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ABSTRACT

Vector graphics are widely used in graphical designs and have
received more and more attention. However, unlike raster
images which can be easily obtained, acquiring high-quality
vector graphics, typically through automatically converting
from raster images, remains a significant challenge, especially
for more complex images such as photos or artworks. In this
paper, we propose SAMVG, a multi-stage model to vectorize
raster images into SVG (Scalable Vector Graphics). Firstly,
SAMVG uses general image segmentation provided by the
Segment-Anything Model and uses a novel filtering method
to identify the best dense segmentation map for the entire im-
age. Secondly, SAMVG then identifies missing components
and adds more detailed components to the SVG. Through a
series of extensive experiments, we demonstrate that SAMVG
can produce high quality SVGs in any domain while requiring
less computation time and complexity compared to previous
state-of-the-art methods.

Index Terms— Image Vectorization, Vector Graphics,
Image Segmentation, Computer Graphics, Segment-Anything
Model

1. INTRODUCTION

While raster images are commonly used for their adaptability
and detailed representation, vector graphics have unique ad-
vantages. They represent images as mathematical equations
rather than pixels, making them ideal for resizing without
quality loss, which is especially useful for logos and icons.

Generating vector graphics, especially for complex im-
ages, is a challenging task compared to raster images which
can be easily obtained. Existing methods [1, 2, 3] generate
vector graphics capable of faithfully reconstructing original
images. But the produced representations tend to contain too
many unnecessary parameters and fail to preserve essential
topological features. Recent advances in deep learning and
differentiable rendering have inspired new approaches [4, 5,
6, 7, 8, 9, 10, 11] aiming to create visually similar vector
graphics while also preserving topological features. However,
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Fig. 1. High-level overview of SAMVG.
deep generative models [6, 7, 8, 9, 10, 12] face limitations re-
lated to high-quality training data availability and computa-
tionally intensive rendering-based training. Direct optimiza-
tion algorithms [4, 5, 13] are more versatile but require good
initialization for optimal results. The recent method LIVE [4]
addresses this by incrementally adding shape primitives, but
can be computationally expensive for batch processing.

In this paper, we aim to solve the initialization prob-
lem in direct optimization-based image vectorization meth-
ods in order to efficiently achieve high-quality results. A
common image vectorization method involves segmenting
images into their color components, as shown in previous
research [14, 15]. However, as images become more com-
plex, accurately identifying meaningful components becomes
challenging. To address this problem, we propose SAMVG,
a multi-stage image vectorization model for converting raster
images into high-quality SVGs with reasonable runtime.

SAMVG utilizes Segment-Anything Model (SAM) [16]
to create segmentation masks for the entire image, which are
then refined using a novel filter technique. Missed regions are
addressed by instructing SAM to generate additional masks.
These masks are used to trace each component into Bézier
curves, forming an initial SVG. The SVG is further enhanced
via differentiable rendering [5] to align with the target im-
age. Lastly, regions needing more shape primitives are iden-
tified through error map convolution. Their centers are used
as prompts for SAM to generate another set of masks, which
are added to the SVG before a final round of optimization.

We assessed the effectiveness of SAMVG through ex-
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periments, testing its generalization ability across various
domains. In our quantitative evaluation against state-of-the-
art methods, SAMVG consistently outperformed previous
approaches across multiple image evaluation metrics, si-
multaneously demonstrating significantly improved runtime
efficiency. Furthermore, qualitative comparison between out-
puts of SAMVG and those of other methods highlights that
SAMVG excels in generating shapes that better align with
the semantic information of target images.

In summary, our contributions are three fold:
• We propose SAMVG, a multi-stage image vectoriza-

tion model for converting raster images into high-
quality SVGs with reasonable runtime.

• We introduce a novel filter method to identify the best
dense segmentation map for the entire image and pro-
pose to employ a novel convolution-based approach to
identify regions requiring additional shape primitives
for representation.

• Extensive experiments show our superior performance
over previous methods. Qualitative analysis further
shows the ability of SAMVG to generate shapes that
closely match the semantic content of target images.

2. METHOD
SAMVG comprises four key stages: segmentation, filtering,
tracing, and optimization, as shown in Fig. 2. These stages are
integral to the image vectorization process, and we provide a
brief overview of each:

(1) Retrieving Segmentation Masks. Given a target
image I ∈ R3×w×h, SAM generates a list of segmentation
masks m1, ...,mn ∈ Rw×h. To boost segmentation quality,
we locate the centers of missing components for a second
round of prompts. We then filter out redundant masks and
sort the remaining ones by area. (2) Approximate Tracing.
For each component in the masks, the approximate shapes of
the mask are traced with Bézier curves to produce an initial
SVG denoted by S. (3) Optimization. We denote the ras-
terized image of S as I ′ = R(S). S is optimized through
a specified number of iterations, utilizing mean square error
(MSE) loss with respect to the target image I and incor-
porating additional regularization losses to enhance shape
smoothness and minimize artifacts. (4) Identifying Missing
Components. We use convolution with a circular kernel on
the difference map between I ′ and I to detect any missing
components. If such components are found, we add them
to S by repeating steps 1 and 2. Finally, the resulting SVG
undergoes optimization to produce the ultimate result.

