
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 1

Learning on 3D Meshes with Laplacian
Encoding and Pooling

Yi-Ling Qiao, Lin Gao∗, Jie Yang, Paul L. Rosin, Yu-Kun Lai and Xilin Chen

Abstract—3D models are commonly used in computer vision and graphics. With the wider availability of mesh data, an efficient and
intrinsic deep learning approach to processing 3D meshes is in great need. Unlike images, 3D meshes have irregular connectivity,
requiring careful design to capture relations in the data. To utilize the topology information while staying robust under different
triangulations, we propose to encode mesh connectivity using Laplacian spectral analysis, along with mesh feature aggregation blocks
(MFABs) that can split the surface domain into local pooling patches and aggregate global information amongst them. We build a mesh
hierarchy from fine to coarse using Laplacian spectral clustering, which is flexible under isometric transformations. Inside the MFABs
there are pooling layers to collect local information and multi-layer perceptrons to compute vertex features of increasing complexity. To
obtain the relationships among different clusters, we introduce a Correlation Net to compute a correlation matrix, which can aggregate
the features globally by matrix multiplication with cluster features. Our network architecture is flexible enough to be used on meshes
with different numbers of vertices. We conduct several experiments including shape segmentation and classification, and our method
outperforms state-of-the-art algorithms for these tasks on the ShapeNet and COSEG datasets.

Index Terms—Mesh Processing, Segmentation, Laplacian, Deep Learning

F

1 INTRODUCTION

ANALYZING high-quality 3D models is of great signifi-
cance in computer vision and graphics. Better under-

standing of 3D shapes would benefit many tasks such as
segmentation, classification and shape analysis. Recently,
deep learning methods have been prevalent in 2D image
processing tasks such as image classification [1], [2] and se-
mantic segmentation [3], [4]. With the help of large-scale im-
age datasets and improved computational resources, deep
learning methods boost the performance of image process-
ing algorithms by a large margin. Inspired by the success
in images, researchers also apply learning algorithms to 3D
data.

Recently, large-scale 3D datasets have made it possible
to train neural networks for 3D shapes. Nevertheless, it is
not a simple extension to apply neural networks in the 3D
space. There are various 3D representations. The majority
of 3D representations such as meshes, point clouds etc.
are non-canonical, requiring special design to feed them
through neural networks. To address this, some approaches
are trained on ModelNet [5] and deal with voxels, but
the resolution of voxel data is limited due to the curse

∗ Corresponding author is Lin Gao.

• Y.-L Qiao is with the Beijing Key Laboratory of Mobile Computing and
Pervasive Device, Institute of Computing Technology, Chinese Academy of
Sciences and also with with Department of Computer Science, University
of Maryland, College Park, US. E-mail: yilingq97@gmail.com

• L. Gao and J. Yang are with the Beijing Key Laboratory of
Mobile Computing and Pervasive Device, Institute of Computing
Technology, Chinese Academy of Sciences and also with the University
of Chinese Academy of Sciences, Beijing, China. E-mail: {gaolin,
yangjie01}@ict.ac.cn

• P.L Rosin and Y.-K Lai are with School of Computer Science
and Informatics, Cardiff University, Wales, UK. E-mail: {RosinPL,
LaiY4}@cardiff.ac.uk

• X. Chen is with Institute of Computing Technology, Chinese Academy of
Sciences and also with the University of Chinese Academy of Sciences,
Beijing, China. E-mail: xlchen@ict.ac.cn.

of dimensionality. Alternatively, point clouds representing
an object by a set of unstructured points with their xyz
coordinates are commonly used. However, point clouds
do not carry connectivity information and therefore are
less efficient than meshes to represent shapes, and may
have ambiguities when two surfaces are close. Another
representation, the 3D mesh, is a fundamental data structure
in computer graphics and vision, which not only encodes
geometry but also topology and therefore has better de-
scriptive power than the point cloud. A mesh is a graph
with vertices, edges and faces that characterize the surface
of a shape. For deep learning methods, mesh data is more
compact but irregular when compared to voxels, making the
equivalent of simple operations in the image domain such
as convolutional kernels highly non-trivial. It also contains
richer structure than a point cloud, which can be exploited
when learning on 3D meshes. This paper proposes a flexible
network structure that can utilize connectivity information
while staying robust under different triangulation.

To learn on 3D meshes, we propose the Laplacian En-
coding and Pooling Network, which takes raw features of
mesh models as input and outputs a function defined on
the vertices. Inspired by image processing networks, we
observe an intuitive principle that vertex features should be
computed independently and associatively in different parts
of the network. We therefore extend this methodology into
the non-Euclidean space of 2-manifolds. In our design as
in Fig. 1, the basic network structure involves consecutive
mesh feature aggregation blocks (MFABs). Each block can
split the surface into patches, like super-pixels in the image
domain, by Laplacian spectral clustering. After splitting, the
MFAB can simultaneously compute features of individual
vertices and clusters. Considering the relationships between
clusters, we use a Correlation Net to compute a matrix that
can fuse the information globally. Compared to images, a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 2

major difficulty for learning on meshes is that the vertices
are unordered, and so are the clusters. For this reason, a
fully-connected layer cannot work out the correlation matrix
effectively. Therefore, we disentangle the correlation by in-
dependently mapping the clusters into a vector space. Then,
the correlation between a pair of clusters is determined by
the inner product of their corresponding vectors.

Prior to our method, effort has been made to learn on
3D meshes. Please refer to [6] for the history and frontier
research of deep learning on geometric data. Some works
exploit geodesic distances on shapes [7], [8]. Based on
this metric they design a spatial convolutional operator.
Geodesic distance is invariant under isometric transforma-
tion, making their networks more robust. Compared to
their directly computing the distance, our network utilizes
the geodesic distance in an implicit way. The clustering
is performed in the Laplacian feature domain, where Eu-
clidean distance can approximate geodesic distance on the
manifold [9]. As a result, the pooling is robust to isometric
deformation and different triangulations (shown in Fig. 5).
Others choose to work in the spectral domain [10], [11],
by defining convolutional kernels in the Fourier domain.
However, the dependency of coefficients on the domain
basis makes it difficult to share weights across shapes.
Consequently, works like [12] have modules purposefully
designed to synchronize the basis of domains. Our net-
work does not suffer from changing domains, and we also
propose a flexible structure, Correlation Net, to address
the alignment of clusters across models. Compared to all
the aforementioned methods, we use both spectral and
spatial information, such that our network can utilize the
connectivity of meshes while staying robust under different
domains with inconsistent triangulation.

The pipeline of our approach is shown in Fig. 1, which
learns cross-domain mesh functions using both spatial and
spectral information. Overall, our network has the following
three modules: 1) the preprocessing step computes vertex
features and clusters from the raw mesh data; 2) the Mesh
Feature Aggregation Block (MFAB) calculates local features
within local regional clusters and collects global information
through Correlation Net; 3) the last part of the network
depends on the specific application, e.g., it may output
segmentation masks or classification labels.

