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Abstract

While range images can easily be captured through
readily available commercial off-the-shelf range cam-
eras/sensors/finders nowadays, it is not immediate for
the user to appreciate and understand the technolog-
ical challenges involved in range imaging. This ar-
ticle gives an overview of range imaging techniques
with an aim to let the reader better understand how
the difficult issue, such as the registration of overlap-
ping range images, can be approached and solved.
This article firstly introduces the characteristics of
range images and highlights examples of 3D image vi-
sualizations, associated technical issues, applications
and the differences of range imaging with respect to
the traditional digital broadband imaging. Subse-
quently, one of the most popular feature extraction
and matching methods, the signature of histograms of
orientations (SHOT) method, is then outlined. How-
ever, the “matched” points generated by SHOT usu-
ally generates high proportion of false positives due
to various factors such as imaging noise, lack of fea-
tures and cluttered backgrounds. Thus the article
discusses more about image matching issues partic-
ularly to emphasize how the widely employed range
image alignment technique, the random sample con-
sensus (RANSAC) method, is compared with a simple
yet effective technique based on normalized error pe-
nalization (NEP). This simple NEP method utilizes a
strategy to penalise point matches whose errors are far
away from the majority. The capability of the method
for the evaluation of point matches between overlap-
ping range images is illustrated by experiments using
real range image data sets. Interestingly enough, these
range images appear to be easier to register than ex-
pected. Finally, some conclusions have been drawn
and further readings for other fundamental techniques
and concepts have been suggested.
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point match evaluation; underlying transformation.

1 Introduction

The advancements in electro-optics, electronics, me-
chanics and control technologies enable the advent of
modern laser scanning systems to facilitate high pre-
cision 3D model imaging applications. There are gen-
erally three main steps involved in modern 3D range
imaging: (i) surface parts reconstruction, (ii) image
matching (registration) and (iii) image stitching. The
first step can be achieved by techniques such as laser
scanners, structured light projection or multi-view re-
construction. Sophisticated optical design allows the
generation and control of active light sources such as
laser beams, custom light patterns etc., for the illu-
mination of objects of interest without interference by
natural light such as the solar irradiance. The ad-
vances in electronics enables the effective and efficient
data acquisitions, data transmission, data storage and
signal processing of reflections of light from the object
of interest. The advancement in mechanical control
enables accurate controls of the scanner components
to allow simultaneous acquisition of wide field-of-view
of the scene in both depth (range) and intensity (Fig-
ure 1).

The second step of image matching/registration is to
position all surface parts in a common coordinate sys-
tem. This is necessary because of the limited field-of-
view in most laser scanning systems (range cameras),
thereby several (or even hundreds of) images taken at
different viewing points are needed to cover the whole
scene. If two range images scan over a common part
of the scene, then the images of these two scans are
termed as overlapping. All range images are normally
recorded in the local coordinate of the laser scanning
system. To construct a full model of the object and/or
fuse the geometrical and optical information, all these
overlapping range images are needed to be aligned
in a single global coordinate system. This process is
termed as image registration. Range image registra-
tion has two goals: one is to establish correspondences
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between overlapping range images, the other is to es-
timate the underlying transformation that brings one
range image into the best possible alignment with the
other. Fixing either of these two goals renders the
other trivial. However, in practice they are interwo-
ven, thus making range image registration to be one
of the most challenging tasks in range imaging. The
3D model can then be formed by stitching the reg-
istered surface parts in voxel space [1], or by direct
mesh fusing methods [2]. Recent advancement in this
area has been the employment of KinectFusion tech-
nique [3] together with the Microsoft Kinect sensor for
tracking and mapping of indoor scenes, which involves
processes such as data capture, image registration, im-
age fusion and reconstruction of dense surfaces in the
volumetric space and all these processes can be per-
formed in real time.

Figure 1: Examples of real range images and their cor-
responding intensity images, when available and explic-
itly stated. Top row from left to right: ptrain0, ptrain1,
ptrain2, and ptrain3 captured by a Perceptron scanner
[4]. Second row from left to right: atrain0, atrain1,
atrain2, and atrain3 captured by an ABW scanner [4].
Third row from left to right: pitcher1, pitcher1 intensity
image, stapler1, and stapler1 intensity image captured
by a Kinect sensor [8]. Bottom from left to right: cow42,
cow37, bunny120 and bunny60 captured using a Minolta
Vivid 700 range camera [12].

1.1 Range images

A range image is a two dimensional rectangular array
with each pixel representing the distance of a point on
the surface of an object of interest with respected to

either a reference point, or a reference plane, as de-
fined by the range imaging device (range camera) or
system. Each pixel is parameterized using three vari-
ables (i, j, r(i, j)) where i is the column index, j is the
row index, and r(i, j) is the distance of a point from
the reference point/plane. Depending on the type of
the imaging device the distance of a point can be mea-
sured with respect to either a reference point as in the
perspective projection, or with respect to a reference
plane in the case of orthographical projection system.
For example, in the case of the Perceptron laser range
finder [4, 5, 6, 7] the distance is measured with re-
spected to a reference point, while the reference plane
is used in the ABW range camera [4, 7] and the Kinect
sensor [8]. These two categories of range imaging sys-
tems may be termed as perspective and orthographical
range camera respectively.

1.1.1 Range image formation

Figure 2: The operation principle of the Perception
laser range finder [6].

Figure 2 illustrates the operation principle of the Per-
ceptron laser range finder [6, 9] which employs a near-
infrared laser of 810nm wavelength with a rotating
mirror at r1 distance away along the Z axis from the
laser source and at zenith of α as illustrated in the
figure. The rotating mirror is acted as the beam de-
flector in the X-Y plane. The laser beam is then di-
rected over a distance of r2 towards the nodding mir-
ror which deflects the beam towards the scene of in-
terest over a distance of r3. When α = 0◦, the laser
beam is defected from the rotating mirror along the
Y axis. When α = 0◦ and β = 0◦, the laser beam is
deflected from the nodding mirror along the Z axis.
The reflected laser beam from the scene is filtered,
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and subsequently detected, by an avalanche photodi-
ode light sensor. The distance of the laser beam trav-
els, and thus the range of the object in the scene, is
proportional to the phase difference between the trans-
mitted and received laser signals. This phase differ-
ence is measured electronically. The pixel locations at
(i, j) is related to the mirror angles (α, β), where β is
the subtended angle between the X-Z plane and the
plane passing through the Z axis and the laser beam
r3 (please refer to Equation 1 in the next subsection).
The phase difference is digitized into 12 bits yielding
a measurement precision in the order of 2.0mm. A
final circuit, which normally implemented as a look-
up table, is designed to improve the accuracy of the
computed range due to the variable laser energy re-
flected from different materials of the objects in the
scene. This technique has an ambiguity of 2π for the
determination of the phase difference. Thus, a good
range imaging normally requires either to limit the va-
riety/types and distances of objects in the scene or to
employ external constraints to resolve this ambiguity.

Figure 3: The main components of a Kinect sensor
[10].

The Kinect sensor (Figure 3) has been one of the most
popular 3D sensors in the market since it was released
in 2010 [8, 11]. The Kinect measures the depth of
scenes based on active triangulation [11] of the re-
flected light. It emits a pattern of infra-red (IR) light-
words towards the scene of interest and a CMOS IR
depth sensor is deployed for the detection of the re-
flected pattern. The IR Depth Sensor and IR Emitter
form a binocular vision system, in which the received
and emitted light-words that form pixels p and p′ at
positions of (i, j) and (i + d, j) in their image planes
can be matched along the same row j, thus to allow
the identification of disparity d = x′1−x1 of the pixels.
The depth of the point P in the scene that reflects the
light-word can be estimated through trigonometry as
illustrated in Figure 4 : r(i, j) = Bf/d, where B is
the distance between the light emitter and the depth
sensor, and f is the focal length of the depth sensor.
However, the light pattern in the same row should be
distinctive enough to facilitate the matching of the

1 1

P

z

Image plane

Optical axis Optical axis3D world

A A’

c’p’
x’x

c p

o o’
B

z

f

IR Emitter 

x

IR Depth Sensor

Figure 4: Illustrates the principle of the binocular vi-
sion system for the estimation of the depth z of the
real world scene. The system consists of parallel op-
tical axes, co-planar image planes and the same focal
length of f for both the IR Depth Sensor (left) and
the IR Emitter (right).

light words along the row. Such a constraint limits
the measurement precision of the depth of the scene.
The Kinect sensor operates at a resolution of 640×480
in the 32bit color stream, and 320 × 240 in the 16bit
depth stream at 30fps respectively. It has a horizontal
field of view of 57◦, a vertical field of view of 43◦ and
a depth range of 1.2m-3.5m with a resolution of 1cm
at a distance of 2m.

