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Abstract 3D models of humans are commonly used

within computer graphics and vision, and so the abil-

ity to distinguish between body shapes is an important

shape retrieval problem. We extend our recent paper

which provided a benchmark for testing non-rigid 3D

shape retrieval algorithms on 3D human models. This

benchmark provided a far stricter challenge than previ-

ous shape benchmarks. We have added 145 new models

for use as a separate training set, in order to standardise

the training data used and provide a fairer comparison.

We have also included experiments with the FAUST

dataset of human scans. All participants of the previ-

ous benchmark study have taken part in the new tests

reported here, many providing updated results using

the new data. In addition, further participants have

also taken part, and we provide extra analysis of the

retrieval results. A total of 25 different shape retrieval

methods are compared.

1 Introduction

The ability to recognise a deformable object’s shape,

regardless of the pose of the object, is an important

requirement in shape retrieval. Many state-of-the-art

methods achieved extremely high accuracy when eval-

uated on earlier benchmarks (Lian et al, 2011, 2015),

making it hard to distinguish between good methods,

and leaving little room to demonstrate improvement

in approaches. We recently addressed this by produc-

ing a more challenging dataset for testing non-rigid 3D

shape retrieval algorithms (Pickup et al, 2014). This

dataset only contained human models, in a variety of

body shapes and poses. 3D models of humans are com-

monly used within computer graphics and vision, and

so the ability to distinguish between human subjects is
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an important shape retrieval problem. The shape dif-

ferences between humans are much more subtle than

the differences between the shape classes used in ear-

lier benchmarks (e.g. various different animals), yet hu-

mans are able to visually recognise specific individuals.

Successfully performing shape retrieval on a dataset of

human models is therefore a far more challenging task,

yet relevant. Datasets of 3D humans have also been

used in other tasks such as pose estimation (Ionescu

et al, 2014), finding correspondences (Bogo et al, 2014),

and statistical modelling (Hasler et al, 2009). For our

work, the participants submitted retrieval results for a

variety of methods for our human dataset, and we com-

pared the results in (Pickup et al, 2014). A weakness of

that work is that a training set was not provided, and

therefore some participants performed supervised train-

ing or parameter optimisation on the test data itself. It

is therefore difficult to fairly compare the different re-

trieval results.

We thus here provide an extension to our work-

shop paper (Pickup et al, 2014)1. Firstly, participants

were given 145 new human models for use as a training

set. All participants who performed supervised train-

ing or parameter optimisation on the original test set

retrained their method on the new training data, pro-

ducing a new set of results, allowing a fairer comparison

of results. Secondly, we have included experiments on

the FAUST dataset (Bogo et al, 2014). Thirdly, addi-

tional participants took part in the latest tests reported

here, and existing participants submitted updated or

additional results. We compare a total of 25 different

retrieval methods, whereas we previously compared 21.

Finally, we provide a more detailed analysis of the re-

trieval results.

Our paper is structured as follows. Section 2 de-

scribes the datasets used, Section 3 describes the re-

trieval task, Section 4 outlines all methods tested, or-

ganised by submitting participant, Section 5 provides a

detailed analysis of the retrieval results, and finally we

conclude in Section 6.

2 Datasets

The human models we use are split into three datasets.

The first two datasets, which we created ourselves, con-

sist of a Real dataset, obtained by scanning real hu-

man participants and generating synthetic poses, and

a Synthetic dataset, created using 3D modelling soft-

ware (DAZ Studio, 2013). The latter may be useful for

testing algorithms intended to retrieve synthetic data,

1 Benchmark Website:
http://www.cs.cf.ac.uk/shaperetrieval/shrec14/

with well sculpted local details, while the former may

be more useful to test algorithms that are designed to

work even in the presence of noisy, coarsely captured

data lacking local detail. The third dataset we use is

the FAUST dataset created by Bogo et al (2014), which

uses scans of different people, each in a set of different

poses, and contains both topological noise and missing

parts.

Our Real and Synthetic datasets are available to

download from our benchmark website1, or from the

DOI 10.17035/d.2015.100097. The FAUST dataset is

available from its project website2.

Throughout the paper we use the following terms

when referring to our data:

Model - A single 3D object.

Mesh - The underlying triangle mesh representation of

a model.

Subject - A single person. The datasets’ models are

divided into classes, one class for each subject.

Pose - The articulation or conformation of a model (e.g.

standing upright with arms by the sides).

Shape - The pose-invariant form of a model (i.e. aspects

of the model shape invariant to pose).

2.1 Real Dataset

The Real dataset was built from point-clouds contained

within the Civilian American and European Surface

Anthropometry Resource (CAESAR) (CAESAR, 2013).

The original Test set contained 400 models, represent-

ing 40 human subjects (20 male, 20 female), each in 10

different poses. The poses we used are a random subset

of the poses used for the SCAPE (Anguelov et al. 2005)

dataset. The same poses were used for each subject. Our

new Training set contains 100 models, representing 10

human subjects (5 male, 5 female), again in 10 differ-

ent poses. None of the training subjects or poses are

present in the test set.

The point-clouds were manually selected from CAE-

SAR to have significant visual differences. We employed

SCAPE (shape completion and animation of people)

(Anguelov et al, 2005) to build articulated 3D meshes,

by fitting a template mesh to each subject (Fig. 2). Re-

alistic deformed poses of each subject were built using a

data-driven deformation technique (Chen et al, 2013).

We remeshed the models using freely available software

(Valette and Chassery, 2004; Valette et al, 2008) so

different meshes do not have identical triangulations.

As the same remeshing algorithm was applied to all

2 FAUST Website:
http://faust.is.tue.mpg.de/
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(a) Real dataset.

(b) Synthetic dataset.

(c) FAUST dataset.

Fig. 1 A selection of models included in the datasets.

meshes, the triangulations may share similar proper-

ties, but correspondences cannot be derived directly

from the vertex indices of the meshes. The resulting

meshes each have approximately 15,000 vertices, vary-

ing slightly from mesh to mesh.

While we used a data-driven technique to generate

the poses, generating them synthetically means they do

not exhibit as realistic surface deformations between

poses as different scans would have done. The data also

does not suffer from missing parts or topological noise

sometimes found in scanned data. A selection of models

from this dataset is shown in Fig. 1(a).

(a) Template mesh. (b) Point cloud. (c) Template fitted
to point cloud.

Fig. 2 A template mesh is fitted to each point cloud scan
using the SCAPE method (Anguelov et al, 2005).

2.2 Synthetic Dataset

We used the DAZ Studio (DAZ Studio, 2013) 3D mod-

elling and animation software to create a dataset of

synthetic human models. The software includes a pa-

rameterized human model, where parameters control

body shape. We used this to produce a Test dataset

consisting of 15 different human subjects (5 male, 5 fe-

male, 5 child), each with its own unique body shape.