In the experiments, we first evaluate the importance
of mesh feature aggregation blocks and the choice of the
input features. We then justify that our single network
can deal well with different mesh models with different
numbers of vertices. To test the capability of our network,
we train our network on the ShapeNet and COSEG datasets
to perform classification and segmentation tasks, which are
fundamental shape understanding tasks in computer vision,
and show superior overall performance.

The main contributions of our method are as follows:

• We propose the Laplacian Encoding and Pooling
Network, a general network for learning on 3D
meshes, which can utilize the connectivity of meshes
while staying robust under different triangulations.

• We propose a flexible pooling operation that can
split model surfaces into clusters, like superpixels in
images. By varying the clusters from fine to coarse,

the network can process meshes hierarchically.
• We introduce a Correlation Net to compute the re-

lationship among clusters. The computation process
circumvents the randomness of cluster ordering, en-
abling consistency across domains.

2 RELATED WORK

We first summarize deep learning methods on 3D represen-
tations, and then provide a brief introduction to alternative
input shape features. Finally, we review recent methods
for mesh segmentation, which is a fundamental task when
analyzing shapes.
3D Deep Learning. With the increasing availability of 3D
models, deep learning methods for analyzing 3D data struc-
ture have been widely studied nowadays. There are sev-
eral representations for 3D shapes, including voxels, point
clouds and meshes. The voxel representation is similar to
pixels in the 3D space, which can utilize a direct exten-
sion of 2D convolutional networks [13]. The point cloud
is intensively researched, with works like [14] learning
the transformation matrix of points and obtaining decent
results on multiple datasets. Qi et al. [15] further propose
PointNet++ that adds pooling operations, where pooling
areas are selected by nearest neighbors. We aim at different
problems: While they address problems on point clouds,
our method focuses on meshes. To better understand 3D
meshes, the topology information is deeply exploited in
our method. First, we use topology to perform cluster-
ing. In contrast, the nearest neighbor clustering strategy
of PointNet++ cannot perceive surface structure of meshes.
Second, we use features that contain topology information
as input. Meanwhile, we believe that it is not appropriate
to carry the entire topology during the whole process. The
connectivity information is irregular, large, hard to compute,
and sensitive to noise. We instead condense the topology
information by encoding the connectivity into the pooling
areas and input features.

For the mesh representation, spatial methods [7], [8]
define convolutional kernels on surfaces. Our method also
utilizes spatial information, as the pooling operation par-
titions the surface into patches, acting like super-pixels in
image processing. For spectral methods, Bruna et al. [10]
introduce a spectral convolutional layer on graphs, which
can be interpreted as convolutions in the Fourier domain.
Henaff et al. [16] handle large-scale classification problems.
They propose to exploit the underlying relationships among
individual data points by constructing a graph of the dataset
and then solving a graph-based classification. When pro-
cessing the graph, they introduce a CNN structure with
spectral pooling. Compared with ours, their work focuses
on the nodes and the pooling operation does not take
advantage of geometric information.

The way our method uses the Laplacian is different from
many other works on graphs. Defferrard et al. [17] use the
graph Laplacian operator to construct a convolution kernel
which can extract localized features in a discrete graph.
After that, variants of graph neural networks (GNNs) have
been applied to learning from 3D data [18], [19]. Recently,
Kostrikov et al. [20] propose upgrades to GNNs and use
the Dirac operator in the network. Our method uses the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 3

Correlation
Net

matrix
multiply

MLPs
(128,c’)

MLPs
(128,256,d)

compute correlation

cn cn 

cp  cp 

)(ccn +

pp dp 

Mesh Feature
Aggregation Block

C

input feature

output feature

dn 

Mesh Feature
Aggregation Block

Mesh Feature

Aggregation Block

Segmentation
Network

Classification
Network

Applicaions

part mask

class label

Laplacian Spectral Clustering

clusters clusters1p 2p

Feature
Precomputation

pooling

cn

pooling

Fig. 1. Overview of our Laplacian Pooling Network. Given a 3D mesh as input with the aim of producing some kind of vertex function (depending on
the application) as output, the pipeline of our network has three main components. First we preprocess the mesh to compute Laplacian eigenvectors
and spectral clustering. These along with vertex coordinates and normals form the input feature to the network. Second, we stack several Mesh
Feature Aggregation Blocks (MFABs) to analyze the shape model under multiple resolutions. An MFAB includes some multi-layer perceptrons
(MLP) to compute features independently for each vertex, and also a pooling layer to compute the features for clusters. A Correlation Net learns
a correlation matrix C to fuse features across clusters. Then the fused features are concatenated with the MLP results, and then associated with
individual vertices in the cluster. After a sequence of MFABs (two in this illustration), the features are fed into the Application Network to produce
output according to specific applications.

Laplacian in a different way. To exploit the manifold struc-
ture, we perform spectral analysis on the mesh Laplacian
with the cotangent weights instead of using the graph
Laplacian operator. These two Laplacians also have different
formulations.

A fundamental problem of spectral convolution is gen-
eralizing across domains since the coefficients of spectral
filters are basis dependent [6]. To address this problem,
Yi et al. [12] further propose SyncSpecCNN to perform con-
volutional operations in a synchronized spectral domain,
where they train a Spectral Transformer Network to align
the functions in different domains. Compared to all the
spectral CNN methods above, our method takes advantage
of Laplacian spectral analysis to encode mesh topology and
identify a spatial clustering strategy but avoids suffering
from its dependency on the domain. We also show in the
Experiments section that our method is robust under differ-
ent object categories, number of vertices, and triangulations.

Recently, Song et al. [21] use a multi-view representation
of meshes and apply a CNN on it. Some other works design
regular CNNs on surface meshes by parametrizing the
manifold. Ezuz et al. [22] map unstructured geometric data
to a regular domain by optimizing the metric distortion.
Toric covering [23], [24] is also used to define convolutions.
MeshCNN [25] learns features of a mesh defined on edges
and the authors design a learnable pooling operation via
edge collapse.
Shape Features. Over the years, many shape features have

been developed to describe shape characteristics, including
curvatures, geodesic shape contexts, geodesic distance fea-
tures as used in [26], Heat Kernel Signatures [27], Wave
Kernel Signatures [28], etc. Our network exploits mesh
Laplacian spectral analysis, which provides an effective
encoding of mesh topology. Laplacian eigenvectors also
help us to cluster vertices for pooling layers, and it is an
intrinsic feature describing the geometry of shapes. Read-
ers can refer to [29] for details about computation and
applications of graph Laplacian. However, two essential
problems with Laplacian eigenvectors are that the sign is not
well-defined, and perturbation occasionally occurs in high
frequency terms. To eliminate these ambiguities, we use the
absolute value of low frequency terms as input.