1.1.2 3D Cartesian representation of range
images

To visualize the range image it is necessary to port
the detected depth in (i, j, r(i, j)) coordinates into 3D
Cartesian representation (x, y, z) of the camera coor-
dinate. This can be achieved through a function g
which can be in any arbitrary units such as in mil-
limeters. The function g can be estimated through
a system calibration: (x, y, z) = g(i, j, r(i, j)) where
g is a property of the imaging system. For example,
the pixels (i, j, r(i, j)) (0 ≤ i, j ≤ 511) of range im-
ages captured by perspective Perceptron laser range
finder can be converted into Cartesian coordinates
(x(i, j), y(i, j), z(i, j)) through the following relation-
ships [4, 6, 7, 9]:

x(i, j) = dx+ r3 sin(α)

y(i, j) = dy + r3 cos(α) sin(β)

z(i, j) = dz + r3 cos(α) cos(β)

r1 = (dz − h2)/δ

r2 =
√

(dx)2 + (h2 + dy)2/δ

r3 = (r(i, j) + r0 − (r1 + r2))δ

dx = (h2 + dy) tan(α)
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dy = dz tan(θ + 0.5 ∗ β)

dz = −h1(1.0− cos(α))/ tan(γ)

α = α0 +H(255.5− j)/512

β = β0 + V (255.5− i)/512 (1)

where the specific values of h1, h2, γ, θ, α0, β0, H,
V , r0 and δ can be obtained through calibration [6]
before the imaging. For images as shown in the top
row of Figure 1, the values of these parameters are:
h1 = 3.0, h2 = 5.5, γ = θ = 45◦, α0 = β0 = 0.0,
H = 51.65, V = 36.73, r0 = 830.3, and δ = 0.20236
respectively.

On the other hand, the pixels (i, j, r(i, j)) (0 ≤ i, j ≤
511) of range images captured by the orthographical
ABW range camera can be converted into Cartesian
coordinates (x(i, j), y(i, j), z(i, j)) as follows [7]:

x(i, j) = (j − 255)(r(i, j)/scal + offset)/|fk|
y(i, j) = (255− i)/c(r(i, j)/scal + offset)/|fk|
z(i, j) = (255− r(i, j))/scal

where the specific values of offset , scal, fk and c
can be obtained through calibrations before image
acquisition. Similarly, the values of the parameters
for the images shown in the second row of Figure 1
are: offset = 785.410786, scal = 0.773545, fk =
−1610.981722, c = 1.4508 for the first image while
the second and third images have values of offset =
771.016866, scal = 0.791686, fk = −1586.072821,
c = 1.4508.

Note that in the case of the Kinect sensors,
the orthographical-camera Cartesian relationship
((i, j, r(i, j))-(x(i, j), y(i, j), z(i, j))) in this system is
different from that of the orthographical ABW range
camera due to their different sensor sizes and scale
factors [8]:

xgrid = i+ (topleftx − 1)− centrex
ygrid = j + (toplefty − 1)− centrey
x(i, j) = xgrid ∗ r(i, j)/constant/MM Per M

y(i, j) = ygrid ∗ r(i, j)/constant/MM Per M

z(i, j) = r(i, j)/MM Per M

where centrex = 320, centrey = 240, constant =
570.3, and MM PER M = 1000. In the case of full
frame images the i and j ranges from 1 to 640 and
from 1 to 480, and topleftx = 1 and toplefty = 1 re-
spectively. While the subset images as that shown in
the third row of Figure 1, e.g. in the pitcher1 image,
the i and j ranges from 1 to 110 and from 1 to 109, the
topleftx = 262 and toplefty = 191 respectively. For the
stapler1 image the i and j ranges from 1 to 118 and
from 1 to 68, the topleftx = 250 and toplefty = 240
respectively. It is noted that the Kinect and all other

range camera systems are capable of capturing both
range and intensity images and thus they are intended
for applications such as object modeling and recogni-
tion.

Figure 5: The figure shows the 3D models of soyabean
and wheat plant reconstructed by using respectively
108 and 90 RGB images [14] with point clouds repre-
sented in PLY format [15]. The 3D models exhibit
missing points (holes) in the plant structure and the
clutter backgrounds such as the pot, soil and pot la-
bel etc. that cause ambiguity in the determination of
neigbouring points.

One side effect for the transformation of the ortho-
graphical indexes (i, j) of the range images into the
camera x and y Cartesian coordinates is the reduced
accuracy in the distance representation due to the
unity increments in the Cartesian coordinate system.
The spatial and depth resolutions are both affected es-
pecially when the ranges between points are less than
1 unit. In contrast, the range images of the perspec-
tive range cameras transform the coordinates directly
based on the imaging geometry, and thus the perspec-
tive system provides a more accurate 3D model than
that of the orthographical range images.

Due to the limited field of view of the scanner and
also because of the objects occlusion, multiple range
images taken from different viewpoints are needed to
fulfill the 3D modeling for the complete scene. It is
noted from the above that all range images are cap-
tured with reference to the local scanner coordinate
systems. Thus the images that are taken at different
viewpoints are needed to be fused, and registered, into
a single common global coordinate system.

While the range cameras such as the ABW [4, 7] and
Kinect [8] which are capable to capture the depth
information of a scene with respected to a reference
plane, depth maps can also be generated from the
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stereo system based on image matching [13]. This
stems from the fact that the Cartesian coordinates
of 3D models can be estimated from the motion of
a feature within the multi-view images and that can
be realised in two different steps of feature extraction
and matching method: sparse and dense reconstruc-
tion [14]. The range imaging approach employs active
light source for scene illumination while the stereo sys-
tem utilizes ambient light. Consequently, the former
achieves better result independent of environment fac-
tors while the latter suffers from illumination artifact
or lack of texture with higher degree of missing points
(holes) in the 3D reconstruction as shown in Figure 5.

In summary, three dimensional model of the scene can
be reconstructed by using various sophisticated range
camera systems as well as advanced image processing
methods. In the latter case the point clouds can even
be generated through the perspective view of the scene
collected at different view angles. The range images,
and thus their respective point clouds, are character-
ized by the noise, spatial and depth resolution that
determine their fitness for specific applications. To
echo this point here are several quotes about the na-
ture of range images [16]: “Range images encode the
position of surface directly. Therefore, the shape can
be computed reasonably easy. Range images are a
special class of digital images. Each pixel of a range
image expresses the distance between a known refer-
ence frame and a visible point in the scene. Therefore,
a range image reproduces the 3D structure of a scene.
Range images are also referred to as depth images,
depth maps, xyz maps, surface profiles and 2.5D im-
ages. Range images can be represented in two basic
forms. One is a list of 3D coordinates in a given ref-
erence frame (cloud of points), for which no specific
order is required. The other is a matrix of depth val-
ues of points along the directions of the x,y image axes,
which makes spatial organisation explicit.”

In [17], “Range imaging is the name for a collection of
techniques that are used to produce a 2D image show-
ing the distance to points in a scene from a specific
point, normally associated with some type of sensor
device. The resulting image, the range image, has
pixel values that correspond to the distance. If the
sensor that is used to produce the range image is prop-
erly calibrated, the pixel values can be given directly
in physical units, such as meters.”

