
HairManip: High Quality Hair Manipulation via Hair

Element Disentangling

Huihuang Zhaoa,b,∗, Lin Zhangb, Paul L. Rosinc, Yu-Kun Laic, Yaonan
Wanga

aNational Engineering Laboratory for Robot Visual Perception and Control Technology,

Hunan University, China
bSchool of Computer Science and Technology, Hengyang Normal

University, 421002, China
cSchool of Computer Science & Informatics, Cardiff University, UK

Abstract

Hair editing is challenging due to the complexity and variety of hair mate-
rials and shapes. Existing methods employ reference images or user-painted
masks to edit hair and have achieved promising results. However, discrep-
ancies in color and shape between the source and target hair can occasion-
ally result in unrealistic results. Therefore, we propose a new hair edit-
ing method named HairManip, which decouples the hair information from
the input source image into shape and color components. We then train
hairstyle and hair color editing sub-networks to handle this complex infor-
mation independently. To further enhance editing efficiency and accuracy,
we introduce a latent code preprocessing module that effectively extracts
meaningful features from hair regions, thereby improving the model’s editing
capabilities. The experimental results demonstrate that our method achieves
significant results in editing accuracy and authenticity, thanks to the care-
fully designed network structure and loss functions. Code can be found at
https://github.com/Zlin0530/HairManip.

Keywords: Hair editing, Preprocessing module, Editing capabilities

∗Corresponding author
Email addresses: happyday.huihuang@gmail.com (Huihuang Zhao),

zlin880530@gmail.com (Lin Zhang), RosinPL@cardiff.ac.uk (Paul L. Rosin),
LaiY4@cardiff.ac.uk (Yu-Kun Lai), yaonan@hnu.edu.cn (Yaonan Wang)

Preprint submitted to Pattern Recognition October 9, 2023

https://github.com/Zlin0530/HairManip/

1. Introduction

Hair is composed of a large number of soft and fine strands. It is precisely
because of the flexibility and malleability of these strands that individual hair
exhibits a wide range of shapes and colors. This complexity poses significant
challenges to hair editing, which has attracted considerable attention and
research from numerous scholars [1, 2, 3]. In practical applications, hair
processing tasks also have a wide range of applications and practical value,
such as in the production of animated movies, short video creation, game
design, virtual reality, and more [4, 5].

In recent years, the development of computer vision [6, 7, 8] and dataset
distillation [9, 10] has opened up endless possibilities for generative mod-
els [11, 12]. Generative adversarial networks (GANs) [13], as the foremost
image generation method, have significantly improved the quality and reso-
lution of generated images through its development. DCGAN [14] applied
convolutional techniques to GANs, greatly enhancing the realism of gener-
ated images. StyleGAN [15, 16] made it possible to generate high-resolution
face images by implementing layered control over the latent code. StyleGAN-
based methods [17, 18, 19] generate high-fidelity face images by predicting
edit directions in latent space. Recent emerging diffusion models [20, 21]
have unique advantages in generative modeling. They generate realistic im-
ages by learning to progressively increase information decay caused by noise
and subsequently eliminate noise using learned patterns.

Hair editing mainly involves transferring the hairstyle of a reference image
onto a source image. In recent years, many deep learning techniques have
been applied using generative adversarial networks (GANs) to study hair
editing tasks [1, 2, 4, 22]. Some approaches use “user-painted” sketches [2, 23]
or masks [22, 24] as inputs to the corresponding networks for hair editing.
CtrlHair [1] not only allows manipulation of hair through reference photos
and masks but also enables editing of hair by simply sliding a set of control
bars. The emergence of the CLIP model [25] links the text and image domains
and it supports a range of related work on text-based hair editing methods [3,
17, 26, 27, 28]. StyleCLIP-LM [17] infers text-guided image editing direction
by a trained latent mapper, which in turn enables face attribute editing
including hair editing. In order to provide users with a more user-friendly
and intuitive hair editing interaction, Wei et al. proposed the HairCLIP [3]
method, which unifies text and images in the same domain and designs a
modulation module to achieve hair editing using a combination of text and

2

Input Image

“
p
in

k
 h

ai
r”

+

“
ri

n
g
le

ts
 h

ai
rs

ty
le
”

“
y
el

lo
w

 h
ai

r”
+

“
b
o
w

l
cu

t
h
ai

rs
ty

le
”

“
fa

u
x
h
aw

k
 h

ai
rs

ty
le
”

“
b
o
b
 c

u
t

h
ai

rs
ty

le
”

Text Edit Hairstyles and Hair Colours

“pixie cut

 hairstyle”

Color-Ref

+

Color-Ref

“jheri curl

 hairstyle”

+

Combined text and image editing hair

“black hair”

“pink hair”

+

Hairstyle-Ref

Hairstyle-Ref

+

Hairstyle-Ref

Color-Ref
+

Color-Ref

Hairstyle-Ref

+

“
p
u
rp

le
 h

ai
r”

“
b
ro

w
n
 h

ai
r”

Fig.1. Our single framework supports hairstyle and hair color editing individually or
jointly, and conditional inputs can come from either image or text domain.

images. StyleMC [26] provides an efficient solution to the hair editing task
requiring only a few seconds to find a stable global orientation for text editing,
and then using the found orientation to manipulate the image. FFCLIP [27]
designs an automatic latent mapping, allowing the model to edit hair based
on free-form text prompts. DeltaEdit [28] introduces text and image Delta
spaces, where a Delta Mapper is trained to learn changes between image
features. During the inference phase, it predicts editing directions based
on changes in text features, enabling text-driven image editing without the
need for text during training (text-free). However, despite these methods
achieving hair editing tasks in various forms and delivering some impressive
results, the diversity and flexibility in hair texture, shape, and color have led
to less than ideal manipulation outcomes. For example, during the process of
hair editing, some generated hairstyles may not fit well with the source image,
and the color transformation may not meet the expected color requirements.
As a result, the hair transfer outcomes may lack accuracy and realism.

We believe that the key to addressing the aforementioned issues lies in
decoupling the complex hair information into shape and color attributes, and
designing separate hair editing networks to handle these attributes discretely.
Our work is inspired by StyleCLIP [17], which can divide facial attributes
into different levels based on semantic information. However, we have found
that it does not effectively disentangle hair elements and does not capture
the finer-grained features of the hair part well. Therefore, it is challenging
but desired to explore how to effectively decouple hair features and tailor a
corresponding hair editing network to achieve precise and meticulous editing
of complex hair information.

To achieve this goal, we propose a new hair editing framework named
HairManip. Specifically, to better decouple hair information, we have de-

3

signed a new latent code pre-processing module that can further extract rel-
evant features of the hair from the latent code. Then, the hair is separated
into shape and color based on semantic levels. And based on the hierarchical
division of facial attributes in StyleCLIP, we further divide the hair infor-
mation into four categories: coarse, medium, fine, and extra fine. Based on
our experience, coarse and medium-level semantic information corresponds
to hairstyle attributes, while fine and extra fine-level semantic information
corresponds to hair color attributes. The purpose of this decoupling of hair
is to enable more precise and detailed editing of the hair. Additionally, to
achieve direct and effective manipulation of hairstyle and hair color, we sep-
arately train corresponding hairstyle and hair color editing sub-networks.
We also introduce new loss functions to constrain the entire model, enabling
more fine-grained and better decoupling editing of the hair.