Mesh Segmentation. Mesh segmentation has long been
a fundamental task in the field of computer vision and
graphics. There are unsupervised and supervised methods
to perform this task. For unsupervised methods, recent
work usually uses the correspondence or correlation be-
tween shape units to co-segment a collection of objects
in the same category [30], [31], [32], [33]. Those methods
essentially analyze a whole dataset of similar 3D shapes
and cluster shape parts that can be consistently segmented
into one class. Other works try to take advantage of labeled
data to develop a supervised method. Thanks to recent
shape segmentation datasets [34], [35], [36], [37], supervised
methods obtain higher accuracy than unsupervised ones.
Among all those datasets, COSEG [35] and ShapeNet [35]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 4

have sufficiently many samples to train a network with
reasonable generalizability, so we conduct experiments on
the two datasets. Previous deep learning methods usually
design different architectures to perform segmentation. For
example, George et al. [38] design a multi-branch 1D con-
volutional network and Wang et al. [39] put convolutional
kernels on neighboring points and a pooling layer on the
coarsened mesh. A 2D CNN is embedded into a 3D surface
network by a projection layer in [40]. Guo et al. [41] concate-
nate different feature vectors into a rectangular block and
apply CNNs to this image-like domain. Our method aims
to develop a general network for learning on 3D meshes,
and we demonstrate that our general approach outperforms
existing methods in most cases.

3 METHODOLOGY

3.1 Problem Statement
Our proposed network is a general method for 3D meshes,
capable of dealing with different numbers of vertices. Sup-
pose that the current input G = (V, E) is a mesh with N
vertices. There is an input feature function f defined on
vertices V , i.e., f : V → RN×c where c is the dimension
of input features, typically containing coordinates, normals,
the mesh Laplacian, curvatures, etc. At the same time, there
is a target function g that we aim to produce. It can usually
be a vector function such as a segmentation g : V → Cs

N

where each entry corresponds to the label of a vertex, or a
single value like classification category for the whole object
g : G → Cl, where Cs and Cl are the sets of segmentation
labels and classification categories respectively. We would
like to mention that g may also represent other functions
including texture or normals. Our aim is to design a general
neural network that learns the mapping from input feature
f to the output g. For the segmentation and classification
tasks, we precompute the normals and mesh Laplacian
eigenvectors as input features. Our network will output an
N × |Cs| matrix for segmentation, which gives the score for
each vertex belonging to each segmentation label, or a |Cl|
dimensional softmax vector for classification.

3.2 Feature Precomputation Module
The inputs to our network are vertices, faces, and features.
To use minimal features to characterize local geometric
information, we design a feature precomputation module in
the network to compute normals and Laplacian vectors from
vertices and faces. Moreover, a k-means operator is also
included in the Feature Precomputation module to perform
clustering.

For later pooling layers, we use Laplacian spectral clus-
tering [29] at multiple resolutions. Different from spectral
convolutions in [16], our pooling layers reduce any number
of vertices to a desired dimension, which makes it possible
for our method to cope with meshes with different topology.
In practice, the Laplacian matrix is computed by

L = A−1(D −W), (1)

where A = diag(a1, ..., an) are vertex weights defined as
local Voronoi areas ai, equal to one third of the sum of
one-ring triangles areas. W = {wij}i,j=1,...,N is the sparse

cotangent weight matrix, a discretization of the continuous
Laplacian over mesh surfaces [42], and D is the degree
matrix which is a diagonal matrix with diagonal entries
dii =

∑N
j=1 wij . The Laplacian feature Φ is the set of

eigenvectors of matrix L. Please refer to [29] for detailed
computation and applications of graph Laplacian.

To cluster vertices at different levels, we perform k-
means clustering on Φ with different numbers of clusters
k = pl such that vertices are clustered into pl clusters
for the lth pooling block. l = 1, 2, . . . , L, and L is the
number of levels. To achieve local-global feature extraction,
pl decreases as l increases. Note that since the clustering is
in the feature domain, vertices on the surface within one
cluster are not necessarily connected. This is also reasonable
because some semantically similar vertices can be far away.

3.3 Network Architecture
The architecture of our network is illustrated in Fig. 1.

Given the preprocessed feature function f defined on
vertices V , our network takes the feature matrix as input,
each row being a feature vector of a vertex. By reducing
the input features to a matrix, we avoid a complex graph
structure and make it tractable for neural networks.

Several mesh feature aggregation blocks (MFABs) are
then applied in various resolutions for multiple times. At
the end of MFAB blocks, the application network outputs
the target function g. Details about pooling blocks will be
further discussed in the next section. The architecture of the
application network for classification and segmentation is
shown in Fig. 2.

In our design, to circumvent the complex and irregular
topology of mesh data, we seek a pipeline that can con-
cisely describe the relationship among vertices. Instead of
directly processing edges E , we simplify this problem by
only processing vertices V of mesh G. Nevertheless, edges
are not ignored, but instead implicitly encoded into the
Laplacian eigenvectors and spectral clusters as described
in the previous subsection. Since the mesh Laplacian is
intrinsically induced from geodesic distances, our method
is robust to remeshing and isometric transformations.

Moreover, since the total number of vertices in a mesh
can vary significantly from model to model, an ideal net-
work architecture should be able to deal with meshes with
different numbers of vertices. Our solution is to design mesh
feature aggregation blocks, which turn meshes of arbitrary
sizes into levels with the same number of clusters. By stack-
ing together several blocks in a multi-resolution manner, our
network can learn to extract useful features from the mesh.
In addition, our network uses parameters more effectively
with shared weight Multi-Layer Perceptron (MLP), which
also helps avoid over-fitting by reducing the complexity
of our network. Our method consequently achieves good
results for shape classification and segmentation.

3.4 Mesh Feature Aggregation Blocks
A mesh feature aggregation block is composed of three
modules: the Multi-Layer Perceptron (MLP) layers [43], the
pooling layers, and a Correlation Net. Fig. 1 shows an
illustration of a mesh feature aggregation block. Each mesh
feature aggregation block obtains its input feature Fl of

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 5

One-hot

MLP MLP

Pooling

Concat Tile

MLP MLP MLP

1 cat_num

128

128+cat_num 128x(128+cat_num)

MFAB
output

label
2048x128 2048x128

2048x128

2048 x part_num

Segmentation Network

MLP MLP MLP Pooling
Fully

Connected

Fully

Connected

2048x128 2048x128 128 256 256

Classification Network

MFAB
output

cat_num

2048x256

2048x256

Fig. 2. The application network for segmentation and classification. For the segmentation task (top row), the application specific network takes
as input the category label of a certain item and the features defined on vertices. The vertex features go through two MLP layers and then are
duplicated into two branches, one of which is sent to a global pooling, combined with the one-hot vector of input label and then attached back to
vertex features from the other branch. Finally, two MLP layers are used to compute the final segmentation mask. For the classification network
(bottom row), the vertex features sequentially go through MLP layers, global pooling, and fully connected layers. Eventually a softmax vector for
candidate labels is predicted.

size N × cl from the previous layer. It also gets the cluster
mask Ml from the precomputation step, where an entry
ml,i ∈ {1, 2, . . . , pl} in the mask Ml ∈ ZN indicates for
node i which cluster it belongs to. The total number of
clusters for the lth block is pl.

