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Abstract—Semi-supervised learning (SSL) aims to help reduce
the cost of the manual labelling process by leveraging a substan-
tial pool of unlabelled data alongside a limited set of labelled
data during the training phase. Since pixel-level manual labelling
in large-scale remote sensing imagery is expensive and time-
consuming, semi-supervised learning has become a widely used
solution to deal with this. However, the majority of existing SSL
frameworks, especially various teacher-student frameworks, are
too bulky to run efficiently on a GPU with limited memory. There
is still a lack of lightweight SSL frameworks and efficient per-
turbation methods to promote the diversity of training samples
and enhance the precision of pseudo labels during training. In
order to fill this gap, we proposed a simple, lightweight, and
efficient SSL architecture named DiverseHead, which promotes
the utilisation of multiple decision heads instead of multiple whole
networks. Another limitation of most existing SSL frameworks
is the insufficient diversity of pseudo labels, as they rely on
the same network architecture and fail to explore different
structures for generating pseudo labels. To solve this issue, we
propose DiverseModel to explore and analyse different networks
in parallel for SSL to increase the diversity of pseudo labels. The
two proposed methods, namely DiverseHead and DiverseModel,
both achieve competitive semantic segmentation performance in
four widely used remote sensing imagery datasets compared to
state-of-the-art semi-supervised learning methods. Meanwhile,
the proposed lightweight DiverseHead architecture can be easily
applied to various state-of-the-art SSL methods while further
improving their performance. The code is available at Here.

Index Terms—Semi-supervised Learning, Semantic Segmen-
tation, Land over classification, Building Detection, Roadnet
Detection

I. INTRODUCTION

Supervised deep learning has become the dominant tech-
nique in computer vision during the last decade. Building on
its success in computer vision, many remote sensing applica-
tions, such as land cover classification, change detection and
object detection have seen significant improvements as similar
tasks [1], [2], [3], [4], [5]. Nevertheless, supervised learning
necessitates a substantial and meticulously labelled dataset. In
the case of extensive remote sensing data, such as satellite im-
agery and drone-captured images in complex terrains, acquir-
ing pixel-wise expert annotations is a time-consuming, labour-
intensive, and costly process. While the field of computer
vision provides numerous well-annotated datasets, transferring
deep learning models trained on these datasets to the remote
sensing domain is a formidable challenge. This is mainly due

Fig. 1. Two kinds of pseudo label generation and usage methods for SSL
based on (a) DiverseHead with multiple heads and (b) DiverseModel with
multiple models. ‘−→‘ means data stream, ‘99K‘ means loss supervision.
The ‘dynamic freezing’ and ‘dropout’ are used as perturbation methods in the
DiverseHead framework.

to the substantial differences between typical computer vision
images and remote sensing data, such as hyperspectral and
synthetic aperture radar (SAR) imagery, which often exhibit
unconventional and non-intuitive characteristics. To address
the issue of limited access to massive labelled datasets, SSL
offers a viable solution by using a small amount of labelled
data while leveraging the abundance of unlabelled data [6],
[7], [8]. This is because large volumes of unlabelled imagery
generally can be easily and freely accessed from open-access
remote sensing data sources.

SSL has become a widely used technique in computer
vision to reduce the labour-intensive and costly annotation
process for various applications such as image classification
[9], [10], [11] and segmentation [12], [13], [14], whilst leading
to competitive performance. Specifically, taking advantage of
“pseudo” labels generated by the prediction of unlabelled
data has become a mainstream class of SSL methods. Thus,
the quality of pseudo labels becomes a crucial factor in
determining the training effectiveness of the models. With
the success of SSL in computer vision, many SSL semantic
segmentation approaches for remote sensing imagery have
been explored, especially during the last decade [15], [16],
[17]. Specifically, based on consistency learning, U-MCL [18]
proposes an uncertainty-aware technique integrating masks for
SSL semantic segmentation of remote sensing imagery, and

https://github.com/WANLIMA-CARDIFF/DiverseNet
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[19] promotes the importance of bias-correction .
In the SSL literature, enhancing the accuracy and diversity

of pseudo labels has become a major challenge and a central
research focus. This is due to the fact that pseudo label
accuracy is often inadequate, especially when the labelled
training data is limited or incomplete. On the other hand,
enhancing the diversity of pseudo labels becomes another
key research focus in SSL to improve model robustness,
particularly in the context of consistency regularisation. [20].

