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Abstract
In this paper we present the results of the SHREC’09- Generic Shape Retrieval Contest. The aim of this track was
to evaluate the performances of various 3D shape retrieval algorithms on the NIST generic shape benchmark.
We hope that the NIST shape benchmark will provide valuable contributions to the 3D shape retrieval community.
Seven groups have participated in the track and they have submitted 22 sets of rank lists based on different methods
and parameters. The performance evaluation of the SHREC’09- Generic Shape Retrieval Contest is based on 6
different metrics.

Categories and Subject Descriptors (according to ACM CCS): I.5.4 [Pattern Recognition]: Computer Vision, H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval

1. Introduction

With the increasing number of 3D models that are created
everyday and stored in databases, the development of effec-
tive 3D shape-based retrieval algorithms has become an im-
portant area of research. Benchmarking allows researchers
to evaluate the quality of results of different 3D shape re-
trieval approaches. The NIST Generic Shape Benchmark is
consructed for this purpose and is distributed online for the
SHREC’09 Generic Shape Retrieval Contest. In this paper,
we present the results of the Generic Shape Retrieval track
of SHREC’09.

2. Dataset

The dataset used for the generic shape retrieval contest is
from the NIST generic shape benchmark and is described
in [FGLW08]. The database consists of 800 3D objects clas-
sified in 40 categories. Each class contains the same num-
bers of 3D models (20 models) to reduce the possible bias in

evaluation results. The file format used to represent the 3D
models is the ASCII Object File Format (*.off).

2.1. Target set

The target database is a subset of the NIST generic shape
benchmark. It contains 720 complete 3D models, 18 objects
from each class. The classes are defined with respect to their
semantic categories and are listed in Table 1.

2.2. Query set

The two remaining objects from each category form the 80
objects of the query set.

3. Performance Evaluation

The evaluation of the shape retrieval contest is based on
standard metrics. In response to a given set of query ob-
jects, an algorithm searches the data-set and returns an or-
dered list of responses called the ranked list(s). Using the
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rank lists the following evaluation measures are calculated:
1) Nearest Neighbor (NN), 2) First Tier (FT), 3) Second Tier
(ST), 4) E-measure (E), and 5) Discounted Cumulative Gain
(DCG) [SMKF04]. In addition to these scalar performance
measures, the precision-recall curves are also obtained.

Bird Fish Insect FlyingInsect
Biped Quadruped Apartment Skyscrape
SingleHouse Bottle Cup Glasses
HandGun SubmachineGun MusicalInst. Mug
FloorLamp DeskLamp Sword Cellphone
DeskPhone Monitor Bed Chair
WheelChair Sofa RectangleTable RoundTable
Bookshelf HomePlant Tree Biplane
Helicopter Monoplane Rocket Ship
Motorcycle Car MilitaryVehicle Bicycle

Table 1: 40 classes of the target database.

4. Participants

Seven groups have participated in the SHREC’09 Shape Re-
trieval Contest on the NIST Generic Benchmark. The par-
ticipants submitted rank lists obtained by 22 different runs
in total. These runs either correspond to a different method,
a different combination of multiple methods or a different
parameter setting.

5. Methods

Brief descriptions of the methods are provided in the next
subsections.

5.1. Aligned Multi-View Depth Line (MDLA) by M.
Chaouch and A. Verroust-Blondet

The MDLA-based 3D shape retrieval system compares 3D
models based on their visual similarity using depth lines ex-
tracted from depth images:

1. The process first normalizes and scales the 3D object into
a bounding box. The new axes are obtained by the align-
ment method decribed in [CVB08]. It is based on the
computation of reflexional and translational symmetries
of the 3D shapes.

2. Then the process computes the set of N×N depth-buffer
images associated to the twenty views distributed uni-
formly over the 3D model. For this purpose, a bounding
dodecahedron is used: The views correspond to the or-
thogonal projections on the planes that limit the model
in the directions of the dodecahedron’s vertices and have
the normals as vertices.

3. The system then generates 2×N depth lines per image,
considering each depth image as a collection of N hori-
zontal and N vertical depth lines.