As illustrated in Fig. 1, the data flows through three
branches. The upper path is a series of MLP layers, learning
vertex features of increasing complexity; the middle path is
the pooling layer followed by a correlation matrix multipli-
cation, which fuses global and local information; the bottom
path is a Correlation Net that computes the correlation
matrix, learning the interaction among clusters.

The upper path of the MFAB in Fig. 1 is a set of MLP
layers with shared weight perceptrons connected to all the
vertices. For a certain vertex i, an MLP layer multiplies its
input Fl,i and weight matrix W with bias b, followed by a
ReLU(·) activation function. The operation of this layer can
be expressed as

MLP (Fl,i) = ReLU(WFl,i + b). (2)

For the pooling layer, the input includes features Fl from
the last block and a cluster mask Ml. Its result is defined
as applying the operation to all the nodes belonging to the
same cluster. Take max pooling as an example. The pooling
result Pl,j corresponding to the jth cluster of the lth block
is:

Pl,j = max
ml,i=j

Fl,i. (3)

Furthermore, we want the features to be computed
across clusters. For images, convolutional kernels can be
used to fuse pooling results. However, since triangle meshes
do not have a regular grid and consistent clustering, such
an approach does not work. Standard global pooling can
be a simple choice, but each cluster has equal contribution
and detailed information is lost. At the bottom path in
Fig. 1, in order to aggregate information from all clusters,
we multiply the pooling results with a correlation matrix
Cl = {cij}pl×pl

. Each entry cij measures the correlation
between the ith and jth clusters, such that the aggregated
pooling result is obtained as P̃l = ClPl. The Correlation

Net computes the matrix C by learning a latent vector
embedding for each cluster:

Ψl = {ψlj} = Pooling(MLP (Fl)), (4)

and entries of the correlation matrix are inner products of
latent vectors of cluster pairs clij =< ψli,ψlj >. Then, we
can get

P̃l = ΨlΨ
T
l Pl. (5)

The concatenation layer combines vertex features from
the upper-path MLPs and aggregated pooling results. For
the vertex i in cluster j, its output feature is written as

{MLP (Fl,i), P̃l,j}. (6)

In summary, the MFAB is used for both processing the
local information and finding the relationships among local
patches. The motivation for pooling in the mesh is to better
understand spatial information. Ideally, the input vertices
are hierarchically clustered into different areas, and the
relationships between areas need to be considered. In prac-
tice, we process the hierarchical information by clustering
vertices into different numbers of clusters. The Correlation
Net learns to compute a correlation matrix to describe the
relative relationships among spatial areas after pooling.
Using Laplacian clustering ensures that the clustering is
robust under different triangulation. Also, the Euclidean
distance in the Laplacian feature domain approximates the
geodesic distance [9]. Therefore, such a clustering can find
meaningful patches in the spatial domain. Moreover, the
clustered areas give a reasonable partition, as shown in the
camel example in Fig. 1 where vertices with the same color
roughly belong to one semantic area.

4 EXPERIMENTS

4.1 Implementing Details
We implement our method using Tensorflow. We train and
test the network on a desktop computer with an NVIDIA
GTX1080 GPU. The optimization is achieved using the
Adam [44] solver with learning rate 7 × 10−4 and momen-
tum 0.9. The network is trained for 200 epochs with batch

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 6

size 8. The input features have 22 dimensions, including
6 dimensions of positions and normals, and the other 16
dimensions are the absolute values of the Laplacian eigen-
vectors corresponding to the 16 lowest frequencies. Eigen-
vectors corresponding to similar eigenvalues might have
the order swapping problem. This issue is mitigated since
the swapped eigenvectors usually lie in a subspace with
similar values, and instead we choose to use low-frequency
ones which are less likely to have repeated eigenvalues.
Note that users can also specify their own input features
depending on different datasets and tasks. According to
the experimental results in the next section, by default we
choose to use two mesh feature aggregation blocks with
16 and 8 clusters respectively. There are two MLP layers
in a mesh feature aggregation block outputting 128 and
256 channels. Following MFABs is a specific application
network based on the task to be performed. In total, the
network’s depth is 11 for the segmentation and classification
tasks.

4.2 Network Evaluation

We now evaluate different parts of our network. This series
of evaluation is conducted on the COSEG dataset, with
results shown in Tab. 1.

Input features. First we test the usefulness of the input
features. The performance of a certain algorithm can be
affected by the features used. In the experiments, we use
coordinates, normals and Laplacian eigenvectors as vertex
features. In this part, we test the network without one of
those three features. We can see that a combination of all the
features achieves the best results.

MFAB design. Second, we test the setting of mesh
feature aggregation blocks. By default, our method uses
2 MFABs. We compare this with alternative numbers of
MFABs ranging from 0 to 3. The results show that 2 MFABs
(our default method) gives the best performance. We also
test the usefulness of our Correlation Net. Ours-noCorrNet
is the network without the Correlation Net and matrix C.
We observe that the aggregation of global information is
important for our network.

Clustering strategy. We compare with alternative clus-
tering strategies in the segmentation task on the Human
Body Segmentation [23] dataset. The illustration of different
clustering strategies is shown in Fig. 3. Here, (a) shows
the clustering results of our method. In (b), we treat the
manifold as a point cloud and cluster the points based
on Euclidean coordinates. (c) adopts the strategy in Point-
Net++ [15], which uses furthest point sampling and k-
nearest neighbors to group vertices. (d) enforces inclusion
relationships across pooling hierarchies. We also design an
experiment where the multi-level clusters have rigorous
inclusion relationships. Fig. 4 gives an illustration of the
pooling process of (d). We still use k-means to cluster the
shape. In each level, clusters have their centroids, and the
next level of hierarchy performs clustering of the centroids
of the previous level. By doing so, an area in level l will be
completely included in an area in level l + 1. The results
in Table 3 show that the inclusion relationship in fact has a
negative impact. The representative points of clusters may
not exist in a manifold, so the follow-up clustering results

(a) Ours (b) Euclidean (c) Grouping (d) Inclusion

Fig. 3. Visualization of different clustering strategies. (a) shows the
pooling areas of our method. (b) shows the segmentation results
clustered using Euclidean coordinates. This clustering does not perceive
underlying manifold structure, e.g. the cat’s feet and stomach are
grouped together, and the flamingo’s head and neck are in the same
cluster. (c) shows the pooling areas computed by PointNet++ [15]
grouping layers. PointNet++ uses furthest point sampling and KNN
(k-nearest neighbors) to compute clusters, which could lead to
unbalanced and unreasonable groups. (d) are clusters where coarse-
to-fine hierarchies are enforced to have inclusion relationships. This
strategy also results in an unbalanced distribution.

