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Abstract

This paper focuses on indoor semantic segmentation based on RGB-D images. Semantic segmentation is a pixel-

level classification task that has made steady progress based on fully convolutional networks (FCNs). However,

we find there is still room for improvements in the following three aspects. The first relates to multi-scale feature

extraction. Recent state-of-the-art works forcibly concatenate multi-scale feature representations extracted by spatial

pyramid pooling, dilated convolution or other architectures, regardless of the spatial extent for each pixel. The second

is regarding RGB-D modal fusion. Most successful methods treat RGB and depth as two separate modalities and

force them to be joined together regardless of their different contributions to the final prediction. The final aspect is

about the modeling ability of extracted features. Due to the “local grid” defined by the receptive field, the learned

feature representation lacks the ability to model spatial dependencies. In addition to these modules, we design a depth

estimation module to encourage the RGB network to extract more effective features. To solve the above challenges,

we propose four modules to address them: scale-aware module, modality-aware module, attention module and depth

estimation module. Extensive experiments on the NYU-Depth v2 and SUN RGB-D datasets demonstrate that our

method is effective for RGB-D indoor semantic segmentation.
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1. Introduction1

The purpose of semantic segmentation is to assign2

specific class labels to regions in the input images. This3

is a fundamental task for scene understanding [1], video4

analysis [1, 2], clothing retrieval [3], and such of those5

intelligent applications [4]. However, due to the varying6

illuminations and cluttered backgrounds, it is a daunt-7

ing task for scene understanding, especially for indoor8

scenes. With the development of commercial depth9

cameras, such as Kinect and Prime-Sense, we are able10

to capture high-quality, synchronized RGB and depth11

images. RGB data provides rich visual information12

such as color and texture. Compared with RGB data,13
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the depth modality data offers pure shape and geome- 14

try information, which is invariant to lighting and re- 15

flectance. Combining these two complementary modal- 16

ities together offers us an opportunity to dramatically 17

improve the performance of semantic segmentation for 18

indoor scenes. 19

Extensive studies have been conducted for the task 20

of indoor semantic segmentation. [5] proposes a patch- 21

wise model, and [6] utilizes an R-CNN (Region-based 22

Convolutional Neural Network) scheme to learn an 23

RGB-D multi-modal feature representation to boost the 24

performance. Recently, [7] proposes an end-to-end 25

FCN (Fully Convolutional Network) for semantic seg- 26

mentation and achieves significant improvement. How- 27

ever, there are still many problems with indoor semantic 28

segmentation. Towards the problem of multi-scale ob- 29

jects, many successful methods [8, 9, 10, 11, 12] adopt 30

pyramid layers to extract multi-scale feature represen- 31

tations. Towards the problem of modeling long-range 32

contextual information, [9, 13, 14] utilize global pool- 33
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(a) pixel itself lacks appropriate scale information for semantic segmentation (board)  

(c) feature lacks proper ability to model spatial dependencies (fridge)

(b) improper RGB and depth modality models fusion (chair)

wire

Figure 1: Limitations of the baseline on indoor scene semantic seg-

mentation with RGB-D data. The depth image in this paper is encoded

to three channel HHA (horizontal disparity, height above ground, and

angle with gravity). The baseline consists of two-stream atrous spa-

tial pyramid pooling networks trained on RGB and depth data respec-

tively. These two networks are combined together by late fusion with

equal-weight sum.

