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ABSTRACT
In this paper, we propose and evaluate a novel shape measurement
describing the extent to which a 3D mesh is rectilinear. Since the
rectilinearity measure corresponds proportionally to the ratio of the
sum of three orthogonal projected areas and the surface area of the
mesh, it has the following desirable properties: 1) the estimated
rectilinearity is always a number from (0,1]; 2) the estimated recti-
linearity is 1 if and only if the measured 3D shape is rectilinear; 3)
there are shapes whose estimated rectilinearity is arbitrarily close to
0; 4) the measurement is invariant under scale, rotation, and trans-
lation; 5) the 3D objects can be either open or closed meshes, and
we can also deal with poor quality meshes; 6) the measurement
is insensitive to noise and stable under small topology errors; and
7) a Genetic Algorithm (GA) can be applied to calculate the ap-
proximate rectilinearity efficiently. We have also implemented two
experiments of its applications. The first experiment shows that,
in some cases, the calculation of rectilinearity provides a better
tool for registering the pose of 3D meshes compared to PCA. The
second experiment demonstrates that the combination of this mea-
surement and other shape descriptors can significantly improve 3D
shape retrieval performance.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval; I.3.m [Computer Graphics]: Mis-
cellaneous

General Terms
Measurement, Theory

Keywords
3D shape retrieval, rectilinearity, shape measurement

1. INTRODUCTION
How to quantify shape is an important research area with many

applications in computer vision [13, 30, 23, 27]. Usually it is
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preferable if the shape measurements have direct intuitive mean-
ings, for example, compactness [8], eccentricity [20], ellipticity
[18], rectangularity [19], rectilinearity [31], convexity [32], sym-
metry [12] and chirality [17]. Having intuitive shape measures
means that the results of shape retrieval queries can be explained
in a manner readily understandable by the user. Although several
approaches have been proposed for this kind of 2D shape measure-
ments, most of them cannot be directly generalized into 3D field.

Up to now, just a few global shape descriptors with direct mean-
ings for 3D models have been proposed. Zhang and Chen [28]
introduced methods to calculate global features such as volume-
area ratio, statistical moments, and Fourier transform coefficients
efficiently and then applied these descriptors for 3D shape retrieval
[29]. Paquet et al. [16] used the bounding box and other descriptors
for 3D shape matching. Corney et al. [5] described convex-hull
based indices like hull crumpliness, hull packing, and hull com-
pactness to carry out a preliminary coarse filtering of candidates.
Bribiesca [2] proposed a compactness measurement which corre-
sponds to the sum of the contact surface areas of the face-connected
voxels for 3D shapes. Kazhdan et al. [10] presented a 3D objects’
reflective symmetry descriptor as a 2D function associating a mea-
surement of reflective symmetry to every plane through the model’s
centroid. However, most of these 3D shape measures cannot be
applied to open meshes and they usually need voxelization which
involves expensive computation.

The most relevant work is presented in the paper [31] where Žu-
nić and Rosin proposed two rectilinearity measurements for 2D
polygons. They used values which consist of the ratio of the L2

norm perimeter and L1 norm perimeter of a polygon. Motivated
by their research, this paper introduces a novel shape measurement
describing the extent to which a 3D mesh is rectilinear. The rec-
tilinearity measurement corresponds proportionally to the ratio of
the sum of three orthogonal projected areas and the surface area of
the mesh. To the best of our knowledge, our work is the first one to
quantify the rectilinearity of 3D objects.

The rectilinearity measurement proposed in this paper has fol-
lowing advantages:

1. The measurement corresponds with the intuitive notion of
rectilinear 3D shapes;

2. The measurement is robust to small errors in topology and
insensitive to noise;

3. The measurement can be applied to both open and closed
meshes. Moreover, we can also deal with poor quality meshes,
which often occur in practice, such as flipped normal, degen-
erated elements, zero area triangles and so on;

4. The measurement is straightforward to compute and is in-
variant under scale, rotation, and translation.
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There are many applications of the rectilinearity measure in a
number of areas. For example, 3D shape retrieval and pose nor-
malization.