Fig. 1 visually shows the intermediate results of each step
in the SAMVG image vectorization process. Subsequent sec-
tions offer detailed explanations of each step, providing a
comprehensive overview of the SAMVG and its components.

2.1. Stage 1: Retrieving Segmentation Masks
In the initial segmentation stage of SAMVG, we use the
Automatic Masks Generator (AMG) from SAM. AMG is
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Fig. 2. Flow diagram of the first stage of SAMVG to retrieve
high quality segmentation masks. We filter the masks by test-
ing its impact on the image render, and prompt the model
twice for any components missed.

prompted with a customizable 32 × 32 grid of points, along
with SAM’s test-time augmentation stage in which multiple
overlapping zoomed-in image crops are included for compre-
hensive segmentation. It produces a list of masks, which are
then filtered based on the confidence score and intersection
over union (IoU). Post-processing removes small components
and holes to aid path tracing in later stages.

The list of masks generated by AMG serves as a starting
point, but it may not be sufficient for immediate tracing. De-
pending on the filter threshold and image complexity, AMG
can predict either too few masks, leaving large areas uncov-
ered or too many masks leading to redundancy (see Fig. 3).
To address this, we introduce a filtering method called “Fil-
ter by Impact” in addition to existing filters to ensure that
all retained masks are both correct and significant. Addition-
ally, we employ convolution with a circular kernel to identify
potential center points in large uncovered regions, which are
then used as prompts to generate additional segmentations.

In the following sub-sections, we provide detailed expla-
nations of the filtering masks and the process of finding un-
covered regions for prompts.

2.1.1. Filter by Impact
To filter undesirable masks, we assess their impact by render-
ing them on a canvas. We begin with a blank canvas C0 ∈
R3×w×h and sort masks m1, ...,mn ∈ {0, 1}w×h by area in
descending order. Each mask mi is assigned a color ci ∈ R3

by averaging the regions it covers on I . We sequentially add
mask mi to the canvas as follows:

Ci = f(Ci−1,mi, ci), (1)

where f : R3×w×h → R3×w×h sets the color of pixels in
Ci−1 covered by mi as ci. Then we calculate the normalized
mean square error. We ensure that pixels not covered by any
masks on C have the maximum error to prevent bias toward
bright pixels. The impact γi of mi is defined as the difference
between the new and previous error:

ei =
||I−Ci||2
MaskArea ,

γi = ei − ei−1.
(2)

If γi falls below a predefined threshold, we discard mi and
revert Ci to the previous state Ci−1.
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Fig. 3. Examples of failure cases from the Automatic Masks
Generator provided in SAM.

The “Filter by Impact” method in SAMVG offers several
advantages. It retains masks representing sub-parts of objects
with significant intersection over union (IoU) with parent ob-
ject masks while filtering out small or incorrect masks. This
ensures that all generated masks contribute significantly to
the image representation. The filtering process is applied it-
eratively whenever SAM generates new masks, minimizing
redundancy and enhancing vectorization efficiency by main-
taining a list of relevant masks.

2.1.2. Locating Uncovered Regions
To identify large uncovered regions in C, we first generate an
alpha mask Cα ∈ Rw×h = ∨n

i=1mi, where ∨ stands for the
bitwise-OR-operator. Convolution is then performed on Cα

with a fixed circular kernel k ∈ {0, 1}r×r to get C ′
α, where

ki,j =

{
1, if

√(
i− r

2

)2
+
(
j − r

2

)2 ≤ r

0, otherwise
. (3)

We identify candidate points by selecting the coordinates in
C ′

α with zero values. Convolution identifies points belonging
to large uncovered regions within a circle, whose radius is
determined as a fraction of the image size. Subsequently, we
employ mean shift clustering [17] on these candidate points to
generate prompts for SAM. After filtering, we obtain a final
list of masks m1, ...,mn ready for tracing.

2.2. Stage 2&3: Approximate Tracing and Optimization
Our tracing algorithm is similar to [18]. However, instead of
choosing corner points based on local maxima, we select the
global maximum as the first corner point. We then remove
nearby points from potential corner candidates and search for
the next corner point among the remaining candidates. This
process is repeated until a predetermined number of corner
points is reached. This modification aims to maintain a fixed
number of segments in each path for simplicity and compara-
bility with baselines that have a fixed segment count.

Following the tracing stage, we generate an initial SVG,
providing an excellent starting point for optimization. Lever-
aging differentiable rendering [5], we directly optimize the
SVG parameters. The primary loss function employed is the
MSE loss and LPIPS loss [19] calculated between the ren-
dered and target image. Additionally, we incorporate the Xing
loss introduced by [4], which penalizes shapes prone to self-
interaction and encourages topologically sound shapes.