ing techniques to obtain global context feature, and [15]34

subdivides images into super-pixels and uses LSTM35

(Long Short-Term Memory) to aggregate and enlarge36

contextual information by multi-scale context intertwin-37

ing. Towards RGB-D fusion, three levels of fusion are38

often adopted. The first one is early fusion [5], which39

simply concatenates the input of two complementary40

modalities, RGB and depth, together as four-channel in-41

put. The second one is middle fusion [6], which lever-42

ages the two modalities, RGB and depth, as two inde-43

pendent inputs and extracts different modality feature44

representations, and then concatenates them together to45

learn a final classifier. The third one is late fusion (also46

called score map fusion) [7], which utilizes RGB and47

depth as two separate inputs to learn two different mod-48

els, and obtain two different score maps. Then, the two49

score maps are fused together by equal weights.50

In this paper, the model proposed by [8] is extended51

by using the late fusion strategy. This extended model52

is used as our baseline for indoor semantic segmenta-53

tion in this study. Compared with [7], our extended54

model achieves better performance. However, we have55

found that there are three aspects that can be improved.56

The first is that the pixel itself does not have enough57

information for semantic prediction, it needs to learn58

the appropriate scale information. As shown in Figure59

1(a), since the appearance of the board object is very60

similar to the back wall, multi-scale feature representa-61

tions extracted using multiple atrous convolutional lay-62

ers do not provide proper surrounding scale information63

for pixels on the board. Likewise, for the wire object,64

since it is so thin the extracted multi-scale features do 65

not capture suitable information for it. The second is 66

about the fusion of two complementary modalities. As 67

shown in Figure 1(b), the appearance cues are beneficial 68

for classifying the object as a chair, whereas the depth 69

cue would confuse the recognition of part of the chair 70

(most sofa objects in the dataset are near a wall). The 71

third one is that the extracted features lack the ability 72

to model long-range dependencies. As shown in Figure 73

1(c), part of the refrigerator is misclassified as a door 74

(due to being confused by the rectangle shape). 75

This paper aims to discuss the problem of indoor 76

semantic segmentation based on the two complemen- 77

tary modalities of RGB and depth. In particular, we 78

propose a scale-aware module, a modality-aware mod- 79

ule and an attention module, which address the above 80

three-aspect problems. The scale-aware module learns 81

a proper scale feature representation for each object in 82

the input. It learns a weighted mask for each extracted 83

multi-scale feature, and then multiplies these masks by 84

the multi-scale features to generate a scale-aware fea- 85

ture representation to address the first problem. Towards 86

the second problem, the modality-aware module is pro- 87

posed to combine the two complementary modalities of 88

RGB and depth using different weights instead of equal 89

weights. Towards the third problem, an attention mod- 90

ule is introduced to supplement the scale-aware module, 91

which can capture long-range dependencies in the gen- 92

erated scale-aware feature representation. Besides the 93

above three modules, since we have the ground truth 94

depth value of the input RGB image, we can thus de- 95

sign an encoder-decoder depth estimation module on the 96

RGB network to encourage the RGB backbone network 97

to extract better and more precise features. The contri- 98

butions of this paper can be summarized in the follow- 99

ing aspects. 100

• An efficient scale-aware module with modality- 101

awareness, an attention module, and a depth esti- 102

mation network is proposed for semantic segmen- 103

tation. 104

• Within the network, a scale-aware module is used 105

to select the appropriate scale feature for each 106

pixel, which enables a proper scale feature repre- 107

sentation to be learned for each object in the input. 108

• In order to improve the segmentation performance, 109

a modality-aware module is proposed, which adap- 110

tively combines the RGB module and depth mod- 111

ule to obtain useful features. 112

• To further improve the segmentation performance, 113

the attention module and depth estimation module 114
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Figure 2: The overall architecture of our SAMD model for RGB-D indoor semantic segmentation. It is a two-stream convolutional neural network,

one for RGB and the other one for depth (HHA). SAMD consists of four parts: 1) the encoder feature extractor part. It is a standard two-stream

convolutional neural network, which leverages atrous spatial pyramid pooling to learn multi-scale feature representations; 2) the scale-aware

module, which is used to learn features maps of an appropriate scale; 3) the modality-aware module, which is proposed to effectively combine

RGB and depth networks based on the contributions of the two modalities; 4) the attention and depth estimation module, which is used to extract

more plausible features. Best viewed in color.