We generated 20 different poses for each model, result-

ing in a dataset of 300 models. The poses were chosen

by hand from a palette of poses provided by DAZ Stu-

dio. The poses available in this palette contain some

which are simple variations of each other, so we there-

fore hand picked poses representing a wide range of ar-

ticulations. The same poses were used for each subject.

Our new Training set contains 45 models, represent-

ing 9 human subjects (3 male, 3 female, 3 child) in 5

different poses. None of the training subjects or poses

is present in the test set. All models were remeshed,

as for the Real dataset. The resulting meshes have ap-

proximately 60,000 vertices, again varying slightly. A

selection of these models is shown in Fig. 1(b).

2.3 FAUST Dataset

The FAUST dataset was created by scanning human

subjects with a sophisticated 3D stereo capture system.

The Test dataset consists of 10 different human sub-

jects, with each subject being captured in the same 20

poses, resulting in a dataset of 200 models. The Train-

ing set contains 100 models, made up of 10 subjects

in 10 poses. The average number of vertices is 172,000,

making it the highest resolution of the three datasets.

A selection of models from this dataset is shown in

Fig. 1(c).
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Fig. 3 Overview of the hybrid shape descriptor approach.

As the poses for this dataset were generated from

scans, they contain realistic deformations that are nor-

mally missing from synthetic models. The models also

have missing parts caused by occlusion, and topologi-

cal noise where touching body parts are fused together.

The dataset also contains some non-manifold vertices

and edges, which some retrieval methods cannot handle.

We therefore produced a version of the data from which

these non-manifold components were removed and holes

filled, creating a watertight manifold for each model.

This mesh processing was performed using Meshlab (Mesh-

Lab, 2014). Apart from these small local changes, the

data was otherwise unmodified. Our watertight models

were distributed to participants upon request. For the

full details of the FAUST dataset we refer readers to

Bogo et al (2014).

3 Retrieval Task and Evaluation

All participants in our study submitted results for the

following retrieval task:

Given a query model, return a list of all models,

ordered by decreasing shape similarity to the query.

Every model in the database was used in turn as a

separate query model.

The evaluation procedure used to assess the results

(see Section 5) is similar to that used by previous com-

parative studies (Lian et al, 2011, 2015). We evalu-

ate the results using various statistical measures: near-

est neighbour (NN), first tier (1-T), second tier (2-T),

e-measure (E-M), discounted cumulative gain (DCG),

and precision and recall curves. Definitions of these

measures are given in Shilane et al (2004).

4 Methods

We now briefly describe each of the methods compared

in our study; as can be seen, some participants sub-

mitted multiple methods. Table 1 summarised which

Author Method Simplification
Watertight
(FAUST)

Giachetti
APT No Used

APT-Trained No Used

Lai

HKS 10,000 faces Used
WKS 10,000 faces Used
SA 10,000 faces Used

Multi-Feature 10,000 faces Used

B. Li

Curvature No Used
Geodesic 1,000 vertices Used
Hybrid 1,000 vertices Used
MDS-R 1,000 vertices Used

MDS-ZFDR 1,000 vertices Used
C. Li Spectral Geom. No Used

Litman
supDL 4,500 vertices Used

UnSup32 4,500 vertices Used
softVQ48 4,500 vertices Used

Pickup
Surface Area No Used
Compactness No Used

Canonical No Used
Bu 3DDL No Used

Tatsuma
BoF-APFH No Not Used

MR-BoF-APFH No Not Used

Ye
R-BiHDM No Used

R-BiHDM-s No Used

Tam
MRG No Used
TPR No Used

Table 1 Summary of methods, including details of any mesh
simplification and use of watertight meshes for the FAUST
dataset.

methods simplified the meshes to a lower resolution,

and which used the watertight version of the FAUST

dataset. Approximate timings of each method are given

in Table 2. Full details of these methods may be found

in the papers cited.

4.1 Simple Shape Measures, and Skeleton Driven

Canonical Forms

D. Pickup, X. Sun, P. L. Rosin, R. R. Martin

This section presents two techniques, simple shape mea-

sures based on simple invariant intrinsic geometric prop-

erties, and skeleton driven canonical forms.
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4.1.1 Simple Shape Measures

We may observe that to a good approximation, neither

the surface area nor the volume of the model should

change under deformation. The first measure is thus

the total surface area A of the mesh. This measure is

not scale independent, and all human models were as-

sumed to be properly scaled. In order to account for a

possibly unknown scale, the second measure, compact-

ness C uses the volume V to provide a dimensionless

quantity: C = V 2/A3. Both measures are trivial to im-

plement, and are very efficient to compute.

The surface area A is the sum of the triangle areas:

A =

N∑
i=1

Ai =
1

2

N∑
i=1

|(bi − ci)× (ai − bi)| , (1)

where the ith triangle has vertices (ai, bi, ci) in anti-

clockwise order, × denotes vector cross-product, and N

is the number of triangles. The volume V of the mesh

is calculated as:

V =
1

6

N∑
i=1

ai · (bi × ci). (2)

We do not take into account any self-intersections

occurring in the meshes, and therefore the volume cal-

culation may not be accurate for certain certain poses;

this is a weakness of this simple method.

4.1.2 Skeleton Driven Canonical Forms

This method uses a variant of the canonical forms pre-

sented by Elad and Kimmel (2003) to normalise the

pose of all models in the dataset, and then uses the

rigid view-based method in Lian et al (2013a) for re-

trieval. This method works as follows (Pickup et al,

2016). A canonical form is produced by extracting a

curve skeleton from a mesh, using the method in Au

et al (2008). The SMACOF multidimensional scaling

method used in Elad and Kimmel (2003) is then applied

to the skeleton, to put the skeleton into a canonical

pose. The skeleton driven shape deformation method

in Yan et al (2008) is then used to deform the mesh to

the new pose defined by the canonical skeleton. This

produces a similar canonical form to the one in Elad

and Kimmel (2003), but with local features better pre-

served, similarly to Lian et al (2013b).

The retrieval method by Lian et al (2013a) performs

retrieval using the canonical forms by rendering a set of

66 depth views of each object, and describing each view

using bag-of-features, with SIFT features. Each pair of

models is compared using the bag-of-features descrip-

tors of their associated views.

In Pickup et al (2014) the Synthetic models had to

be simplified, but we have now made some minor coding

improvements which allows the method to run on the

full resolution meshes for all three datasets.