4. Finally, each depth line is encoded in a set of N states
called observation sequences.

Points 2 to 4 are detailed in [CVB07]. The shape descriptor
is stored as a set of 20×2×N sequences, with N = 32. Given

two 3D objects O1 and O2 and their corresponding observa-
tion sequences S1 and S2, the distance D is computed be-
tween each sequence of the object O1 and the corresponding
sequence of the object O2 using a dynamic programming al-
gorithm, namely the Needleman-Wunsch algorithm. Finally,
the dissimilarity between the 3D objects, O1 and O2, is com-
puted as the sum of all the distances D:

∆(O1,O2) =
Nv

∑
i=1

∑
j=r,c

N−1

∑
k=0

D
(

S1
i, j,k,S

2
i, j,k

)
, (1)

where i denotes the index of the rendered images, j indicates
if the depth line is a row or a column, k denotes orders of
lines in the depth image and Nv is the number of views, i.e.
Nv = 20.

5.2. A Composite Shape Descriptor by Z. Lian, P. L.
Rosin and X. Sun

The approach aims to construct composite shape signatures.
As demonstrated in [Vra05], the combinations of visual sim-
ilarity based 2D shape features and 3D spherical harmonic
transformation based descriptors are superior to other state-
of-the-art methods. In this subsection, the composite shape
desciptor is described briefly. The details of the methodol-
ogy can be found in [LRS].

5.2.1. A 3D Rectilinearity Measure (RECT)

Rectilinearity is an important shape property of 3D objects.
As shown in Figure 1, the most rectilinear model has a rec-
tilinearity value of 1 while the least rectilinear object’s recti-
linearity measure is 0. The readers can find a complete def-
inition of rectilinearity for a 3D polygon and its calculation
via a Genetic Algorithm in [LRS08].

Figure 1: Sphere, cylinder, rectilinear object and cube; un-
derneath are the corresponding rectilinearity values.

5.2.2. Composite Pose Normalization (CPN)

The calculation of rectilinearity can be used for pose nor-
malization of 3D meshes. Let S(M) be the surface area of
mesh M, and P(M,α,β,γ) be the sum of all faces’ projected
areas onto three orthogonal planes after rotating the coor-
dinate frame around its x, y, and z axes with angles α, β

and γ. The basic idea is that the angles α, β and γ maxi-
mizing S(M)/P(M,α,β,γ) specifies a standard pose for the
mesh M [LRS08]. The combination of rectilinearity based
and PCA [VSR01] based pose normalization methods can
not only cope with almost all 3D polygon meshes but also
corresponds better to the intuitive notion of canonical pose
than other existing methods.
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5.2.3. 3D Spherical Harmonic Descriptor (SHD)

After pose normalization, models are aligned to the canon-
ical coordinate system and the position of three coordinate
axes are fixed. Using these three axes as the polar axes of
sampling spheres, a model can be expressed by three spher-
ical extent functions that capture the furthest intersection
points of the model’s surface with rays emanating from the
origin. For each function, a spherical harmonic descriptor is
computed on a 64× 64 spherical grid and then represented
by its harmonic coefficients less than order 16. The spherical
harmonic coefficients are normalized to their unit L1 norm.
The shape descriptor is composed of 3×16×16 = 768 ele-
ments.

5.2.4. 2D Visual Similarity Based Descriptor (GSMD)

For the models normalized by the CPN method, there are
still 24 possible choices for the canonical right-handed co-
ordinate system. The geodesic spheres generated from the
unit regular octahedron are suitable for efficient multi-level
feature extraction and shape matching. Different numbers of
silhouettes or depth buffers can be captured from the ver-
tices of geodesic spheres and then 2D shape descriptors can
be extracted from these images. Here the geodesic sphere
consisting of 66 vertices is chosen and depth buffers of size
256× 256 are captured from its vertices. The dissimilarity
between two objects is the minimum of the sum of L1 dis-
tances of 24 matching pairs taking all possible view corre-
spondences into account.