Cluster Cluster

Fig. 4. Inclusion relationship across the hierarchy. An intuitive idea is to
perform k-means based on the previous clusters, ensuring that coarser
areas consist of multiple finer areas. However, such clustering strategy
would result in an unbalanced distribution at coarse levels.

do not have as a good structure as it would have on the
original points. Moreover, this kind of consecutive cluster-
ing may result in pooling with unbalanced distributions as
we can see in Figure 3. Similar problems also exist in the
grouping layers (c) of PointNet++ that the coarse groups
might be substantially unbalanced. As a result, our method
outperforms alternative strategies.

4.3 Robustness Evaluation
In this section, we evaluate the robustness of our network.
We will use meshes of different triangulations and numbers
of vertices as input to test the performance of the proposed
network.

A difficulty when handling mesh data is the varying
mesh connectivity. As mentioned before, our method is
robust under different mesh triangulations as a result of the
clustering strategy. The Laplacian eigenfunction is induced
from geodesic distances and therefore invariant under iso-
metric transformation, so the pooling areas as well as input
features can essentially stay unchanged when we remesh
the object. We visualize the connectivity of the objects be-
fore and after remeshing in Fig. 5, which is obtained by
subdivision followed by mesh decimation [45] to generate
irregular connectivity. Moreover, the quantitative results

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 7

(Ours-remesh) in Tab. 1 show that our network is robust
under different triangulation.

In addition, our network does not rely on the same
vertex numbers for models. An experiment is performed
to test this. In this experiment, we first simplify COSEG
models to 1500, 2000 and 2500 vertices. Then we split the
training and test set according to the same strategy for all
three resolutions. We train our network on a mix of two
of the datasets and test models from the third (Ours-1500,
Ours-2000 and Ours-2500 in the table). Accuracies in Tab. 1
show that our network works well with varying numbers
of vertices, compared to the last row where the network is
trained with models all containing 2048 vertices.

4.4 Part Segmentation

In this section, we use MFABs to conduct part segmentation
on the ShapeNet [35], [46], Human Body Segmentation [23],
and COSEG [36] datasets. The application network for seg-
mentation is illustrated in Fig. 2 (top row). Its input is the
category label and features from the previous MFAB. The
output is a softmax score for each category. The application
network has two perceptron layers, a maxpooling layer and
two fully connected layers. We minimize the cross-entropy
loss between the one-hot vector of ground truth and the
network output.

ShapeNet is a large repository of shapes from multiple
categories. To leverage this dataset to perform segmentation,
Yi et al. [35] develop an active learning method for efficient
annotation. However, their annotations are not directly on
the mesh vertices, but on the point cloud resampled from the
shapes. To recover the graph structure of manifold surfaces
for computation of mesh Laplacian and segmentation, we
apply [47] to the original ShapeNet models. After that, we
transfer the annotations on the point clouds to the nearest
mesh vertices.

Two metrics are used in previous segmentation results
on ShapeNet, namely accuracy and IoU (Intersection-over-
union). We compute both of them to compare with state-of-
the-art deep learning methods on 3D shapes [12], [40], and
some other methods performing segmentation on ShapeNet
based on point clouds such as [48]. Tab. 2 shows that our
method achieves the highest average accuracy, and outper-
forms state-of-the-art methods on 10 out of 16 categories. In
terms of IoU, our performance is comparable to the state-
of-the-art, achieving the best performance in 8 categories.
Some segmentation results are presented in Fig. 6.

COSEG [36] dataset is also a commonly used benchmark
for shape segmentation. Compared to ShapeNet, COSEG is
much smaller. It has 8 scanned categories and 3 synthetic
categories. Each of the 8 categories has around 20 models,
which are too few for deep learning. The 3 synthetic cate-
gories each have 900 models, so we test our algorithm with
the synthetic categories. We compare our result with [49]
and [39] in Tab. 1. Our approach outperforms both of them.

Human Body Segmentation is a watertight human mesh
dataset proposed by Maron et al. [23]. It has 370 training
models from SCAPE [50], MIT [51], FAUST [52], Adobe
Fuse [53], and 18 testing models from SHREC07 [54]. We
compare with MeshCNN [25], Toric Cover [23], GCNN [39],
Dynamic Graph CNN [19], and MDGCNN [55]. Our method

TABLE 1
Segmentation accuracy on COSEG. We compare with [49] and [39] in
the first two rows. In the last row, out network is trained on models with

2048 vertices. To test the robustness on different vertex, we simplify
COSEG models to 1500, 2000 and 2500 vertices respectively. We train

three networks on two of the three datasets but test on the third.
Ours-1500, Ours-2000 and Ours-2500 show the accuracy when the

test set has 1500, 2000 and 2500 vertices. We observe that our
network performs similarly well with different vertex numbers. Stable

performance is also obtained when applying our method to remeshed
models with more irregular connectivity (Ours-remesh). The ablation

test on the features shows that all three kinds of features contribute to
the performance. We also vary the number of MFABs and find that
using two MFABs performs best. In general, our method achieves

state-of-the-art results in all three categories.

Chair Vase Tele-alien
Xie et al. [49] 87.1% 85.9% 83.2%

Wang et al. [39] 95.9% 91.2% 93.0%
Ours-noMFAB 76.6% 77.8% 80.7%
Ours-1MFAB 85.3% 86.1% 88.9%
Ours-3MFABs 90.1% 92.2% 91.6%

Ours-noCorrNet 86.9% 85.6% 90.7%
Ours-1500 90.3% 90.0% 89.0%
Ours-2000 90.9% 91.6% 89.3%
Ours-2500 87.0% 86.6% 88.5%

Ours-remesh 92.1% 91.5% 91.8%
Ours-noCoordinates 90.6% 88.6% 84.2%

Ours-noNormal 87.6% 86.1% 85.0%
Ours-noLaplacian 79.6% 87.1% 86.1%

Ours 94.2% 92.2% 93.9%

Fig. 5. Robustness to changing connectivity. In this experiment we
change the connectivity of meshes from the COSEG datasets, and test
whether our network can consistently perform well. The first row shows
the original objects, while the meshes in the second row are remeshed
into more irregular triangulation. As shown in Table 1, the segmentation
accuracy still remains high.

outperforms previous methods in this segmentation task.
We also perform an ablation study of different clustering
strategies on the dataset. Compared to pooling in Euclidean
clusters, pooling in the clusters with inclusion relationships,
and pooling using the PointNet++ strategy, our design has
the best performance.