We conducted quantitative and qualitative experiments, as well as exten-
sive ablation experiments. The experimental results show that our method
outperforms existing methods in terms of editing accuracy, visual aesthetics
of hair editing results, and realism. Fig.1 displays the specific results of some
hairstyle manipulations.

Overall, our contributions can be divided into the following three aspects:
(1) We achieve the disentangled editing of hairstyle and hair color by de-

coupling the hair attributes, including shape and color. Furthermore, we have
designed a latent code pre-processing module that performs pre-processing
on the latent code of the source image. This preprocessing enhances its fo-
cus on the hair region’s characteristics and untangles the hair information,
separating it into shape and color attributes.

(2) To achieve precise and detailed control over the discrete hairstyle and
hair color information, we propose an innovative hair editing network. This
network consists of a pair of twin sub-networks, each responsible for handling
the hairstyle and hair color information, respectively. First, we encode the
hair information of the editing conditions into features. Then, we map them
to the feature space of the source image. Finally, we predict the changes in the
latent code based on the input conditions. This approach enables accurate
hair transfer while ensuring high-quality and realistic editing results.

(3) Our goal is to achieve high-quality hair editing, and to accomplish this,
we have introduced smooth L1 loss and cosine similarity loss to effectively
constrain the hair editing network. This allows our model to better handle
hair editing tasks and improves the quality of generated images.

4

2. Related Work

2.1. Generative adversarial networks

Generative Adversarial Networks (GANs) are a type of deep learning
model based on game theory, proposed by Goodfellow et al [13]. It has
achieved good results in fields such as image generation [29, 30, 31, 32, 33] and
image style transfer [34, 35]. Over time, the images generated by GANs have
become increasingly realistic, but one of its main challenges is controlling
its output, e.g., changing specific attributes in facial images, such as pose,
facial shape, and hairstyle, etc. StyleGAN [15, 16] has provided a feasible
solution for this problem as a cutting edge technique in image synthesis.
More specifically, in StyleGAN, the input noise vector Z of 512 dimensions is
passed through 8 fully connected layers to map it into a latent space vector
w also of 512 dimensions. The latent code w is then fed into the generator
network G, which employs hierarchical controls to achieve editing of different
granularity facial attributes. Therefore, many methods rely on StyleGAN to
perform image editing tasks [17, 36, 37]. However, StyleGAN is characterized
as an unsupervised approach, which makes it difficult to achieve controlled
facial image synthesis effects. Therefore, inspired by HairCLIP [3], this paper
designs a high-quality hair editing network that supports text and images
as input for manipulating hair based on StyleGAN and leveraging CLIP’s
powerful cross-modal text-image representation capability [25].

2.2. Text-based hair manipulation methods

In recent years, research on manipulating images through text has re-
ceived widespread attention and significant progress has been made [25, 28,
38, 27, 39, 40]. As there is currently no dedicated method for using text to
edit hair, text-based hair editing methods mainly rely on text-guided image
processing methods to achieve their goals [17, 28, 27, 40]. The optimiza-
tion strategy of TediGAN [40] using fragment similarity loss requires a large
amount of training data to learn the features; otherwise, it may lead to the
target image’s hairstyle being poorly adapted to the source image. Each text
in StyleCLIP [17] is associated with a separately trained mapper, which en-
sures more precise generated results. However, this method is not flexible and
highly time-consuming. To address the above-mentioned issues, FFCLIP [27]
leverages the latent space of StyleGAN [15, 16] and the text embedding space
of CLIP [25] to propose a Free-Form CLIP (FFCLIP) method. This method

5

unifies text prompts into a single model, eliminating the need to train addi-
tional models for each text prompt, greatly improving the model efficiency.
However, FFCLIP sometimes fails to handle the details of images satisfacto-
rily. Lyu et al. introduced a new text-driven framework called DeltaEdit [28].
In DeltaEdit, the Delta in both the image and text spaces has a good align-
ment distribution between the visual feature differences of CLIP images and
the embedding differences of CLIP texts. Based on the CLIP delta space,
DeltaEdit can be trained and inferred in a zero-shot manner, greatly reducing
the cost of training.

2.3. Image-based hair manipulation methods

Hair, as an important component of facial image attributes, has been
widely studied and investigated by scholars [1, 2, 4, 3, 18, 22, 41]. The Loho
method [22] mainly performs two optimizations in the noise space of Style-
GAN2 to complete the hairstyle transfer of a given reference image. However,
the resulting images generated by this method may have significant artifacts.
Michigan [2] and Barbershop [4] utilize binary masks to represent the three
attributes of shape, structure, and appearance in the hair region. They edit
and process the masks of the reference image and source image, merging their
features to achieve hair transfer tasks. However, generating various masks for
different attributes and performing calculations and processing for each mask
is resource-intensive and time-consuming. CtrlHair [1] and HairCLIP [3] pro-
vide users with friendly hair editing interfaces and can generate high-quality
hair transfer images. CtrlHair [1] proposes a generative adversarial network
with a decoupled multi-dimensional Gaussian distribution, which allows users
to complete hair editing tasks by referring to reference images, masks, or a
set of sliders. HairCLIP [3] maps text and image information together into
a unified multimodal vector space, and edits hair based on both text and
image information. However, CtrlHair and HairCLIP may sometimes lose
the detailed information of hair attributes, making it impossible to achieve
a perfect transformation of hair details. Different from Michigan [2] and
Barbershop [4] who used masks to divide the hair attributes, we divide the
latent code w into four hierarchical levels. Coars and medium level features
correspond to the hairstyle features, and fine and extra fine level features cor-
respond to the hair colour features, and specially design the corresponding
editing network for each level, aiming at editing the hairstyle and hair colour
attributes more efficiently and flexibly, which makes the generated images
more accurate and natural.

6

3. Method

3.1. Overview

Given the input source image I and the reference conditions of hairstyle
and hair color, our HairManip method attempts to perform precise and effec-
tive editing on the hair region of the input source image. The specific editing
process is summarized as follows:

E(w, rs, rc) =
(

Sc(wc, rs), Sm(wm, rs), Cf

(

wf , rc
)

, Cxf

(

wxf , rc
)

)

, (1)

where latent code w is the input source image parsed by StyleGAN inversion
method “e4e” [42], and wc, wm, wf and wxf denote the features of differ-
ent layers of latent code w, respectively. The variables rs and rc represent
the editing conditions for hairstyle and hair color, respectively. These con-
ditions are generated by the image and text encoders of CLIP [25], from
the input text or image-based hairstyle and hair color reference conditions.
rs ∈ {rts, r

i
s, 0}, rc ∈ {rtc, r

i
c, 0}. Here, the superscript t and i refer to reference

conditions from text and images respectively, and 0 means no constraint is
provided. The entire hair editing network, denoted as E, is composed of two
subnetworks: the hairstyle editing subnetwork S ∈ {Sc, Sm} (where c and
m refer to coarse and medium levels) and the hair color editing subnetwork
C ∈ {Cf , Cxf} (where f and xf refer to fine and extra fine levels), which
respectively handle different dimensions of the latent code w. The purpose of
this design is to train a more sophisticated network that achieves precise and
detailed control over complex and diverse hairstyles and hair colors, making
them more visually appealing.