In order to improve the quality of pseudo labels and
empower networks to harness the potential of unlabelled data,
a notable technique known as consistency regularisation has
emerged as a widely adopted method for SSL. [20], [21].
Specifically, consistency regularisation methods are built up on
the theory of assumption of smoothness, which suggests that if
two points lie in a high-density region of feature space and are
close to each other, their corresponding labels should be the
same or consistent [22], [23], [20]. In practice, consistency
regularisation SSL executes this assumption by forcing net-
works to produce consistent predictions for modified versions
of unlabelled data or their features using various perturbation
techniques.

The strategies for the aforementioned perturbations can
be categorised into three groups, namely input, feature, and
network perturbations. Input perturbation involves modifying
or altering input data, enabling SSL approaches to enforce
consistency in predictions for these altered inputs. The widely
used input perturbation method is adding artificial noise to
input images. However, it might lead to incorrect or noisy
pseudo labels for unlabelled examples and negatively impact
the training efficiency by providing incorrect guidance to the
model when training with these pseudo labels. Apart from in-
put perturbation, feature perturbation methods introduce noise
to both low- and high-level features. These perturbed features
are then fed into multiple decoders to generate multiple
outputs, followed by the enforcement of consistency among
the outputs obtained from different decoders. However, similar
to input perturbation, feature perturbation potentially generates
inaccurate representations due to introducing noise that fails
to accurately capture the underlying patterns in the original
data. This may result in incorrect or noisy pseudo-labels
for unlabelled examples, ultimately hindering the learning
process. Lastly, network perturbation uses multiple networks
to promote diversity of predictions [24]. Unlike the previous
two perturbation methods, network perturbation techniques
introduce perturbations in a more structured manner, generated
by the model itself instead of artificial noise. However, they
generally require significantly more computational resources
due to the greater number of complete networks (or their
internal stages) involved.

To further justify our design, our network perturbation
strategies (dynamic freezing and dropout) introduce struc-
tured, model-driven diversity without adding external noise.
Unlike input and feature perturbations, which risk corrupting
pseudo-labels or internal representations due to artificial noise
injection, our approach preserves semantic integrity while
enhancing prediction diversity. Furthermore, DiverseHead ap-
plies lightweight perturbations to the model head, achieving

a balance between diversity and efficiency without the heavy
computational cost of maintaining multiple full models.

The previous overview emphasises that while earlier pertur-
bation techniques in SSL provide certain benefits, they also
have inherent limitations, including inefficiencies in gener-
ating high-quality pseudo labels and a high computational
cost. Facing the challenges posed by perturbation-based SSL
and its complexity, it becomes imperative to explore more
efficient and lightweight approaches. This work proposes
two perturbation-based semi-supervised network architectures,
coined as DiverseNet, which consist of multiple head (Di-
verseHead) and multiple model (DiverseModel) based SSL
frameworks for various semantic segmentation applications of
remote sensing imagery. A brief demonstration of the proposed
lightweight SSL framework called DiverseHead is shown in
Figure 1-(a). In addition, we also further analysed a previously
proposed cross-network based SSL structure called Diverse-
Model [25], as shown in Figure 1-(b) for scenarios equipped
with high-memory computational resources. Specifically, the
contributions of this work are as follows:

1) We introduce DiverseHead, a simple, lightweight, and
efficient SSL framework which employs multiple deci-
sion heads within a single network. This structure is
inspired by bagging (also called bootstrap aggregating),
which helps enhance pseudo label quality by integrating
perturbed parameters and features within the network
architecture.