4.2 Hybrid Shape Descriptor and Meta Similarity

Generation for Non-Rigid 3D Model Retrieval

B. Li, Y. Lu, A. Godil, H. Johan

The hybrid shape descriptor in (Li et al, 2014) inte-

grates both geodesic distance-based global features and

curvature-based local features. An adaptive algorithm

based on particle swarm optimization (PSO) is devel-

oped to adaptively fuse different features to generate a

meta similarity between any two models. The approach

can be generalized to similar approaches which inte-

grate more or different features. Fig. 3 shows the frame-

work of the hybrid approach. It first extracts three com-

ponent features of the hybrid shape descriptor: curvature-

based local features, geodesic distance-based global fea-

tures, and multidimensional scaling (MDS) based ZFDR

global features (Li and Johan, 2013). Based on these

features, corresponding distance matrices are computed

and fused into a meta-distance matrix based on PSO.

Finally, the distances are sorted to generate the re-

trieval lists.

4.2.1 Curvature-based local feature vector: VC

First, a curvature index feature is computed to charac-

terise local geometry for each vertex p:

CI =
2

π
log(

√
(K2

1 +K2
2 )/2),

where K1 and K2 are two principal curvatures at p.

Then, a curvature index deviation feature is computed

for vertices adjacent to p:

δCI =

√√√√(

n∑
i=1

(CIi − C̃I)2)/n,

where CI1, . . .,CIn are the curvature index values of

adjacent vertices and C̃I is the mean curvature index

for all adjacent vertices. Next, the shape index feature

for describing local topology at p is computed as

SI =
2

π
arctan((K1 +K2)/ |K1 −K2|).

A combined local shape descriptor is then formed by

concatenating these local features: F = (CI, δCI, SI).

Finally, based on the bag-of-words framework, the local

feature vector VC = (h1, . . . , hNC
) is formed, where the

number of cluster centres NC is set to 50.
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4.2.2 Geodesic distance-based global feature vector: VG

To avoid the high computational cost of computing

geodesic distances between all vertices, each mesh is

first simplified to 1,000 vertices. The geodesic distance

between each pair of its vertices is then computed to

form a geodesic distance matrix, which is then decom-

posed using singular value decomposition. The ordered

largest k singular values form a global feature vector.

Here, k = 50.

4.2.3 MDS-based ZFDR global feature vector: VZ

To create a pose invariant representation of non-rigid

models, MDS is used to map the non-rigid models into

a 3D canonical form. The geodesic distances between

the vertices of each simplified 3D model are used as

the input to MDS for feature space transformation.

Finally, the hybrid global shape descriptor ZFDR (Li

and Johan, 2013) is used to characterize the features

of the transformed 3D model in the new feature space.

There are four feature components in ZFDR: Zernike

moments, Fourier descriptors, Depth information and

Ray-based features. This approach is called MDS-ZFDR,

stressing that MDS is adopted in the experiments. For

3D human retrieval, using the R feature only (that is

MDS-R) always achieves better results than other com-

binations such as ZF, DR or ZFDR. This is because

salient feature variations in the human models, e.g. fat

versus slim, are better characterised by the R feature

than other visual-related features like Z, F and D.

4.2.4 Retrieval algorithm

The complete retrieval process is as follows:

1. Compute curvature-based local feature vector VC
based on the original models and generate local fea-

ture distance matrix MC .

2. Compute geodesic distance-based global feature vec-

tor VG and global feature distance matrix MG.

3. Compute MDS-based ZFDR global feature vector

VZ and MDS-ZFDR global feature distance matrix

MZ .

4. Perform PSO-based meta-distance matrix genera-

tion as follows:

The meta-distance matrix M = wCMC + wGMG +

wZMZ depends on weights wC , wG and wZ in [0,1].

The weights used in this paper were obtained by train-

ing the above retrieval algorithm using the PSO algo-

rithm on the training dataset: for the Real dataset,

wC = 0.7827, wG = 0.2091 and wZ = 0.0082; for

the Synthetic dataset, wC = 0.4416, wG = 0.5173 and

wZ = 0.0410.

Fig. 4 Basic idea of the area projection transform: we com-
pute the parallel surface at distance R and we compute the
transform at a point x as the area of the original surface gen-
erating the part of the parallel surface falling inside a sphere
of radius σ centred at x.

As a swarm intelligence optimization technique, the

PSO-based approach can robustly and quickly solve

nonlinear, non-differentiable problems. It includes four

steps: initialization, particle velocity and position up-

dates, search evaluation and result verification. The

number of particles used is NP = 10, and the maximum

number of search iterations is Nt = 10. The first tier is

selected as the fitness value for search evaluation. Note
that the PSO-based weight assignment preprocessing

step is only performed once on each training dataset.

4.3 Histograms of Area Projection Transform

A. Giachetti, V. Garro, L. Isaia

This approach uses histograms of area projection trans-

forms (HAPT), general purpose shape descriptors pro-

posed in Giachetti and Lovato (2012), for shape re-

trieval. The method is based on a spatial map (the

multiscale area projection transform) that encodes the

likelihoods that 3D points inside the mesh are centres

of spherical symmetry. This map is obtained by com-

puting for each radius of interest the value:

APT(x, S,R, σ) = Area(T−1R (kσ(x) ⊂ TR(S,n))), (3)

where S is the surface of interest, TR(S,n) is the par-

allel surface to S shifted (inwards only) along the nor-

mal vector n by a distance R, T−1R is the part of the
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8 D. Pickup et al.

original surface used to generate the parallel surface

TR, and kσ(x) is a sphere of radius σ centred on the

generic 3D point x where the map is computed (Fig-

ure 4). Values at different radii are normalized to pro-

vide scale-invariant behaviour, creating the multiscale

APT (MAPT):

MAPT(x, R, S) = α(R) APT(x, S,R, σ(R)), (4)

where α(R) = 1/4πR2 and σ(R) = cR, (0 < c < 1).

The discretized MAPT is easily computed, for se-

lected values of R, on a voxelized grid containing the

surface mesh by the procedure in Giachetti and Lovato

(2012). The map is computed on a grid of voxels of

size s on a set of corresponding sampled radius values

R1, . . . , Rn. Histograms of MAPT computed inside ob-

jects are good global shape descriptors, as shown by

their very good performance on the SHREC’11 non-

rigid watertight contest data (Lian et al, 2011). For

that recognition task, discrete MAPT maps were quan-

tized in 12 bins and histograms computed at the se-

lected radii were concatenated to create a descriptor.

Voxel side and sampled radii were chosen, proportional

to the cube root of the object volume for each model,

to normalize the descriptor independently of scale. The

parameter c was set to 0.5.