5.2.5. The Composite Descriptor

Let the 3D rectilinearity measure, the 3D spherical harmonic
descriptor, and the 2D visual similarity based shape feature
described above be denoted by RECT, SHD and GSMD,
respectively, and the distance values generated individually
from them be denoted by Drect , Dshd and Dgsmd . When com-
paring two models M1 and M2, the following formula is
adopted to compute their dissimilarity:

D(M1,M2) = w1 ·Drect +w2 ·Dshd +w3 ·Dgsmd (2)

where the distances are normalized to [0,1] and w1,w2,w3
are the weights which can be experimentally specified by
the approximate maximization of the retrieval performance
on another classified database.

5.2.6. Manifold Ranking

The performance of the composite shape descriptor can be
further increased by utilizing the manifold ranking method.
The original algorithm for the manifold ranking method can
be found in [ZWG∗04]. Here, the algorithm is slightly mod-
ified in order to make it more effective and efficient for the
specific application of 3D model retrieval.

5.3. Compact Multi-View Descriptor (CMVD) and
Shape Impact Descriptor (SID) by P. Daras, A.
Mademlis and A. Axenopoulos

A unified framework is proposed and based on the combina-
tion of a view-based approach with a voxel-based approach.
As a first step, a pose normalization takes place. After trans-
lation and scaling, a rotation estimation step is required; a
combination of the two dominant rotation estimation meth-
ods, PCA [DZTS06] and VCA [PR05] is utilized.

5.3.1. Compact Multi-View Descriptor (CMVD)

After the pre-processing step, a set of uniformly distributed
views are extracted. The viewpoints are chosen to lie at the
18 vertices of a regular 32-hedron. Two 2D image types are
available: 1) Binary images (The Silhouettes) and 2) Depth
Images.

Three rotation-invariant functionals are applied to the
views to produce the descriptors: 1) 2D Polar-Fourier Trans-
form, 2) 2D Zernike Moments, and 3) 2D Krawtchouk Mo-
ments. A more detailed description of the extraction of these
2D functionals is available in [ZDA∗07]. The number of
descriptors per view, ND is determined experimentally, and
is equal to ND = NFT + NZern + NKraw, where NFT = 78,
NZern = 56, and NKraw = 78. Finally, two types of descrip-
tors are formed: CMVD-Binary that uses binary images and
CMVD-Depth that uses depth images.

Figure 2: Matching framework for CMVD. The total dissim-
ilarity between two 3D objects is the sum of the dissimilari-
ties of the corresponding views.

The 3D/3D matching procedure is depicted in Figure 2.
The CMVD framework measures the distance between two
3D objects by summing up the L1-distances between the de-
scriptors of their corresponding pairs of views.

5.3.2. 3D Shape Impact Descriptor (SID)

The Shape Impact Descriptor (SID) consists of two major
instances: The Newtonian Impact Descriptor (NID) and the
Relativistic Impact Descriptor (RID). Both NID and RID are
describing the effect of the insertion of the 3D object in the
time-space, using different underlying principles. NID relies
on classical Newtonian field theory, while RID is based on a
simplified version of Einstein’s General Relativity.

Newtonian Impact Descriptor (NID): The Newtonian
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Impact Descriptor is composed of three major histograms
created by 1) the field potential values, 2) the field density
Euclidean norms, and 3) the radial component of the field
density, which are computed at points that are equidistant
from the object surface. Complete mathematical descrip-
tions of the field potential and field density can be found
in [MDTS08, MDTS].

Relativistic Impact Descriptor (RID): RID captures the
way that a 3D object curves the surrounding time space. Ini-
tially, it is assumed that the surrounding time-space of the
object gets curved due to the 3D object’s mass. Then, the
surrounding space is sampled and at every sample, the Ein-
stein’s gravity equation is solved. Using the solution of the
equation, two invariants that characterize the time-space cur-
vature, are computed. These two invariants are computed at
every point in the surrounding area of the 3D object. Finally,
two histograms are constructed using the values of the in-
variants. The reader can refer to [Paq03] and [Paq07] for a
detailed derivation of the invariants from the concepts of the
general relativity and Riemannian geometry.