2) To introduce perturbation for diversifying decisions, we
incorporate two key techniques, dynamic freezing and
dropout, into the DiverseHead architecture, aiming to
diversify the network’s parameters and high-level fea-
tures, respectively. The proposed perturbation strategies,
incorporating multiple heads, are readily applicable to a
variety of state-of-the-art SSL methods and can further
enhance their performance.

3) We propose a dual voting mechanism, Mean Voting
and Max Voting, to aggregate multihead predictions and
produce high-fidelity pseudo labels for DiverseHead.
This mechanism leverages both collective consensus and
individual confidence to further enhance pseudo-label
robustness during training.

4) We provide a more detailed comparison study for a
previously proposed architecture DiverseModel [25] on
various semantic segmentation datasets in this paper.
Also, we use Grad-CAM [26] to verify the observation
that different networks exhibit varied attention to the
same input.

The rest of the paper is organised as follows: Section
II discusses the related work on semi-supervised semantic
segmentation in remote sensing and some basic knowledge
on ensemble machine learning whilst in Section III and
IV, the proposed algorithms DiverseHead and DiverseModel
are presented. Section V describes the utilised segmentation
dataset of remote sensing imagery. The experimental setting
along with both the qualitative and quantitative analyses of the
results, are presented in Section VI. Section VII concludes the
paper with a summary.
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II. RELATED WORK

Semantic segmentation is rapidly developing in remote
sensing with the success of deep learning in computer vi-
sion. Due to the strong task similarity, semantic segmenta-
tion techniques are used for various remote sensing applica-
tions, such as land cover classification/mapping [27], build-
ing change detection [28], road extraction [29], and marine
debris detection [30], [31]. Specifically, Fully Convolutional
Networks (FCNs) [32] have made a considerable contribution
to various segmentation tasks either in remote sensing or
computer vision. Following the FCNs’ success, SegNet [33]
and UNet [34] adopt a symmetrical encoder-decoder structure
with skip connections, leveraging multi-stage features within
the encoder. Alternatively, PSPNet [35] introduces a pyramid
pooling structure that helps provide a global contextual un-
derstanding for pixel-level scene parsing. The DeepLab archi-
tecture [36] introduces atrous convolution and atrous spatial
pyramid pooling (ASPP), allowing the network to adjust the
spatial receptive field of convolution kernels by using different
dilation rates. Then, DeepLab was extended to DeepLabv3+
[37] with an improved encoder-decoder structure, which is
helpful to refine segmentation results, especially around object
boundaries [38], [39]. Recently, GLOTS [40] was proposed
for semantic segmentation of remote sensing images, aiming
to acquire consistent feature representations by leveraging
transformers in both the encoder and decoder. DeepLabv3+
is one of the most widely used networks in the literature for
semi-supervised learning segmentation in the computer vision
area.

Semi-supervised learning aims to alleviate the need for
expensive annotation work by making use of both labelled
and unlabelled data. Self-training [41] (also known as pseudo
labelling) represents one of the primitive SSL strategies for
both classifications [42] and segmentation [43]. It generates
pseudo-labels using model predictions for unlabelled data,
which are then utilised to retrain the model. Another widely
developed SSL approach called consistency regularisation [20]
is to force networks to give consistent predictions for unla-
belled inputs that undergo diverse perturbations. In the context
of the remote sensing field, Lu et al. [44] propose a weak-
to-strong consistency learning for semi-supervised semantic
segmentation. Building on the weak-to-strong consistency
learning, Lv et al. [45] further explore the efficient exploitation
of labelled and unlabelled images. Additionally, MIMSeg [46]
integrates weak-to-strong consistency learning with masked
image modelling, and DWL [47] combines it with a decoupled
weighting learning framework for semi-supervised semantic
segmentation of remote sensing imagery.