The explosion in the number of available 3D models has led to
the development of 3D shape retrieval systems that, given a query
object, retrieve similar 3D objects [23]. Therefore, “Shape-based
3D Model Retrieval” methodology, concentrating on the represen-
tation, recognition and matching of 3D models based on their in-
trinsic shapes, has become a new hot topic in computer vision [27].
A growing number of researchers have been involved in this area,
and have already made much progress. Feature extraction is the key
issue for an efficient retrieval system and a considerable number
of shape descriptors [3], such as: D1 [1], D2 [14], spherical har-
monic descriptor [11], skeleton based shape descriptor [22], and
view based features [4] et al have been proposed. These signa-
tures, which describe the global geometrical shapes of 3D models,
intrinsically have limitations on their discriminating capability as
well as their effectiveness and efficiency. Consequently, many peo-
ple have introduced partial matching schemes and shape descrip-
tors with local information [23, 27, 7] in order to improve retrieval
performance. However, such schemes are usually much more com-
putationally expensive and thus not suitable for real time systems.
Intuitively, the combination of different kinds of descriptors could
be an alternative choice.

Because a large number of shape descriptors are not invariant
under similarity transformations (scaling, translation and rotation)
pose normalization is often necessary during the preprocessing sta-
ges of 3D shape retrieval systems. To normalize a 3D model for
scale, the average distance of the points on its surface to the center
of mass should be scaled to a constant, while the translation invari-
ance is accomplished by translating the center of mass to the origin.
Securing the scale and the translation invariance is trivial but not the
rotation invariance. The most prominent tool for accomplishing the
rotation invariance is Principal Component Analysis (PCA) [25, 15,
26, 6]. The PCA algorithm is fairly simple and efficient. However,
it may erroneously assign the principal axes and produce inaccurate
normalization results, especially when the eigenvalues are equal or
close to each other, which is its intrinsic drawback that cannot be
overcome easily [24]. Therefore, we suggest using rectilinearity,
symmetry, etc for estimating pose.

In this paper, we describe, prove and test a novel rectilinearity
measurement for 3D meshes. Two examples of its applications are
also carried out. Following this introduction, the remainder of the
paper is organized as follows. In Section 2, we describe the defini-
tion and some concepts of the rectilinearity of 3D meshes. Then,
the basic idea of the rectilinearity measurement is briefly intro-
duced in Section 3 where corresponding theorems are also explic-
itly proved. Section 4 defines a novel rectilinearity measurement
for 3D meshes. This is followed by description about how to use
a GA to calculate the approximate rectilinearity of 3D meshes in
section 5. Afterwards, Section 6 illustrates some experimental re-
sults which validate the effectiveness and robustness of our shape
measurement. Furthermore, two applications on 3D shape retrieval
and pose registration are carried out in Section 7. Finally, we pro-
vide the conclusion of this paper as well as some future research
directions in Section 8.

2. DEFINITION AND NOTATIONS
In this section, we first describe a formal definition of rectilinear

3D meshes and then give some notations used in this paper. For
convenience, the meshes we describe here are 3D triangle meshes,
but the following definitions and theorems can also be adopted to
other 3D polygon meshes.

Figure 1: Projecting a triangle on three orthogonal planes

Definition 1. A 3D mesh M is rectilinear if the angles, between
the normals of every two faces, belong to {0, π2 , π,

3π
2 }.

Given a 3D mesh M which consists of N triangles {T1,T2, . . . ,TN},
the surface area of the mesh M is represented as S (M), while three
projected areas corresponding to the YOZ, ZOX and XOY planes
are Px(M), Py(M), Pz(M), respectively, defined by

Px(M) =
N∑

i=1

S ix, Py(M) =
N∑

i=1

S iy, Pz(M) =
N∑

i=1

S iz.

where S ix, S iy, S iz are the projected areas of triangle Ti on the plane
YOZ, ZOX and XOY , respectively (see Figure 1).