Matching NID and RID: The matching method of the
impact descriptors is based on histogram metrics. The his-
tograms that compose NID and RID are based on different
underlying laws (NID is based on the classical Newtonian
theory and RID on the laws of General Relativity). Thus, ev-
ery histogram captures information concerning the 3D shape
in a unique way and for this reason, it requires different
similarity metric for comparison. For the potential related
histograms the normalized distance [DZTS06] has been uti-
lized. For the other two types of histograms the diffusion
distance [LO06] has been used.

5.3.3. Combined Matching of CMVD and SID

The combined matching of two models corresponds to a
weighted sum of the dissimilarity scores obtained from in-
dependent descriptor comparisons. The weights of the indi-
vidual dissimilarity scores are selected experimentally.

5.4. Multi-view and Multi-scale Contour
Representation (MCC) by T. Napoléon

5.4.1. MCC Descriptor

The approach is based on a multi-scale representation of the
external closed contour of non-rigid 2D shapes presented
in [AO04]. A set of views are captured from a model and for
each view the external border of the silhouette is extracted
and normalized. Then, a multi-scale shape representation is
built by storing the information on the convexities and con-
cavities of each contour at different scale levels (see Fig-
ure 3).

To compare efficiently (in term of computation time) two
3D shapes, the signature of the 2D contour should be com-
pact. To ensure this, a global descriptor based on the convex-
ity/concavity measure of the 2D curves is stored to coarsely

Figure 3: Extraction of MCC: (a) original shape image, (b)
filtered versions of the original contour at different scale lev-
els, (c) final MCC representation.

describe the 3D shape. To get this global information about
the shape, a histogram of the convexity/concavity measure
is computed for each contour.On the other hand, the signa-
ture should be robust enough to compare efficiently (in term
of retrieval quality) two 3D shapes. The descriptor should
have a good discriminative power to retrieve the class of the
request and to suppress the intra-class variability. A precise
local signature based on the whole convexity/concavity mea-
sure is chosen to enhance the discriminative power.

5.4.2. Matching process

For the similarity measure, it is necessary to examine the dis-
tance between each sampled contour point of both contours.
The first descriptor presented in the Section 5.4.1 introduces
a compact global signature based on the histogram of the
convexities/concavities measure. The aim of this descriptor
is to compute the distance between two objects efficiently.
To compare the histograms distributions, we examine the
distance between each bin of both contours. The computed
distance is fast to compute and give a good estimation of
the real dissimilarity between two objects. Note that this dis-
tance does not have a good discrimination power but gives a
rough estimation of the dissimilarity of the models in a very
short computation time.

After this initial ranking, a pruning process is applied to
compute a better distance between the query and the k near-
est objects. Distances of the k nearest neighbors to the query
model are recalculated based on the local descriptor. This
distance measure has to explain correctly the similarity or
dissimilarity between two contours. A dynamic program-
ming method is used with a distance table to conveniently
examine the distances between corresponding contour points
convexities/concavities on both shapes. The presented dis-
tance has a very good discrimination power and can capture
the intra-class variations. This measure takes more compu-
tation time but gives an extremely good estimation of the
dissimilarity between two contours.

5.4.3. Parameters

The results in the Generic Shape Retrieval track for
SHREC’09 were obtained by using three or nine silhou-
ettes. The silhouettes were of resolution 256× 256 pixels.
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For the contour convexities and concavities method, normal-
ized contours with 100 points and 10 scale levels were used.
The parameters of the five runs were as follows:

• Run 1: 9 silhouettes and k = 0 for the pruning (no local
signatures).

• Run 2: 9 silhouettes and k = 50 for the pruning.
• Run 3: 9 silhouettes and k = 720 for the pruning.
• Run 4: 3 silhouettes and k = 50 for the pruning.
• Run 5: 3 silhouettes and k = 720 for the pruning.