In [18], “A range image is, in principle, a regular (i, j)
grid of points with a depth at every pixel and a projec-
tion procedure for taking a point in 3D and mapping
(projecting) it into to grid coordinates. In practice,
the projection may only be approximately known, and
there may be some irregularity to the arrangement of
the points (e.g., every other line may be shifted due
to interlacing). For this reason, we represent a range

image as a grid of points in 3D (i.e., an (i, j) grid
with an x, y, and z coordinate at every pixel) that is
roughly observed with a view direction looking down
the z-axis.”

1.2 Applications

Since the depth information in range images contains
geometrical information with physical units, they are
more attractive for applications such as measurement,
visualization and decision making over the broad band
digital images. This section outlines some examples of
range images for practical applications.

1.2.1 Object modeling

One of the most mature areas for the application of
range imaging technologies has been the digitization
and archiving of historical relics for conservation and
maintenance purposes. These historical relics are nor-
mally fragile and degrading in color and structure over
time. Thus, there is an urgent need to archive a digi-
tal representation of such relics for storage, repair and
also for remote tourism. Several range finding tech-
niques, including photogrammetry, structured light
triangulation, time of flight and interferometry had
been used in [19] for scanning Michelangelo’s statues.
However, it took one year of thirty faculty members of
staff and students to scan ten of these statues in Italy!
A single range image data set consists of as many as
2 billion polygons and 7000 color images of David!

Another sensing system known as the flying laser
range sensor (FLRS) which incorporated a movable
platform, had been designed [20] for digitizing large
structure, such as the Bayon temple located at the cen-
tre of the Angkor-Thom in the kingdom of Cambodia.
The temple measures 150 meters long on all sides and
up to 45 meters tall. During the operation the FLRS
was suspended by a balloon remotely controlled from
the ground to reach the height and the occluded parts
of the temple. Any distortions of the imaging due to
the movement of the balloon had been removed using
either the ground based imaging data or through a
structure from motion based method. Various sensors
had been deployed for capturing different aspects of
data such as the range and their appearances. A sin-
gle constructed model of the temple consists of 20000
range images with a total file size of about 200GB.

1.2.2 Simultaneous localization and mapping
for robot autonomous navigation

Range imaging has been one of the key techniques
to facilitate navigation of robots. Feedback informa-
tion, such as the environment (scene), the movement
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and posture of the robot are essentially needed for the
navigation of the robot autonomously. This kind of
information is continuously needed during maneuver
of the robot to allow successful robotic operations such
as grasping, moving and path planning. Laser range
finder had been used in [6] for two types of motion
planning: (1) physical safety: how to maneuver the
robot from one point to another without collision to
obstacles and (2) visual safety: which involves view-
ing plan to explore unknown/unseen areas given the
constraints of the range finder and the obstacles in
the environment. When multiple candidates present
in the scene the one with maximum unknown territory
will be selected. Based on such principles, a robot can
navigate from one location to another and fulfill its
goals successfully.

Experimentally a laser sensor had been mounted [21]
at the end effector of a robot for navigation around a
household environment: a kitchen in this case. The
scanned images were pre-processed, resampled, seg-
mented and various features were extracted for classi-
fications and recognitions. Objects in the scene such
as cupboards, tables, drawers and shelves had been
identified and localized. The state of these objects,
whether they were closed or opened, had also been
recognized. A semantic map of the environment had
been built based on all this information to facilitate
the development of household assisted robots with au-
tonomous navigation and tasking capabilities.

1.2.3 Quality assurance

The 3D models reconstructed from range images
have been utilised for direct comparison between the
CAD models of the components/products of an in-
dustrial system for quality assurance. Any discrep-
ancy found may imply the presence of defective com-
ponents/products which are needed to be replaced or
singled out. Two different models of range cameras
had been developed in [22] to capture the 3D data of
underwater oil and gas pipes. The type 1 range cam-
era was implemented by placing the laser source at
the top of the linear stage at a fixed elevation an-
gle. The laser beam was directed from the air into
the water. The type 2 range camera placed the light
generator in front of the laser behind the front glass.
The scanned range data were used to visualize and
to analyse whether the geometry of the pipes was ac-
cording to the design and with a scope of defects lo-
calisation such as the identification of dents and dam-
age/corrosion in the pipe (Figure 6).

Another example was the implementation of the Tech-
nical Arts 100X white scanner [23] for the inspection
of a loaded printed circuit board. The scanner is capa-
ble for scanning dense and high resolution depth data

at a resolution of 50µm, with a maximum view win-
dow of 12.5mm in the horizontal direction and 10mm
in the vertical direction. In the experiment the 3D
data was segmented using a region growing method
for the extraction and comparison of various features
against those from the CAD models. The task was
to verify parameters such as dimensions, co-planarity
and location of features etc. In the solder joint inspec-
tion task the scanned data is registered with the des-
ignated CAD board with errors of less than ±0.1mm
in the case of good solder joints. The experiment had
shown effective differentiation between good and bad
joints by exploiting the volume and texture features
for classification.

Figure 6: A scanning system and a model recon-
structed from its scans [22]. The model clearly reveals
that there is a big dent in the pipe and information
such as location, area, and volume of the defects can
be estimated for repair/replacement.

1.3 Some issues

Range images are usually corrupted by imaging
noise, occlusion, holes, spikes and background clut-
ter. Range cameras capture a scene rather than just
the object of interest, and therefore the background
and other irrelevant objects are also captured. This is
especially the case for the range images as shown in
Figure 1 which were captured using the Perceptron,
ABW and Kinect range cameras. Therefore it may
be necessary to segment the data to separate the fore-
ground from the background to facilitate subsequent
data processing, e.g. for object modeling and recogni-
tion.

One way to achieve this is to make use of the differ-
ent reflection characteristics from the foreground and
the background. Such an idea was adopted in [12] to
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Figure 7: Visualization of real range images (top row)
and point clouds (bottom row) as surface (odd column)
and triangular mesh wireframe (even column) respec-
tively. For the point clouds, they are superimposed with
the original ones with intensity information. Top row:
left two: cow42, right two: bunny120. Bottom row: left
two: soyabean, right two: wheat.

capture the range images in the fourth row of Figure 1
using a Minolta Vivid 700 range camera. In addition,
this camera also outputs the 3D Cartesian points in
a text file with 4 blocks of a size of 200 by 200 el-
ements respectively: flag, x coordinate, y coordinate
and z coordinate, where flag(i, j) shows whether the
point at position (i, j) is valid or not: if flag(i, j) = 1,
the point (x(i, j), y(i, j), z(i, j)) is valid and can be
used. Otherwise, the point will not be considered. To
help further analysis, these four blocks are rendered
for clearer visualization as shown in the bottom row
of Figure 7. It can be seen that cow42 was cluttered
by the background of the ground, and there are holes
in the two eyes, neck, back, and the upper parts of the
front and hind legs of cow42. Various spikes in the eye-
brows and ears of cow42, and artefacts in the arms of
bunny120 are also seen. The holes are mainly caused
by lack of data received by the range camera, due to
weakly reflective materials or self-occlusion of one part
by another part of the object of interest. Spikes and
artefacts are mainly caused by the discontinuity of dif-
ferent parts of an object in depth, reflectivity of ma-
terials, or surface orientation in the viewing direction.

Cluttered background has been a serious problem for
image matching/registration. For instance, it is very
difficult to distinguish between the fixed background
points from those “moving” points on the foreground
objects when a turntable is used for rotating an object
for data capture. This is illustrated in the third row
of Figure 1 for the images captured by the Kinect sen-

sor. Ideally the features of the background should be
stationary and all the points that belong to the back-
ground should not be subjected to any transformation.
At the same time the points on the foreground objects
should be subjected to the transformation due to the
movement of the turntable. This shows that the pro-
cess of data acquisition should be carefully designed to
make sure that only the object of interest is captured
without other objects or background.