To recognise human subjects, however, scale invari-

ance is not desired. For this reason a fixed voxel size

and a fixed set of radii is used. The values for these

parameters were chosen differently for each dataset, by

applying simple heuristics to the training data. For all

datasets, the MAPT maps were quantized into 6 bins.

The voxel size was taken to be similar to the size of

the smaller well defined details in the meshes. For the

Synthetic dataset, where fingers are clearly visible and

models are smaller, s = 4 mm is used; the MAPT his-

tograms are computed for 11 increasing radii starting

from R1 = 8 mm, in increments of 4 mm for the re-

maining values. In the Real dataset, models are bigger

and details are more smoothed, so we set s = 12 mm

and use 15 different radii starting from R1 = 24 mm ra-

dius in increments of 12 mm. For the FAUST dataset

we use the same parameters as for the Real dataset.

Measuring distances between models simply involves

concatenating the MAPT histograms computed at dif-

ferent scales and evaluating the Jeffrey divergence of

the corresponding concatenated vectors.

4.3.1 Trained approach

The available training dataset was exploited to project

the original feature space into a subspace that is max-

imally discriminative for different instances of the spe-

cific class of objects; distances are computed on the

mapped descriptors. The mapping uses a combination

of principal component analysis (PCA) and linear dis-

criminant analysis (LDA) (Duda et al, 2012).

PCA transforms the data set into a different co-

ordinate system in which the first coordinate in the

transformed domain, called the principal component,

has maximum variance and other coordinates have suc-

cessively smaller variances. LDA puts a labelled dataset

into a subspace which maximizes between-class scatter.

The combination of these two mappings first decorre-

lates the data and then maximizes the variances be-

tween classes. The combined mapping is defined as:

Dmap = LDA(PCA(D)). Several tests indicated 10 di-

mensions should be used for the PCA. The dimension-

ality of the original descriptors is 180. Regularized LDA

can be used to bypass the initial PCA computation, but

we find that using PCA followed by standard LDA per-

forms better in practice. For the mappings, the Matlab

implementation in the PRTools 5 package (Van Der Hei-

jden et al, 2005) was used. The PCA and LDA proce-

dures are very efficient, only accounting for 10 seconds

of the full training time given in Table 2. The rest of

the time is spent computing the descriptors from the

training data to be input into the PCA and LDA algo-

rithms.

The improvements that can be obtained with this

approach clearly depend on the number of examples

available in the training set and how well these exam-

ples represent the differences found in the test set. The

improvements are less evident for the Synthetic dataset,

where the number of training examples is lower and we

find that they do not fully characterise range of body

shapes present in the test set.

4.4 R-BiHDM

J. Ye

The R-BiHDM (Ye et al, 2013; Ye and Yu, 2015) method

is a spectral method for general non-rigid shape re-

trieval. Using modal analysis, the method projects the

biharmonic distance map (Lipman et al, 2010) into a

low-frequency representation which operates on the modal

space spanned by the lowest eigenfunctions of the shape

Laplacian (Reuter et al, 2006; Ovsjanikov et al, 2012),

and then computes its spectrum as an isometric shape

descriptor.

Let ψ0, . . . , ψm be the eigenfunctions of the Lapla-

cian ∆, corresponding to its smallest eigenvalues 0 =

λ0 ≤ . . . ≤ λm. Let d(x, y) be the biharmonic distance

between two points on a mesh, defined as

d(x, y)2 =

m∑
i=1

1

λ2i
(ψi(x)− ψi(y))

2
. (5)
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The squared biharmonic distance map D2 is a func-

tional map defined by

D2[f ](x) =

∫
x∈S

d2(x, y)f(y)dy, (6)

where S is a differential shape manifold . The reduced

matrix version of D2 is denoted by A = {ai,j}, where

ai,j =
∫
S
ψi(x)D2[ψj ](x)dx for 0 ≤ i, j ≤ m. Note

that tr(A) = 0 and all eigenvalues of A, denoted by

µ0, . . . , µm are in descending order of magnitude, where

µ0 > 0 and µi < 0 for i > 0. The shape descriptor is de-

fined by the vector [µ1, . . . , µm]T (for a scale dependent

version) or [µ1/µ0, . . . , µL/µ0]T (scale independent). In

this test, L = 30 and m = 60 for the scale independent

version, and L = m = 100 for the scale dependent ver-

sion. Finally, a normalized Euclidean distance is used

for nearest neighbour queries. The descriptor is insen-

sitive to a number of perturbations, such as isometry,

noise, and remeshing. It has good discrimination capa-

bility with respect to global changes of shape and is

very efficient to compute. We have found that the scale

independent descriptor (R-BiHDM) is more reliable for

generic nonrigid shape tasks, while the scale dependent

descriptor (R-BiHDM-s) is more suitable for this hu-

man shape task (see Section 5).

4.5 Multi-Feature Descriptor

L. Lai, X. Liu, H. Li, L. Sun

Single feature descriptors cannot capture all aspects of

a shape, so this approach fuses several features into a

multi-feature descriptor to improve retrieval accuracy.
Three state-of-the-art features are used: heat kernel sig-

natures (HKS) (Sun et al, 2009), wave kernel signatures

(WKS) (Aubry et al, 2011) and mesh surface area (SA).

Firstly, the similarity of all the models in the train-

ing set is calculated for each of the three chosen fea-

tures. Secondly, some models are selected at random

to produce a subset of the training data, with the rest

left for validation. For each feature fi, its entropy is

calculated as

E(fi) = −
N∑
j=1

pij log2 p
i
j , (7)

where N is the number of shape classes and pij is the

probability distribution of shape class j for feature i. A

weighting for each feature is then calculated as

wi =
1− E(fi)

3−
∑
E(fi)

. (8)

Having determined the weights, the combined similarity

matrix S is calculated as

S =

3∑
i=1

wiSi. (9)

Si represents the normalized similarity matrix calcu-

lated using method i. The performance of the weight-

ings is evaluated on the training data set aside for vali-

dation. The subset of the training data used to compute

Equation 7 is optimised to produce the best retrieval

results. Computing these feature weightings only ac-

counts for ≈ 7 seconds of the preprocessing time given

in Table 2, with the rest of the time spent computing

the individual features from the training data to be in-

put into the weight optimization procedure.

Once the best weightings for the training set are

obtained, these weightings are then used to combine

the similarity matrices computed for the test set, also

using Equation 9.

Results of using HKS, WKS and SA features alone

are also given, to show the improvement obtained by

this weighted combination.