If we rotate the coordinate frame, we will get new projected areas
of the mesh M. Therefore, we will use Px(M, α, β, γ), Py(M, α, β, γ),
Pz(M, α, β, γ) for these three projected areas which are obtained af-
ter successively rotating the coordinate frame around its x, y, z axes
by angles α, β, γ. Here we denote the sum of these three projected
areas by

P(M, α, β, γ) =
N∑

i=1

P(Ti, α, β, γ)

= Px(M, α, β, γ) + Py(M, α, β, γ) + Pz(M, α, β, γ)

where P(Ti, α, β, γ) = S ′ix + S ′iy + S ′iz is the sum of three projected
areas (S ′ix, S

′
iy, S

′
iz) of the triangle Ti in the rotated coordinate frame.

Let that the original coordinates of the vertices of the triangles
{T1,T2, . . . ,TN} be denoted by (xi0, yi0, zi0), (xi1, yi1, zi1), (xi2, yi2, zi2),
i = 1, . . . , N. After successively rotating the coordinate frame
around its x, y, z axes with angles α, β, γ, we get their new coor-
dinates, represented as (x′i0, y

′
i0, z

′
i0), (x′i1, y

′
i1, z

′
i1), (x′i2, y

′
i2, z

′
i2), i =

1, . . . ,N, specified by formulae

(x′i j, y
′
i j, z

′
i j)

T = R(α, β, γ)(xi j, yi j, zi j)T , i = 1, . . . ,N, j = 0, 1, 2

where R(α, β, γ) stands for the rotation matrix. Let

−→
X i j = (xi j, yi j, zi j),

−→
X′i j = (x′i j, y

′
i j, z
′
i j), i = 1, . . . , N; j = 0, 1, 2.

Define
−→
η′i = (η′ix, η

′
iy, η

′
iz) = (

−→
X′i1 − −→X′i0) × (

−→
X′i2 − −→X′i0).

Then, the area of the triangle Ti is

S i = S ′i =
1
2
|−→η′ i| =

1
2

√
(η′ix)2 + (η′iy)2 + (η′iz)2
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and the projected areas of triangle Ti on the plane YOZ, ZOX and
XOY are

S ′ix =
1
2
|η′ix |, S ′iy =

1
2
|η′iy|, S ′iz =

1
2
|η′iz|,

respectively. Thus, We have

S i =
√

(S ′ix)2 + (S ′iy)2 + (S ′iz)2 ≤ S ′ix + S ′iy + S ′iz.

Using Root Mean Square-Arithmetic Mean Inequality, we obtain

S ′ix + S ′iy + S ′iz ≤
√

3
√

(S ′ix)2 + (S ′iy)2 + (S ′iz)2 =
√

3S i.

Thus S i ≤ S ′ix + S ′iy + S ′iz ≤
√

3S i. Since

S (M) =
N∑

i=1

S i =

N∑
i=1

√
(S ′ix)2 + (S ′iy)2 + (S ′iz)2,

P(M, α, β, γ) =
N∑

i=1

(
S ′ix + S ′iy + S ′iz

)
.

Finally, we get

S (M) ≤ P(M, α, β, γ) ≤ √3S (M).

Theorem 1. A given 3D mesh M is rectilinear if and only if
there exists a choice of the coordinate system such that the sur-
face area of M and the sum of three projected areas of M coincide,
i.e.

S (M) = P(M, α, β, γ)

for some α, β, γ ∈ [0, 2π].

Proof. On the one hand, if M is rectilinear then a rotation of
coordinate frame, such that all faces of M become parallel to one
of three planes YOZ, ZOX, XOY , ensures the equality S (M) =
P(M, α, β, γ), where α, β, γ are the rotation angles. On the other
hand, S (M) = P(M, α, β, γ) implies

N∑
i=1

√
(S ′ix)2 + (S ′iy)2 + (S ′iz)2 =

N∑
i=1

(
S ′ix + S ′iy + S ′iz

)
.