Figure 8: Examples of triangulation of neighboring
points in a range image captured by a Minolta Vivid
700 range camera as a mesh for the representation of
the surface of the object of interest.

1.4 Notations

The following notations will be used throughout this
article. The letters in bold face denote vectors or ma-
trices, lower case letters denote scalars, | · | denotes the
absolute value of a scalar or the count of the elements
in a set, || · || denotes the Euclidean norm of a vector,
I denotes the identity matrix, a · b denotes the dot
product of vectors a and b, a × b denotes the cross
product of vectors a and b, the superscript T denotes
a transpose of a vector or a matrix, bc denotes the
round operation of a real number to a nearest smaller
integer, and det(A) denotes the determinant of a ma-
trix A.

While the range images can easily be captured
using the commercial off-the-shelf range cam-
eras/sensors/finders, this article also provides some
backgrounds to the readers about one of the most chal-
lenge technology in range imaging: the issues for the
registration of overlapping range images. Image regis-
tration has been a critical stage for producing a suc-
cessful range imaging applications as outlined in Sec-
tion 1.2 above. To this end, various techniques will
be discussed with enough details to allow readers to
follow and implement for practical experiments. The
remainder of this article is thus organized as follows.
After the range images are captured or generated, then
they are normally inspected for quality assurance by
using open source software such as Meshlab [24] or 3D
programming language such as Java3D [25]. Section 2
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discusses various visualization methods for the extrac-
tion of triangular meshes from given range images or
point clouds prior to further analysis. Section 3 out-
lines the existing SHOT algorithm [26] for feature ex-
tractions and matchings (FEM) which are critically
important to image registration. Large proportion
of false positives can be induced due to lack of fea-
tures, imaging noise, or cluttered background during
the point matching stage, resulting in an inaccurate
estimation of the underlying transformation. Inspired
by the gentle adaptive boosting [28], the random sam-
ple consensus (RANSAC) method [27] has been widely
employed for combating false positives [26], Section 4
outlines an alternative algorithm to complement the
RANSAC method with an added advantage of easy
implementation, and Section 5 presents experimen-
tal results using real data captured using a Minolta
Vivid 700 range camera and demonstrates whether the
typical overlapping range images can be aligned with
reasonable accuracy using typical FEM only. Finally,
Section 6 draws some conclusions and suggests further
readings.

2 Visualization of 3D surface
data

After range images have been captured, it is usually
necessary to visualize and inspect them for quality, in-
teractive operation, and further analysis. Since range
images can be treated as point clouds without taking
the neighborhood information into account, two meth-
ods for the extraction of triangular meshes from given
range images and point clouds will be discussed in the
following subsections respectively.

2.1 Range images

While range images can be converted to a Cartesian
representation of points (x, y, z) in the 3D space, they
usually refer to their Cartesian representation. Range
images contain a set of points in a certain order and
in which overlap of one part against another does not
occur. In this case, a triangular mesh can be easily ex-
tracted from a given range image for the visualization
of the surface of the object of interest that it repre-
sents (Figure 8) where neighboring points can be eas-
ily identified. For a valid point (x(i, j), y(i, j), z(i, j))
in a range image captured by a Minolta Vivid 700
range camera, its three neighbors are (x(i+1, j), y(i+
1, j), z(i+1, j)), (x(i, j+1), y(i, j+1), z(i, j+1)), and
(x(i+1, j+1), y(i+1, j+1), z(i+1, j+1)). The num-
ber of triangles that can be established is dependent
on the distribution of the neighboring points. For a
valid top-left point (x(i, j), y(i, j), z(i, j)), its 3 neigh-

bors in the right and underneath can be considered: if
all of them are valid, then two triangles can be gener-
ated with two different configurations (top row), nor-
mally the one with a short diagonal length is preferred,
so that the created triangles become as equilateral as
possible; if two of them are valid (bottom left three),
then a unique triangle will be generated. Otherwise,
no triangle (bottom right) will be generated. This
process can be repeated until all the points have been
visited. The renderings of the cow42 and bunny120
images were implemented in Java3D and are presented
in Figure 7 as the solid surface and triangular mesh
wireframe respectively.

Figure 9: Different configurations between the states
of the vertices of a cube and the given surface repre-
sented by the given point cloud, leading to the gener-
ation of at most 5 triangles [30].

2.2 Point clouds

The points in a point cloud do not have any order
and some points may occlude each other, depending
on the direction from which the point cloud is viewed.
In this case, a neighbor is not well defined in the sense
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of distance or the structure of the object of interest.
In order to identify a neighbor nearest to a point, all
the other points may have to be visited once, unless
some special data structures such as a k-D tree [29]
have already been built in advance for the storage of
the points. For large point clouds with hundreds of
thousands of points, or even millions of points, it is
time consuming to identify even just a small number
of nearest neighbors of a point.

In order to extract a triangular mesh from a point
cloud for visualization and analysis, the classical
method, marching cubes [30], can be applied. It in-
cludes three main steps: (i) Locate the surface corre-
sponding to a user-specified value. Suppose that the
given point cloud contains N points: pi = (xi, yi, zi)

T

(i = 1, 2, · · · , n), the spans or bounding box of these
points along different axes need to be firstly found
out: minimum and maximum xmin, xmax, ymin, ymax,
zmin, and zmax along the x, y and z axes, respectively:
xmin = mini xi, xmax = maxi xi, ymin = mini yi,
ymax = maxi yi, zmin = mini zi, and zmax = maxi zi.
Then it is necessary to determine the dimensionality
of the bounding box: nx, ny and nz, which leads
to the determination of the cube size: width sx,
height sy and depth sz as sx = (xmax − xmin)/nx,
sy = (ymax − ymin)/ny and sz = (zmax − zmin)/nz.
Finally, whether a voxel (u, v, w) contains at least a
point can be determined. If so, it can be represented
as S(u, v, w) = 1; if not, it can be represented as
S(u, v, w) = 0. All the points pi = (xi, yi, zi)

T of the
surface can be voxelized as: if u = b(xi − xmin)/sxc,
v = b(yi − ymin)/syc, and w = b(zi − zmin)/szc, then
S(u, v, w) = 1. Based on such information whether a
voxel is occupied, it is possible to determine whether
a cube vertex is inside and outside the surface repre-
sented by the given point cloud;

(ii) Create triangles. Interestingly, for each cube, it
has 8 vertices and each has two possible states: in-
side or outside the surface. Thus, altogether, there
are 256 different configurations between the states of
the vertices of the cube and the surface, which can
be enumerated and defined as a look-up table for the
sake of computational efficiency. Based on the sym-
metry, these 256 cases can be further reduced to 15 as
illustrated in Figure 9. Based on such configurations,
a mask can be created to index which edge has been
intersected, from which the intersection point can be
linearly interpolated based on the isovalue between 0
and 1. Suppose the edge has two vertices V1 with a
value of 0 and V2 with a value of 1, then the intersec-
tion point is V = V1 + isovalue(V2 −V1). Based on
the configurations of the vertices and these interpo-
lated points, a number of, at most five, triangles can
be generated; and

(iii) Calculate the normals to the shape at each ver-

tex. For each vertex of a triangle, the neighbouring
triangles {Ti} that share this vertex can be identified.
The normal vector ni and area ai of each triangle Ti

with vertices V0, V1, and V2 can be calculated as:
ni = (V1 −V0)× (V2 −V0)/||V1 −V0||||V2 −V0||
and ai = 0.5|(V1 −V0) × (V2 −V0)|. For ni, there
is an ambiguity about its sign. Considering the cap-
tured surface is visible from the scanner, then the fol-
lowing rule can be used to disambiguate its sign: if
ni · (V0 + V1 + V2)/3 > 0, then ni ← −ni. Fi-
nally, the normal vector n at vertex v is calculated as
a weighted average of ni with weights defined by ai:
n =

∑
Ti
aini/

∑
Ti
ai and n← n/||n||. Such scheme

shows that the normal vectors of large triangles will
dominate and thus is likely to prevent the normal vec-
tors of small and oblique triangles from distorting that
of the vertex significantly.