4.5 Mesh Classification

In this section, we evaluate the accuracy of object cate-
gorization. The input features to this task are the same
as the segmentation task. The application-specific network
following Mesh Feature Aggregation Blocks is shown in
Fig. 2 (bottom row). It contains two perceptron layers, a
maxpooling layer and two fully connected layers. In this
case the output is a softmax score for each category. We

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 8

TABLE 2
Accuracy and IoU of different methods on ShapeNet. For the task of 3D shape segmentation, we compare our method with Shapeboost [26],
Guo [41], and ShapePFCN [40] using the accuracy metric. For FeaStNet [48], ACNN [8], Yi [12], and VoxelCNN [12] we compare with the IoU

(Intersection-over-union) metric. Our network achieves highest accuracy.

Method mean plane bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
phone bike board

Shapeboost (acc) 77.2 85.8 93.1 85.9 79.5 70.1 81.4 89.0 81.2 71.1 86.1 77.2 94.9 88.2 79.2 91.0 74.5
Guo (acc) 77.6 87.4 91.0 85.7 80.1 66.8 79.8 89.9 77.1 71.6 82.7 80.1 95.1 84.1 76.9 89.6 77.8

ShapePFCN (acc) 85.7 90.3 94.6 94.5 90.2 82.9 84.9 91.8 82.8 78.0 95.3 87.0 96.0 91.5 81.6 91.9 84.8
ours (acc) 91.5 89.6 90.2 88.2 88.2 83.2 82.3 95.6 88.7 87.4 96.3 70.6 97.0 92.7 82.2 94.7 92.6

FeaStNet (IoU) 81.5 79.3 74.2 69.9 71.7 87.5 64.2 90.0 80.1 78.7 94.7 62.4 91.8 78.3 48.1 71.6 79.6
ACNN (IoU) 79.6 76.4 72.9 70.8 72.7 86.1 71.1 87.8 82.0 77.4 95.5 45.7 89.5 77.4 49.2 82.1 76.7

VoxelCNN (IoU) 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.5 58.7 91.8 76.4 51.2 65.3 77.1
Yi (IoU) 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 62.1 82.9 82.1

ours (IoU) 84.3 82.9 83.4 81.7 80.0 75.4 71.8 91.9 81.0 80.9 92.5 59.2 93.5 86.3 74.3 90.3 86.4

TABLE 3
Mesh segmentation accuracy on Human Body Segmentation dataset.

Our method achieves the highest accuracy when compared with
MeshCNN [25], Toric Cover [23], GCNN [39], Dynamic Graph CNN [19],

and MDGCNN [55]. The ablation tests use different clustering
strategies as follows. We run k-means on Euclidean coordinates

(Ours-Euc), enforce clusters to have inclusion relationship (Ours-Inc),
and use grouping layers from PointNet++ for pooling (Ours-Group),

while keeping the remaining pipeline of our method. Results show that
our original clustering strategy has the best performance.

Method Accuracy Method Accuracy
MeshCNN 92.30% DynGraphCNN 89.72
Toric Cover 88.00% GCNN 86.40%
PointNet++ 90.77% MDGCNN 89.47%

Ours 92.58% Ours-Euc 90.30%
Ours-Inc 90.41% Ours-Group 89.02%

Fig. 6. Qualitative results on ShapeNet. The segmentation results
produced by our method are plausible.

minimize the cross-entropy loss between one-hot vector of
ground truth and network output.

For this classification task, we compare with other mesh-
based approaches on the ModelNet [5], ShapeNet, and
SHREC11 [61] datasets. There are 30 categories of watertight
meshes in SHREC11, each having 20 models. Split 16 and
Split 10 refer to using 16 and 10 models in each category
for training. Table 4 and Table 5 show that our method is
comparable with state-of-the-art methods.

4.6 Failure Cases

We would like to restate that our method does not work
directly on the original ShapeNet models for two reasons:
1) the annotations are labeled on point clouds uniformly
sampled from shapes, instead of vertices of the mesh; 2)
meshes in ShapeNet are not manifold meshes, preventing us
from performing high-quality spectral clustering. Therefore

TABLE 4
Classification accuracy on ModelNet10, ModelNet40 and ShapeNet.

Distinguished by input representations, SPH [56], SyncSpecCNN [12],
ACNN [8] and FoldingNet [8] use meshes; PointNet [14], PointNet++

[14] and SO-Net [57] use point clouds; Voxelnet [58] and
3DShapeNets [5] take voxels as input. ‘-’ in the table indicates the

performance is not reported. For the classification accuracy on
ShapeNet, our network has comparable performance to state-of-the-art
methods. Our method outperforms all those single model classification

methods.

Method input MN10 MN40 ShapeNet
PointNet point - 89.2% -

PointNet++ point - 91.9% -
SO-Net point 95.7% 93.4% -

3DShapeNets volume 83.5% 77.0% -
Voxnet volume 91.0% 84.5% -
ACNN mesh - - 93.99%

SyncSpecCNN mesh - - 99.71%
SPH mesh - 68.2% -
Ours mesh 97.4% 94.21% 99.88%

TABLE 5
Classification on the 30 classes of SHREC11. Split 16 and Split 10 are

different training/testing splits, where 16 and 10 models are used for
training for each category, respectively. Compared with MeshCNN [25],

GWCNN [22], Shape Google (SG) [59], 3D ShapeNets (SN) [5] and
Geometry Images (GI) [60], our method achieves a similar performance

as state of the art methods.

Method Split 16 Split 10
MeshCNN 98.6% 91.0%
GWCNN 96.6% 90.3%

GI 96.6% 88.6%
SN 48.4% 52.7%
SG 70.4% 62.6%

Ours 98.0% 90.3%

we convert shapes into watertight manifold surfaces using
[47], simplify the mesh to a reasonable level, and transfer
part labels to vertices from the point cloud through nearest
neighbor matching. Error accumulates during this process.
In Fig. 7 we show some failure cases when performing
part segmentation in ShapeNet. There are several typical
problems for models that are poorly segmented. In the
chair example, we can observe sharp edges in ground truth
labels, and such artifacts could be caused by the noise in
the original point cloud. This kind of noise makes learning
reasonable segmentation more challenging. As in the bag

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 9

(a)

(b)

Fig. 7. Failure cases in ShapeNet segmentation. We show poor
segmentation results in four categories in ShapeNet. (a) is the ground
truth and (b) is our prediction. Those imperfect results are not
necessarily caused by our segmentation method but also imperfect
labeling in the dataset and error accumulation during preprocessing.
The following examples show the main challenges. The ground truth
segmentation mask of the chair is not smooth, which shows the
limitations of the annotation. Some regions of segmentation annotation
on the bag are incorrect. These kind of errors can be caused during
transferring the mesh onto a watertight manifold. Our method also
suffers from lacking training examples and fails to produce correct
results on the motorbike. The skateboard has a hole in the mesh which
leads to poor segmentation around it.

case, we can observe in the red circle that the ground truth is
incorrect. This may be caused by changes of the shape while
using [47] to make the model watertight, so that the nearest
neighbor algorithm gets the wrong correspondence when
transferring labels. We can see that our algorithm actually
gets a more correct answer than the “ground truth”. Failure
in the motorbike case is caused by lack of training data.
In the annotations, the motorbike class has the fewest data
samples. Worse still, some of the training examples fail to be
converted when performing [47], because motorbikes have
complex topological structure, making transfer challenging.
In practice, it can be a big problem that errors in the transfer
and simplification will decrease the amount of training data.
Last but not least, the skateboard shows that there might be
some holes, or other artifacts, in the surface, that could affect
graph structure and mislead our algorithm.