In computer vision, CCT [48] employs an encoder-decoder
architecture with multiple auxiliary decoders. These decoders
introduce diversity in the output by feature perturbations
specific to each auxiliary decoder. They calculate the MSE
loss between the predictions of the main decoder and each
auxiliary decoder without creating pseudo labels. It is worth
noting that the unsupervised loss is not used to supervise
the main decoder. Following CCT, subsequent methods like
GCT [49] and CPS [24] have been proposed to introduce

network perturbation for consistency regularisation. Both of
them use the same network structures but with different weight
initialisation. CPS differs from GCT by using pseudo-labels
generated from two networks to enforce consistency, whereas
GCT achieves consistency regularisation by minimising the
loss between the probability predictions of networks working
in conjunction with a flow detector. Although the network
perturbation with different weight initialisation provides some
diversity for pseudo labels in GCT and CPS, the ability
to generate diversity is still limited. Another group of SSL
methods is built upon the teacher-student architecture. As a
classic teacher-student model, MT [50] uses an EMA of the
student’s weights for the teacher, trains student models with
augmented inputs, and applies a consistency cost to align their
outputs. ICNet [6] was proposed to use teacher networks to
improve the quality of pseudo labels and increase the model
difference based on an iterative contrast network. Building
on the teacher-student architecture, some of its variations
have become SOTA. For example, iMAS [51] highlights the
importance of instance differences and introduces instance-
specific and model-adaptive supervision for semi-supervised
semantic segmentation. AugSeg [52] employs an enhanced
data augmentation technique for input data and adaptively in-
jects labelled information into unlabelled samples based on the
model’s estimated confidence in each sample. These methods
consistently rely on the same network architecture with dif-
ferent weights. The previously proposed DiverseModel argues
that advocating the use of different models can obtain distinct
and complementary features from these models, even with the
same input data. Specifically, DiverseModel explores different
networks in parallel to generate more diversity of pseudo labels
to improve training effectiveness. Although these discussed
methods achieve competitive performance, they consistently
rely on multiple networks, making them bulky and potentially
unsuitable for users with limited computational resources.

Ensemble machine learning is a concept that employs
multiple learners and combines their predictions [53]. Bag-
ging, a form of ensemble learning, is a technique aimed at
reducing prediction variance by creating multiple iterations
of a predictor and then utilising them to form an aggregated
predictor [54]. Specifically, bagging creates sample subsets by
randomly selecting from the training dataset and subsequently
utilises these acquired subsets to train the foundational models
for integration. When predicting a numerical outcome, aggre-
gation is done by averaging the different versions, whereas
for class prediction, it is based on a majority vote. Bagging is
a commonly employed approach for enhancing the robustness
and precision of machine learning algorithms for classification
and regression [55].

III. DIVERSEHEAD (CROSS-HEAD SUPERVISION)

This section introduces the details of the proposed Di-
verseHead SSL method, which uses a single network with
multiple heads, illustrated in Figure 2. Each head has 2
convolutional layers. Unlike CCT, the proposed DiverseHead
method treats all heads equally, avoiding a distinction between
the main and auxiliary heads. Meanwhile, all heads benefit
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Fig. 2. DiverseHead: an online semi-supervised learning approach. This figure applies the dynamic freezing strategy: the freezers (Dynamic Selector in the
figure) randomly select a certain number of heads to freeze the parameter of heads (not updated by backpropagation). Additionally, during every iteration, all
heads undergo supervision through a supervised loss, yet each head is randomly chosen to be updated by an unsupervised loss.

Fig. 3. The Proposed Voting Module: a voting mechanism for the pseudo
label creation. In the unsupervised part, the voting module combines the mean
output of multiple heads (mean voting) and individual pseudo labels (max
voting) to generate more efficient pseudo labels. Argmax returns the indices
of the maximum values of the prediction along the class dimension. The
dashed arrow serves as an illustration of a pixel voting for its classification
in a segmentation map.