are proposed to extract better feature representa-115

tions. The former is to obtain long-range depen-116

dent features, and the latter is to force the RGB117

module to extract more plausible feature represen-118

tations.119

The rest of the paper is organized as follows. Sec-120

tion 2 briefly covers related work, highlighting current121

work. Then we give the details of the proposed ap-122

proach in Section 3. Experimental results and analysis123

are provided in Section 4. Finally, the conclusions are124

drawn in Section 5.125

2. Related Work126

The proposed method relates to a lot of work on127

scale-aware selection, attention method, modal combi-128

nation and depth estimation. CNN-based semantic seg-129

mentation has achieved great advances in recent years130

[16, 8, 13, 9, 17, 18, 19, 20]. Most of the existing work131

has employed fully convolutional networks (FCNs) [7].132

However, objects in indoor scenes cover a huge range of133

scales due to both their range of actual sizes in the real134

world, as well as by their differences in distance to the135

camera. The methods above only forcibly stack the ex-136

tracted multi-scale features together. This is not enough137

for real-world cluttered indoor scene understanding.138

Selecting the appropriate scale feature for each pixel139

is particularly important. Many successful works have140

investigated this problem. [21] proposes a channel at- 141

tention scheme to boost the performance of semantic 142

segmentation. [22] exploits a scale-space to select a 143

properly scaled feature. However, as far as we know, 144

there is little work on RGB-D feature scale selection. In 145

this paper, we propose a scale-aware module that com- 146

bines RGB and depth modal features to build a scale- 147

aware module to improve the performance of RGB-D 148

semantic segmentation. Although the scale-aware mod- 149

ule can generate features that fit the scale for each neu- 150

ron, the feature cannot reflect the contributions of each 151

modality. 152

The synchronized RGB and depth pair images pro- 153

vide useful multi-modal information for the task of 154

computer vision. Most successful methods simply com- 155

bine the extracted multi-modal feature representation 156

using early fusion [5], middle fusion [6], or late fusion 157

[7]. However, in the final prediction layer, RGB and 158

depth contribute unequally in most cases. An exam- 159

ple is shown in Figure 1 (b) where the chair object is 160

misclassified by concatenating the two complementary 161

modalities with the same weight. 162

Recently, the attention mechanism has been proposed 163

to model and capture long-range dependencies, and it 164

has become an integral part of many successful works 165

[23, 24, 25, 26]. [27] proposes a self-attention mecha- 166

nism to capture long-range dependencies of inputs and 167

achieves the state-of-the-art performance in machine 168

translation. The attention mechanism has not only been 169
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used in the Natural Language Processing (NLP) field,170