Metrics LIVE [4] DIFFVG [5] SAMVG
MSE×10−3 ↓ 5.75 16.1 4.89

LPIPS ↓ 0.259 0.318 0.243
FID ↓ 188.54 209.25 184.24

Complexity ↓ 11.53 12.17 11.32
Paths ↓ 59.96 59.96 57.54

Num of Parameters ↓ 2038 2038 1956
Time (s) ↓ 2609.00 139.57 139.13

Table 1. Quantitative results on the self-collected dataset,
Complexity is proposed by [20] and is calculated on how well
images can be compressed by JPEG [21] standard.

The total loss function can be formulated as:

L = LMSE + λXingLXing + λLPIPSLLPIPS , (4)

where λMSE , λXing, λLPIPS are hyper-parameters.

2.3. Stage 4: Identifying Missing Components

After the first phase of optimization, SAMVG may still miss
some semantically significant components if their size is too
small. These components may carry semantic meanings that
are crucial for human perception of the image. For exam-
ple, SAMVG occasionally fails to display eyes when vector-
izing portrait images due to their small size. However, when
prompted at the correct location, SAM can provide appropri-
ate segmentations for these components.

To address these missed components at the end of the first
optimization phase, we detect them by convolving the differ-
ence map. We compute the difference map D by summing
across color channels using the target image I and the cur-
rent render I ′. We then apply convolution to D with a fixed
circular kernel, as described in Sec 2.1.2, to eliminate noise,
resulting in D1. Subsequently, we apply thresholding to D1,
ensuring that:

D2x,y =

{
1, if D1x,y ≥ ω
0, if D1x,y < ω

, (5)

where ω is the threshold value experimentally determined to
be 0.784. Following this, we use the centers of components,
whose value equals 1, in D2 as prompts to SAM to retrieve
the masks. Finally, the masks are filtered by impact with re-
spect to I ′ as the starting canvas, then traced and optimized
for another 500 iterations to achieve the final SVG.

3. EXPERIMENT

3.1. Experiment Setup
We use the Adam optimizer for all experiments, conducted
on an Nvidia GeForce RTX 3090 GPU. The learning rates are
0.01 for color parameters and 1 for point parameters in all
algorithms. All algorithms run for 1000 iterations. To ensure
fairness, we optimize the parameters for 1000 iterations for
all methods. We assess methods on a self-collected dataset,
comprising 120 images from various categories.
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Fig. 4. Time taken by each algorithm vs. number of paths.

Metrics SAMVG SAMVG w/o Filter
MSE×10−3 ↓ 4.89 4.77

LPIPS ↓ 0.243 0.238
FID ↓ 184.24 230.64

Complexity ↓ 11.32 11.38
Paths ↓ 57.54 202.95

Num of Parameters ↓ 1956 6696
Time (s) ↓ 142.00 563.96

Table 2. Ablation Experiment on Filter by Impact.

3.2. Quantitative Results
From Tab. 1, we can conclude that SAMVG outperforms
LIVE and DIFFVG in all vectorization quality measures,
including MSE, LPIPS, and FID. Besides, SAMVG is con-
siderably faster than LIVE and offers significantly better
vectorization quality than DIFFVG. Notably, the speed ad-
vantage of SAMVG becomes more pronounced for larger
and more complex images, as demonstrated in Fig. 4, mak-
ing it suitable for applications prioritizing fast and efficient
vectorization.

3.3. Qualitative Analysis
Fig. 5 reveals that SAMVG generates vector graphics that
closely resemble the target image. LIVE produces cleaner
graphics with fewer extraneous shapes, but DiffVG generates
patchy colors due to random initial path distribution. While
the difference in vectorization quality between LIVE and
SAMVG is subtle and subjective, SAMVG excels in terms of
speed and the retrieval of semantic features from the target
image. This ability to extract semantic features is a key ad-
vantage of SAMVG, enabling more accurate and meaningful
image representations compared to other methods.

3.4. Ablation Study

To evaluate the efficacy of the proposed filter technique, Fil-
ter by Impact, we proceed to remove it from all stages of
SAMVG and conduct an experiment using the same dataset.
As observed in Table 2, it becomes evident that the removal of
Filter by Impact results in a substantial increase in path count,
number of SVG parameters, and the processing time. No-
tably, this substantial change in metrics does not yield a com-
mensurate enhancement in image quality, as discerned from

Render

Scenery

Subject

SAMVG LIVETarget

WPAP

Art

Emoji

DiffVG

Fig. 5. Qualitative Comparisons between SAMVG, DIFFVG
and LIVE.

the metrics reflecting image quality, namely MSE, LPIPS,
FID and Complexity, which exhibit minimal change. In light
of these findings, we can infer that the proposed Filter by Im-
pact method effectively improve the efficiency of the image
vectorization process without compromising image quality.

4. CONCLUSION
In this work, we present a novel multi-stage image vectoriza-
tion model, SAMVG, which combines deep learning segmen-
tation technology with traditional image vectorization. With
the novel filter method, Filter by Impact, and a coarse-to-
fine framework, SAMVG exhibits the remarkable capability
to produce SVGs of exceptional quality at a significantly en-
hanced rate. Through abundant experiments, we demonstrate
that the vectorization quality of SAMVG is superior to the
previous state-of-the-art methods while concurrently exhibit-
ing enhanced operational efficiency.
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