Furthermore, we derive√
(S ′ix)2 + (S ′iy)2 + (S ′iz)2 = S ′ix + S ′iy + S ′iz

⇒ S ′ixS
′
iy + S ′iyS

′
iz + S ′izS

′
ix = 0, i = 1, . . . ,N.

Therefore at least two of three projected areas S ′ix, S
′
iy, S

′
iz of a tri-

angle Ti are 0, which means all triangles Ti(i = 1, . . . ,N) of the
given mesh M are parallel to one of these three planes YOZ, ZOX,
XOY , namely, every triangle is parallel or orthogonal to all other
triangles, i.e. M is rectilinear.

3. THE BASIC IDEA
Theorem 1 gives the basic idea for the rectilinearity measure-

ment of 3D meshes. Theorem 1 together with S (M) ≤ P(M, α, β, γ)
suggests that the ratio

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

can be used as a rectilinearity measure, which is invariant under
similarity transformations, for the mesh M.

Since S (M) ≤ P(M, α, β, γ), it follows that S (M)
P(M,α,β,γ) ≤ 1. How-

ever, the infimum for the set of values of S (M)
P(M,α,β,γ) is not zero. So,

for our purpose, it is necessary to determine the maximal possi-
ble µ such that max

α,β,γ∈[0,2π]

S (M)
P(M,α,β,γ) belongs to the interval [µ, 1] for

any mesh M. Theorem 2 shows that µ = 2
3 and there is no mesh

satisfying

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

=
2
3
.

Theorem 2. 1) The inequality

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

>
2
3

holds for any 3D mesh M.
2) For any ε > 0, there is a mesh M such that

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

<
2
3
+ ε

or equivalently

inf
{

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

}
=

2
3
.

Proof. For convenience, we use an alternative expression of
P(M, α, β, γ) by

P(M, α, β, γ) =

N∑
i=1

P(Ti, α, β, γ)

=

N∑
i=1

P(Ti, ψi(α, β, γ), ϕi(α, β, γ))

=

N∑
i=1

(
| cos(ψi(α, β, γ))|S i

+| sin(ψi(α, β, γ))|| cos(ϕi(α, β, γ))|S i

+| sin(ψi(α, β, γ))|| sin(ϕi(α, β, γ))|S i

)

where ψi(α, β, γ) denotes the angle between the z axis and the nor-
mal of triangle Ti after the coordinate frame has rotated by the an-
gles α, β, γ around its x, y, z axes, while the angle between the x axis
and the perpendicular plane of Ti is represented by ϕi(α, β, γ). (See
Figure 2). For simplicity of notation, we will use ψi and ϕi instead
of ψi(α, β, γ) and ϕi(α, β, γ) in the following part of this paper.

Figure 2: Geometric relationships between a triangle and the
coordinate system
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We prove the statement 1) by a contradiction. Let us assume
the contrary, i.e., there exists a mesh M, which consists of N trian-
gles, such that S (M)

P(M,α,β,γ) ≤ 2
3 , or equivalently, P(M,α,β,γ)

S (M) ≥ 3
2 , for any

α, β, γ ∈ [0, 2π].
Since P(M,α,β,γ)

S (M) is a continuous nonconstant function defining on
α, β, γ ∈ [0, 2π], the equality P(M,α,β,γ)

S (M) = 3
2 cannot be always sat-

isfied for all α, β, γ ∈ [0, 2π]. (see Appendix Lemma 1). So we
have

�

Σ

P(M, α, β, γ)
S (M)

· ds

=

�

Σ

∑N
i=1 P(Ti, ψi, ϕi)

S (M)
· ds

=

N∑
i=1

∫ 2π

0

∫ π

0

P(Ti, ψi, ϕi)
S (M)

· sinψidψidϕi

=

∫ 2π

0

∫ π

0

∑N
i=1 P(Ti, ψ, ϕ)