but has also been utilized in the computer vision field.171

[28] utilizes a self-attention scheme to obtain better per-172

formance on the image generation task. [29] adopts173

an attention mechanism in object recognition to boost174

performance. [30] proposes a MAT (Motion-Attentive175

Transition) module comprised of a soft attention unit176

and an attention transition unit to learn more specific177

and useful feature representations.178

The combination of semantic segmentation and depth179

estimation was studied in many previous works, with180

the goal of improving both semantic segmentation and181

depth estimation. [31] proposes three ways to improve182

semantic segmentation performance with depth estima-183

tion, and [32] adopts knowledge from a semantic seg-184

mentation network to teach the depth estimation task.185

In our paper, we introduce depth estimation as an auxil-186

iary task to help improve semantic segmentation.187

This paper adopts a scale-aware module, a modality-188

aware module, a self-attention and a depth estimation189

module to address the above problems. As shown in190

the experiments, the proposed four modules can achieve191

performance gains on many publicly RGB-D semantic192

segmentation datasets.193

3. Our Approach194

In the following section, we mainly focus on the195

learning details of the proposed SAMD approach.196

SAMD is composed of four modules: the scale-aware197

module, the modality-aware module, attention, and198

depth estimation (as shown in Figure 2). The scale-199

aware module is to generate a scale-aware feature repre-200

sentation which predicts the scale information for each201

pixel from the learned multi-scale feature representa-202

tion. The modality-aware module is to learn an effec-203

tive fusion way for the two modal networks. To further204

improve the performance, we propose the attention and205

depth estimation modules. The attention module is used206

to capture the global feature dependencies in the spatial207

domain for the input feature. The depth estimation mod-208

ule is used to push the RGB network to extract more209

precise and useful features.210

We adopt atrous spatial pyramid pooling (ASPP) as211

our feature encoder to extract multi-scale features. To212

be specific, let L = {(R1, D1, Y1), ..., (Rn, Dn, Yn)}213

be the n pairwise RGB-D training data, where R =214

{ri}
H×W
i=1 is the RGB modality training image whose215

size is H × W , and D = {di}
H×W
i=1 is the correspond-216

ing depth training image, whose size is H × W , and217

Y = {yi}
H×W
i=1 is the label image, in which ri and218

di are corresponding pixels in the pairwise image, la-219

bel yi ∈ {0, 1, ..., C} gives the per-pixel label, C de- 220

notes the number of the categories. In our approach, 221

given an H × W pair RGB-D image, through the en- 222

coder part, we obtain features fr
e and fd

e whose sizes are 223

H
8 × W

8 (ignoring the channel size), where fr
e is from 224

RGB modality, and fd
e is from depth modality. These 225

two features serve two purposes. The first is to gener- 226

ate subsequent multi-scale feature representations and 227

the second is used in our scale-aware module for scale 228

selection. 229

3.1. Scale-aware Module 230

The output of the feature encoder part is a multi-scale 231

feature of the forced concatenation, but the learned fea- 232

ture still does not hold the correct scale feature represen- 233

tation. To this end, we employ a scale-aware module to 234

enable our model to learn a feature map of proper scale 235

for all neurons in the input. 236

Specifically, let the multi-scale feature set gener-

ated from fr
e and fd

e be {fr
ai

, fd
ai
}, where fr

ai
denotes

the multi-scale feature extracted from the RGB modal-

ity feature encoder part by dilated convolution (a.k.a.

atrous convolution) [8] (kernel size ai), fd
ai

denotes the

feature from the depth modality. In the experiments, we

adopt four dilated kernel sizes (6, 12, 18, 24) for each

modality, and ai stands for the 4 different dilated ker-

nels. We concatenate fr
e and fd

e to generate ff
e , and

feed it into a 1 × 1 convolutional layer conv(.) and out-

put ff
c whose size is 8× H

8 × W
8 . Then we use a softmax

operation to normalize ff
c to obtain ff

m. For the RGB

modality, we split the four channel feature representa-

tion (corresponding to the four channels of fr
e ) ff

mj
in

ff
m and then calculate the scale-aware features fr

sa and

fd
sa as follows:

fr
sa =

4
∑

j=1

fr
ai

� ff
mj

(1)

to the depth modality, 237

fd
sa =

8
∑

j=5

fd
ai

� ff
mj

(2)

where the operator � represents the Hadamard product. 238

3.2. Modality-aware Module 239

The modality-aware module is proposed to combine 240

feature representations of RGB and depth modalities for 241

semantic segmentation. The structure of the module is 242
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Figure 3: Illustration of the scale-aware confidence map. The two images in the first column are RGB and depth images. The two images in the

second column are scale-aware confidence maps upon the two modalities. The remaining 4 images in the first row are each scale channel confidence

map of RGB modality, in the second row are each channel confidence map of depth modality. From left to right, they are a6, a12, a18, a24. For

the sake of simplicity, we show the confidence maps (average value) by using the “COLORMAP JET” color map (where blue is low value and red

is high value) upon RGB. Best viewed in color.

RGB & GT Prediction Confidence Map Error MapColorbar

Figure 4: Illustration of the scale-aware module. From the illustra-

tion, we can find that with the scale-aware module, our model can

effectively focus on larger and smaller objects, as shown by the red

dashed boxes. From left to right and top to bottom, they are RGB

and ground truth; prediction results with and without the scale-aware

module; confidence maps with and without scale-aware module (in-

cluding the colorbar where the value increases from blue to red); error

maps with and without scale-aware module. Best viewed in color.

similar to the scale-aware module and it is composed of 243

four layers. The first one is a concatenation layer which244

is used to combine the fr
sa feature and fd

sa feature. The245

second one is a 1 × 1 convolutional layer which is used246

to produce an M2×h×w modal mask. The last two are247

a softmax layer and a matrix multiplication layer. The248

former is used to generate a normalized modal mask and249

the latter is used for element-wise multiplication. For250

brevity and clarity, the layers are not illustrated in Fig-251

ure 2. 252

To be more specific regarding the structure of the

modality-aware module, after the concatenation layer,

we obtain RGB-D fusion feature representation ff ∈
R

(2c×h×w), and then feed it to the 1 × 1 convolu-

tional layer to produce the mask M . Then M is fed

into the softmax layer to produce a normalized modal

mask M ′ ∈ R
2×h×w. Let Mrgb ∈ R

1×h×w and

Mdepth ∈ R
1×h×w denote the modal masks on RGB

and depth respectively. When the modal masks are gen-

erated, we calculate the predictions based on RGB and

depth using the Hadamard product as follows:

P rgb = Conv(fr
at) � Mrgb

P depth = Conv(fd
at) � Mdepth

(3)

where Conv(.) denotes a 1 × 1 convolutional layer, and 253

Conv(fr
at) ∈ R

C×h×w, Conv(fd
at) ∈ R

C×h×w. The 254

elements in P (i, j)rgb and P (i, j)depth imply how con- 255

fidently we can rely on RGB and depth respectively to 256

predict the pixel (i, j) in the input. 257

Finally, we generate the final prediction result as fol-

lows:

P f = P rgb + P depth (4)

3.3. Attention and Depth-estimation Modules 258

To further improve the segmentation performance, 259

we propose attention and depth estimation modules to 260

obtain long-range dependencies and more plausible fea- 261

ture representations. In order to enlarge the context re- 262

lationship of the above-obtained fr
sa and fd

sa features, 263

inspired by [33], we introduce a self-attention module 264

to improve the obtained feature modeling ability.265

For the sake of simplicity, let the size of the image

feature obtained from the RGB modality scale-aware

layer be fr
sa ∈ R

c×h×w, where c denotes the feature

channel, h = H
8 , w = W

8 . Take the RGB modality as an

example for explanation. We copy the fr
sa and reshape it

into three feature spaces, Θ(f) ∈ R
c×N , θ(f) ∈ R

c×N ,

and ϑ(f) ∈ R
c×N , respectively, where N = h × w.

Then we calculate self-attention using the above two re-

shaped features, as follows:

at = softmax(Θ(f)T · θ(f)) (5)

each item at(i, j) in the module at is the dot-product

similarity, which indicates the effect of the model at
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the ith position to the jth position. To make it more

implementation-friendly, we normalize the attention

module before the softmax operation. Then we obtain

the scale-aware attention feature representation as fol-

lows:

fr
at = fr

sa + β(at · ϑ(f)). (6)

For the depth modality, fd
at is similarly defined as fr

at,266

where β is a learnable parameter, and is initialized to 0267

during training inspired by [28]. The scheme mentioned268

above makes our model rely on non-attention features269

in the initial stages of training. For the depth modality,270

we utilize the same operation as the depth image feature271

representation.272

For the depth estimation module, we adopt the struc-

ture of Monodepth2 [34], which is a successful depth

estimation model. For simplicity of training, we adopt

Depth Loss and Gradient Loss.

Ldepth =
1

n

n
∑

i=1

√

log2(di) − log2(dGt
i ) (7)

Lgrad =
1

n

n
∑

i=1

∥

∥∇(d) − ∇(dGt)
∥

∥

1 (8)