As mentioned above, the hairstyle and hair color editing conditions rs ∈
{rts, r

i
s, 0} and rc ∈ {rtc, r

i
c, 0} can come from either text or images, or be

manipulated jointly by both. And when rc = 0, only the hairstyle is edited,
and when rs = 0, only the hair color is edited. This provides users with a
simple, user-friendly, and efficient way to interact.

The main purpose of hair editing is to edit the hairstyle and hair color.
However, due to the complexity and diversity of hairstyles and hair colors,
hair editing tasks are challenging. Therefore, we propose a GAN-based high-
quality hair editing method (HairManip) as shown in Fig.2, which aims to
tackle the challenging task of hair editing due to the complexity and diversity
of hairstyles and hair colors. The method consists of three parts: an encoding

7

Decoding ModuleHair Editing NetworkHair Editing NetworkHair Editing NetworkEncoding ModuleEncoding ModuleEncoding Module

or

Input Image IInput Image I

Δ wΔ w

StyleGAN Inversion

Encoder

StyleGAN Inversion

Encoder

StyleGAN

Generator G

Edited Image OEdited Image O

CLIP EncoderCLIP Encoder

cr

sr
Ref-Image P Ref-Image P Ref-Image P

Ref-Text TRef-Text T

“Afro

Hairstyle”

“Afro

Hairstyle”

“Afro

Hairstyle”

Ref-Text T

“Afro

Hairstyle”
or

Latent Code

Pre-processing

Module

Latent Code

Pre-processing

Module

Hair Color Editor Sub-NetworkHair Color Editor Sub-Network

Hairstyle Editor Sub-NetworkHairstyle Editor Sub-Network

Hair ShapeHair Shape Hair ColorHair Color

L
in

ea
r

M
an

ip
u
la

ti
o
n

A
tt

en
ti

o
n

E
L

U

w

w *w

'w

cw

mw

fw

xfw

stylew

colorw

cw

mw

fw

xfw

Fig.2. Overview of the HairManip framework. HairManip consists of three main com-
ponents: an encoding module, a hair editing network, and a decoding module. The input
source image and editing conditions are passed through the encoding module to obtain
the corresponding latent code, hairstyle editing information rs, and hair color editing in-
formation rc. The hair editing network is used to predict the corresponding changes in
hairstyle and hair color. Finally, the decoding module outputs the edited result image.

module, a hair editing network, and a decoding module. These three modules
will be explained in detail below.

The training algorithm for the HairManip framework is shown in Algo-
rithm 1.

3.2. Framework

In daily life, some people are very concerned about their hairstyle. A
good hairstyle can give others a different feeling. When getting a haircut,
most users express their hairstyle and hair color requirements to hairdressers
through images or interactive descriptions. In order to allow users to express
their hair color and style preferences clearly and accurately, we follow the
principle of HairCLIP and use the excellent performance of StyleGAN in
image processing and editing, as well as the powerful text/image mapping
ability of CLIP, to encode the text and image into a 512-dimensional editing
condition embedded in the CLIP latent space of text and image. The purpose
of embedding the editing conditions into the latent space is to unify the
textual and visual forms of editing conditions under one framework, and
enable joint editing of hair based on both text and images.

8

Algorithm 1 Training Algorithm of HairManip.

Required: input source image I; image-based editing conditions P ; text-
based editing conditions T ; StyleGAN inversion encoder ESI ; CLIP en-
coder ECLIP ; hairstyle information rs; hair color information rc; hairstyle
editor network Sc and Sm; hair colour editor network Cf , Cxf .
1: latent code w = ESI(I);
2: rs, rc = ECLIP (P ,T);
3: w′ = pre-processing module(w);
4: optimizer.zero grad();

5: ∆w =
(

Sc(wc, rs), Sm(wm, rs), Cf

(

wf , rc
)

, Cxf

(

wxf , rc
)

)

:

6: repeat 5 times:
7: x = linear layer(w′);
8: x′ = manipulation modules(x, rs, rc);
9: x′′ = attention(x′);
10: w′ = elu(x′′);
11: ∆w = ∆w + w′;
12: w∗ = ∆w + w;
13: minloss = losstext(w

∗, T) + lossimage(w
∗, P) + lossrp(w

∗, w);
14: loss.backward();
15: optimizer.step();
Output: Hair editing network HairManip model.

Encoding Module. The purpose of the encoding module is mainly to
encode the input source image into its corresponding latent code w through
the StyleGAN Inversion method e4e [42]. After obtaining the latent code, it is
fed into the latent code pre-processing module to extract relevant information
related to the hair. As shown in Fig.3, the latent code pre-processing module
follows a simple design, consisting of blocks composed of four linear layers
and activation functions. Then, based on the semantic level division of latent
code in StyleGAN, latent code is further divided into four parts (coarse,
medium, fine, and extra fine), corresponding to wc, wm, wf and wxf in Eq.
(1). The input hairstyle and hair color editing conditions are embedded in
a CLIP latent space of text and image through a text and image encoder
ECLIP , including the image-based encoder ECI and text-based encoder ECT .
The hairstyle editing condition rs ∈ {rts, r

i
s, 0} and the hair color condition

rc ∈ {rtc, r
i

c, 0} can come from text, image, or no input. In mathematical

9

L
in

ea
r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

la
te

n
t

co
d

e

p
re

-p
ro

ce
ss

in
g

m
o
d
u
le

Input Image IInput Image I
StyleGAN

Inversion Encoder

StyleGAN

Inversion Encoder
1 18 512 

（1）Pre-processing Phase
1 4 512 

1 6 512 

1 4 512 

1 4 512 

（2）Latent Code Pre-processing Module
L

in
ea

r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

L
in

ea
r

F
u
se

d
 R

eL
U

1 18 512 

1 4 512 

1 4 512 

1 4 512 

1 6 512 

Fig.3. Details of the latent code pre-processing module. The role of the latent code pre-
processing module is to further extract features from the source image. It mainly consists
of four stacked linear layers and activation functions.

terms, it follows the following formula:

w = ESI(I); r
i
s, r

i
c = ECI(P); rts, r

t
c = ECT (T), (2)

where ESI , ECI and ECT represent the StyleGAN inversion encoder, CLIP
image encoder, and CLIP text encoder, respectively. The variables I, T and
P represent the source image, input text/image reference conditions T/P ,
respectively. The latent code w ∈ R

512.
Hair Editing Network. In order to achieve more precise and detailed hair
editing, our hair editing network E is mainly composed of hairstyle editing
sub-network S ∈ {Sc, Sm} and hair color editing sub-network C ∈ {Cf , Cxf}.
The key code of hair editing algorithm is shown in Algorithm 2.

Each sub-network of the hair editing network is composed of two parts
that handle latent codes at different semantic levels. Each part consists of
5 modules, including a linear layer, a manipulation module, a multi-head
attention, and a non-linear activation layer (ELU). The multi-head attention
mechanism aims to enable the model to capture more diverse hair feature

10

Algorithm 2 Key Code of Hair Editing Algorithm.