S (M)
· sinψdψdϕ

>

�

Σ

3
2
· ds

=

∫ 2π

0

∫ π

0

3
2
· sinψdψdϕ = 6π

where Σ denotes the surface of the unit sphere. Using the last in-
equality, we derive

6π <

∫ 2π

0

∫ π

0

∑N
i=1 P(Ti, ψ, ϕ)

S (M)
· sinψdψdϕ

=
1

S (M)

N∑
i=1

∫ 2π

0

∫ π

0
P(Ti, ψ, ϕ) · sinψdψdϕ

=
1

S (M)

N∑
i=1

∫ 2π

0

∫ π

0

(| cosψ| + | sinψ||cosϕ|

+| sinψ||sinϕ|)S i sinψdψdϕ

=

∑N
i=1 S i

∫ π

0

(
2π| cosψ| sinψ + 8| sinψ|2)dψ∑N

i=1 S i

=

∑N
i=1 S i

(
2π + 4

∫ π

0 (2 sin2 ψ − 1 + 1)dψ
)

∑N
i=1 S i

=

∑N
i=1(6π)S i∑N

i=1 S i
= 6π.

This yields the contradiction 6π < 6π which proves 1).
It is enough to prove the statement 2) if we can find a sequence

of meshes . . . M99, M100, . . . , Mn, . . . (Mn denotes a mesh consisting
of n triangles) such that

lim
n→∞

(
max

α,β,γ∈[0,2π]

S (Mn)
P(Mn, α, β, γ)

)
=

2
3

Intuitively the sequence of n-triangles mesh Mn inscribed into the
unit sphere satisfies the previous equality. According to the proper-
ties of the sphere, we get the surface area limn→∞ S (Mn) = 4π and
the sum of three projected areas limn→∞ P(Mn, α, β, γ) = 2π + 2π +
2π = 6π, both of them hold independently on the choice of α, β, γ.

Therefore, we have

lim
n→∞

(
max

α,β,γ∈[0,2π]

S (Mn)
P(Mn, α, β, γ)

)
= lim

n→∞
S (Mn)

P(Mn, α, β, γ)

=
2
3

which proves 2).

4. A RECTILINEARITY MEASURE FOR 3D
MESHES

Motivated by the properties of the function

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

we define a rectilinearity measure for 3D meshes.

Definition 2. For an arbitrary 3D mesh M we define its recti-
linearity R(M) as

R(M) = 3 ×
(

max
α,β,γ∈[0,2π]

S (M)
P(M, α, β, γ)

− 2
3

)
. (1)

According to the definitions and theorems introduced above, we
obtain the following theorem which summarizes the properties of
the 3D mesh rectilinearity measure proposed here.

Theorem 3. For any 3D mesh M, we have:

1. R(M) is well defined and R(M) ∈ (0, 1];

2. R(M) = 1 if and only if M is rectilinear;

3. inf
M∈Π

(R(M)) = 0, where Π denotes the set of all 3D meshes;

4. R(M) is invariant under similarity transformations.

5. COMPUTATION OF RECTILINEARITY
Unlike the computation of the accurate rectilinearity for 2D poly-

gons [31], because of the complexity of P(M, α, β, γ) (see Appendix)
it is difficult (maybe impossible) to calculate the exact value of
rectilinearity for 3D meshes. From the introduction of preceding
sections, we can see that the computation of the rectilinearity is
actually a nonlinear optimization problem which can be efficiently
solved by intelligent computing methods. In this paper we choose
Genetic Algorithms which is an optimization technique based on
natural evolution [9].

First, we define a population including Ng individuals. Each in-
dividual consists of a value of fitness and three different chromo-
somes which are presented by binary codes. The fitness of an in-
dividual is defined as f it(α, β, γ) = S (M)

P(M,α,β,γ) and rotating angles
α, β, γ are encoded in the three chromosomes. The stopping crite-
rion here is the number of evolution generations Ngen.