5.5. Local-Global Features from DESIRE Descriptor by
B. Bustos, S. Kreft, T. Schreck and M. Walter

In this section a generic retrieval scheme combining local
and global descriptors is introduced. It optimizes the re-
trieval effectiveness of the DESIRE 3D object descriptor
[Vra05], by combining the global descriptor with local de-
scriptors (from segments of the 3D objects) [BSW∗09] com-
puted also with DESIRE. As the combination is done pre-
serving the spatial context of each of the local descriptors,
the approach supports the global geometry similarity notion
as provided by the base descriptor over which the combina-
tion is formed.

5.5.1. Global and local features

If two models are globally similar, then they should be sim-
ilar regarding all of their parts. However, global descriptors,
depending on their definition, may fail to capture relevant
local object information. By adding local descriptors for ap-
propriately extracted segments of the model under concern,
it should be possible to compensate for the loss of local in-
formation. Specifically, as the segments are made subject to
the particular processing steps of the given descriptor, which
may include normalization for scale and orientation, there
are chances to capture model information which could be
otherwise lost.

5.5.2. Descriptor extraction

The descriptor extraction process performs an object seg-
mentation step, which yields a partitioning of each of the
objects to be compared. Then, the process computes the DE-
SIRE descriptor for the global model and for each of the ob-
tained model segments. For each pair of objects to be com-
pared, similarity scores are calculated for the corresponding
object and object part descriptors. As a last step, the individ-
ual scores are aggregated into one final similarity score for
the input object pair.

The scheme relies on an existing one-to-one mapping
between object segments, which is used for segment-wise
descriptor comparison. This mapping is performed by two
steps: (A) applying rotation normalization to the global
model prior to segmentation, and (B) applying a uniform,
fixed segmentation scheme.

(A) is achieved by applying PCA-based rotation normal-
ization [VSR01]. This preprocessing aligns all objects in a
canonical coordinate system. In step (B), a simple Voronoi
segmentation takes place as follows (assuming triangulated
mesh models as input). A Voronoi partition is constructed
that is based on x× y equally spaced base vectors. The base
vectors are obtained by finding x and y uniformly distributed
angles Θ and Φ in spherical coordinates.

This way of partitioning 3D objects into parts is admit-
tedly simple. However, a structurally fixed, model indepen-
dent segmentation scheme in conjunction with rotation nor-
malization provides a straightforward 1:1 mapping between
model segments. While not all segments may contain mean-
ingful object detail, an adaptive weighting scheme will con-
tribute to identify meaningful parts. From experimentation
with the combination schemes, best retrieval precision re-
sults are obtained for setting x = 2 and y = 4, which effec-
tively corresponds to an Octant partition. Figure 4 illustrates
the Octant segmentation scheme.

5.5.3. Combination of global-local features

For the combination of the global and local features of the
3D models, a fixed and an adaptive approach are used. For
the fixed combination, the weight of the global descriptor is
first set to unity, and then the weights of all local descrip-
tors are uniformly set to a fraction of the unit weight. Effec-
tively, the scheme weighs the local descriptors relatively to
the global descriptor.

Figure 4: Illustration of an octant-based partitioning
scheme (top left), and its application to a 3D object (top right
and bottom).

For the adaptive combination, the entropy impurity
method [BKS∗04] is used. The entropy impurity measure
is used to estimate the a priori goodness of each of the lo-
cal features. For retrieval, the target data set of the generic
shape retrieval contest of SHREC’09 is used as the training
dataset. It must be noticed, however, that the weights given
by the entropy impurity method must be scaled down in or-
der to not overweight the local features.

5.6. Density-Based Framework (DBF) by C. Akgül, B.
Sankur and Y. Yemez

The density-based framework (DBF) is a shape description
and matching methodology that can be used for 3D ob-
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ject retrieval. In DBF, shape descriptors are extracted from
local surface features characterizing the object geometry
[ASYS07, ASYS09]. The feature information is processed
with the kernel methodology for density estimation (KDE)
and the probability density function of the local feature is
estimated at chosen target points. The shape descriptor vec-
tor is then simply a discretized version of this probabil-
ity density. This density-based approach provides a mech-
anism to convert local shape evidences, using KDE, into a
global shape description. Furthermore, DBF offers a spe-
cialized matching scheme that proves to be invariant against
certain 3D transformations, namely coordinate axis transfor-
mations and mirror reflections. This scheme is both com-
putationally rapid and effective compared to other state-
of-the-art descriptors for 3D object retrieval. More details
about the methods and its performance can be found in
[ASYS07, ASYS09].