Required: pre-processed latent code w′; hair editing network E; Hair
editing information r; Processed editorial information fγ(r), fβ(r); latent
code variation ∆w, initialized to 0.
1: pre-processed latent code w′ = wc + wm + wf + wxf ;
2: hair editing network E = S(Sc, Sm) + C(Cf , Cxf);
3: for E, x in (Sc, Sm, Cf , Cxf), (wc, wm, wf , wxf):
4: ∆w = E(x):
5: repeat 5 times:
6: x = linear layer(x);
7: x′ = manipulation module(x, r) :
8: r1 = linear layer(r);
9: r2 = layer norm(r1);
10: r3 = leaky relu(r2);
11: fγ(r), fβ(r) = linear layer(r3);

12: x′ = norm(x)×
(

1 + fγ(r)
)

+ fβ(r);

13: x′ = attention(x′);
14: x=elu(x′);
15: ∆w = ∆w + x;
Output ∆w.

information, and the role of the manipulation module is to predict informa-
tion about the latent code w in the direction of the editing condition. The
specific implementation process is as follows:

x′ =
(

1 + fγ(r)
)

(x− µx)/σx + fβ(r), (3)

where x is an intermediate variable obtained from the latent code w through
the linear layer in the hair editing network, and x′ is x computed through
the manipulation module. µx and σx are the mean and standard deviation
of x, respectively, fγ(r) and fβ(r) are calculated through two linear layers, a
normalization layer, and a leaky ReLU activation layer. The specific imple-
mentation process is shown in Fig.4.
Decoding Module. The role of the decoding module is to feed the edited
latent code w∗ into the pre-trained StyleGAN generator G, to generate the

11

...

cw sr mw
sr

mw

fw cr cr

fw

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

cw

...

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

...

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

...
Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

x

x
Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

Linear

Manipulation

ELU

Attention

M
an

ip
u
latio

n
 M

o
d
u
le

norm

Linear

Linear

LayerNorm

Leaky-relu

M
an

ip
u
latio

n
 M

o
d
u
le

norm

Linear

Linear

LayerNorm

Leaky-relu

()f r

()f r

r

x

x

xfw

xfw

Fig.4. Architecture of Hair Editing Network. The Hair Editing Network consists of
two parts: a hairstyle editing sub-network and a hair color editing sub-network, which
respectively handle hair editing information and latent code fragments at different semantic
levels. Each hair editing sub-network is composed of 5 simple blocks, each of which includes
a linear layer (Linear), a manipulation module, a multi-head attention, and an activation
layer (ELU).

edited result image, as shown below.

O = G(w +∆w), (4)

where G represents the StyleGAN generator, E ∈ {S,C} represents the hair
editing network, and ∆w = E(w, rs, rc) represents the editing vector the
measures the change in the latent code w.

3.3. Loss Functions

Given an input image, HairManip aims to manipulate the hair based on
the text and image provided by the user. To achieve this, we define relevant
text editing and image editing losses. In addition, to make the hair editing
results more visually appealing, we define a non-hair region preservation

12

loss to ensure that information in non-hair regions (such as background and
identity) is well-preserved while editing the hair regions. In summary, we use
three types of losses to train our hair editing network, all the weight values
of the losses in the experiments are continuously updated iteratively based
on the model’s performance and training objectives. Our complete objective
function is as follows:

L = λtLt + λiLi + λrpLrp, (5)

where Lst represents the text editing loss, Li represents the image editing loss,
and Lrp represents the region preservation loss. According to test analysis, it
was found that setting λt, λi and λrp to 2, 1, and 1 respectively yielded the
best model performance, consistent with the results obtained in HairCLIP.
In the following sections, we will provide detailed descriptions of these loss
functions.
Text Edit Loss. The text editing loss consists of two parts: hairstyle text
editing loss and hair color text editing loss, as follows:

Lt = λstLst + λctLct, (6)

where Lst and Lct represent the hairstyle text editing loss and the hair color
text editing loss, respectively. λst and λct are the weights assigned to their
respective losses, both with a default value of 1. Note that if there is no need
to use text editing hairstyles or text editing hair colors, their corresponding
loss weights λst and λct will be set to 0. We use CLIP to measure the
cosine distance between the resulting hair-edited image and the text prompts
(hairstyle text prompt and hair color text prompt) in the latent space:

Lst = 1− cos
(

ECI

(

G
(

w + E
(

w, rts, rc

)))

, rts

)

, (7)

Lct = 1− cos
(

ECI

(

G
(

w + E
(

w, rs, r
t
c,
)))

, rtc

)

, (8)

where E represents the hair editing network, G
(

w+E
(

w, rts, rc

))

and G
(

w+

E
(

w, rs, r
t
c

))

respectively represent the resulting images generated by editing

the hairstyle through image and text, ECI is the image encoder of CLIP, and
cos (·) represents cosine similarity.
Image Edit Loss. As with the text editing loss, the image editing loss
consists of two parts: hairstyle image editing loss and hair color image editing

13

loss, represented as:
Li = λsiLsi + λciLci, (9)

where λsi and λci are the weights of hairstyle image editing loss and hair color
image editing loss respectively, with values of 5 and 0.02 for Lsi and Lci. If
there is no need to use image editing hairstyles or image editing hair colors,
their corresponding loss weights Lsi and Lci will be set to 0. In addition, to
better measure the similarity between two hairstyles, we take the masks of
the hair regions in both images, and then encode them into the latent space
of CLIP using the image encoder of CLIP, to measure the degree of match
between them:

Lsi = 1− cos
(

ECI

(

xE ∗ Ph

(

xE

)

)

, ECI

(

x ∗ Ph(x)
)

)

, (10)

where xE = G (w + E (w, ris, rc)) represents the result image generated by
the image-based hairstyle editing information ris = ECI (x ∗ Ph(x)) and hair
color editing information rc ∈ {rtc, r

i
c, 0}. x represents the reference hairstyle

image. P is a pre-trained facial parsing network [43], and Ph

(

xE

)

denotes
the mask of the hair region generated from the result image xE. However,
for the image hair color loss, we calculate the mean color difference between
the hair region of the color reference image and the result image:

Lci = ∥avg
(

xE ∗ Ph

(

xE

))

− avg
(

x ∗ Ph(x)
)

∥1, (11)

where xE = G
(

w + E
(

w, rs, r
i
c

))

represents the resulting image generated

by editing the hair color information in image form based on the hair color
editing information ric = ECI (x∗Ph(x)) and hairstyle editing information
rs ∈ {rts, r

i

s, 0}. x represents the reference image for hair color.
Region Preservation Loss. When editing hair, to ensure that non-hair
areas such as identity information and background information remain un-
changed, we define a region preservation loss as follows:

Lrp =λidLid + λbgLbg + λnormLnorm + λslLsl

+ λsimLsim + λs
−
mcLs

−
mc,

(12)

where Lid, Lbg, Lnorm, Lsl, Lsim and Ls
−
mc represent identity loss, background

loss, L2 norm, smooth L1 loss, cosine similarity loss and the loss to preserve
hair color during hairstyle editing when editing hair. As different losses
impose varying levels of constraint and importance on the model, appropriate