where n is the number of pixels in the input image, di273

and dGt
i denote the predicted depth value and the corre-274

sponding ground truth depth value, respectively. In the275

experiments, the main purpose of the task is to obtain276

a per-pixel semantic segmentation label, and the depth277

estimation module is to encourage the RGB network278

to extract a more effective feature representation. We279

use the pre-trained Monodepth2 model to initialize our280

depth estimation module, and then use a small learning281

rate (1e-4) to fine-tune it in the final experiments.282

4. Experiments283

In this section, we perform extensive experiments284

on two publicly available datasets, NYU-Depth v2 and285

SUN RGB-D to evaluate our method. All of our imple-286

mentations are made using the popular PyTorch frame-287

work.288

4.1. Datasets289

• NYU-Depth V2 is one of the most popular RGB-290

D indoor scene datasets, consisting of 1449 finely291

labeled RGB and depth image pairs. The entire292

dataset is divided into two parts, of which 795 are293

for training and 654 are for testing. 294

• SUN RGB-D is a large-scale RGB-D dataset re- 295

cently used for indoor scene understanding. It con- 296

tains 10335 pairs of RGB and depth images cap- 297

tured by four kinds of commercial depth sensors. 298

Of these finely labeled image pairs, 5285 pairs are 299

used for training and the remaining 5050 pairs are 300

used for testing. 301

4.2. Metrics 302

Following recent methods [10, 35], performance in 303

our experiments is quantitatively measured by pixel ac- 304

curacy (Acc), mean intersection over union (mIoU), 305

mean pixel accuracy of different categories (mAcc) and 306

frequency weighted IoU (f.w. IoU), which are widely 307

used in indoor semantic segmentation. To be concrete, 308

let nij be the number of pixels which are misclassified 309

as class j when the ground truth is category i. ti is 310

the number of pixels which belong to the ith category, 311

where ti =
∑

j nij , and the total number of pixels in 312

the dataset is t. The above four metrics are defined as 313

follows: 314

• pixel accuracy =
∑

i
nii

t
315

• mean intersection over union = 316

1
C

∑

i
nii

ti+
∑

j
nji−nii

317

• mean pixel accuracy = 1
C

∑

i
nii

ti
318

• frequency weighted IoU = 1
t

∑

i
tinii

ti+
∑

j
nji−nii

319

4.3. Training Protocol 320

In the following, we will provide details of the exper- 321

imental implementation. 322

Learning rate policy The training procedure con- 323

sists of two stages. In the first stage, we adopt the Adam 324

optimizer to train two independent networks of RGB 325

and depth modalities respectively for semantic segmen- 326

tation, excluding the scale-aware and modality-aware 327

modules. For each modality network, we adopt “poly” 328

learning rate policy, where the current learning rate is 329

calculated by multiplying the initial learning rate with 330

(1 − iter
max iter

)power, power = 0.9, the initial learning 331

rate is set to 0.01. We use ResNet50 and ResNet101 332

as our backbone network and combine atrous spatial 333

pyramid pooling as our feature encoder to extract multi- 334

scale features. Each of the backbones is initialized by 335

the model pre-trained on ImageNet, and the other lay- 336

ers are initialized by random weights. In the second 337

stage, we add the scale-aware module and the modality- 338

aware module and then fine-tune our RGB-D model on 339

the synchronized RGB and depth training data. Each340
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Figure 5: The visualization of results on the NYU-Depth v2 dataset. The comparison results of (d) and (f) demonstrate that our SAMD module is

effective for indoor semantic segmentation. For the detailed analysis, please refer to Section 4.4. Best viewed in color.

modality network is initialized by the trained models341

obtained from the first stage. During the training, we342

discard the classification layer in the already-trained343

network in every single modality, and then combine344

them together via the added scale-aware and modality-345

aware modules. In the second stage, we set the initial346

learning rate to 0.001.347

Data preprocessing and data augmentation In348

the experiment, the depth modality image is encoded to349

three-channel HHA (horizontal disparity, height above350

ground, and angle with gravity) image as the approach351

[6]. In both training stages, our two separate modal-352

ity networks and our RGB-D model are trained on the353

cropped images of size 417×417. To avoid over-fitting,354

common data augmentations such as random brightness355

jittering, random left-right flipping, and random scaling356

in the range of [0.5, 2.0] to the input training samples357

are used.358

Loss In the experiments, the overall loss is as fol-

lows:

L = Lseg + λ1 · Laux + λ2 · Ldep (9)

where λ1 and λ2 are the balancing weights for the se-359

mantic segmentation and depth estimation. To enhance360

the feature representation extracted from the backbone,361

we adopt an auxiliary loss after the 4th blocks (as used362

in [13]) to supervise the training process. In the exper-363

iments, λ1 is set to 0.5, and λ2 is set to 0.1. Ldep is364

composed by LDepth and Lgrad. 365

Figure 6: Illustration of the self-attention module. We observe that,

with this module, the extracted feature representation is better (as

shown in the red dashed bounding boxes). From left to the right and

top to down, they are RGB and ground truth images; the RGB feature

and HHA feature without attention module; RGB and depth feature

with attention module; prediction results with and without attention

module; error maps with and without attention module.

