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Abstract

This paper investigates the use of facial gestures for identity recogni-
tion. This is the first time that such a quantitative evaluation is conducted,
comparing the analyses of 2D versus 3D dynamic data of verbal and non-
verbal facial actions. Suitable data processing and feature extraction meth-
ods are examined, then a number of pattern matching techniques including
the Fréchet distance, Correlation Coefficients, Hidden-Markov Models, Dy-
namic Time Warping and its derived forms are compared, in light of which an
improved algorithm is proposed. Finally, a face recognition prototype using
facial dynamics is built, achieving an Equal Error Rate EER=1.6%.

1 Introduction

Biometric identification refers to the recognition of individuals based on their physiologi-
cal characteristics (e.g. fingerprint, iris, DNA) or behavioral peculiarities (e.g. voice, gait,
signature). While the robustness of behavioural biometrics has often been questioned with
regard to their sensitivity to human emotional conditions, physiological biometrics also
exhibit limitations, being either too expensive and intrusive (iris, DNA), or not accurate
enough for high security applications (mug-shots). For this reason, there is still a great
deal of interest in exploring novel biometric features [8].

The human face was originally regarded as a physiological biometric only. Early
works on face recognition mainly relied on the well-established 2D methods such as
Eigenfaces [16] and Active Appearance Model [4], until advances in imaging technolo-
gies made it possible to develop more accurate 3D-based algorithms such as the Mor-
phable Model [2]. Both 2D and 3D algorithms however share one common drawback
which is their sensitivity to face expressions. While Chang et al. [3] proposed an expres-
sion invariant recognition technique, Luettin ef al. [11] exploited the behavioural aspect
of facial dynamics and used lipreading for speaker recognition. This latter approach has
inspired a number of studies, of which the most recent is the work of Faraj et al. [7] where
the authors extract the velocity of lip motions for speaker verification.

The objective of this study is to explore further the use of facial gestures for iden-
tity recognition, and compare the accuracies of analysing 2D versus 3D dynamic data.
Unlike previous works which employed long audio-video sequences, we investigate very
short facial actions in order to increase the processing speed, which is paramount for a
real-time application. Such a constraint requires the use of pattern matching techniques



which can perform accurately on short data sequences. Therefore we will evaluate a num-
ber of pattern matching methods including the Fréchet distance, Correlation Coefficients,
Hidden-Markov Models, Dynamic Time Warping and its derived forms Continuous DTW
and Derivative DTW, in light of which we will propose an improved DTW-based algo-
rithm combining weighted higher-order derivatives.

2 Data acquisition

Unlike related works where long sequences of uttered digits from ‘0’ to ‘9’ are anal-
ysed [7, 11], we seek to identify very short facial actions which satisfy the fundamental
biometric requirements such as repeatability and distinctiveness [8]. Two directions have
been considered. First, we investigate a number of facial Action Units (AUs) as described
by the Facial Action Coding System [6], for example Brow Raiser (AU1+2), Upper Lid
Raiser (AUS), Nose wrinkler (AU9) and Lip corner puller (AU12). Secondly, we conduct
a literature review in order to identify a speech posture involving the most discriminative
and reproducible facial movements [9]. The word ‘Puppy’ was chosen not only for its
reproducibility, but also because its utterance affects mainly the lips, which would give a
good representation of facial movements in the lower third of the face while leaving stable
the upper thirds, allowing accurate alignment of sequential frames.

A 3D video camera operating at 48 frames per second is used to capture 3D dynamic
data from 36 participants (20 males and 16 females, 23 are natural English speakers). All
face scans have an ear-to-ear coverage and no physical markers are used. Each participant
is asked to utter the word ‘Puppy’ several times in a normal and relaxed way, and to
perform an AU12-based standardised smile. Smaller tests are performed for other AUs.
At this stage, we are still investigating suitable facial actions, so we are not able to conduct
tests on a large database. However, we believe that our data is statistically significant since
it is triple the size of the database used in the work of Luettin ez al. [11].

During the recording sessions, we observe that it is very difficult for non-actors to
produce accurate AUSs, let alone to repeat identical performances. For example, although
the participants have been asked to produce an AU12-based maximum smile, some per-
formances also exhibit cheek raiser (AU6) and lips part (AU25). Thus, AU-based expres-
sions fail the repeatability requirement and do not seem functional in a real-life scenario.
The ‘Puppy’ utterance appears to suffer fewer fluctuations, however it is still plagued by
a number of unwanted actions such as blinking (AU45) and gaze movements (AU61+62).

3 Data processing and feature extraction

To normalise the face scans, we employ the technique proposed by Chang ef al. [3]: the
nose root position and surface normal are computed using curvature analysis, then the
3D heads are registered through translations, rotations and scaling. Further refinement is
achieved using the Iterative Closest Point algorithm [3], as depicted in Figure 1(a).