Prior to descriptor computation, all models have been nor-
malized so that descriptors are translation, rotation, flipping
and scale invariant. For translation invariance, the object’s
center of mass is considered as the origin of the coordinate
frame. For rotation and flipping invariance, the continuous
PCA algorithm [VSR01] is applied. For isotropic scale in-
variance, a scale factor is computed so that the average point-
to-origin distance is unity.

In each of the three runs that are submitted to the
SHREC09 Generic Models Track, three different density-
based descriptors are used:

• R = (R, R̂x, R̂y, R̂z). Radial distance R measures the dis-
tance of a surface point Q to the origin (centroid). Ra-
dial direction R̂ is a unit-norm vector (R̂x, R̂y, R̂z) collinear
with the ray traced from the origin to a surface point Q.

• T = (D, N̂x, N̂y, N̂z). Tangent-plane distance D stands for
the absolute value of the distance between the tangent
plane at a surface point Q and the origin. Normal direc-
tion N̂ is simply the unit normal vector at a surface point
and represented as a 3-tuple (N̂x, N̂y, N̂z).

• S = (R,A,SI). Radial-normal alignment A is the absolute
cosine of the angle between the radial and normal direc-
tions at a surface point Q. Shape index SI provides a local
categorization of the shape into primitive forms such as
spherical cap and cup, rut, ridge, trough, or saddle.

For the S-descriptor, L1-metric is used while for the R and
T-descriptors, a invariant version of L1-metric is employed.
The final distance value has been obtained by summing these
three distance measures. For density estimation, a bandwidth
matrix of the form cH is used, where c is a real constant and
H is the average covariance matrix of the feature observa-
tions over all meshes (only the ones in the target distribution
of the Generic Models Track). The runs differ by a multi-
plicative constant c:

• DBFc8: Slightly undersmoothed descriptors (c = 0.8).
• DBFc10: Nominally smoothed descriptors (c = 1.0).
• DBFc12: Slightly oversmoothed descriptors (c = 1.2).

5.7. Bag-of-Local Visual Feature and the Unsupervised
Dimension Reduction by T. Furuya, M. Tezuka and
R. Ohbuchi

For this track, we have used the following two methods: the
bag-of-local visual feature approach BF-SIFT [OOFB08]
and the unsupervised dimension reduction approach MR-
SPRH-UDR [OK06]. While fusing multiple methods,( e.g.,
by summing their distance) would improve retrieval perfor-
mance, we used each one of our methods "as is".

For this track, the BF-SIFT used the range image size 256
× 256 taken from 42 equally spaced view orientations about
the 3D model. We used the vocabulary size Nv=1,800, which
was determined after some experiments. On average, the
number of features per 3D model is 2,216 for the database.
Distance computation used the Kullback-Leibler divergence.

The MR-SPRH-UDR used the Locally Linear Embed-
ding [RS00] having neighborhood size of 100 samples to
learn the mapping from the 625D input space of the SPRH
feature to the 400D subspace. The mapping is learned from
5,000 SPRH features extracted from 5,000 models ran-
domly selected from the union of Princeton Shape Bench-
mark [SMKF04] database and the National Taiwan Univer-
sity database [NTU]. While not optimal, we trained the LLE
using these databases as the Generic Model Track database
is too small for the learning. The learned mapping is ap-
proximated by using RBF network with Gaussian kernel,
whose spread is 0.9. For the distance computation among
the dimension-reduced features, we used the Cosine similar-
ity measure converted to distance by subtracting it from 1.0.