5 CONCLUSION

In this paper, we present a deep learning approach to
predicting functions defined on shapes. The key idea is
to perform multiscale pooling based on Laplacian spectral
clustering, and use a Correlation Net following pooling to
fuse global information. Compared to the pooling operation
in the previous literature, our network does not require
a uniform number of vertices in each model. Our work
outperforms state-of-the-art methods in most categories for
shape classification and segmentation.

Our method may be applied to other tasks. For exam-
ple, 3D reconstruction is fundamental but challenging. A
capable and general method to generate meshes is of great
demand. Our network has the potential to achieve this
task, because it can neatly encode connectivity in vertices,
and intrinsically understands the topology through spectral
clustering and spatial pooling. Furthermore, as a general
structure for mesh processing, our network may also be
applied to shape deformation, completion and correspon-
dence.

Finally it would be interesting to see how our network
can work on general graphs. In this paper, we mainly deal
with manifold meshes, using geodesic distances to construct
Laplacian. However in other problem settings, we can use
any distance metric that can best describe the problem. For
example, we might experiment with our method on social
networks with arbitrary size and connectivity.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (No. 61872440 and No. 61828204),
Beijing Municipal Natural Science Foundation (No.
L182016), Royal Society Newton Advanced Fellowship (No.
NAF\R2\192151), Youth Innovation Promotion Association
CAS, CCF-Tencent Open Fund and Open Project Program
of the National Laboratory of Pattern Recognition (No.
201900055).

REFERENCES

[1] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional
neural networks,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2014, pp. 1725–1732.

[2] M. Chen, G. Ding, S. Zhao, H. Chen, Q. Liu, and J. Han, “Reference
based LSTM for image captioning.” in AAAI, 2017, pp. 3981–3987.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[4] S. Kwak, S. Hong, B. Han et al., “Weakly supervised semantic
segmentation using superpixel pooling network.” in AAAI, 2017,
pp. 4111–4117.

[5] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d ShapeNets: A deep representation for volumetric shapes,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1912–1920.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: going beyond Euclidean
data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42,
2017.

[7] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst,
“Geodesic convolutional neural networks on Riemannian mani-
folds,” in Proceedings of the IEEE international conference on computer
vision workshops, 2015, pp. 37–45.

[8] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,”
in Advances in Neural Information Processing Systems, 2016, pp.
3189–3197.

[9] K. Crane, C. Weischedel, and M. Wardetzky, “The heat
method for distance computation,” Commun. ACM, vol. 60,
no. 11, pp. 90–99, Oct. 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3131280

[10] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,” arXiv
preprint arXiv:1312.6203, 2013.

[11] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph
convolutional neural networks,” arXiv preprint arXiv:1801.03226,
2018.

[12] L. Yi, H. Su, X. Guo, and L. J. Guibas, “SyncSpecCNN:
Synchronized spectral CNN for 3d shape segmentation.” in CVPR,
2017, pp. 6584–6592.

[13] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view CNNs for object classification on 3d
data,” in CVPR, 2016, pp. 5648–5656.

[14] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep
learning on point sets for 3d classification and segmentation,”
Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, vol. 1,
no. 2, p. 4, 2017.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 10

[15] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep
hierarchical feature learning on point sets in a metric space,” in
Advances in Neural Information Processing Systems, 2017, pp. 5099–
5108.

[16] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[17] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in neural information processing systems, 2016, pp. 3844–
3852.

[18] Q. Tan, L. Gao, Y.-K. Lai, J. Yang, and S. Xia, “Mesh-based
autoencoders for localized deformation component analysis,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[19] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Transactions on Graphics (TOG), vol. 38, no. 5, pp. 1–12, 2019.

[20] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna, “Surface
networks,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2540–2548.

[21] R. Song, Y. Liu, and P. L. Rosin, “Mesh saliency via weakly
supervised classification-for-saliency CNN,” IEEE Transactions on
Visualization and Computer Graphics, 2019.

[22] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen, “GWCNN:
A metric alignment layer for deep shape analysis,” in Computer
Graphics Forum, vol. 36, no. 5. Wiley Online Library, 2017, pp.
49–57.

[23] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer,
V. G. Kim, and Y. Lipman, “Convolutional neural networks on
surfaces via seamless toric covers.” ACM Trans. Graph., vol. 36,
no. 4, pp. 71–1, 2017.

[24] N. Haim, N. Segol, H. Ben-Hamu, H. Maron, and Y. Lipman,
“Surface networks via general covers,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 632–641.

[25] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and
D. Cohen-Or, “Meshcnn: a network with an edge,” ACM
Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[26] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3d mesh
segmentation and labeling,” ACM Transactions on Graphics (TOG),
vol. 29, no. 4, p. 102, 2010.

[27] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably
informative multi-scale signature based on heat diffusion,” in
Computer graphics forum, vol. 28, no. 5. Wiley Online Library,
2009, pp. 1383–1392.

[28] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel
signature: A quantum mechanical approach to shape analysis,”
in Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1626–1633.

[29] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[30] Z. Wu, Y. Wang, R. Shou, B. Chen, and X. Liu, “Unsupervised
co-segmentation of 3d shapes via affinity aggregation spectral
clustering,” Computers & Graphics, vol. 37, no. 6, pp. 628–637, 2013.

[31] Z. Shu, C. Qi, S. Xin, C. Hu, L. Wang, Y. Zhang, and L. Liu,
“Unsupervised 3d shape segmentation and co-segmentation via
deep learning,” Computer Aided Geometric Design, vol. 43, pp. 39–
52, 2016.

[32] Q. Huang, V. Koltun, and L. Guibas, “Joint shape segmentation
with linear programming,” ACM Transactions on Graphics (TOG),
vol. 30, no. 6, p. 125, 2011.

[33] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or,
Unsupervised co-segmentation of a set of shapes via descriptor-space
spectral clustering. ACM, 2011, vol. 30, no. 6.

[34] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3d
mesh segmentation,” ACM Transactions on Graphics (TOG), vol. 28,
no. 3, p. 73, 2009.