To assess the impact of unwanted facial actions (e.g. blinking) on the recognition per-
formance, we wish to compare the results when analysing the lips only versus analysing
the entire face. To this end, the lip region needs to be segmented. This can be achieved as
shown in Figure 1(b). First, we use a thin-plate-spline process to warp a 3D lip template
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Figure 1: a) 3D alignment of video frames. b) Segmentation of the 3D lip subregion.

to the lip region of the face scan (let us call this region the target mesh). This operation al-
though not very precise gives an adequate initial registration. We then project each vertex
of the warped template along its normal towards the target mesh. Repeating this operation
for all video frames, we obtain a new sequence of lip shapes in full correspondence (i.e.
identical number of vertices and vertex topology).

3.1 Acquisition of artificial 2D data

Although representing faces in the 3D space is more accurate than in 2D, one should bear
in mind a number of inconveniences inherent to 3D data analysis, for example the high
cost of 3D data capture devices, as well as intensive processing and high data storage
requirements. Therefore, we should assess whether there is a need to use 3D data, or
facial dynamics read from 2D video provides already sufficient information for identity
recognition. The challenge for such a comparative study is how to collect 2D dynamic
data with identical frame rate and recording conditions than our 3D data. To this end,
we artificially generate 2D data by projecting the 3D data onto a set of planes as shown
in Figure 8. We chose multiple planes in order to simulate acquisition of 2D data from
different view points, with and without occlusions. This test will be conducted for the
fixed head situation only. For non-fixed head situations, there is already much evidence
proving that 2D models cannot cope with head pose variations, while 3D models can
overcome this problem [2, 3].

3.2 Feature extraction

The feature extraction is achieved by building a PCA shape model in similar fashion to
the Active Shape Model [4] in 2D, and the Morphable Model [2] in 3D. In order to reduce
the dimensionality of the feature space, we apply the same protocol to both 2D and 3D
processes as follows: we retain only 90% of the variations, which involves keeping the p
highest Eigenvectors. Thus, any shape X can be approximated as:

where | X| is the mean shape, ® is the matrix of p Eigenvectors, and V' is the vector
of the shape parameters. Inverting this equation, we can extract the shape variations of a
sequence of D shapes as follows:
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Figure 3(a) shows the trajectories of the facial dynamics extracted from a 3D video se-
quence of a ‘Puppy’ utterance. The first three modes of variation (MoV) are depicted.



4 Similarity measures for dynamic signals

In this section, we will examine a number of methods to quantify the similarity S between
two dynamic signals. In practice, it is more convenient to measure the distance D between
the curves which represent these dynamic signals. S can then be defined as S = H%'

4.1 Baselines for assessment of similarity measures

In this study, we use the Fréchet distance and Correlation Coefficients as baselines to
assess the performances of further similarity measures because these formers are among
the most classic techniques. However, such linear methods perform rather poorly when it
comes to comparing dynamic signals which exhibit comparable global patterns but vary
in time or speed, which is commonly the case for behavioural biometric features [5].

4.2 Dynamic Time Warping (DTW)

DTW is commonly used in speech recognition, and has achieved very good results when
applied to signature authentication [5, 12]. The idea behind DTW consists of first com-
puting the best alignment between the two signals by warping their time axes, before
measuring their similarity. Details of the algorithm implementation can be found in [15].
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Figure 2: Curve matching using Dynamic Time Warping and its derived forms Continuous
DTW (CDTW) and Derivative DTW (DTW).

Suppose we have two feature vectors v | and v of lengths n and m, respectively
depicted by curves C; and C; in Figure 2. Each point Q; on C; is first warped to its
closest point P; of Cy, and the distance D between C| and C; is defined as the cumulated
distance along the warping path. In other words, D is the sum of all pair-wise distances
d(P;,Q;), normalised by the path length. The complexity of DTW is O(nm).

4.3 Continuous Dynamic Time Warping (CDTW)

The main limitation of DTW is that it maps two sequences using discrete points, thus its
accuracy is sensitive to the sampling rate. Besides, the ‘optimal’ warping path found by
DTW may not actually be the best. A method to improve DTW has been proposed by Mu-
nich et al. [12] and consists of extending the mapping process to the continuous domain.
Figure 2 shows the result of CDTW where the data point Q5 is mapped to a new point
P{ which is the projection of O, onto the segment P;P>. The subsequent similarity mea-
surement remains similar to that of the classic DTW. The complexity of CDTW increases
combinatorially and heuristic constraints are needed to make the problem tractable.