from labelled data by applying supervised losses to each. This
helps create better pseudo labels in the subsequent steps of
the proposed method. On the other hand, rather than adding
artificial noise to perturb head features as in CCT, DiverseHead
introduces two perturbation strategies: Dynamic Freezing and
Dropout. They are demonstrated in Figure 4 and explained
in detail in Section III-A. During each training iteration, in
addition to supervised losses, an unsupervised loss is computed
between the pseudo-label and the prediction. The pseudo
label is derived from an efficient voting module illustrated
in Figure 3. Although non-differentiable operations (e.g. Vot-
ing and Argmax) could potentially limit optimisation during
training, in our framework, parameter perturbations, feature
perturbations, and independent initialisation across heads and
models inject sufficient diversity and stochasticity into the
training process. These factors enable effective gradient-based
optimisation despite the presence of non-differentiable compo-
nents. The proposed method can be seen as a combination of
self-training and consistency regularisation, leveraging model

predictions to supervise itself and forcing all perturbed heads
to produce consistent outputs.

To provide a detailed description of the proposed semi-
supervised framework, given both a labelled data set Bl =
{(xi, yi)}Mi=1 containing M images and an unlabelled data set
Bu = {ui}Ni=1 with N images, the network Q is constructed
with multiple heads denoted as

{
headi

}L

i=1
, where L is the

number of heads. Each of these heads is initialised differently.
The proposed SSL approach expects to gain the trained
network Q leveraging the labelled and unlabelled data.

The output of each head refers to a probability-based
prediction for all classifications. When working with labelled
data, the supervised loss Lj

sup,s between the s′th ground truth
ys and its corresponding prediction pjs for j′th head is defined
by using the standard cross-entropy loss function ℓce:

Lj
sup,s =

1

W ×H

W×H∑
i=1

ℓce

(
pji,s, yi,s

)
, (1)

where W and H refer to the width and height of input
images. The final supervised loss for the s′th labelled data
is determined by the mean of the losses across all heads

Lsup,s =
1

L

L∑
j=1

Lj
sup,s (2)

where L is the number of heads.
In each iteration, we also get a prediction rjk corresponding

to the k′th unlabelled data uj
k from the j′th head. Inspired by

ensemble learning, a voting module is proposed to get high-
precision pseudo labels. There are two voting mechanisms
in the proposed voting module, called mean voting and max
voting, respectively shown in Figure 3. The former aggregates
the predictions from all heads to create a combined prediction
r̂mean
k . Subsequently, this combined prediction is used to

calculate the mean pseudo labels ŷmean
k through an argmax

operation, which returns the indices of the maximum values
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Fig. 4. The proposed two perturbation methods: (A) Dynamic Freezing
and (B) Dropout. Dynamic Freezing was designed to enhance the parameter
diversity across multiple heads. During each training iteration, a specific subset
of heads is randomly selected (The Dynamic Selector in the figure is used for
this purpose), and their parameters are frozen, meaning they are not updated
by minimising the loss in that iteration. These parameters are unfrozen before
the next iteration begins. Instead, for Dropout, each channel of features passed
through each head is independently zeroed out with a dropout rate p during
each forward pass.

of the prediction along the class dimension. Apart from the
mean voting module, the individual pseudo label is generated
from the output of each head by the argmax function. The
latter regards all pseudo labels as voters, in which the mean
pseudo label contributes φ weight and each individual pseudo
label contributes unit weight. φ is a learnable parameter and its
value changes depending on the dataset and training process.
The max voting module returns the class number that gets
the most votes for each pixel. After max voting, an optimal
pseudo label ŷfinalk is created to calculate unsupervised loss
Lunsup,k by using the cross-entropy loss function:

Lunsup,k =
1

W ×H

W×H∑
i=1

ℓce

(
rmain
i,k , ŷfinali,k

)
, (3)

where rmain
k is the prediction from the randomly selected

single head.
Finally, the whole loss can be written as

L = Lsup,s + λLunsup,k, (4)

where λ is the trade-off weight between the supervised and
unsupervised losses. We use different subscripts (s and k)
for the supervised and unsupervised losses, respectively, to
account for the difference in the numbers of labelled and
unlabelled data. Specifically, the number of labelled data
samples is smaller than that of unlabelled data samples. The
solution to this issue is that, in each epoch, the labelled data
set is repeatedly used in cycles for multiple iterations until all
unlabelled data have been processed once.