4.6 High-level Feature Learning for 3D Shapes

S. Bu, S. Chen, Z. Lui, J. Han

The high-level feature learning method for 3D shapes

in (Bu et al, 2014a,b) uses three stages (see Fig. 5):

1. Low-level feature extraction: three representative in-

trinsic features, the scale-invariant heat kernel sig-

nature (SI-HKS) (Bronstein and Kokkinos, 2010),

the shape diameter function (SDF) (Gal et al, 2007),

and the averaged geodesic distance (AGD) (Hilaga

et al, 2001), are used as low-level descriptors.

2. Mid-level feature extraction: to add the spatial dis-

tribution information missing from low-level features,

a mid-level position-independent bag-of-features (BoF)

is first extracted from the low-level descriptors. To

compensate for the lack of structural relationships,

the BoF is extended to a geodesic-aware bag-of-features

(GA-BoF), which considers geodesic distances be-

tween each pair of features on the 3D surface. The

GA-BoF describes the frequency of two geometric

words appearing within a specified geodesic distance.

3. High-level feature learning: finally, a deep learning

approach is used to learn high-level features from

the GA-BoF, which can discover intrinsic relation-

ships using the GA-BoF which provide highly dis-

criminative features for 3D shape retrieval. A stack

of restricted Boltzmann machines (RBMs) are used,

and learning is performed layer by layer from bot-

tom to top, giving a deep belief network (DBN)
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Fig. 5 Overview of the high-level feature learning method.

(Hinton et al, 2006). The bottom layer RBM is trained

with the unlabelled GA-BoFs, and the activation

probabilities of hidden units are treated as the input

data for training the next layer, and so on. After ob-

taining the optimal parameters, the input GA-BoFs

are processed layer-by-layer, and the final layer pro-

vides the high-level shape features.

4.7 Bag-of-Features approach with Augmented Point

Feature Histograms

A. Tatsuma, M. Aono

Point feature histograms (PFH) provide a well-known

local feature vector for 3D point clouds, based on a

histogram of geometric features extracted from neigh-

bouring oriented points (Rusu et al, 2008). Augmented

point feature histograms (APFH) improve their discrim-

inative power by adding the mean and covariance of the

geometric features. Because APFH, like PFH, are based

on local features, they are invariant to global deforma-

tion and articulation of a 3D model.

The APFH approach is illustrated in Fig. 6. The

first step is to randomly generate oriented points on

the mesh, using Osada’s method (Osada et al, 2002).

The orientation of each point p is the normal vector of

the surface at that point.

Next a PFH is constructed for each oriented point.

The 4D geometric feature f = [f1, f2, f3, f4]T proposed

in Wahl et al (2003) is computed for every pair of points

pa and pb in the point’s k-neighbourhood:

f1 = arctan(w · nb,u · na), (10)

f2 = v · nb, (11)

f3 = u · pb − pa
d

, (12)

f4 = d, (13)

where the normal vectors of pa and pb are na and nb,

u = na, v = (pb−pa)×u/||(pb−pa)×u||, w = u×v,

and d = ||pb − pa||. These four-dimensional geomet-

ric features are collected in a 16-bin histogram fh. The

index of histogram bin h is defined by the following

formula:

h =

4∑
i=1

2i−1s(t, fi), (14)

where s(t, f) is a threshold function defined as 0 if f < t

and 1 otherwise. The threshold value used for f1, f2,

and f3 is 0, while the threshold for f4 is the average

value of f4 in the k-neighbourhood.

The mean fm and covariance fc of the 4D geometric

features is also calculated. The augmented point fea-

ture histogram fAPFH comprises fh, fm, and fc. Finally,

fAPFH is normalized by power and L2 normalization

(Perronnin et al, 2010).

To compare 3D models, the set of APFH features of

a 3D model is integrated into a feature vector using the

bag-of-features (BoF) approach (Bronstein et al, 2011;

Sivic and Zisserman, 2003). The BoF is projected onto

Jensen-Shannon kernel space using the homogeneous

kernel map method (Vedaldi and Zisserman, 2012). This
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Fig. 6 Overview of augmented point feature histograms.

approach is called BoF-APFH. Similarity between fea-

tures is calculated using the manifold ranking method

with the unnormalized graph Laplacian (Zhou et al,

2011). This approach is called MR-BoF-APFH.

The parameters of the overall algorithm are fixed

empirically. For APFH, the number of points is set to

20, 000, and the size of the neighbourhood to 55. For the

BoF-APFH approach, a codebook of 1, 200 centroids is

generated using k-means clustering, and the training

dataset is used to train the codebook.

4.8 BoF and SI-HKS

R. Litman, A. Bronstein, M. Bronstein, U. Castellani

This method was presented in Litman et al (2014). All

meshes are down-sampled to 4, 500 triangles. For each

model S in the data-set, a scale-invariant heat kernel

signature SI-HKS (Bronstein and Kokkinos, 2010) de-

scriptor xi is calculated at every point i ∈ S. Unsuper-

vised dictionary learning is performed over randomly

selected descriptors sampled from all meshes using the

SPAMS toolbox (Mairal et al, 2009), using a dictio-

nary size of 32. The resulting 32 atom dictionary D is,

in essence, the bag-of-features of this method. Next, at

every point, the descriptor xi is replaced by a sparse

code zi by solving the pursuit problem:

min
zi

1

2
‖xi −Dzi‖22 + λ‖zi‖1. (15)

The resulting codes zi are then pooled into a single

histogram using mean pooling h =
∑
i ziwi, with wi

being the area element for point i.

The initial D is determined by supervised training

using the training set, using stochastic gradient de-

scent of the loss-function defined in Weinberger and

Saul (2009).

The results of three approaches are presented in Sec-

tion 5: the above approach based on supervised train-

ing (supDLtrain), and for reference, a method using

the initial unsupervised D (UnSup32). Additionally, the

results of a similar unsupervised method (softVQ48)

used in Bronstein et al (2011) are also included; it

uses k-means clustering, with k = 48, and soft vector-

quantization, instead of dictionary learning and pur-

suit, respectively.

4.9 Spectral Geometry

C. Li, A. Godil, A. Ben Hamza

The spectral geometry based framework is described

in Li (2013). It is based on the eigendecomposition

of the Laplace-Beltrami operator (LBO), which pro-

vides a rich set of eigenbases that are invariant to iso-

metric transformations. Two main stages are involved:

(1) spectral graph wavelet signatures (Li and Hamza,

2013b) are used to extract descriptors, and (2) intrin-

sic spatial pyramid matching (Li and Hamza, 2013a) is

used for shape comparison.