4.4 Derivative Dynamic Time Warping (DDTW)

One common weakness of DTW and CDTW is that they determine the warping path by
considering distances between data points, regardless of the signal trends. Let us consider
two data points which are close, but one belongs to a rising slope and the other to a falling
slope, for example points P4 and Q3 in Figure 2. DTW and CDTW consider a mapping
between P4 and Q3 optimal, although it would be inaccurate to map a rising trend to a
falling trend. A new aRproach Eresented by Keogh et al. [10] proposes to compare the
first order derivatives d(;l L and d;tz instead of comparing the original signals. The resulted
curve mapping is illustrated in Figure 2. The complexity of the algorithm is O(nm).

4.5 Weighted Hybrid Derivative Dynamic Time Warping (WDTW)

Although the idea of considering the signal derivatives is interesting, our preliminary tests
have shown that DDTW is very noise sensitive. Thus, we propose an improvement as
follows. First, the signal itself contains useful information that should not be ignored, and
smoothing this one helps stabilise the process. Secondly, incorporating further derivatives
provides better knowledge, for example the first derivative gives information on speed and

the second derivative on accelerations and decelerations. Thus, let us consider the quantity
v 2V . . L
[V, dd—f, dd%] and compute the warping path using the hybrid distance:

d=wy*xdy+wixd] +wy*xd> 3

where dj is the distance between the data points, d; is the difference between the ith
derivatives, wg,w; and w, are weights. Introducing weights allows the derivatives to play
a role in the pattern recognition process in case their magnitudes are lower than that of
the signal. However, since derivatives are noise sensitive, too high weight values will
affect the performance of the algorithm. Thus, when choosing w; and w,, we should take
into account both the Signal-to-Noise ratio and the difference of magnitudes between the
signal and its derivatives. In this study, we choose wy = 1, w; = wy = 2. The complexity
of the algorithm is O(nm).

4.6 Hidden-Markov Models (HMMs)

HMM was first introduced by Baker [1] and has become a fundamental technology under-
lying most of speech recognition systems nowadays, superseding the DTW based tech-
niques. It is also the method exclusively used in previous works on lipreading [7, 11]. To
apply this method to our problem, let us imagine that the facial dynamic patterns are pro-
duced by a stochastic process and can be modeled by an HMM. Thus, one HMM of the
‘Puppy’ utterance is formed for each subject and stored in a database. When the recog-
nition system receives the facial dynamic pattern of an unknown person, an observation
probability is calculated for each of the HMMs in the database to determine the likeli-
hood that the received pattern has been generated by this HMM. The greatest observation
probability determines the closest HMM model.

In this work, we build one left-to-right HMM for each subject, and let the number
of states equal the number of phonemes Q = 2 as suggested by Rabiner [14]. The first
‘Puppy’ utterance of the recording is used for model training in similar fashion to the
work of Luettin et al. [11]. The choices of model parameters (e.g. the number of states



and Gaussian mixtures GM) usually depend on the nature of the training data, and stem
from experimentation. We have observed that for the 3D dynamic data used in this study,
the system performs well with Q = 2 and GM = 2. The performance of the recognition
process remains unchanged as we use greater numbers of states and/or Gaussian Mixtures.

5 Results and Discussions

Figure 3(a) shows the dynamics of the first three modes of variation (MoV) of a ‘Puppy’
utterance. Tests conducted on 36 participants show that 90% of the shape variations are
contained in the first 12 MoV. The intra-subject variations can be observed in Figure 3(b)
where utterances of the same subject have been recorded over several months to account
for different physical and emotional conditions. Although the performance is not per-
fectly reproducible, the dynamics exhibit familiar patterns, e.g. same trends of the onsets
and offsets, similar durations and signal magnitudes, comparable proportions of the pat-
terns ‘Pup’ and ‘py’ within the overall signal. In contrast, facial dynamics captured from
different persons display highly distinctive patterns as depicted in Figure 3(c).
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Figure 3: a) Three first modes of variation of a ‘Puppy’ utterance b) Dynamics of the
same subject over several months, 1 MoV. ¢) Dynamics of different subjects, 1 MoV.

5.1 Performance assessment of similarity measures
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Figure 4: Architecture of the recognition system. Given an biometric feature vector vy of
an unknown person and a claimed identity I, determine if the person is a genuine user or
an impostor. Typically, vp is matched against v, the biometric template of I;.



A face recognition prototype using facial dynamics is built is depicted in Figure 4,
and the ROC curves are shown in Figure 5. In this experiment, the recognition is based
on the first mode of variation only. We compute the False-Reject-Rate (FRR) and the
False-Accept-Rate (FAR) accordingly to the definitions given in [13]. The Fréchet dis-
tance, Correlation Coefficients and DDTW perform very poorly in accordance with our
prediction, as explained in section 4. DTW, CDTW and WDTW show very comparable
performances, with a slight advantage for WDTW. CDTW does not noticeably improve
the system performance because our fast video camera already provides a fine sampling
rate. HMM does not exhibit the performance we expected (i.e. better than DTW), how-
ever the result obtained in our experiment is comparable to that of Luettin ef al. [11], i.e.
a verification rate of about 75% when using shape variations only.
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Figure 5: ROC curves of the identification system using several similarity measures.