Iterating the genetic algorithm process including encoding, eval-
uation, crossover, mutation and decoding for Ngen generations, we
get an individual with the group’s greatest fitness which can be used
as the approximate value of max

α,β,γ∈[0,2π]

S (M)
P(M,α,β,γ) .

Finally, we calculate the rectilinearity of the mesh by Equation (1).
Note: the parameters of the Genetic Algorithm in this paper are

chosen as follows. The number of individuals Ng = 50 and evolu-
tion generations Ngen = 200. The length of chromosome’s binary
codes Lc = 20. The probability of crossover pc = 0.800 and muta-
tion pm = 0.005.

398



Figure 3: The number of faces versus computation time

6. EXPERIMENTAL RESULTS
Since the rectilinearity measurement proposed in this paper is

calculated based on the area of triangles, together with the defini-
tions and theorems described in the previous sections we can sum-
marize the primary advantages (already described in section 1) of
this measurement. While these four properties indicate that the rec-
tilinearity measurement may be well suited for 3D shape analysis
tasks in theory, it is necessary to demonstrate that these desirable
properties are also satisfied in practice. As the third and fourth
properties are obvious, in this section we only illustrate experimen-
tal results to investigate the following questions:

1. How well does this measurement correspond with the intu-
itive perception of rectilinear 3D shapes?

2. How robust is this measurement with respect to geometric
noise and small errors or changes in topology?

We implemented the calculation of rectilinearity described in sec-
tion 5 in Visual C. The experiments were run on a Windows XP
Laptop with a 2.0 GHz Intel Core 2 Duo CPU, 1.0 GB DDR2 mem-
ory and an NVIDIA Quadro NVS 140M graphics card. After the
parameters of the GA have been chosen, the total computing time is
proportional to the number of faces. The relationship between com-
puting time and the number of faces of some individual meshes is
demonstrated in Figure 3. We can see that usually the calculation
can be finished within seconds and the computing complexity is
O(N) where N denotes the number of faces.

6.1 Rank of the rectilinearity
The rectilinearity measurement is applied to some meshes which

are obtained from a cube-like open mesh by cutting a part of differ-
ent size at a same direction. The rank of rectilinearity is shown in
Figure 4. All examples show that the rectilinearity measure is well
behaved.

The rectilinearity measure is now applied to a wide range of 3D
meshes which are then ranked in order of decreasing rectilinearity
(Figure 5). Note that the rectilinearity of cube is not exactly 1,
this is because of computational error. Comparison against human
intuitive notion shows that a similar ordering has been generated.

6.2 Robustness
It is often desirable that the shape descriptor is insensitive to

noise and small extra features, and robust against arbitrary small
topological degeneracies. In order to test the robustness of the cal-
culation of this measurement, we add small amounts of noise or
errors or both of them to several 3D meshes, and then compute the
rectilinearity for these objects. Results (see Figure 6) show that
our rectilinearity measurement of 3D meshes is robust to small er-
rors or changes in topology and insensitive to noise, because small

Figure 4: 3D meshes have identical inner angles but differ in
rectilinearity. All objects are displayed by images captured
from three different view points. Underneath are the corre-
sponding rectilinearity values.

Figure 6: Robustness of the calculation of rectilinearity. Un-
derneath are the values of rectilinearity.

changes of a mesh result in small changes to its surface area and
projected areas.

7. SOME APPLICATIONS

7.1 Pose Normalization
The calculation of rectilinearity can be used for pose estimation

of 3D meshes. The basic idea is that the value of α, β, γ maximising
S (M)

P(M,α,β,γ) of a mesh M specifies a standard pose for this object. Fig-
ure 7 illustrates some results of rectilinearity based and PCA based
normalization methods, respectively.

From Figure 7 we can see that usually, from the intuitive per-
ception of a human being, the rectilinearity based method performs
better than the PCA based method, especially when processing ar-
tificial objects such as tables, chairs, houses, cabinets, etc. More-
over, what is most important is that the rectilinearity based method
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Figure 5: Shapes ranked by rectilinearity. All objects are displayed by images captured from three different view points. Underneath
are the corresponding rectilinearity values.