4.9.1 Spectral graph wavelet signature

The first stage computes a dense spectral descriptor

h(x) at each vertex of the mesh X. Any of the spec-

tral descriptors with the eigenfunction-squared form re-

viewed in Li and Hamza (2013c) can be used for iso-

metric invariant representation. Here, the spectral graph

wavelet signature (SGWS) is used, as it provides a gen-

eral and flexible interpretation for the analysis and de-

sign of spectral descriptors Sx(t, x) =
∑m
i=1 g(t, λi)ϕ

2
i (x),

where λi and ϕi are the eigenvalues and associated

eigenfunctions of the LBO. In the experiments m =

200. To capture the global and local geometry, a multi-

resolution shape descriptor is obtained by setting g(t, λi)

as a cubic spline wavelet generating kernel. The resolu-

tion level is set to 2.

4.9.2 Intrinsic spatial pyramid matching

Given a vocabulary of representative local descriptors

P = {pk, k = 1, . . . ,K} learned by k-means, the dense

descriptor S = {st, t = 1, . . . , T} at each point of the

mesh is replaced by the Gaussian kernel based soft as-

signment Q = {qk, k = 1, . . . ,K}.
Any function f on X can be written as a linear com-

bination of the eigenfunctions. Using variational charac-

terizations of the eigenvalues in terms of the Rayleigh-

Ritz quotient, the second eigenvalue is given by

λ2 = inf
f⊥ϕ1

f ′Cf

f ′Af
. (16)
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Fig. 7 Isocontours of the second eigenfunction.

The isocontours of the second eigenfunction (Fig. 7)

are used to cut the mesh into R patches, giving a shape

description which is the concatenation of R sub-histo-

grams of Q with respect to eigenfunction value. To con-

sider the two-sign possibilities in the concatenation, the

histogram order is inverted, and the scheme with the

minimum cost is considered to be the better match.

The second eigenfunction is the smoothest mapping

from the manifold to the real line, so this intrinsic par-

tition is stable. Kac (1966) showed that the second

eigenfunction corresponds to the sound frequencies we

hear the best. Further justification for using the second

eigenfunction is given in Li (2013). This approach prov-

ably extends the ability of the popular spatial pyramid

matching scheme in the image domain to capture spa-

tial information for meshed surfaces, so it is referred to

as intrinsic spatial pyramid matching (ISPM) Li and

Hamza (2013a). The number of partitions is set to 2

here. The dissimilarity between two models is computed

as the L1 distance between their ISPM histograms.

4.10 Topological Matching

G. Tam

This section presents two techniques, topological match-

ing with multi-resolution Reeb graphs, and topological

and geometric signatures with topological point rings.

4.10.1 Topological Matching with Multi-resolution

Reeb Graphs

The topological matching method was proposed by Hi-

laga et al (2001) and is one of the earliest techniques for

the retrieval of 3D non-rigid shapes. It begins with the

construction of a multi resolution Reeb graph (MRG)

for each model using integral geodesic distances. Two

attributes (local area and length) are calculated for each

node of the MRG. The similarity between two MRGs

is the sum of the similarity scores between all topologi-

cally consistent node pairs. To find these node pairs,

the algorithm applies a heuristic graph-matching al-

gorithm in a coarse to fine manner. It first finds the

pair of nodes with the highest similarity at the coars-

est level, and then finds the pair of child nodes with

the highest similarity at the next level. This procedure

recurs down both MRGs, and repeats until all possi-

ble node pairs are exhausted. It then backtracks to an

unmatched highest level node and applies the same pro-

cedure again.

This method fails on the FAUST dataset, as it can-

not handle the topological noise present in this data.

4.10.2 Topological Point Rings and Geometric

Signatures

Topological and geometric signatures were proposed in

Tam and Lau (2007). The idea is to define a mesh signa-

ture which consists of a set of topologically important

points and rings, and their associated geometric fea-

tures. The earth mover distance (Rubner et al, 2000) is

used to define a metric similarity measure between the

two signatures of the meshes. This technique is based

on skeletal shape invariance, but avoids the high com-

plexity of skeleton-based matching (requiring subgraph-

isomorphism). It uses critical points (local maxima and

minima of geodesic distance) obtained from a level-

set technique to define topological points. With these

points, a multi-source Dijkstra algorithm is used to de-

tect geodesic wavefront collisions; the colliding wave-

fronts give topological rings. For each point or ring,

integral geodesic distance and three geometric surface

vectors (effective area, thickness, and curvature) are

further used to define the final mesh signatures.

5 Results

We now present and evaluate the retrieval results for the

methods described in Section 4, applied to the datasets

described in Section 2. Retrieval scores are given in Sec-

tion 5.1, then we discuss the results in Section 5.2.

5.1 Experimental Results

The retrieval task, defined in Section 3, was to return

a list of all models ordered by decreasing shape simi-

larity to a given query model. Tables 3–5 evaluate the

retrieval results using the NN, 1-T, 2-T, E-M and DCG

measures discussed in Section 3. All measures lie in the

interval [0, 1], where a higher score indicates better per-

formance.

All methods performed better on the Synthetic data-

set than the Real dataset, with most methods working
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Author Method NN 1-T 2-T E-M DCG

Giachetti
APT 0.830 0.572 0.761 0.396 0.826

APT-Trained 0.910 0.673 0.848 0.414 0.874

Lai

HKS 0.245 0.259 0.461 0.314 0.548
WKS 0.326 0.322 0.559 0.347 0.605
SA 0.288 0.298 0.491 0.300 0.563

Multi-Feature 0.510 0.470 0.691 0.382 0.708

B. Li

Curvature 0.083 0.076 0.138 0.099 0.347
Geodesic 0.070 0.078 0.158 0.113 0.355
Hybrid 0.063 0.091 0.171 0.120 0.363
MDS-R 0.035 0.066 0.129 0.090 0.330

MDS-ZFDR 0.030 0.040 0.091 0.075 0.310
C. Li Spectral Geom. 0.313 0.206 0.323 0.192 0.488

Litman
supDL 0.775 0.663 0.859 0.421 0.857

UnSup32 0.583 0.451 0.659 0.354 0.712
softVQ48 0.598 0.472 0.657 0.356 0.717

Pickup
Surface Area 0.263 0.289 0.509 0.326 0.571
Compactness 0.275 0.221 0.384 0.255 0.519

Canonical 0.010 0.012 0.040 0.043 0.279
Bu 3DDL 0.225 0.193 0.374 0.262 0.504

Tatsuma
BoF-APFH 0.040 0.111 0.236 0.163 0.388

MR-BoF-APFH 0.063 0.072 0.138 0.084 0.330

Ye
R-BiHDM 0.275 0.201 0.334 0.217 0.492

R-BiHDM-s 0.720 0.616 0.793 0.399 0.819

Tam
MRG 0.018 0.023 0.051 0.037 0.280
TPR 0.015 0.024 0.057 0.050 0.288

Table 3 Retrieval results for the Real dataset. The 1st , 2nd and 3rd highest scores of each column are highlighted.