[35] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu, Q. Huang,
A. Sheffer, L. Guibas et al., “A scalable active framework for region
annotation in 3d shape collections,” ACM Transactions on Graphics
(TOG), vol. 35, no. 6, p. 210, 2016.

[36] Y. Wang, S. Asafi, O. Van Kaick, H. Zhang, D. Cohen-Or, and
B. Chen, “Active co-analysis of a set of shapes,” ACM Transactions
on Graphics (TOG), vol. 31, no. 6, p. 165, 2012.

[37] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton
shape benchmark,” in Shape modeling applications, 2004. Proceedings.
IEEE, 2004, pp. 167–178.

[38] D. George, X. Xie, and G. K. Tam, “3d mesh segmentation via
multi-branch 1d convolutional neural networks,” Graphical Models,
vol. 96, pp. 1–10, 2018.

[39] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and Z. Sun,
“3d shape segmentation via shape fully convolutional networks,”
Computers & Graphics, vol. 70, pp. 128–139, 2018.

[40] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri, “3d shape
segmentation with projective convolutional networks,” in Proc.
CVPR, vol. 1, no. 2, 2017, p. 8.

[41] K. Guo, D. Zou, and X. Chen, “3d mesh labeling via deep
convolutional neural networks,” ACM Transactions on Graphics
(TOG), vol. 35, no. 1, p. 3, 2015.

[42] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr, “Discrete
differential-geometry operators for triangulated 2-manifolds,” in
Visualization and Mathematics III, 2003, pp. 35–57.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[45] M. Garland and P. S. Heckbert, “Surface simplification using
quadric error metrics,” in Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’97. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 209–216. [Online]. Available:
https://doi.org/10.1145/258734.258849

[46] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “ShapeNet:
An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[47] J. Huang, H. Su, and L. Guibas, “Robust watertight manifold
surface generation method for ShapeNet models,” arXiv preprint
arXiv:1802.01698, 2018.

[48] N. Verma, E. Boyer, and J. Verbeek, “FeaStNet: Feature-steered
graph convolutions for 3d shape analysis,” in CVPR 2018-IEEE
Conference on Computer Vision & Pattern Recognition, 2018.

[49] Z. Xie, K. Xu, L. Liu, and Y. Xiong, “3d shape segmentation
and labeling via extreme learning machine,” in Computer graphics
forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 85–95.

[50] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and
J. Davis, “Scape: shape completion and animation of people,” in
ACM SIGGRAPH 2005 Papers, 2005, pp. 408–416.

[51] D. Vlasic, I. Baran, W. Matusik, and J. Popović, “Articulated mesh
animation from multi-view silhouettes,” in ACM SIGGRAPH 2008
papers, 2008, pp. 1–9.

[52] F. Bogo, J. Romero, M. Loper, and M. J. Black, “Faust: Dataset and
evaluation for 3d mesh registration,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp.
3794–3801.

[53] Adobe, “Adobe fuse 3d charactersadobe fuse 3d characters,” in
https://www.adobe.com/products/fuse.html, 2016.

[54] D. Giorgi, S. Biasotti, and L. Paraboschi, “SHREC ’07 Track:
watertight models,” in Shape Modeling International, 2007.

[55] A. Poulenard and M. Ovsjanikov, “Multi-directional geodesic
neural networks via equivariant convolution,” ACM Transactions
on Graphics (TOG), vol. 37, no. 6, pp. 1–14, 2018.

[56] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation
invariant spherical harmonic representation of 3d shape descrip-
tors,” in Symposium on geometry processing, vol. 6, 2003, pp. 156–
164.

[57] J. Li, B. M. Chen, and G. H. Lee, “SO-Net: Self-organizing network
for point cloud analysis,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 9397–9406.

[58] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural
network for real-time object recognition,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE,
2015, pp. 922–928.

[59] A. M. Bronstein, M. M. Bronstein, L. J. Guibas, and M. Ovsjanikov,
“Shape google: Geometric words and expressions for invariant
shape retrieval,” ACM Transactions on Graphics (TOG), vol. 30,
no. 1, pp. 1–20, 2011.

[60] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces
using geometry images,” in European Conference on Computer
Vision. Springer, 2016, pp. 223–240.

[61] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura,
Y. Kurita, G. Lavoué, H. V. Nguyen, R. Ohbuchi, Y. Ohkita,
Y. Ohishi, F. Porikli, M. Reuter, I. Sipiran, D. Smeets, P. Suetens,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, JULY 2019 11

H. Tabia, and D. Vandermeulen, “SHREC ’11 Track: shape retrieval
on non-rigid 3d watertight meshes,” in Eurographics Workshop on
3D Object Retrieval (3DOR), 2011.

Yi-Ling Qiao received a bachelor’s degree in
computer science and technology from the Uni-
versity of Chinese Academy of Sciences in 2019.
He is currently a PhD student in computer sci-
ence at University of Maryland, College Park.
His research interests include computer graph-
ics and geometric processing.

Lin Gao received a bachelor’s degree in math-
ematics from Sichuan University and a PhD de-
gree in computer science from Tsinghua Univer-
sity. He is currently an Associate Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. He has been awarded
a Newton Advanced Fellowship from the Royal
Society. His research interests include computer
graphics and geometric processing.

Jie Yang received a bachelor’s degree in
mathematics from Sichuan University in 2016.
He is currently a PhD candidate in the Institute
of Computing Technology, Chinese Academy
of Sciences. His research interests include
computer graphics and geometric processing.

Paul L. Rosin is a Professor at the School of
Computer Science & Informatics, Cardiff Univer-
sity. Previous posts were at Brunel University,
Joint Research Centre (Italy), and Curtin Univer-
sity of Technology (Australia). His research inter-
ests include low level image processing, perfor-
mance evaluation, shape analysis, facial analy-
sis, medical image analysis, 3D mesh process-
ing, cellular automata, non-photorealistic render-
ing and cultural heritage.

Yu-Kun Lai received his bachelor’s degree and
PhD degree in computer science from Tsinghua
University in 2003 and 2008, respectively. He
is currently a Professor in the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial boards
of Computer Graphics Forum and The Visual
Computer.

Xilin Chen received the BS, MS, and PhD de-
grees in Computer Science from Harbin Institute
of Technology, China, in 1988, 1991, and 1994
respectively. Then he joined the Department of
Computer Science and Engineering, Harbin In-
stitute of Technology, where he was a lecturer
(1994), associate professor (1996), and profes-
sor (1999-2005) . He was a visiting scholar with
Carnegie Mellon University from 2001 to 2004.
He was elected into the 100 Talents Program
of Chinese Academy of Sciences (CAS) and

joined the Institute of Computing Technology, CAS in August, 2004. His
research interests are Image Understanding, Computer Vision, Pattern
Recognition, Image Processing, Multimodal Interface, and Digital Video
Broadcasting.