14

loss weights can indeed enhance the model’s performance. Based on empirical
evidence and validation, it has been found that setting the corresponding loss
weights λid, λbg, λnorm, λsl, λsim and λs

−
mc to 0.3, 1, 0.8, 0.8, 0.4, and 0.02

respectively yields the best model performance. The following will provide a
detailed introduction to these losses:

Lid = 1- cos
(

R
(

G
(

w+E
(

w, rs, rc
))

)

, R(G(w))
)

, (13)

where G
(

w +E
(

w, rs, rc

))

represents the resulting image generated by the

source image and the editing condition passed through the hair editing net-
work E. R is the ArcFace [44] network used to extract facial information,
while G(w) is the image of the source generated by the StyleGAN gener-
ator G. In addition, to preserve the background information as much as
possible, we followed the principle of HairCLIP to design the corresponding
background loss:

Lbg = ∥(xE − xw) ∗ (Pnh(xE
) ∩ Pnh(xw

))∥2, (14)

where xw = G
(

w), P represents the facial parsing network [43], and Pnh(xE)
represents the mask of non-hair areas for xE.

To preserve the visual attributes of the input source image, we minimize
the L2 norm of the manipulation steps in the latent space:

Lnorm =
∥

∥E
(

w, rs, rc
)∥

∥

2
. (15)

Furthermore, we also adopted the smooth L1 loss and cosine similarity
loss to make the generated result image visually more realistic and consistent
with human perception. It follows the following mathematical formulas:

Lsl = smoothL1(w,w +∆w), (16)

Lsim = 1− cos(w + E(w, rs, rc), w). (17)

To improve the flexibility of the model in editing hair, we introduced a
loss Ls

−
mc that keeps hair color unchanged when editing hairstyles. The

principle of this loss is the same as the hair color image loss Lci.

Ls mc = ∥avg (xE ∗ Ph (xE))− avg
(

xw ∗ Ph

(

xw

))

∥1, (18)

where xE = G
(

w + E
(

w, rs, 0
))

, rs ∈ {rts, r
i

s} and xw is the reconstructed

real image of the source image by the StyleGAN generator G.

15

4. Experiments

4.1. Implementation Details

In this section, we used the high-quality CelebA-HQ dataset as the train-
ing set for the HairManip hair editing network to train and evaluate the
model. The CelebA-HQ dataset is an upgraded version of the CelebA face
dataset, consisting of over 30,000 high-resolution (1024×1024) face images
and related attribute labels. For the text editing conditions, we followed the
previous work of HairCLIP [3] and used 44 hairstyle text descriptions and 12
hair color text descriptions as our text editing conditions.

During the training phase, we followed the data partition of CelebA-
HQ dataset as done by e4e and divided it into training and test sets. We
trained and tested the HairManip hair editing network on a computer with
an RTX3090 GPU. For the training parameters, we set the learning rate to
0.0005, batch size to 1, and used the Adam [45] optimizer with β1 and β2 set
to 0.9 and 0.999, respectively. The best experimental results were obtained
after 50k iterations of training. During the training process, the hair editing
network trains the hairstyle and hair color editing networks based on different
forms of random inputs for editing conditions, including text and images.
Additionally, in order to better evaluate the HairManip model, we tested the
model’s running efficiency and the quality metrics PSNR and SSIM of the
generated results. We also invited 50 volunteers to evaluate and score the
accuracy and authenticity of the results generated by different methods.

4.2. Quantitative and Qualitative Comparison

Since our method uses text and image-based editing conditions for precise
hair editing, we will compare and analyze it with methods that generate
images driven by text and hair editing methods, respectively, in order to
verify the effectiveness of our network framework and carefully designed loss
functions.
Comparison with text-driven image generation methods. To vali-
date the effectiveness of our method in text-based hair editing, we set up ten
text editing conditions (including text-based hair color editing, text-based
hairstyle editing, and text-based hairstyle and hair color editing) and com-
pared them with existing text-driven image methods such as StyleCLIP [17],
TediGAN[40], HairCLIP [3] and DeltaEdit [28]. Fig.5 shows the correspond-
ing comparison results. (Due to FFCLIP [27] not releasing a pre-trained
model, we do not compare our method with FFCLIP here). The images

16

Input Image

b
la

ck
 h

ai
r

p
in

k
 h

ai
r

b
o
w

l
cu

t

h
ai

rs
ty

le

sh
o

rt
 h

ai
r

h
ai

rs
ty

le

re
d

 h
ai

r
+

p
ix

ie
 c

u
t

h
ai

rs
ty

le
y

el
lo

w
 h

ai
r

b
lu

e
h

ai
r

af
ro

 h
ai

rs
ty

le
fa

u
x

h
aw

k

h
ai

rs
ty

le

o
ra

n
g

e
h

ai
r

+

ri
n

g
le

ts
 h

ai
rs

ty
le

Ours StyleCLIP TediGAN HairCLIP DeltaEdit

Fig.5. HairManip compares with the latest methods in visualizing hair editing through
text. The text descriptions are displayed on the far left, including text editing for hair
color, text editing for hairstyle, and text editing for both hairstyle and color.

17

generated by StyleCLIP and TediGAN were obtained based on their official
parameter optimization strategies. The manipulation strength of StyleCLIP
was set to 4.1 by default, while the loss-weight-clip of TediGAN was set to
0.1 and the number of iterations was set to 200.

As we can see from Fig.5, StyleCLIP trained a separate mapper for each
text editing condition, which enhances its ability to manipulate hairstyles.
As a result, StyleCLIP can generate reasonably accurate results for certain
hair editing tasks. However, it is important to note that excessive manip-
ulation can affect the realism of the image (as seen in the example of the
fauxhawk hairstyle), which is consistent with the findings presented in the
HairCLIP paper. TediGAN’s generated images are not ideal for all given
editing conditions. This is because TediGAN’s optimization strategy using
the fragment similarity loss requires sufficient training data to learn features,
otherwise, the matching results may be inaccurate. The results generated by
HairCLIP show noticeable white spots in the images. DeltaEdit suffers from
significant identity loss in the edited images. It is worth noting that Style-
CLIP, TediGAN, and DeltaEdit have not delivered satisfactory results in hair
color transformation tasks. This is because these three methods are designed
to handle multiple tasks and were not specifically designed for hair editing.
They also lack specialized network structures to deal with the complexity of
hair information. Furthermore, the intricate shapes and appearances of hair,
leading to semantic diversity, make it challenging to apply the aforemen-
tioned facial editing methods to hair editing with semantic variations. For
example, the DeltaEdit method trains a Delta Mapper to learn the mapping
from changes in image features to changes in style space and uses text feature
changes to achieve various facial attribute edits. However, it does not have
dedicated modules to handle these features, which can result in the loss or
difficulty in learning some feature information when mapping image features
to the style space. By sharing the editing conditions in the latent space of
textual and image inputs, our method is able to train multiple hair editing
conditions effectively. Furthermore, through the latent code pre-processing
module, we extract useful learned features, which contribute to more precise
generation of the resulting images. At the same time, we separate hairstyle
and hair color information and feed them separately into carefully designed
hairstyle and hair color editing sub-networks, aiming to achieve more detailed
and precise manipulation of the hair. In addition, we added a new smooth
L1 loss function and cosine similarity loss function optimization strategy to
make the generated hair editing results more realistic and visually appealing.