A. Perturbation Methods

Based on the framework of DiverseHead, we propose a
parameter perturbation method called dynamic freezing as
shown in Figure 4 (a). The pseudocode of the algorithm for

Algorithm 1 DiverseHead Semi-Supervised Learning with Dynamic
Freezing Pseudocode. The Labelled Training Dataset is defined as Bl.
Since the number of labelled data is smaller than that of unlabelled
data, the labelled data is used in cycles for one epoch. We define it
as cycle

(
Bl

)
.

INITIALIZATION:
Randomly initialise model Q
Initialise backbone using ResNet-50

INPUT: Labelled Training Dataset Bl = {(xi, yi)}Mi=1

Unlabelled Training Dataset Bu = {ui}Ni=1
L = length(heads)
for {(xs, ys) , uk}Nk=1,s=k%M ∈

{
cycle

(
Bl

)
,Bu

}
do

R = Randint(0, L, 1
2
L)

Freeze(
{
headi

}
i∈R)

for j ∈ {1, ..., L} do
pjs = Qheadj (xj

s)
Lj

sup,s = loss(pjs, ys) based on (1)
rjk = Qheadj (uj

k)
ŷj
k ← argmax(rjk)

rmean
k = sum

({
rjk
}L

j=1

)
ŷmean
k ← argmax(rmean

k )

ŷfinal
k ← voting(

{
ŷj
k

}L

j=1
, ŷmean

k )

rmain
k ← sample

({
r1k, r

2
k, ..., r

L
k

})
Lunsup,k ← loss(rmain

k , ŷfinal
k ) based on (3)

L ← 1
L

∑L
j=1 L

j
sup,s + λLunsup,k

Minimize L to update model Q
Unfreeze(

{
headi

}
i=R

)
OUTPUT: Trained model Q

DiverseHead with the perturbation of dynamic freezing is
given in Algorithm 1. Specifically, we use DeepLabv3+ with
a ResNet-50 backbone as the segmentation network in our
framework, ensuring consistency with the methods compared
in this paper. The backbone is pretrained on ImageNet, and
other parameters are initialised by Kaiming Initialization. Both
labelled and unlabelled data are input to the framework, then
the first step of dynamic freezing refers to a process where
half of the heads are randomly selected to be frozen during
each iteration. This implies that the parameters within these
selected heads will remain unchanged and not undergo updates
for the current iteration. Every head has an equal probability
of being chosen. Following the cross-head supervision above,
the segmentation model is updated by the supervised and
unsupervised losses. Before going to the next iteration, those
frozen heads are unfrozen.

Another form of perturbation involves the use of dropout
layers in the proposed DiverseHead structure to increase the
diversity of features during training. We introduce a dropout
layer after each convolutional block in each segmentation head
of the network, as shown in Figure 4 (b). The pseudocode of
this method is given in Algorithm 2. As both dynamic freezing
and dropout perturbation utilise the same semi-supervised
learning framework, DiverseHead, the network initialisation
and supervised loss calculation procedures stay the same.
Using dropout in DiverseHead, specific components of the
weights in the heads of the network are randomly assigned a
value of zero with a dropout rate (determining the probability),
using samples derived from a Bernoulli distribution. This
dropout operation is employed to enhance the variability of
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Algorithm 2 DiverseHead Semi-Supervised Learning with Dropout
Pseudocode. The Labelled Training Dataset is defined as Bl. Since
the number of labelled data is smaller than that of unlabelled data,
the labelled data is used in cycles for one epoch. We define it as
cycle

(
Bl

)
.