Author Method NN 1-T 2-T E-M DCG

Giachetti
APT 0.970 0.710 0.951 0.655 0.935

APT-Trained 0.967 0.805 0.982 0.692 0.958

Lai
HKS 0.467 0.476 0.743 0.504 0.729
WKS 0.810 0.726 0.939 0.667 0.886
SA 0.720 0.682 0.973 0.670 0.862

Multi-Feature 0.867 0.714 0.981 0.682 0.906

B. Li

Curvature 0.620 0.485 0.710 0.488 0.774
Geodesic 0.540 0.362 0.529 0.363 0.674
Hybrid 0.430 0.509 0.751 0.520 0.768
MDS-R 0.267 0.284 0.470 0.314 0.594

MDS-ZFDR 0.207 0.228 0.407 0.265 0.559

C. Li Spectral Geom. 0.993 0.832 0.971 0.706 0.971

Litman
supDL 0.963 0.871 0.974 0.704 0.974

UnSup32 0.893 0.754 0.918 0.657 0.938
softVQ48 0.910 0.729 0.949 0.659 0.927

Pickup
Surface Area 0.807 0.764 0.987 0.691 0.901
Compactness 0.603 0.544 0.769 0.527 0.773

Canonical 0.113 0.182 0.333 0.217 0.507
Bu 3DDL 0.923 0.760 0.911 0.641 0.921

Tatsuma
BoF-APFH 0.550 0.550 0.722 0.513 0.796

MR-BoF-APFH 0.790 0.576 0.821 0.563 0.836

Ye
R-BiHDM 0.737 0.496 0.673 0.467 0.778

R-BiHDM-s 0.787 0.571 0.811 0.551 0.833

Tam
MRG 0.070 0.165 0.283 0.187 0.478
TPR 0.107 0.188 0.333 0.216 0.506

Table 4 Retrieval results for the Synthetic dataset. The 1st , 2nd and 3rd highest scores of each column are highlighted.

considerably less well on the Real data. Most meth-

ods performed somewhere in between these two on the

FAUST dataset. Figures 8–10 show the precision-recall

curve for the best performing methods submitted by

each participant.

On the most challenging Real dataset, supDL by

Litman et al., and APT and APT-trained by Giachetti
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Author Method NN 1-T 2-T E-M DCG

Giachetti
APT 0.960 0.865 0.962 0.700 0.966

APT-Trained 0.990 0.891 0.984 0.711 0.979

Lai
HKS 0.170 0.205 0.382 0.244 0.546
WKS 0.195 0.181 0.354 0.222 0.525
SA 0.230 0.223 0.406 0.262 0.560

Multi-Feature 0.350 0.226 0.379 0.246 0.573

B. Li

Curvature 0.805 0.644 0.777 0.558 0.853
Geodesic — — — — —
Hybrid — — — — —
MDS-R — — — — —

MDS-ZFDR — — — — —
C. Li Spectral Geom. 0.555 0.255 0.369 0.252 0.611

Litman
supDL 0.835 0.635 0.783 0.558 0.872

UnSup32 0.770 0.523 0.670 0.477 0.812
softVQ48 0.730 0.426 0.551 0.387 0.748

Pickup
Surface Area 0.545 0.509 0.818 0.544 0.763
Compactness 0.405 0.377 0.653 0.429 0.679

Canonical 0.245 0.159 0.286 0.186 0.507
Bu 3DDL 0.415 0.281 0.492 0.321 0.619

Tatsuma
BoF-APFH 0.890 0.652 0.785 0.559 0.886

MR-BoF-APFH 0.900 0.815 0.901 0.645 0.938

Ye
R-BiHDM 0.645 0.368 0.533 0.370 0.698

R-BiHDM-s 0.870 0.555 0.720 0.501 0.846

Tam
MRG — — — — —
TPR 0.285 0.169 0.279 0.184 0.521

MPI-FAUST Dataset
Table 5 Retrieval results for the FAUST dataset. The 1st , 2nd and 3rd highest scores of each column are highlighted.

Author Method Real Synthetic FAUST

Giachetti
APT 0.676 0.000 0.000

APT-Trained 0.611 0.300 0.000

Lai
HKS 0.109 0.025 0.060
WKS 0.175 0.000 0.062
SA 0.105 0.036 0.104

Multi-Feature 0.276 0.000 0.169

B. Li

Curvature 0.681 0.702 0.333
Geodesic 0.909 0.768 —
Hybrid 0.924 0.944 —
MDS-R 0.969 0.927 —

MDS-ZFDR 0.905 0.861 —
C. Li Spectral Geom. 0.807 0.000 0.371

Litman
supDL 0.778 1.000 0.848

UnSup32 0.886 0.969 0.826
softVQ48 0.758 1.000 0.685

Pickup
Surface Area 0.112 0.017 0.154
Compactness 0.093 0.092 0.059

Canonical 0.995 0.987 0.338
Bu 3DDL 0.561 0.087 0.325

Tatsuma
BoF-APFH 1.000 0.993 0.909

MR-BoF-APFH 0.965 0.587 0.750

Ye
R-BiHDM 0.903 0.506 0.634

R-BiHDM-s 0.732 0.625 0.692

Tam
MRG 0.947 0.953 —
TPR 0.967 0.892 0.594

MPI-FAUST Dataset
Table 6 The proportion of incorrect nearest neighbour re-
sults which are objects with the same pose as the query.

et al. performed best, significantly outperforming other

methods, while on the FAUST dataset the same is true

Real Synthetic FAUST
-0.25 -0.50 0.46

Table 7 Correlation coefficient between nearest neighbour
retrieval performance, and the percentage of errors which
have the same pose as the query.

for the methods by Giachetti et al. and MR-BoF-APFH

by Tatsuma and Aono. The performance of different

methods is far closer on the Synthetic dataset.

We use the precision-recall curves to define which

methods perform ‘better’ than other methods. We say

a method performs better than another if its precision-

recall curve has higher precision than the other for all

recall values. If two curves overlap, we cannot say which

method is better.

Figures 11–16 show confusion matrices for the best

performing methods submitted by each participant for

each of the individual classes, for all three datasets. The

corresponding models are rendered in Figures 17–20.

5.2 Discussion

The results presented in Section 5.1 show that perfor-

mance can vary significantly between different datasets;

we may conclude that testing algorithms on one dataset

is not a reliable way to predict performance on another

dataset.
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Fig. 8 Precision and recall curves for the best performing
method of each group on the Real dataset.
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Fig. 9 Precision and recall curves for the best performing
method of each group on the Synthetic dataset.