18

Table 1

Comparison of the realism and efficiency of our method with current methods in generating
result images. Higher PSNR and SSIM scores are better.

Ours StyleCLIP TediGAN HairCLIP DeltaEdit
PSNR 28.6 23.2 24.1 27.8 26.96
SSIM 0.94 0.87 0.79 0.92 0.89

Time Consuming 4.1s 99s 240s 3.3s 7.7s

This will be more evident in the ablation experiment.
In addition, we evaluated the quality of the generated images by using

a randomly selected set of 11,000 images from the CelebA-HQ dataset as
reference images. We employed the PSNR and SSIM metrics to assess the
preservation of background and identity information in the generated images.
We also compared the efficiency of our method with five other approaches,
and the detailed experimental results are presented in Table 1. From Table
1, it can be observed that our method outperforms the other methods.
Comparison with hair editing methods. In order to further validate
the effectiveness of our method, we compared the HairManip method with
the state-of-the-art hair editing methods, Barbershop [4], HairCLIP [3] and
CtrlHair [1]. The specific comparison results are shown in Fig.6. From the
figure, it can be seen that the Barbershop method heavily relies on whether
the pose of the source image and the hairstyle reference image are consistent.
When the pose difference between the source image and the hairstyle refer-
ence image is small, the hairstyle can be successfully transferred, as shown
in the second row of the results. However, when the pose difference is large,
the hairstyle generated by Barbershop cannot well transfer the hairstyle of
the reference image. HairCLIP is able to transfer hairstyles successfully even
when the poses of source images and reference images are different. This is
because HairCLIP replaces the similarity metric space with the CLIP latent
space and embeds the hair region of reference images in CLIP as a condi-
tional input. With this method, transfer between non-aligned hairstyles can
be achieved. However, HairCLIP sometimes makes mistakes in hairstyle and
hair color transfer, as shown in the first and third rows of the comparison
results. This is because HairCLIP only roughly divides the hair informa-
tion of the source image latent code into different semantic levels and trains
the hair mapper network accordingly, which cannot effectively capture the
features of hairstyle and hair color. In contrast to these methods, we fur-

19

Input Image Hairstyle Ref Color Ref Barbershop HairCLIP OursCtrlHairLOHO

Fig.6. Comparison with current state-of-the-art hair editing methods. The first three
columns indicate the source image, hairstyle reference image, and hair color reference
image, respectively.

ther extract effective information from the source image’s latent code on the
basis of HairCLIP and design more sophisticated sub-networks for hairstyle
and hair color editing to handle complex hairstyle and color information.
Experimental results show that our method can perform hair editing tasks
more outstandingly, and the edited results are more realistic and visually
appealing.
User evaluation. To further evaluate our model, we invited 50 participants
of different genders with ages ranging from 18 to 60 years to rate and evaluate
various models from the two categories. For the text-driven methods, we
provided 25 sets of results, with each set consisting of a source image and a
randomly generated result image from one of the 12 text editing conditions.
Participants were asked to rate the accuracy (Acc) and visual realism (Real)
of each editing task based on the provided editing conditions. Ratings were
given on a scale of 1 to 5, where 1 represented the best and 5 represented

20

Table 2

User evaluation experiments are conducted with text-driven generated image methods and
hair editing methods. The Acc and Real metrics represent the editing accuracy and visual
realism of the generated images, and the lower the Acc and Real scores, the higher the
ranking and the better the performance.

Metrics

Methods Acc. Real.

Text-Driven Methods

Ours 1.53 1.37

StyleCLIP 3.57 3.93

TediGAN 4.75 4.88

HairCLIP 2.76 2.33

DeltaEdit 2.39 2.49

Hair Editing Methods

Ours 1.32 1.49

LOHO 3.82 3.79

Barbershop 4.86 4.72

HairCLIP 2.41 2.82

CtrlHair 2.56 2.18

the worst. Similarly, for the hair editing methods, we also provided 25 sets
of results using randomly selected reference images from the CelebA-HQ
dataset. Each set consisted of a source image, a reference image, and the
resulting edited image. Participants were asked to rate the editing accuracy
and realism of each set of results. Ratings were given on a scale of 1 to
5, where 1 represented the best and 5 represented the worst. The specific
evaluation results are shown in Table 2. From the Table 2, it can be observed
that our method achieved the best accuracy and realism scores among the
two categories of methods, further validating the superiority of our approach.

4.3. Ablation Analysis

In this section, we conducted qualitative and quantitative ablation exper-
iments as well as hair interpolation experiments on the proposed HairManip
method, aiming to validate the effectiveness of our network structure and
and carefully designed loss functions.

21

Ours V1 V3V2 V4 BaselineInput Image

“purple hair”

“blond hair”

+

Hairstyle-Ref

Hairstyle-Ref

“bowl cut

 hairstyle”

+

Color-Ref

Fig.7. Analysis of ablation experiments and the leftmost component represents the hair
editing condition.

Table 3

The specific meaning of each symbol in the analysis of the ablation experiment.

Hair editing
network

Pre-processing
module

Smooth L1
loss

Cosine similarity
loss

Ours ✔ ✔ ✔ ✔

V1 ✔ ✘ ✘ ✘

V2 ✘ ✔ ✘ ✘

V3 ✘ ✘ ✔ ✘

V4 ✘ ✘ ✘ ✔

Baseline ✘ ✘ ✘ ✘

Superiority of each component. Specifically, to evaluate the effective-
ness of different components on the generated images, we randomly selected
editing methods for either text or images (including editing hairstyle or hair
color separately for text or image; editing hairstyle for image while editing
hair color for text; editing hairstyle for text while editing hair color for im-
age) to edit the source image. By conducting ablation experiments on each
component one by one while keeping other components unchanged, we eval-

22

Table 4

Quantitative ablation experiments for individual components.

Metrics Ours V1 V2 V3 V4 Baseline
PSNR 31.00 29.2 30.63 29.04 28.95 28.71
SSIM 0.92 0.91 0.90 0.89 0.86 0.89

uated the impact of each component on the generated results. The specific
experimental results are shown in Fig.7. The meanings of each symbol are
provided in Table 3, and the Baseline refers to the HairCLIP method. From
Fig.7, it can be observed that V1 contributes to improving the effectiveness
of hairstyle transformation, while V2, V3, and V4 contribute to improving
the effectiveness of hair color transfer. To visually assess the effectiveness of
the components within the proposed HairManip method, we conducted tests
using 15 randomly selected text editing conditions to evaluate the PSNR and
SSIM metrics of each component and the Baseline. The specific comparison
results are shown in Table 4, which represents the average values across fif-
teen text editing conditions. The quantitative comparison results in Table
4 once again visually demonstrate the importance of each component to the
model and the superiority of our method compared to the Baseline, aligning
with the conclusions drawn in Fig.7. In conclusion, the results of quantita-
tive and qualitative ablation experiments demonstrate the effectiveness and
necessity of our carefully designed network structure and loss functions. The
HairManip model can perform hair editing tasks more excellently, and the
generated result images are more natural and visually appealing.
Effectiveness of network structure. We compared the HairManip method
with two other models, which were variants derived from HairManip, to val-
idate the effectiveness of the proposed hair editing network. Fig.8 displays
the specific comparison results, where the editing condition in the first row
is “brown hair”, and the editing condition in the second row is “bob cut
hairstyle”. (a) represents a variant model where the hair color editing sub-
network is removed from HairManip. (b) represents a variant model where
the hairstyle editing sub-network is removed from HairManip. As can be
seen in Fig.8, after removing the hair color editing sub-network, (a) does
not transfer hair color effectively, and after removing the hairstyle editing
sub-network, (b) does not transfer the hairstyle effectively. In contrast, our
method excels at both hairstyle and hair color editing tasks. The experimen-
tal results further demonstrate the necessity and effectiveness of our unique