4.4. Ablation Studies and Discussion 366

In order to demonstrate that our SAMD model 367

does not depend on any particular feature encoder ar- 368

chitecture, we embed scale-aware module, attention 369

module and modality-aware module into two standard 370

fully convolutional backbone networks, ResNet50 and 371

ResNet101. We provide the quantitative results on the 372

NYU-Depth v2 dataset of these two backbone networks 373

in Table 3. Through the results, we find that using 374

our SAMD module significantly improves the perfor- 375

mance of semantic segmentation throughout the differ- 376

ent backbones. In the experiments, we use ResNet50 377

and ResNet101 as alternatives for our backbone net- 378

work, and the default choice is ResNet101 if not explic- 379

itly specified. 380

In order to show that our scale-aware module does not381
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Table 1: Category-wise IoU results on the NYU-Depth v2 dataset. The Baseline and SAMD rows show the results of our baseline and SAMD

model respectively. The class of background is ignored during performance evaluation. The top two results are shown in red and blue respectively.

Cheng‡ pre-trains their model on SUN RGB-D dataset, and then fine-tunes it on NYU-Depth v2 dataset.
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Wang [35] – – – – – – – – – – – – – – – – – – – 43.9 53.5 –
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Gu [39] – – – – – – – – – – – – – – – – – – – 50.3 – –
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Cao [42] – – – – – – – – – – – – – – – – – – 76.4 51.3 63.5 63.0

Baseline 24.9 45.8 53.2 23.2 39.8 27.1 5.1 73.5 64.9 38.4 86.2 67.5 43.3 57.0 5.1 28.0 19.9 38.6 73.4 46.7 61.7 61.2

SAMD 35.0 58.4 66.6 35.3 48.4 23.0 12.1 77.5 87.9 44.7 81.2 64.9 54.3 57.8 8.6 32.7 22.9 44.0 74.4 52.3 67.2 61.9

Figure 7: Performance Analysis. Depth estimation on NYUDepthv2

dataset.

depend on feature types, we utilize two methods, atrous382

spatial pyramid pooling (ASPP) and pyramid pooling383

(PSP) to extract multi-scale feature representations. In384

both experiments, we keep all settings exactly the same385

and extract four kinds of scale features in each modal386

network. We find that the use of ASPP (52.3) to extract387

multi-scale features is slightly better than PSP (52.1).388

To demonstrate the effectiveness of the scale-aware389

module, we compare the results of using and not us-390

ing this module. The qualitative analysis is shown in391

Figure 4. From the comparison result, with the scale- 392

aware module, our model learns more proper scale fea- 393

ture representations for pixels. A pixel itself does not 394

have enough contextual information for semantic seg- 395

mentation, so it has to look around to check which class 396

it belongs to. Whether it is from texture (RGB) or depth 397

values (depth), the “board” object is very similar to sur- 398

rounding pixels. The method of the forcible concatena- 399

tion of the multi-scale feature would make some pixels 400

confused when determining which category they belong 401

to. Without the scale-aware module, the confidence 402

map on the board region is low as shown in Figure 4. 403

Also, the “wire” object (categorized into “otherprops”) 404

is too thin to be classified. With the scale-aware module, 405

the model learns an appropriate feature representation. 406

When comparing with the baseline model that does not 407

have this module, the performance of our model is su- 408

perior. To discover the importance of the self-attention 409

module, we provide the comparison results with and 410

without the module, as shown in Figure 6. From the 411

results, we can find that, through the self-attention mod- 412

ule, our model can model long-range dependencies. 413

The feature extracted from the scale-aware module, 414

we can find that the feature extracted from the different 415

atrous rate ai which is focused on the different region 416

on the input images, as shown in Figure 3. From the 417
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Table 2: Performance on the SUN RGB-D dataset. The SAMD row shows the results of our SAMD model. The class of background is ignored

during performance evaluation.
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Figure 8: Performance Analysis. Per-class IoU improvement of our

SAMD model over baseline on NYU Depth-v2 test dataset.

Table 3: Performance on different feature extractor encoder backbone

network of our model.

Backbone w/o SAMD w/ SAMD

ResNet50 45.1 48.1

ResNet101 46.7 52.3

Table 4: Performance on different modality fusion methods of our

model.