5.2 Number of modes of variations used
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Figure 6: a) FRR and b) FAR for different numbers of MoV used c) The performance
increases with the number of MoV used. Best score: EER=1.6% (12 MoV, WDTW).

Intuitively, the more modes of variation we take into account, the more discriminative
the biometric feature becomes, thus the FAR decreases. However, since the higher-order
modes of variations are also plagued by the intra-subject variations, the FRR increases.
Overall, the performance of the system improves as seen in Figure 6(c).



5.3 Influence of unwanted facial actions

In Section 3, we predicted that - due to unwanted facial actions such as blinking - analysing
the facial dynamics of the entire face (holistic) might degrade the performance of the
recognition system. To verify this hypothesis, we compare the holistic approach to the
analysis of the lip motions only. The results are shown in Figure 7. We observe that the
FRR is higher when using the face than when using lips only because the system may
issue a false reject when attempting to match the dynamics of the same person with and
without blinking, for example. However, the lip motions alone are obviously less distinc-
tive than the entire facial dynamics, thus the FAR becomes worse when we ignore part of
the face. Overall, the performance improves when using the lip motions alone.
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Figure 7: a) FRR and FAR of lip motions vs. holistic analyses b) ROC curves of lip
motions vs. holistic analyses. Results computed with the WDTW algorithm.

5.4 Comparison 2D versus 3D dynamic data
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Figure 8: Comparison of the face recognition performances when using 3D dynamic data
compared to using 2D dynamic data, for several viewpoints with and without occlusion.

Figure 8 shows the results of a comparative evaluation using 3D dynamic data versus
2D dynamic data for 2 viewpoints: @ = 0 is the 2D frontal view of the head where there
is no occlusion, and @ = 90 corresponds to the profile view where occlusion occurs.
Comparison of the ROC curves shows that 3D recognition yields better result than any
2D situation, which can be explained by multiple reasons. First, we can observe that
the feature extraction techniques are not exactly comparable since all vertices are used to
train the 3D shape model (=~ 1000 vertices for a lip shape), while the variations in 2D are



captured by building an Active Shape Model [4] using only tens of landmarks per frame.
The precision of the landmark placement also plays a role. Secondly, there is a significant
loss of information, not only due to the missing dimension but also due to occlusions.
While FRR values are comparable between 3D and the frontal view, the profile view
presents worse FRR because there is too few information in order to recognise the subject.
However, FAR appears to be much better for the profile view than for the other cases. We
are not sure how we can interpret this observation.

6 Conclusion and Future Work

This paper reports the results of a feasibility study which aims to establish whether facial
gestures can be used as a behavioural biometric. Our first experiments, carried out on a
database of 36 participants, indicate that the dynamics of even very short facial actions
contain sufficient information for identity recognition. It has been also observed that
there exists a hierarchy in the reproducibility and distinctiveness of facial gestures. For
example, while short spoken words such as the word ‘Puppy’ allow to accurately identify
the speaker, non-verbal expressions such as the FACS-based facial actions [6] appear non-
functional for use in biometric identification.

In order to quantitatively assess the performance of facial dynamics as a behavioural
biometric, we investigate a number of suitable feature extraction techniques and pattern
matching algorithms, including the Fréchet distance, Correlation Coefficients, Hidden-
Markov Models, Dynamic Time Warping (DTW) and its derived forms, and build a pro-
totype of an identification system using facial dynamics. The best performance is obtained
using our algorithm WDTW, achieving an Equal Error Rate EER=1.6%. To our surprise,
the HMM-based recognition did not yield the high performance we expected. One possi-
ble explanation to this is that we train the HMM models with very short data sequences,
and DTW-based algorithms seem to perform much better in such a configuration.

Our preliminary results provide supportive evidences that facial gesture is a suitable
biometric feature. However, we still need to conduct tests on a much larger database on
the one hand, and carry out further experimentations on the other hand in order to assess
the strength and weakness of using facial dynamics for person identification. Thus, we
wish in particular to identify and compare a more complete set of spoken words and study
the impact of spoofing. Besides, we are also examining if feature extraction methods such
as Independent Component Analysis and Linear Discriminant Analysis can improve the
performance of our system. Finally, we aim to combine facial gesture with voice recogni-
tion and passwording, and examine whether such a multi-modal identification system can
cope with the stringent requirements for a high security application.
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