23

Input Ours (a) (b)Input Ours (a) (b)

Fig.8. Comparison with two variants of the method. The first row represents editing
the hair color of the input image using the text editing condition “brown hair”, and the
second row represents editing the hairstyle of the input image using the hairstyle editing
condition “bob cut hairstyle”.

Blond Hair Gray Hair0.2 = 0.4 = 0.6 = 0.8 =

Bowl Cut

Hairstyle

Ringlets

Hairstyle

InterpolationInterpolation

Fig.9. Results of the hair interpolation experiment. We gradually increase the weight
λ from 0 to 1, and the interpolated image is transferred continuously from blond hair to
gray hair, and from bowl cut hairstyle to ringlets hairstyle.

hairstyle and hair color editing networks.
Hair Interpolation. To verify that the HairManip method can perform

24

precise and detailed editing of hair attributes, we conducted hair interpola-
tion experiments between two edited latent codes wA and wB. Specifically,
we generated a new latent code wO by linearly blending latent codes wA and
wB, meaning wO = λwA + (1 − λ)wB. As shown in Fig.9, the interpolated
image is gradually converted from blond hair (bowl cut hairstyle) to gray hair
(ringlets hairstyle) by controlling λ to gradually increase from 0 to 1 at 0.2
intervals. From Fig.9, it can be observed that by controlling the designated
weight λ, we can achieve fine-grained control over hair attributes.

5. Conclusions

In this work, we proposed a new hair editing method called HairMa-
nip, which can achieve precise and detailed manipulation of hair through
user-inputted text or image editing conditions. To make the generated im-
ages more realistic and natural, we naturally divided hair into hairstyle and
hair color attributes, and fed them into our separately designed hair edit-
ing network for training. Meanwhile, we added corresponding preprocessing
modules and loss functions to further improve the efficiency and accuracy of
the model. Extensive experimental results show that this method performs
outstandingly in hair editing tasks. Compared to similar methods, it can
more accurately capture the characteristics and details of hair, and the gen-
erated result images are more realistic.

Declaration of Competing Interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of
China [grant numbers 61772179], Hunan Provincial Natural Science Founda-
tion of China [grant numbers 2020JJ4152,2022JJ50016], and Postgraduate
Scientific Research Innovation Project of Hunan Province [grant numbers
CX20221285,CX20231265].

References

[1] X. Guo, M. Kan, T. Chen, S. Shan, GAN with multivariate disentan-
gling for controllable hair editing, in: Computer Vision–ECCV 2022:

25

17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XV, Springer, 2022, pp. 655–670.

[2] T. Zhentao, C. Menglei, C. Dongdong, L. Jing, C. Qi, Y. Lu,
S. Tulyakov, Y. Nenghai, MichiGAN: Multi-input-conditioned hair im-
age generation for portrait editing, ACM Transactions on Graphics 39
(2020) 95.

[3] T. Wei, D. Chen, W. Zhou, J. Liao, Z. Tan, L. Yuan, W. Zhang, N. Yu,
HairCLIP: Design your hair by text and reference image, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 18072–18081.

[4] P. Zhu, R. Abdal, J. Femiani, P. Wonka, Barbershop: GAN-based image
compositing using segmentation masks, ACM Transactions on Graphics
(TOG) 40 (2021) 1–13.

[5] Y. Bao, Y. Qi, A survey of image-based techniques for hair modeling,
IEEE Access 6 (2018) 18670–18684.

[6] S. Liu, J. Ye, R. Yu, X. Wang, Slimmable dataset condensation, in: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 3759–3768.

[7] K. Han, Y. Wang, J. Guo, Y. Tang, E. Wu, Vision GNN: An image
is worth graph of nodes, Advances in Neural Information Processing
Systems 35 (2022) 8291–8303.

[8] Y. Jing, C. Yuan, L. Ju, Y. Yang, X. Wang, D. Tao, Deep graph repro-
gramming, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 24345–24354.

[9] T. Wang, J.-Y. Zhu, A. Torralba, A. A. Efros, Dataset distillation,
arXiv preprint arXiv:1811.10959 (2018).

[10] S. Liu, K. Wang, X. Yang, J. Ye, X. Wang, Dataset distillation via
factorization, Advances in Neural Information Processing Systems 35
(2022) 1100–1113.

[11] X. Yang, D. Zhou, S. Liu, J. Ye, X. Wang, Deep model reassembly,
Advances in neural information processing systems 35 (2022) 25739–
25753.

26

[12] X. Yang, J. Ye, X. Wang, Factorizing knowledge in neural networks, in:
European Conference on Computer Vision, Springer, 2022, pp. 73–91.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, Advances
in neural information processing systems 27 (2014).

[14] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning
with deep convolutional generative adversarial networks, arXiv preprint
arXiv:1511.06434 (2015).

[15] T. Karras, S. Laine, T. Aila, A style-based generator architecture for
generative adversarial networks, in: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2019, pp. 4401–
4410.

[16] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Ana-
lyzing and improving the image quality of StyleGAN, in: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 8110–8119.

[17] O. Patashnik, Z. Wu, E. Shechtman, D. Cohen-Or, D. Lischinski, Style-
CLIP: Text-driven manipulation of StyleGAN imagery, in: Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 2085–2094.

[18] S. Khwanmuang, P. Phongthawee, P. Sangkloy, S. Suwajanakorn, Style-
GAN salon: Multi-view latent optimization for pose-invariant hairstyle
transfer, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 8609–8618.

[19] H. Liu, Y. Song, Q. Chen, Delving stylegan inversion for image editing:
A foundation latent space viewpoint, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
10072–10082.

[20] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-
resolution image synthesis with latent diffusion models, in: Proceedings
of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2022, pp. 10684–10695.

27

[21] X. Yang, D. Zhou, J. Feng, X. Wang, Diffusion probabilistic model
made slim, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 22552–22562.

[22] R. Saha, B. Duke, F. Shkurti, G. W. Taylor, P. Aarabi, LOHO: Latent
optimization of hairstyles via orthogonalization, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 1984–1993.

[23] C. Xiao, D. Yu, X. Han, Y. Zheng, H. Fu, SketchHairSalon: deep sketch-
based hair image synthesis, ACM Transactions on Graphics (TOG) 40
(2021) 1–16.