Methods mIoU

Late fusion [7] 48.9

Gated fusion [10] 51.3

Modality-aware fusion 51.9

figure, we also find that the scale feature extracted from 418

the scale-aware module, has different levels of attention 419

on each modality. This phenomenon spurs us to design 420

the next modality-aware module. 421

To demonstrate the effectiveness of the modality- 422

aware module, we provide three results on the NYU- 423

Depth v2 dataset with different modality fusion meth- 424

ods as shown in Table 4. In all three experiments, they 425

all include the scale-aware and self-attention modules. 426

All parameter settings in the experiments are the same 427

except for the fusion method used. The late fusion ap- 428

proach follows the instruction in [7], which fuses RGB 429

and depth networks by equal-weight score. [10] pro- 430

poses a gated fusion way to fuse RGB and depth by431
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Table 5: Performance on the NYU-Depth v2 test dataset (4-class).

Acc mAcc

Courprie [5] 64.5 63.5

Hermans [47] 69.0 68.1

Stuckler [48] 70.6 66.8

Wang [49] – 74.7

Eigen [50] 83.2 82.0

He [37] 83.6 82.5

SAMD 86.9 85.7

Table 6: Ablation study of the proposed SAMD model on NYU-Depth

v2 dataset. S, A, M and D denote scale-aware module, self-attention

module, modality-aware module and depth estimation module, re-

spectively.

Methods mIoU

a. Baseline 46.7

b. Baseline + S 47.8

c. Baseline + A 48.6

d. Baseline + M 48.4

e. Baseline + S + A 49.8

f. Baseline + S + M 49.9

g. Baseline + A + M 49.5

h. Baseline + S + A + M 51.9

i. Baseline + S + A + M + D 52.3

regarding the varying contributions of the two comple-432

mentary modalities. The last row is the performance433

of our modality-aware fusion, which achieves superior434

performance.435

To demonstrate that the depth estimation module is436

workable and useful, we provide the depth estimation437

results of input images, as shown in Figure 7. From438

the results, we can find that the depth estimation can439

provide a plausible depth value for the input image.440

To have a better understanding of how the proposed441

SAMD model outperforms the baseline method, we pro-442

vide the visualization results of the improvement of IoU443

for each semantic category in Figure 8. As can be seen444

from the statistics result in Figure 8, our SAMD is su-445

perior to the baseline in most classes.446

In Table 6, we give the quantitative comparisons of447

with and without our SAMD components on the NYU-448

Depth v2 dataset. From the comparison results (b ∼449

i), each component in the proposed SAMD module will450

benefit the performance of the indoor semantic segmen-451

tation. The qualitative results are illustrated in Figure 5,452

it gives the visualized comparisons with and without our453

SAMD module on the NYU-Depth v2 dataset. In Table454

1, we give the results of the comparison between our455

model and state-of-the-art methods on the NYU-Depth456

v2 dataset. From the results, we can find that our model 457

is better than state-of-the-art methods in many classes. 458

We also test our model on the SUN RGBD dataset, and 459

we obtain a state-of-the-art comparable result, 63.4% 460

mean accuracy, more detail please refer to Table 2. 461

We compare SAMD to other state-of-the-art methods 462

on the 4-class of the NYU-Depth v2 dataset, and the 463

quantitative results are shown in Table 5. 464

5. Conclusion 465

In this paper, we propose SAMD to tackle the chal- 466

lenging problems for indoor semantic segmentation 467

with RGB-D data. SAMD is composed of three main 468

parts: (1) the scale-aware module which is designed for 469

generating a spatial-sampled and scale-sampled feature 470

representation, (2) the modality-aware module which 471

can weigh the varying contributions of the two comple- 472

mentary modalities for better fusion, and (3) the self- 473

attention module and depth estimation module, which 474

can produce long-range dependencies for better model- 475

ing and push the RGB network to extract more plausible 476

features. Theoretical analysis, qualitative and quantita- 477

tive experimental results on NYU-Depth v2 and SUN 478

RGB-D dataset demonstrate that SAMD can achieve 479

significant performance gains for indoor semantic seg- 480

mentation. 481
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