6. Results

In this section, we present the performance evaluation results
of the SHREC09- Generic Shape Retrieval Contest. Seven
research groups participated in the contest and submitted 22
sets of rank lists based on different methods and parame-
ters. In response to a given set of query objects, an algorithm
searches the data-set and returns an ordered list of responses
called the ranked list(s). Different evaluation metrics mea-
sure different aspects of shape retrieval system. In order to
make a thorough evaluation of a 3D shape retrieval algo-
rithm with high confidence, we have employed the following
six evaluation measures: Nearest Neighbor (NN), First Tier
(FT), Second Tier (ST), E-measure, Discounted Cumulative
Gain (DCG) and Precision Recall Curve.

For the Generic track contest, we have created a web inter-
face [INT], that shows the retrieved models for all the query
models and methods. Figure 5 shows an example page where
3D models that are retrieved by Chaouch’s MDLA method
are displayed as response to an airplane as the query object.
This interface allows users to examine the responses of the
participants’ methods to individual query objects and visu-
ally inspect the strengths and weaknesses of the methods for
particular queries.
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Figure 5: The models that are retrieved by Chaouch’s
MDLA method for an airplane as the query object.

Table 2 shows the retrieval statistics for all the meth-
ods and runs. It is clear that based on all the five scalar
measures the MDLA approach proposed by Chaouch and
Verroust gave the best performance among all 22 meth-
ods. Lian’s composite descriptor, which is a combination of
four methods (RECT + SHD + GSMD + MR) got the sec-
ond place considering overall performance. Nearest Neigh-
bor indicates the relevance to the query of the first re-
trieved result. If we based the evaluation on NN, Napoleon’s
MCC-Run2 and MCC-Run3 would be in second and third
places. But we take into account all the performance evalu-
ation measures then Chaouch’s MDLA is in the first place,
Lian’s Rect+SHD+GSMD+MR is in the second place and
Napoleon’s MCC-Run3 is in the third place.

Table 2: The retrieval statistics for all the methods and runs.

We have selected the best runs of each participant and dis-
played them in Figure 6, which shows their performance re-
sults in a bar graph. Three methods (Chaouch’s, Lian’s and
Napoléon’s) are particularly successful in that they give NN
and DCG values close to or larger than 0.9. Figure 7 gives
the precision-recall curves of the seven methods (the best
of each participant). For recall values up to 0.67 Chaouch’s
MDLA approach performs better than any other method. For
recall values higher than 0.67, Lian’s composite descriptor
(RECT + SHD + GSMD + MR) yields higher precsion val-
ues. Since the first half of the precision-recall curve is more
significant in terms of retrieval purposes, Chaouch’s MDLA

method clearly performs best with respect to the precision-
recall measures. The precision values of Napoleon’s MCC-
Run3 are better or as good as the values obtained by Lian’s
method for recall values upto 0.4. However, they signifi-
cantly drop to the third place when the recall valued are
higher than 0.4.

Figure 6: Bar plot of the Nearest Neighbor (NN), First Tier
(FT), Second Tier (ST), E-measure(E) and Discounted Cu-
mulative Gain (DCG) for the best runs of each participant.

Figure 7: Precision-recall curves of the best runs of each
participant.

We can classify the submitted methods as individual
methods and hybrid methods. Hybrid methods have a better
chance of describing the different local and global charac-
teristics of the object and thus are expected to yield better
results than the individual methods. This is clear from Ta-
ble 2: whenever a participant fused more individual meth-
ods together, the retrieval statistics got better. In addition to
the combination of methods, incorporation of a variety of
pose normalization schemes (e.g. Lian’s composite descrip-
tor and Daras’s CMVD method), consideration of various
scales (e.g. Napoleon’s MCC method) and combining par-
tial and global descriptors (e.g. Bustos’s DSR-segment) can
also be beneficial.

c© The Eurographics Association 2009.
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7. Conclusions

In this paper, we have described and compared the perfor-
mance of different algorithms submitted by seven research
groups that participated in this track. The participants have
submitted 22 sets of rank lists in total, based on different
methods and parameters. Based on all the performance eval-
uation measures: Chaouch’s MDLA is in the first place,
Lian’s Rect+SHD+GSMD+MR is in the second place and
Napoleon’s MCC-Run3 is in the third place. This track is
based on the NIST shape benchmark that we hope will pro-
vide valuable contributions to the 3D shape retrieval com-
munity.
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