Figure 7: Comparison of rectilinearity based and PCA based pose normalization methods. All objects are shown by three images
captured from the positive directions along the x, y, and z axes, respectively.

is much more stable than the PCA based method (shown in Fig-
ure 8), because small changes in the mesh result in small changes
in the areas but may result in large changes of the second order
moments which are applied to calculate the principle axes in the
PCA algorithm. However, there are also some models which can
be perfectly registered by the PCA based method rather than our
method. Therefore, a good approach may be to combine different
pose normalization methods in order to be able to cope well with
all (or most) shapes. This topic will be investigated in the future.

7.2 3D Shape Retrieval
The goal of this experiment is to evaluate the retrieval perfor-

mance of the combined features consisting of the rectilinearity mea-
surement and other three commonly used shape descriptors:

• D1: A histogram of distances from the center of mass to
points on the surface [1]. The number of histogram bins is
selected as 64.

• D2: A histogram of distances between pairs of points on the
surface [14]. The number of histogram bins is chosen as 64.

• LFD: A representation of a model as a collection of depth-
buffers rendered from uniformly sampled positions on a view
sphere. 35 Zernike moments, 10 Fourier coefficients, eccen-
tricity and compactness, extracted from these depth-buffers,
are used as the descriptor of the model. In order to accelerate
the retrieval speed, our LFD descriptor is slightly different

Figure 8: Comparison of the robustness between our method
and PCA based method for pose normalization. Normalization
results are shown by three images captured from the positive
directions along the x, y, and z axes, respectively.

from the original one proposed in [4]. We first normalize
the objects into a canonical coordinate system using PCA
algorithm, then capture 60 depth-buffers from uniformly dis-
tributed viewpoints on the unit sphere, thus construct a trans-
formation invariant feature vector with 2820 elements.
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There are currently several 3D model databases for performance
evaluation purposes, among which, the Princeton Shape Bench-
mark (PSB) [21] is perhaps the most popular and well-organized.
PSB is a publicly available 3D model benchmark database contain-
ing 1814 3D models which are classified into test and train sets.
Here, we use the PSB test set with base classification to evaluate
the retrieval performance that is quantified by the following evalu-
ation measures:

• Nearest neighbor (1-NN): The percentage of the closest ma-
tches that belong to the same class as the query.

• First-tier (1-Tier) and Second-tier (2-Tier): The percent-
age of models in the query’s class that appear within the top
K matches, where K depends on the size of the query’s class.
Specifically, for a class with |C|members, K = |C| − 1 for the
first tier, and K = 2(|C| − 1) for the second tier.

• Discounted Cumulative Gain (DCG): For details, we refer
the reader to the paper [21].

First, we test the original descriptors on PSB separately. Results are
shown in Table 1. Next, the rectilinearity values, with well tuned

Table 1: Retrieval performance of three individual descriptors.
D1 D2 LFD

1-NN 26.13% 33.73% 65.49%
1-Tier 13.12% 16.40% 37.15%
2-Tier 19.01% 24.55% 47.86%
DCG 40.38% 44.42% 63.83%

weights (using the train set of PSB), are added to the original sig-
natures to form new features. Thus we obtain three new combined
descriptors which are denoted as D1+R, D2+R, and LFD+R, where
the weights of rectilinearity are selected as 0.53, 0.29, and 41, re-
spectively. Retrieval results of them are demonstrated in Table 2.
The distance between every pair of shape descriptors is calculated
using their L1 difference. We can see that considerable improve-
ments have been achieved, mainly because the rectilinearity mea-
sure provides extra effective information with respect to the original
shape descriptors.

Table 2: Retrieval performance of three combined descriptors.
The value in the bracket means the percentage of the improve-
ment with respect to the original one.

