measure con-2

vexity can be explained in a similar manner since convexity3

can be related to curvature for the examples in our datasets.4

Note also that this observation highlights the non-triviality of5

the noisy collections.6

Assessing the results for Collection 1 suggests the use of dif-7

ferent methods for different use cases. For example, [16], [21]-18

can be used in applications involving additive perturbations and9

[15] can be used in applications involving noisy spheres. Pro-10

vided one has information about the type of the noise present in11

their use cases, one can settle for [4], [27], C2, [22], or [23]. For12

overall robustness [14] can be preferred. The results for Collec-13

tion 2 suggest that classical measures supported by psychology14

experiments are still better alternatives for quantifying percep-15

tual complexity as judged from the final product of the design16

process (i.e. ignoring the generation level complexity). For17

Collection 3, we observe that the performances of the methods18

improve significantly when the entire collection is considered.19

In this sense, we can say that the task of correlating complexity20

with the segmentation is harder when the shapes are from the21

same category.22

In Fig. 6, two 2D embeddings of the evaluated complexity23

measures using Stochastic Neighborhood Embedding (t-SNE)24

[35] are depicted. For each measure a high dimensional feature25

vector is formed using the Kendall rank correlation coefficients26

reported in Tables 1-4. For the plot on the left, 17-dimensional27

feature vectors (whose components are the twelve τ scores from28

Table 1 and five τ scores from Table 3) are used. For the plot on29

the right 21-dimensional feature vectors are used by augment-30

ing the 17-dimensional vectors with four additional τ scores31

from Table 4. We considered the scores from Collection 3 as32

optional because we feel that the nature of this collection is33

different from those of the first two collections. Note that we34

negate the τ scores of the methods, [27], C1, [23], C2, [22]-135

and [22]-2 as they serve as measures of simplicity rather than36

complexity. In both plots the perplexity parameter is set to 2.37

Nevertheless, we have observed that doubling or even quadru-38

pling the perplexity parameter does not make a significant qual-39

itative change except that the spread gets larger. Notice that [4],40

[27] and [26] form a distinct cluster. Another interesting obser-41

vation from Fig. 6 is that the two methods [15] and [16], both42

employing real valued fields computed using a common Par-43

tial Differential Equation, are not close in the τ-based feature44

space. This is because these methods use different metrics. The45

choice of the metric makes [16] an ideal method for noisy cubes46

whereas the other is better suited for noisy spheres.47

In addition to correlations between the ground truths and the48

order induced by the measures, we believe that the correlations49

among the orders induced by the measures convey insight into50

the ill-defined concept of shape complexity. Hence, we report51

in Fig. 7 Kendall rank correlation coefficients (τ) for each pair52

of methods over the dataset. Specifically, for Collection 1 we53

compute the mean of τi (i ∈ {1, 2, . . . , 50}) for the groups of54

each family, for Collection 2, we compute τ over the families55

(i.e. disregarding the groups), and for Collection 3 we com-56

pute both the mean of τcat over the categories and τall over the57

whole collection. Here also we negate the scores of the meth- 58

ods, [27], C1, [23], C2, [22]-1 and [22]-2. The results show that 59

the methods correlate the most to each other over the additively 60

perturbed spheres. This could be explained by noting that the 61

different approaches of the methods towards complexity, such 62

as uniformity of curvature, convexity, or the agreement of the 63

shape with the underlying grid, more or less agree for this fam- 64

ily. Similar clusters to the ones seen to emerge in Fig. 6 can be 65

identified, such as [4], [27] and CCRE or the cluster consisting 66

of convexity measures. Yet, for example, the second family of 67

Collection 2 provides a means of distinguishing [4] from CCRE 68

and [27]. The same family also allows us to observe the dif- 69

ferences between the behaviors of the 3D methods. Similarly, 70

the results acquired for Collection 3 by comparing shapes from 71

the same categories show that [23] and C2 are more close to 72

each other than they are to [22]-1 and [22]-2, and vice versa. 73

Together, these provide support for our claim that the three col- 74

lections account for different aspects of shape complexity. 75

The correlations for Collection 3 are generally lower than 76

those for Collections 1 and 2. This could be a consequence 77

of either the data being more challenging, or else that the proxy 78

task does not map strongly to complexity. This needs further 79

study, and can be explored in future work. 80

7. Conclusion 81

We have introduced a novel 3D dataset to evaluate shape com- 82

plexity measures. Using this dataset we not only evaluated the 83

methods with respect to ground truth but also with respect to 84

each other under a rich variety of ordering tasks in order to see 85

how they are related in the context of shape complexity. To 86

evaluate methods with respect to each other, we clustered mea- 87

sures in the τ-based feature space, and displayed pairwise rank 88

correlations between orders induced by all pair of methods. 89

We conclude the paper by noting that the evaluation method- 90

ology of the paper is a significant improvement on the current 91

literature in the sense that the reported scores are quantitative 92

with justified ground truths and the analysis is reproducible. 93

Since the research in 3D shape complexity is still in its infancy, 94

we believe that this work will encourage further explorations of 95

the field. 96

References 97

[1] Attneave, F. Physical determinants of the judged complexity of shapes. 98

Journal of experimental Psychology 1957;53(4):221. 99

[2] Joshi, D, Ravi, B. Quantifying the shape complexity of cast parts. 100

Computer-Aided Design and Applications 2010;7(5):685–700. 101

[3] Wing, CK. On the issue of plan shape complexity: plan shape indices 102

revisited. Construction Management & Economics 1999;17(4):473–482. 103

[4] Page, DL, Koschan, AF, Sukumar, SR, Roui-Abidi, B, Abidi, MA. 104

Shape analysis algorithm based on information theory. In: International 105

Conference on Image Processing; vol. 1. 2003, p. 229–232. 106

[5] Backes, AR, Eler, DM, Minghim, R, Bruno, OM. Characterizing 107

3d shapes using fractal dimension. In: Bloch, I, Cesar, RM, editors. 108

Progress in Pattern Recognition, Image Analysis, Computer Vision, and 109

Applications. 2010, p. 14–21. 110

[6] Arai, K. Visualization of 3d object shape complexity with wavelet de- 111

scriptor and its application to image retrievals. Journal of Visualization 112

2012;15(2):155–166. 113



10 Preprint Submitted for review / Computers & Graphics (2021)

-700 -600 -500 -400 -300 -200 -100 0 100 200 300

-250

-200

-150

-100

-50

0

50

100

150

200

250

-600 -400 -200 0 200 400 600

-400

-200

0

200

400

600

800

Fig. 6. Clustering of the methods in τ-based feature space: 2D embedding applied to 17 (left) and 21 (right) τ-values
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