[24] C.-H. Lee, Z. Liu, L. Wu, P. Luo, MaskGAN: Towards diverse and
interactive facial image manipulation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
5549–5558.

[25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., Learning transfer-
able visual models from natural language supervision, in: International
conference on machine learning, PMLR, 2021, pp. 8748–8763.

[26] U. Kocasari, A. Dirik, M. Tiftikci, P. Yanardag, StyleMC: multi-channel
based fast text-guided image generation and manipulation, in: Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2022, pp. 895–904.

[27] Y. Zhu, H. Liu, Y. Song, Z. Yuan, X. Han, C. Yuan, Q. Chen, J. Wang,
One model to edit them all: Free-form text-driven image manipulation
with semantic modulations, Advances in Neural Information Processing
Systems 35 (2022) 25146–25159.

[28] Y. Lyu, T. Lin, F. Li, D. He, J. Dong, T. Tan, DeltaEdit: Exploring
text-free training for text-driven image manipulation, 2023.

[29] J. Wang, E. Zhang, S. Cui, J. Wang, Q. Zhang, J. Fan, J. Peng, GGD-
GAN: Gradient-guided dual-branch adversarial networks for relic sketch
generation, Pattern Recognition 141 (2023) 109586.

28

[30] P. Esser, R. Rombach, B. Ommer, Taming transformers for high-
resolution image synthesis, in: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2021, pp. 12873–12883.

[31] X. Hou, L. Shen, Z. Ming, G. Qiu, Deep generative image priors for
semantic face manipulation, Pattern Recognition 139 (2023) 109477.

[32] A. Khatun, S. Denman, S. Sridharan, C. Fookes, Pose-driven attention-
guided image generation for person re-identification, Pattern Recogni-
tion 137 (2023) 109246.

[33] S. Gu, J. Bao, H. Yang, D. Chen, F. Wen, L. Yuan, Mask-guided por-
trait editing with conditional GANs, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 3436–
3445.

[34] R. Abdal, P. Zhu, N. J. Mitra, P. Wonka, StyleFlow: Attribute-
conditioned exploration of StyleGAN-generated images using condi-
tional continuous normalizing flows, ACM Transactions on Graphics
(ToG) 40 (2021) 1–21.

[35] S. Yang, L. Jiang, Z. Liu, C. C. Loy, Pastiche master: exemplar-based
high-resolution portrait style transfer, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
7693–7702.

[36] E. Härkönen, A. Hertzmann, J. Lehtinen, S. Paris, GANSpace: Dis-
covering interpretable GAN controls, Advances in Neural Information
Processing Systems 33 (2020) 9841–9850.

[37] Y. Alaluf, O. Patashnik, D. Cohen-Or, Only a matter of style: Age
transformation using a style-based regression model, ACM Transactions
on Graphics (TOG) 40 (2021) 1–12.

[38] C. Xiao, Q. Yang, X. Xu, J. Zhang, F. Zhou, C. Zhang, Where you edit
is what you get: Text-guided image editing with region-based attention,
Pattern Recognition 139 (2023) 109458.

[39] M. Tao, H. Tang, F. Wu, X.-Y. Jing, B.-K. Bao, C. Xu, DF-GAN: A
simple and effective baseline for text-to-image synthesis, in: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 16515–16525.

29

[40] W. Xia, Y. Yang, J.-H. Xue, B. Wu, TediGAN: Text-guided diverse face
image generation and manipulation, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 2256–
2265.

[41] T. Kim, C. Chung, Y. Kim, S. Park, K. Kim, J. Choo, Style your hair:
Latent optimization for pose-invariant hairstyle transfer via local-style-
aware hair alignment, in: Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XVII, Springer, 2022, pp. 188–203.

[42] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, D. Cohen-Or, Designing
an encoder for StyleGAN image manipulation, ACM Transactions on
Graphics (TOG) 40 (2021) 1–14.

[43] Z. Liu, https://github.com/switchablenorms/CelebAMask-HQ/

tree/master/face_parsing/, 2021 (accessed 16 December 2022).

[44] J. Deng, J. Guo, N. Xue, S. Zafeiriou, ArcFace: Additive angular mar-
gin loss for deep face recognition, in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4690–
4699.

[45] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, In,
ICLR 5 (2015).

Huihuang Zhao received his PhD degree in 2010 from XiDian University.
He was a Sponsored Researcher in the School of Computer Science and In-
formatics, Cardiff University. Now he is a Visiting Professor in National
Engineering Laboratory for Robot Visual Perception and Control Technol-
ogy, Hunan University. His main research interests include machine learning
and image processing.

Lin Zhang received the B.S. degree of School of Computer Science and Tech-
nology from Hengyang Normal University, China, in 2022. He is currently
pursuing his M.S. degree in the School of Computer Science, Hengyang Nor-
mal University, Hengyang. His current research interests include computer
vision and deep learning.

30

https://github.com/switchablenorms/CelebAMask-HQ/tree/master/face_parsing/
https://github.com/switchablenorms/CelebAMask-HQ/tree/master/face_parsing/

Paul L. Rosin is currently a professor with the School of Computer Sci-
ence and Informatics, Cardiff University, U.K. Previous posts include lec-
turer with the Department of Information Systems and Computing, Brunel
University London, U.K., research scientist with the Institute for Remote
Sensing Applications, Joint Research Centre, Ispra, Italy, and lecturer with
the Curtin University of Technology, Perth, Australia. His research interests
include low level image processing, performance evaluation, shape analysis,
facial analysis, cellular automata, non-photorealistic rendering, and cultural
heritage. For more information, please visit https://users.cs.cf.ac.uk/
Paul.Rosin/.

Yukun Lai received his bachelor’s degree and PhD degree in computer
science from Tsinghua University in 2003 and 2008, respectively. He is
currently a Professor in the School of Computer Science & Informatics,
Cardiff University. His research interests include computer graphics, geom-
etry processing, image processing and computer vision. He is on the edi-
torial boards of IEEE Transactions on Visualization and Computer Graph-

ics and The Visual Computer. For more information, please visit https:

//users.cs.cf.ac.uk/Yukun.Lai/.

Yaonan Wang received the Ph.D. degree in electrical engineering from Hu-
nan University, Changsha, China, in 1994. He was a PostDoctoral Research
Fellow with the Normal University of Defence Technology, Changsha, from
1994 to 1995. From 1998 to 2000, he was a Senior Humboldt Fellow in Ger-
many. From 2001 to 2004, he was a Visiting Professor with the University
of Bremen, Bremen, Germany. Since 1995, he has been a Professor with the
College of Electrical and Information Engineering, Hunan University. His
current research interests include robotics and image processing.

31

https://users.cs.cf.ac.uk/Paul.Rosin/
https://users.cs.cf.ac.uk/Paul.Rosin/
https://users.cs.cf.ac.uk/Yukun.Lai/
https://users.cs.cf.ac.uk/Yukun.Lai/

	Introduction
	Related Work
	Generative adversarial networks
	Text-based hair manipulation methods
	Image-based hair manipulation methods

	Method
	Overview
	Framework
	Loss Functions

	Experiments
	Implementation Details
	Quantitative and Qualitative Comparison
	Ablation Analysis

	Conclusions