Figure 7 shows some examples for the visualization of
the soyabean and wheat point clouds stored in PLY
format [15] as rendered solid surface and triangular
mesh wireframe in Java3D, superimposed with the
original ones with intensity information respectively,
where isovalue = 0.0025, nx = 64, ny = 64, and
nz = 64. By comparison, it can be seen that the
range images are better rendered with neighborhood
information and smooth surface than the point clouds
with the block effect. This is because it is difficult to
decide the dimensionality of the bounding box. If it
is too small, then the rendered point cloud will lose
details due to low resolution. If it is too large, then it
is likely to create holes and discontinuity due to varia-
tion of density and lack of points in certain voxels. On
the other hand, with the dimensionality of the bound-
ing box increasing, the memory required will increase
dramatically in the order of O(nxnynz).

3 Point match establishment

The registration of overlapping range images has been
one of the most basic tasks to initiate 3D imaging
analysis and applications for structural similarity and
transformation. For still targets, the distance between
any two points in all range images is assumed constant.
In this case, the underlying transformation that brings
one range image R1 into the best possible alignment
with another R2 can be represented by a rigid rotation
matrix R, with RTR = I and the determinant of R
being equal to 1: det(R) = 1, and a translation vector
t. (R, t) represent the relative orientation and posi-
tion of the two viewpoints from which the two given
range images R1 and R2 were captured.

In this section, the principle of the existing Signature
of Histograms of OrienTations (SHOT) method [26]
is outlined due to its good performance for registra-
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tion of range images [31]. The SHOT method is ap-
plicable to both range images and point clouds. The
neighborhood of a point in a given range image can
be easily identified as discussed in the last section. In
the case of a given point cloud, the neighborhood of
a point can be defined as those within a certain dis-
tance from the point of interest or from the triangular
mesh generated by a chosen method such as marching
cubes as outlined in the last section. The main idea
of the SHOT method is to encode the local surface
orientation variation as a feature of a point on the
surface. The features of the points can be matched
for point correspondences, from which the underlying
transformation rotation matrix R̂ and translation vec-
tor t̂ can be estimated in the least squares sense using
the quaternion method [32] with a closed form solu-
tion, for example. A correspondence is such a pair of
points (p,p′) from two overlapping range images that
represent the same point on the surface of the object
of interest.

The SHOT method will be outlined in such a way as a
complete solution to 3D surface registration, instead
of just as a 3D surface descriptor. In this case, the
outline will include the following steps: feature point
detection, description, matching and underlying trans-
formation estimation in the following subsections.

3.1 Motivation

For feature extraction and matching (FEM), it is nor-
mally assumed that the points in the range images can
be represented using some features f that are invari-
ant to the coordinate system in which they are repre-
sented and the correspondences (p,p′) would have al-
most the same values in these features: f(p) = f(p′),
due to imaging sampling and noise. This is usually a
necessary condition for a pair of points that are cor-
responding to each other, but in most cases it is not
sufficiently robust enough. Henceforth a large pro-
portion of false correspondences is found in practice.
The false positive rate is sensitive to how the invari-
ant features f are defined. There are also a number of
influencing factors such as imaging noise, image reso-
lution, expressiveness of the features to be extracted,
and the geometry of the object of interest.

3.2 Feature point selection

While the SHOT algorithm did not include a feature
point selection step but randomly selected points as
input, for the sake of computational efficiency and es-
tablishing more reliable point matches, we outline an
effective method proposed in [33] for the task. The
point matches are more likely to be correct when they
are locally distinct. These points are usually called

feature points, key points, or interest points. They
are usually the points with extreme values in certain
features of interest over their neighborhood. To reduce
the sensitivity of feature points to the object geometry,
imaging noise and resolution, the neighborhood should
be large enough and the estimated features should be
relatively stable to these disturbing factors. The larger
the neighborhood, the fewer the feature points to be
selected and vice versa.

Given a range image and the Cartesian coordinates of
points pi, a triangular mesh can be generated through
triangulating these points as discussed in the last sec-
tion. Then the method in [34] can be applied for the
estimation of the shape indexes ps(i) and surface types
pt(i) of these points through the parameters such as
the normal vectors ni, principal curvatures, Gaussian
curvatures and mean curvatures of these points.

All the neighboring points of a point pi are identified
as those whose distances are smaller than a threshold
τ1: Ni = {pik| ||pik−pi|| < τ1} where τ1 is a threshold
set as τ1 = 2r, and r is the average of the distances of
the nearest points (DNPs) in the range image. Then
the minimum, average sm and maximum of the shape
indexes of these points are identified and calculated in
Ni. If ps(i) is a minimum and smaller than a threshold
(1 − β)sm or ps(i) is a maximum and larger than a
threshold (1 + α)sm, then point pi is selected as a
feature point, where β = 0.02 and α = 0.05. The
larger the parameters τ1, α and β are, the fewer the
feature points will be detected.

3.3 Local reference frame estimation

In order to describe the feature points for matching,
some invariants that do not change from one range
image to another have to be extracted in the local
reference frame (LRF) [26]. A weighted scatter ma-
trix method is proposed for the task over the neigh-
boring points of the selected feature points pi: Ni =
{pik| ||pik − pi|| < τ2} where τ2 is a threshold set as
τ2 = 15r and must be large enough to contain enough
neighboring points for the characterization of the lo-
cal geometry. The weighted scatter matrix C is con-
structed as: C =

∑
k(τ2−||pik−pi||)(pik−pi)(pik−

pi)
T , where the weight of each neighboring point pik

is defined as the difference between τ2 and its distance
||pik −pi|| to the feature point pi. While C is a sym-
metric matrix, then the Jacobi method can be used
to estimate its eigenvalues λ1, λ2, and λ3 in descend-
ing order, and their corresponding eigenvectors v1, v2,
and v3. Such vectors have an ambiguity of sign. To
construct a unique LRF, these signs should be disam-
biguated. The numbers n′1 = |N1

i | and n′2 = |N2
i | of

points in Ni on the positive and negative sides of v1

can be counted as: N1
i = {pik|(pik − pi) · v1 > 0}
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and N2
i = {pik|(pik − pi) · v1 < 0}. Suppose that

more points are always on the positive side, then if
n′1 < |Ni| − n′1, then the direction of v1 should be
flipped as: v1 ← −v1. The same method is applied to
v3 to disambiguate its sign. Finally v2 = v3 × v1.

3.4 Feature point description

To describe the distribution of neighboring points, a
bounding sphere with a radius of τ2 centred at the fea-
ture point pi is split into sections (Figure 10): na = 8
in azimuth, ne = 2 in elevation and nr = 2 in ra-
dius. A local histogram with nh = 10 bins is built
to describe how the neighboring points in each section
vary in normal vector relative to that of the feature
point pi. All the local histograms from different sec-
tions are finally concatenated as a na×ne×nr×nh =
8 × 2 × 2 × 10 = 320 dimensional vector fi for the
representation of each feature point pi. For the sake
of robustness to imaging noise and resolution, such
features fi are usually normalized as: fi ← fi/||fi||.
For a feature point pi, its feature vector fi is ini-
tialized as a zero vector with all components being
zero: fi = 0. For each neighbouring point pik,
which section it lies within can be identified: fx =
(pik−pi) ·v1, fy = (pik−pi) ·v2, fz = (pik−pi) ·v3,
fd = ||pik − pi||, the azimuth index is estimated as:
ak = batan2(fy, fx)/dac, the elevation index is esti-
mated as: ek = bacos(z/fd)/dec, the radius index is
estimated as: rk = bfd/drc, the bin index in the local
histogram is estimated as: bk = [(1 + ck)nh/2], and a
concatenated histogram fi is built as fi[((akne + ek) ∗
nr+rk)∗nh+bk]← fi[((akne+ek)∗nr+rk)∗nh+bk]+1
where da = 2π/na, de = π/ne, dr = τ2/nr, and ck
is the cosine of the including angle between its nor-
mal vector nik and the normal vector ni at the cen-
tral point pi: ck = nik · ni. Note that the vote of
1 from a neighboring point may be shared by neigh-
boring bins/sections, dependent on how far away the
point is from the center of neighboring bins/sections.
This is an optional operation and its implementation
details are thus omitted in this article. In some cases,
such histogram interpolation may lead to slightly more
accurate representation of the feature points.