D1+R D2+R LFD+R
1-NN 33.84%(29.54%) 44.98%(33.33%) 68.13%(4.04%)
1-Tier 18.68%(42.38%) 22.44%(36.78%) 41.05%(10.48%)
2-Tier 28.03%(47.42%) 31.89%(29.91%) 53.30%(11.38%)
DCG 46.66%(15.54%) 50.07%(12.71%) 67.25%(5.37%)

8. CONCLUSION
In this paper, we have proposed a novel rectilinearity measure-

ment, describing the extent to which a 3D mesh is rectilinear, and
we also proved several corresponding theorems. The measurement
presented here has several desirable properties including simplic-
ity, stability, robustness, and invariance to similarity transforma-
tion. We demonstrated how to compute it efficiently by a Genetic
Algorithm. Afterward, a series of experiments were carried out

to validate the robustness as well as the effectiveness of our shape
measurement in practice. Finally, we conducted two application
examples to show that the rectilinearity measurement not only pro-
vides a new tool to normalize the pose of 3D objects, but also sig-
nificantly improves the performance of 3D shape retrieval system
through the combination with other shape descriptors.

Three directions for future investigation are listed as follows:

1. Is it possible to calculate the optimal value of the rectilinear-
ity analytically, and how can this be done?

2. Can the rectilinearity based pose normalization method be
combined with the PCA algorithm to achieve better perfor-
mance?

3. Can we derive other 3D shape measurements, such as con-
vexity, rectangularity, and compactness, using the relation
between area and projected areas instead of the perimeter in
2D field in the same manner as we have described in this
paper?
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[32] J. Žunić and P. L. Rosin. A new convexity measure for
polygons. IEEE Trans. Pattern Analysis and Machine
Intelligence, 26(7):923–934, 2004.

APPENDIX
Lemma 1. P(M,α,β,γ)

S (M) is a nonconstant function defined on α, β, γ ∈
[0, 2π].

Proof. We prove the lemma by a contradiction: P(M,α,β,γ)
S (M) is a

constant function defined on α, β, γ ∈ [0, 2π]. Assume that the unit
normal of the triangle Ti is ni = [ai, bi, ci]T . After rotation, we
obtain a new normal

n′i = R(α, β, γ)ni =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
a′i
b′i
c′i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

a′i = ai cos γ cos β + bi(sin γ cosα + cos γ sin β sinα)
+ci(sinγ sinα − cos γ sin β cosα)

b′i = −ai sin γ cos β + bi(cos γ cos α − sin γ sin β sinα)
+ci(cos γ sinα + sin γ sin β cosα)

c′i = ai sin β − bi cos β sinα + ci cos β cosα.

And we have

P(M, α, β, γ)
S (M)

=

∑N
i=1

(|a′i |S i + |b′i |S i + |c′i |S i
)

∑N
i=1 S i

Let α, β be constants and ensure that not all faces of the mesh are
parallel to XOY plane. Then we can find an interval γ ∈ [γ0, γ0 +

ε], ε > 0 such that

P(M, α, β, γ) =
N∑

i=1

(
f ai · a′i · S i + f bi · b′i · S i + f ci · c′i · S i

)

and

PYOZ(M, α, β, γ) + PZOX(M, α, β, γ)

=

N∑
i=1

(
f ai · a′i · S i + f bi · b′i · S i

)
> 0

where
{
f ai, f bi, f ci|i = 1, 2, . . . ,N

} ⊂ {+1,−1}.
Since P(M,α,β,γ)

S (M) and S (M) both are constant functions, P(M, α, β, γ)
should also be a constant function defined on α, β, γ ∈ [0, 2π]. Then
we obtain

0 =
d
(
P(M, α, β, γ)

)
dγ

=
d2(P(M, α, β, γ)

)
dγ2

=

N∑
i=1

( − f ai · a′i · S i − f bi · b′i · S i
)
< 0

when α, β are the given constants and γ ∈ [γ0, γ0 + ε], ε > 0. The
obtained contradiction 0 < 0 proves the lemma.
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