A possible reason why the different classes in the

Synthetic data may be more easily distinguished than

those in the other datasets is that they were manually

designed to be different for this competition, whereas

the models in the Real and FAUST datasets were gen-

erated from body scans of human participants taken

from an existing dataset, who may or may not have

had very different body shapes. There is in fact a much
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Fig. 10 Precision and recall curves for the best performing
method of each group on the FAUST dataset.

higher similarity between the classes in the Real dataset

than the other two. This is partly due to the template

mesh fitting procedure used in the creation of the Real

dataset, as it smooths out some of the details present

in the scanned meshes. The topological noise present in

the FAUST dataset also produces an extra challenge.

The organisers (Pickup et al.) submitted two very

simple methods, surface area and compactness. It is in-

teresting to note that they perform better than many

of the more sophisticated methods submitted, includ-

ing their own. Indeed, surface area is one of the top

performing methods on the Synthetic dataset, with the

highest second tier accuracy. These measures are obvi-

ously not novel, but they highlight that sophistication

does not always lead to better performance, and a sim-

pler and computationally very efficient algorithm may

suffice. Algorithms should concentrate on what is truly

invariant for each class.

For the Synthetic dataset, some methods, includ-

ing surface area, performed especially well on the child

models. This seems to be the same for other methods

which are affected by scale. Clearly, methods which take

scale into account do not readily confuse children with

adults having a similar body shape. The supDL method

also exhibits this trend, but claims to be scale invari-

ant. Ye et al. submitted a scale invariant and a scale

dependent version of their algorithm; the correspond-

ing retrieval results demonstrate that a scale dependent

method provides significantly improved retrieval accu-

racy for this dataset.
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The APT-Trained and supDL methods which per-

formed best on the Real dataset, and were amongst

the highest performing methods on the Synthetic and

FAUST datasets, both took advantage of the training

data. Both participants submitted untrained versions of

these methods (APT and UnSup32), which performed

worse. This demonstrates the advantage of training.

Table 6 shows the proportion of incorrect nearest

neighbour results that share the same pose as the query

model. This gives us an idea of how much pose may

cause these retrieval errors. In Table 7 we have also

presented the correlation coefficient between the near-

est neighbour retrieval performance and the percentage

of errors having the same pose as the query. We may

expect the best performing methods to be the most

pose-invariant, and therefore produce a strong negative

correlation. We find a weak negative correlation for the

Real dataset, a slightly stronger negative correlation

for the Synthetic dataset, but a positive correlation for

the FAUST dataset. Overall this shows that the perfor-

mance of the method is not a reliable indicator of the

pose-invariance of a method.

Many methods performed significantly better at re-

trieval on the Synthetic dataset. The spectral geome-

try method of Li et al., which performed poorly on the

Real and FAUST datasets, was one of the best perform-

ing methods on the Synthetic dataset. Figures 8 and 9

show that this method fell below the performance of

four of the methods analysed using precision and recall

on the Real dataset and five on the FAUST dataset,

but was not outperformed by any method on the Syn-

thetic dataset. This suggests that there may be features

present in the synthetic models which this method re-

lies on to achieve its high performance, yet which are

absent in the models within the other datasets. None

of the nearest neighbour errors for this method on the

Synthetic dataset were caused by pose, and therefore

this method may be able to extract more pose-invariant

features from the Synthetic dataset than the other two,

which may contribute to its increased performance.

The R-BiHDM-s method submitted by Ye performed

better than most methods on the Real and FAUST

datasets, but exhibited the smallest performance im-

provement on the Synthetic dataset, and was therefore

overtaken by many methods. This may imply that this

method performs well at distinguishing global features,

but does not take advantage of the extra local detail

that is present within the Synthetic dataset.

The MR-BoF-APFH method by Tatsuma and Aono

was a low performer on the Real and Synthetic datasets,

but achieved the second best performance on the FAUST

dataset. The large increase in performance may be due

to the large increase in mesh resolution for this dataset.

This was also the only method which did not use the wa-

tertight version of the FAUST dataset. As this method

uses very local features, it may be more robust to the

topological noise present in the FAUST dataset than

other methods.

Figures 11–16 show the combined confusion matri-

ces for the three methods with the highest NN score for

each dataset. These show that for the Real dataset, the

methods mostly confuse subjects with other subjects

of the same gender. This implies that the difference in

body shape due to gender is larger than the difference

within gender physiques. The largest confusion on the

FAUST dataset is also between subjects of the same

gender. For the Synthetic dataset, these methods ex-

clusively confuse adult subjects with other adults of the

opposite gender, but with the same physique (thin, fat,

etc.). The child subjects are sometimes confused with

other child subjects, but not with adults, presumably

due to their smaller size.

Some of the differences in the results between datasets

may be caused by the different number of models and

classes in each dataset. The Synthetic dataset is the

only dataset containing models of children. As we have

already mentioned, Figures 13 and 14 show that there

is less confusion with identifying the child models than

the adult models. We therefore show the retrieval re-

sults on the Synthetic dataset when the child models

are ignored (Table 8). These results show that most

methods drop slightly in performance, but the overall

trends remain the same.

6 Conclusions

This paper has compared non-rigid retrieval results ob-

tained by 25 different methods, submitted by ten re-

search groups, on benchmark datasets containing real

and synthetic human body models. These datasets are

much more challenging than previous non-rigid retrieval

benchmarks (Lian et al, 2011, 2015), as evidenced by

the lower success rates. Both datasets obtained by scan-

ning real human participants proved more challenging

than the synthetically generated data. There is a lot of

room for future research to improve discrimination of

‘real’ mesh models of closely similar objects. We also

note that real datasets are needed for testing purposes,

as synthetic datasets do not adequately mimic the same

challenge.

All methods submitted were designed for generic

non-rigid shape retrieval. Our new dataset has created

the potential for new research into methods which spe-

cialise in shape retrieval of human body models.
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Fig. 11 Confusion matrix of each method on the Real dataset.
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Fig. 12 Confusion matrix of each method on the Real dataset.
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Fig. 13 Confusion matrix of each method on the Synthetic dataset.
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Fig. 14 Confusion matrix of each method on the Synthetic dataset.
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Fig. 15 Confusion matrix of each method on the FAUST dataset.
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Fig. 16 Confusion matrix of each method on the FAUST dataset.
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Table 8 Retrieval results for the Synthetic dataset without the child models. The 1st , 2nd and 3rd highest scores of
each column are highlighted. Most methods show a small drop in performance, compared with the results of the full Synthetic
dataset.
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Fig. 19 Subjects present in the Synthetic dataset.

Fig. 20 Subjects present in the FAUST dataset.
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