3.5 Feature point matching

Given two range imagesR1 andR2 and their Cartesian
representation of point sets P and P′, the above steps
can be used to extract two sets of feature points pi
(i = 1, 2, · · · , n1) and p′j (j = 1, 2, · · · , n2) and their
descriptors fi and f ′j respectively. For each point pi,
the difference dij between its descriptor fi and any
feature descriptor f ′j can be calculated as dij = ||fi −
f ′j ||. Those points p′i and p′′i can be identified with

pi
2τ

Figure 10: The neighboring sphere with a radius of τ2
of feature point pi has been split into 4 sections in az-
imuth, 2 sections in elevation, and 2 sections in radius
for the illustration of the SHOT feature description.

the minimum and second minimum differences dii′ and
dii′′ : if pi and p′i have the same surface type and
dii′ < γdii′′ , then (pi,p

′
i) is established as a point

match where γ = 0.9752 and controls how different
p′i and p′′i should be when a putative point match
(PPM) (pi,p

′
i) can be established. It helps to remove

ambiguity in establishing the correct point matches.
The larger the value of γ, the more PPMs there would
be established, and vice versa.

3.6 Underlying transformation estima-
tion

Suppose (pi,p
′
i) (i = 1, 2, · · · , N) is a set of PPMs es-

tablished in the last subsection, then the underlying
transformation (R, t) can be estimated from the fol-
lowing objective function that minimises the sum of
the squares of the errors ei = ||p′i −Rpi − t|| of these
point matches:

J(R, t) = min
R,t

∑
i

e2i . (2)

The quaternion method [32] was used to optimize this
objective function with a closed form solution in the
least squares sense. In this objective function, all the
PPMs are equally treated, no matter how large their
errors ei are. Such objective function normally will
not lead to an accurate estimation of the underlying
transformation (R, t), since the false matched points
may dominate this objective function. To get an accu-
rate estimation of (R, t), the correct and false matched
points must be distinguished from each other and the
estimation should be based on the correct ones only.
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3.7 Computational complexity

The SHOT method has a computational complexity
of O(n) for the estimation of the shape indexes and
surface types of points of interest and O(n2) for calcu-
lating the inter-point distances for the search of neigh-
bouring points for the detection and description of the
feature points: n is the number of points in the given
range image, O(n3n4) for the estimation of the local
reference frame where n3 ≤ n is the number of fea-
ture points detected and n4 ≤ n is the number of
neighbouring points of a feature point, O(n3n4) for
the building of the feature descriptors, O(n3) for the
normalization of the feature descriptors, O(n23) for the
establishment of the PPMs and O(N) for the estima-
tion of the underlying transformation where N ≤ n3
is the number of the finally established PPMs. Thus,
it has an overall computational complexity of O(n2).
Without using the k-D tree [29], for example, to speed
up the search for the nearest neighbors, the computa-
tion in O(n2) will be extremely time consuming espe-
cially when n is larger than hundreds of thousands.

4 Point match evaluation

Suppose (pi,p
′
i) (i = 1, 2, · · · , N) is a set of PPMs es-

tablished using the SHOT algorithm outlined in the
last section between two given overlapping range im-
ages. Due to various factors such as the imaging noise,
occlusion, cluttered background and relative simple
geometry that the object surface has, the established
point matches usually include a large proportion of
false positives. Such false positives would lead to in-
accurate estimations of the underlying transformation
and thus inaccurate alignment of the given range im-
ages. While the random sample consensus (RANSAC)
method [27] has been widely used to combat such
false positives [26], it has a difficulty in classifying the
PPMs into inliers and outliers and measuring the qual-
ity of the candidate underlying transformations. In
this section, a novel alternative method is proposed
to advance the RANSAC method with better per-
formance. It assesses the reliabilities of these point
matches as weights in the unit interval that would
lead the underlying transformation to be estimated
in the weighted least squares (WLS) sense. Actually,
the proposed method is applicable to the PPMs estab-
lished by any typical FEM method between two par-
tially overlapping range images subject to rigid trans-
formations and it has an advantage of easy implemen-
tation.

4.1 Motivation and ideas

The proposed method was inspired by the gentle adap-
tive boosting [28] for the classification tasks. Given a
set of training examples, it includes three main steps:
(i) Train a set of weak classifiers; (ii) Estimate the
weighted average error and thus the boosting parame-
ter so that the weights of correctly classified examples
will be decreased, and those of the incorrectly classi-
fied examples will be increased; and (iii) Update the
weights of all the training examples. These steps are
repeated until either the maximum number of iter-
ations has been reached or the average error of the
weak classifier is too large. Finally a decision func-
tion is built for the classification of a given example.
The sign of the weighted average of the predictions of
all the weak classifiers indicates the class that it be-
longs to: where the larger the error the weak classifier
produces, the smaller the weight it contributes.

The problem for the evaluation of the established
PPMs is different from the classification problem
above in two aspects: (i) no training examples are
available whether they are correct or incorrect with a
label of 1 or −1, (ii) it is essentially a regression prob-
lem, rather than a classification one. Thus, we have to
adapt it. The main idea is to penalize such PPMs with
large errors from the weighted average. To make sure
that the method is robust to various range images for
the representation of different objects subject to dif-
ferent transformations, such errors are normalized by
their standard deviation. Then the weights of different
PPMs are updated with a closed form solution. These
steps are repeated until either the maximum number
of iterations has been reached or the weighted average
of the errors of the PPMs is small enough. These steps
are detailed in the following subsections.

4.2 Main steps

After a set of PPMs (pi,p
′
i) is established, a real num-

ber wi in the unit interval [0, 1] to represent their relia-
bilities as weights is introduced. The larger the weight,
the more likely we believe that the PPM (pi,p

′
i) is cor-

rect. wi was firstly initialized as wi = 1/N due to the
lack of knowledge about their true reliabilities.

Then wi was normalized as: wi ← wi/
∑
j wj . The un-

derlying transformation rotation matrix R and trans-
lation vector t can be estimated in the WLS sense
from the following objective function that minimizes
the weighted average of the squared errors e2i of all the
PPMs (pi,p

′
i):

J(R, t) = min
R,t

∑
i

wie
2
i . (3)

The quaternion method [32] was also used to optimize
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this objective function with a closed form solution.
Then the weighted average µ and standard deviation
σ of the errors ei of different PPMs (pi,p

′
i) can be

computed subsequently as:

µ =
∑
i

wiei, σ =

√∑
i

wi(ei − µ)2. (4)

To update the weight wi and make sure that the
method is robust to the variation of imaging resolu-
tion, imaging noise and magnitude of the underlying
transformation, firstly, we normalize the errors ei of
the PPMs (pi,p

′
i) from µ over σ as:

êi = (ei − µ)/σ, (5)

then we design the following objective function, which
minimizes the weighted average of the squared normal-
ized errors ê2i of the PPMs (pi,p

′
i) regularized by the

Shannon entropy of these weights in the framework of
entropy maximization [36]:

J(W) = min
W

∑
i

wiê
2
i +

1

β

∑
i

wi(logwi − 1) (6)

where W = {w1, w2, · · · , wN}, and parameter β bal-
ances the contribution of the two terms in the function
and is set to β = 4 in this article. Setting the first or-
der derivative of this objective function to zero leads
to: wi = exp(−βê2i ).
The above process can be repeated until either the
maximum number M of iterations has been reached
or µ is smaller than the average s of the DNPs in the
given images. In order to learn from different itera-

tions, we select the larger of the existing w
(k)
i and the

newly estimated one w
(k+1)
i at each iteration k as the

final updated weighted value:

w
(k+1)
i = max(w

(k+1)
i , w

(k)
i ). (7)

4.3 Summary of the proposed method

To summarize all the components and innovations de-
scribed in the previous section, we have the following
algorithm for the automatic registration of two over-
lapping range images R1 and R2:

1: Use a typical FEM method to select a set of feature
points from each range image

2: Use a typical FEM method to establish a set of
PPMs (pi,p

′
i)(i = 1, 2, · · · , N) between R1 and

R2

3: Initialize the weights wi of the PPMs (pi,p
′
i) as

wi = 1/N , iteration index k = 0, the maximum
number M of iterations, and the average s of the
DNPs in R1 and R2

4: do
5: k ← k + 1
6: Use Equation 3 to estimate (R, t)
7: Use Equation 4 to compute µ and σ
8: Use Equation 5 to normalise ei
9: Use Equation 7 to update wi

10: while k < M and µ > s

Our method is based on the normalized error penal-
ization and thus is called NEP. It can be seen that
it has a computational complexity of O(N) for esti-
mating (R, t), O(N) for calculating µ and σ, O(N)
for normalizing ei, and O(N) for updating wi. Thus,
it has an overall linear computational complexity of
O(N) in the number N of the established PPMs.

5 Experimental results

This section briefly outlines the experimental valida-
tion of the SHOT method and the proposed NEP
algorithm compared with the widely used RANSAC
method [27] for FEM. The experiment aims at provid-
ing some evidence of examining the established point
matches, the effectiveness of the FEM as given by the
SHOT/RANSAC/NEP methods and to assess their
limitations. The performance of these techniques is as-
sessed through the estimated transformation rotation
matrix R̂ and translation vector t̂ of the point matches
(pi,p

′
i) and to compare with that of the ground truth.

The estimated (R̂, t̂) can also be refined using the
SoftICP [35] method which is a variant of the tra-
ditional iterative closest point (ICP) algorithm [32].

The refined (R̂, t̂) can sometimes be used as ground

truth. The difference of (R̂, t̂) before and after ICP re-
finement can give some indication of the effectiveness
of the FEM methods [37]. Such a strategy is useful
especially when the ground truth (R, t) is either par-
tially known or unavailable, as it is the case for the
data being used in this article.

Of particular interests are the relative errors such as
the eh, eθ, and et of the estimated rotation axis ĥ, ro-
tation angle θ̂, and translation vector t̂ with respect to
the ground truth. The error is expressed in percentage
difference between the estimated and reference rota-
tion axes ĥ and h, rotation angles θ̂ and θ, and transla-
tion vectors t̂ and t of the underlying transformation:
eh = ||ĥ − h|| × 100%, eθ = (θ̂ − θ)/θ × 100%, and

et = ||t̂−t||/||t||×100% where the rotation angle θ̂ and

rotation axis ĥ are estimated from the estimated rota-
tion matrix R̂ as: θ̂ = 180

π acos((r11 +r22 +r33−1)/2),

ĥ ← ĥ/||ĥ||, ĥ = ( r32−r23
sin θ̂

, r13−r31
sin θ̂

, r21−r12
sin θ̂

)T , and

R̂ =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

. Other assessment param-
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Table 1: The estimated rotation matrix R̂, rotation axis ĥ, rotation angle θ̂, and translation vector t̂, and
computational time in seconds of different methods over different pairs of overlapping range images.

Image pair Method R̂ ĥ θ̂ t̂ time(sec)
cow42-37 SHOT 0.99 0.01 0.05 -0.99 24.75 59.58

-0.03 0.91 0.41 0.11 564.75
-0.04 -0.41 0.91 -0.06 -120.00

SHOT+SoftICP 0.55 -0.77 -0.32 0.23 57.88 -438.86 499
0.66 0.64 -0.38 -0.49 -459.92
0.50 0.00 -0.86 0.84 -181.78

SHOT+RANSAC 0.65 0.55 -0.52 0.09 49.79 -697.63
-0.59 0.80 0.11 -0.66 142.06
0.48 0.24 0.84 -0.75 -201.92

SHOT+RANSAC+SoftICP 0.64 0.54 -0.54 0.02 50.31 -723.69 186
-0.56 0.81 -0.16 -0.70 215.17
0.53 0.20 0.82 -0.72 -233.44

SHOT+NEP 0.64 0.56 -0.52 -0.00 50.14 -695.66
-0.56 0.81 0.18 -0.68 245.91
0.53 0.17 0.83 -0.73 -220.30

SHOT+NEP+SoftICP 0.64 0.54 -0.54 0.02 50.31 -723.66 206
-0.56 0.81 0.16 -0.70 215.17
0.53 0.20 0.82 -0.72 -233.43

bunny120-60 SHOT 0.55 0.34 -0.76 0.11 56.64 -503.54
-0.43 0.90 0.09 -0.88 57.09
0.71 0.28 0.65 -0.46 -231.61

SHOT+SoftICP 0.51 0.43 -0.74 -0.02 59.28 -499.88 26
-0.41 0.88 0.23 -0.87 150.88
0.76 0.19 0.63 -0.48 -246.60

SHOT+RANSAC 0.46 0.60 -0.64 -0.07 62.44 -430.61
-0.54 0.77 0.33 -0.76 217.06
0.70 0.20 0.69 -0.65 -205.40

SHOT+RANSAC+SoftICP 0.51 0.43 -0.74 -0.02 59.28 -499.89 16
-0.41 0.88 0.23 -0.87 150.86
0.76 0.19 0.63 -0.48 -246.60

SHOT+NEP 0.55 0.47 -0.69 -0.02 56.84 -464.66
-0.45 0.86 0.22 -0.83 146.68
0.70 0.19 0.68 -0.55 -207.61

SHOT+NEP+SoftICP 0.51 0.43 -0.74 -0.02 59.28 -499.96 25
-0.41 0.88 0.23 -0.87 150.91
0.76 0.19 0.63 -0.48 -246.69
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Figure 11: Different overlapping range images are brought into alignment by the original and evaluated PPMs
using different evaluation and refinement methods. From left to right column: SHOT, SHOT+SoftICP,
SHOT+RANSAC, SHOT+RANSAC+SoftICP, SHOT+NEP and SHOT+NEP+SoftICP. Top row: cow42-37;
Bottom: bunny120-60.

Table 2: The relative errors eh, eθ, and et in percentage of the estimated rotation axis ĥ, rotation angle θ̂, and translation
vector t̂, the average eµ and standard deviation eσ of the errors in millimeters of the RCs, and the percentage cp of correct
PPMs of different methods over different pairs of overlapping range images.

Image pair Method eh(%) eθ(%) et(%) eµ(mm) eσ(mm) cp(%)

cow42-37 SHOT 163.02 -57.24 172.59 1.00 1.29 0.22
SHOT+RANSAC 8.36 -1.03 10.61 0.74 0.42 5.51

SHOT+NEP 3.69 -0.00 5.52 0.74 0.43 5.51

bunny120-60 SHOT 14.14 -4.44 16.46 0.25 0.16 7.08
SHOT+RANSAC 20.58 5.34 18.06 0.26 0.16 7.08

SHOT+NEP 7.80 -4.12 9.15 0.25 0.16 7.08

eters are: computational time in seconds for the point
match establishment and evaluation, the average eµ
and standard deviation eσ of the registration errors ei
of the reciprocal correspondences (RCs) (pi,p

′
i) (i =

1, 2, · · · , n5): ei = ||p′i − R̂pi − t̂|| over all the points
in the two overlapping range images, eµ = 1

n5

∑
i ei

and eσ =
√

1
n5

∑
i(ei − eµ)2 and the percentage cp of

correct matches: cp = Nc/N ×100%, where R̂pi+ t̂ is
the closest to p′i over all points in the reference range

image R2, R̂T (p′i−t) is the closest to pi over all points
in the data range image R1, and Nc is the number of
correct matches with errors smaller than 4r with re-
spect to the estimated ground truth (R, t) from the
SoftICP algorithm.

Two pairs of real range images: cow42-37 and
bunny120-60 without backgrounds as shown in Fig-
ure 1 have been selected for the experiments. The
targets are free form surfaces of objects such as cow
and bunny and it is assumed that all range images
partially overlap and also that the objects exhibit rel-
atively complicated geometry in some places. Oth-
erwise, there is no other assumption for the image
matching and registration. All algorithms were imple-
mented and run on a PC with an Intel Xeon E5620
processor with C programming language inside the

Microsoft visual studio 2013 (without code optimiza-
tion).

5.1 Point match establishment

The experimental results are presented in Figure 11
and Tables 1 and 2. In the figure, the yellow pix-
els represent the transformed range images R1, and
green represents the reference range images R2. It
can be seen from Figure 11 that despite the fact that
the point matches were searched from all possible can-
didates and the percentage of the correct matches is
as low as 7%, the estimated underlying transformation
is still fairly accurate. This is especially the case for
the bunny120-60 images. A relatively accurate under-
lying transformation provides a good initialization for
the SoftICP algorithm which converges quickly within
just 25 seconds. However, the cow object consists
of background cluttered range images (e.g. cow42)
and therefore the point matches between cow42 and
other range images, such as the uncluttered cow37, ex-
hibit a large number of false positive matched points.
This leads to an inaccurate estimation of the under-
lying transformation in the least squares sense. Such
inaccuracy in the underlying transformation also de-
grades the refinement by using the SoftICP algorithm.
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The parameters of interest for the FEM in both ob-
jects are tabulated in Tables 1 and 2. It is seen that
the inaccurate transformation (R̂, t̂) estimated from
the cow42-37 range images leads the SoftICP algo-
rithm to take a long time of 499 seconds to converge
to a wrong solution with relative errors of the ro-
tation axis, rotation angle and translation vector as
large as 162.02%, −57.24 and 172.59% respectively. In
contrast, the relatively accurate transformation (R̂, t̂)
from the bunny120-60 range images produces approx-
imately 10 times smaller error of about 15%. This re-
sult demonstrates that it is feasible for FEM methods
to align overlapping range images coarsely and that
the SHOT algorithm is quite effective for the FEM
tasks. The experiments further show that despite the
fact that these images were captured under typical
imaging conditions and the objects include free form
shapes with varied complexities of geometry, varied
degrees of overlap, varied magnitudes of transforma-
tion, and varied levels of imaging noise, reasonable
registration results can still be obtained from these
range images.

5.2 Point match evaluation

Despite the fact that FEM methods have been seen ca-
pable to provide good alignments between overlapping
range images, the estimated underlying transforma-
tions are normally needed to be refined using a variant
of ICP algorithms [32]. The more accurate the initial

transformation (R̂, t̂) is, the more likely the ICP vari-
ants enhance the accuracy of the FEM. In this section,
the use of the point matches for better estimation of
the underlying transformation is experimentally inves-
tigated. This result also emphasizes the significance of
the point matches which impose influential effects on
the estimated transformation. Experimental results
to highlight these points can be seen in Figure 11 and
Tables 1 and 2.

It is also noted from Figure 11 that the alignment
accuracy of the transformations (R̂, t̂) has been en-
hanced by the RANSAC algorithm with a large
amount of interpenetration [38] for the cow42-37 im-
ages, but has been worsened for the bunny120-60 im-
ages, as demonstrated by the fact that the two im-
ages have been more significantly displaced in the 3D
space. These observations have been verified by Ta-
ble 2, bringing the relative errors in the rotation axis,
rotation angle and translation vector of the underlying
transformation from approximately 170% down to as
small as 10% over the cow42-37 images, but increasing
those from about 16% to about 20%. These results
do reveal the difficulty for the RANSAC method to
accurately classify the established PPMs into two cat-
egories: inliers and outliers and measure the quality

of the candidate underlying transformations. In con-
trast, the proposed NEP method successfully bring
all the overlapping range images into better align-
ment with less displacement and more interpenetra-
tion, with errors as small as 5% over the cow42-37
images and about 10% for the bunny120-60 images.
These results show that the proposed NEP method is
more powerful in evaluating the false positives highly
corrupted PPMs and thus producing more accurate
underlying transformations for the alignment of the
overlapping range images. The excellent performance
of the proposed NEP algorithm indicates that the
FEM perhaps may not be as challenging an issue as
expected in range image research. It may open a novel
avenue for the analysis of the range images. This
means that the development of either the FEM or
PPMs evaluation method may lead to accurate align-
ment of overlapping range images that may satisfy
the requirements of other related tasks such as object
modeling, classification, and recognition and simulta-
neous localization and map building (SLAM).

6 Conclusions

In this article, we have discussed the characteristics of
range images generated by several different types of
range cameras as an introduction for 3D model imag-
ing. Unlike digital broadband imaging, which only
encodes the reflectance property of the scene, range
images encode the distance of the scene from a refer-
ence point or plane instead, depending on the type of
the range camera. Since range images provide geomet-
rical information of the scene, the technology is impor-
tant to numerous applications in the real world such
as digital archiving of historical relics, simultaneous
localization and mapping for autonomous navigation
and quality assurance for industrial manufacturing as
outlined above in Section 1.2.

Due to the narrow field of view in range cameras, a
number of range images recorded at different viewing
points are needed to be stitched together to cover the
scene or the surface of the object of interest. The first
step is to align the range images in a common coordi-
nate system. Feature extraction and matching meth-
ods are usually needed for this kind of range image
registration. To this end, we have outlined one of the
most widely exploited methods, the signature of his-
tograms of orientations (SHOT) algorithm [26], for the
establishment of point matches between a given pair
of overlapping range images. However, range images
are often corrupted by imaging noise and cluttered
by background, and objects include relatively simple
geometry (such as plane, sphere, and cylinder), the
matched points normally consist of up to 90% false
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positives. Such large number of false matched points
make registration of overlapping range images a very
challenging task. It is critically important to establish
a robust methodology for the identification of false
positive matched points.

Inspired by the gentle adaptive boosting method [28],
the RANSAC method [27] has been widely adopted for
the image marching task [26], in this article, an alter-
native method based on the normalized error penal-
ization (NEP) approach to complement the RANSAC
method with an added advantage of easy implemen-
tation has been outlined. The method penalizes all
those matched points with errors far away from the
majority points. Then the transformation based on
these “good” matches is estimated in the weighted
least squares sense and the result is compared with
that of the ground truth data. It is observed that the
errors in the rotation axis, rotation angle and trans-
lation vector of the underlying transformation is re-
duced from approximately 170% down to 10% using
the RANSAC algorithm and it is further reduced to
5% when the proposed NEP algorithm is applied. This
is an encouraging result which may even be acceptable
for some real world applications as outlined above in
Section 1.2 without the need to be refined by the tra-
ditional ICP algorithm.

The readers are suggested to consult reference [32]
for further details of the de facto standard regis-
tration technique, iterative closest point (ICP) algo-
rithm. Readers who are interested in the variants of
this algorithm may find the following papers useful:
[39, 35, 40, 41, 42]. To gain some ideas about semi-
nal work in feature extraction and matching, it is rec-
ommended to read references [33, 43]. For advanced
readers who are interested in enhancing the FEM al-
gorithm, the random sample consensus (RANSAC) al-
gorithm [27] may be useful as the first step to estimate
the point matches and the underlying transformation.
To learn the classical techniques for the integration of
the registered range images, the readers are suggested
to refer to [1, 2, 3].
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