INITIALIZATION:
Randomly initialise model Q
Initialise backbone using ResNet-50
Add dropout layer before the last convolutional layer
for each head

INPUT: Labelled Training Dataset Bl = {(xi, yi)}Mi=1

Unlabelled Training Dataset Bu = {ui}Ni=1
L = length(heads)
for {(xs, ys) , uk}Nk=1,s=k%M ∈

{
cycle

(
Bl

)
,Bu

}
do

for j ∈ {1, ..., L} do
pjs = Qheadj (xj

s)
Lj

sup,s = loss(pjs, ys) based on (1)
rjk = Qheadj (uj

k)
ŷj
k ← argmax(rjk)

rsumk = sum
({

rjk
}L

j=1

)
ŷmean
k ← argmax(rmean

k )

ŷfinal
k ← voting(

{
ŷj
k

}L

j=1
, ŷmean

k )

rmain
k ← sample

({
r1k, r

2
k, ..., r

L
k

})
Lunsup,k ← loss(rmain

k , ŷfinal
k ) based on (3)

L ← 1
L

∑L
j=1 L

j
sup,s + λLunsup,k

Minimize L to update model Q
OUTPUT: Trained Model Q

Fig. 5. DiverseModel: an online semi-supervised learning approach.

the output predictions. In the conducted experiments, the
dropout rate is set as a hyperparameter with a value of 0.5.
Although the dropout-based approach adheres to the same
training pipeline with dynamic freezing outlined above, the
distinction is that all heads remain unfrozen.

To evaluate the efficacy of individual perturbation methods
in conjunction with the proposed DiverseHead techniques,
each method is applied independently within the proposed
framework. The performance of each combination is assessed
in Section VI. Considering that various datasets may require
differing levels of diversity in pseudo labels within the pro-
posed DiverseHead framework, adjustments can be made by
altering the number of frozen heads and dropout rates in the
methods of dynamic freezing and dropout, respectively.

IV. CROSS-MODEL SUPERVISION (DIVERSEMODEL)

The proposed DiverseModel differs from CPS, explor-
ing different networks in parallel to generate comprehensive

pseudo labels. As shown in Figure 5, the DiverseModel struc-
ture includes three distinct networks, which can be various
semantic segmentation networks. In this paper, we choose
three widely used segmentation networks for experiments,
which are PSPNet [35], UNet [34], SegNet [33]. Algorithm 3
presents the pseudocode of the DiverseModel method. Since
different networks pay different and complementary attention
to the same input, this offers the basis for they are able to
benefit from each other. In order to provide evidence for this
claim, we executed the Gradient-weighted Class Activation
Mapping (Grad-CAM) [26] technique for every network em-
ployed within the framework of the DiverseModel architecture.
Grad-CAM visualises the areas of an image that are important
to the model predictions from each network. Figure 6 depicts
an example grad-CAM analysis for the BUILDING class in
the Potsdam data set. Examining Figure 6, we can see that dif-
ferent networks pay different and complementary attention to
the same input, and the pseudo labels from the DiverseModel
prediction show the highest quality.

The labelled data is used in a regular supervised learning
manner to train these models by using the standard cross-
entropy loss function ℓce. The supervised loss Lsup,s is
expressed as:

Lsup,s =
1

3

3∑
n=1

1

W ×H

W×H∑
i=1

ℓce
(
pni,s, yi,s

)
, (5)

where pni,s represents the i th predicted pixel of the s th
sample from the n th network.

In addition, unlabelled data is used to generate pseudo
labels, which are then exploited for cross-supervision to inform
each network. Different from the version presented in [25], all
loss calculations in this work solely focus on cross-entropy
loss to avoid the variations in performance resulting from
different types of loss functions. The predictions obtained by
each network are denoted as {p1, p2, p3}, which are used for
generating pseudo labels {r̂1, r̂2, r̂3} through the argmax
operation. For instance, the cross pseudo supervision loss
L12
unsup between the prediction p1 from the first network and

the pseudo label r2 generated by the second network is defined
as:

L12
unsup,k =

1

W ×H

W×H∑
i=1

ℓce
(
p1i,k, r̂

2
i,k

)
. (6)

where, p1i,k represents the i th predicted pixel of the k th
sample from the 1 st network.

The cross-pseudo supervision among the three networks
creates six losses in the same way. The unsupervised loss
Lunsup is the average of the six individual losses, as shown
below

Lunsup,k =
1

6

(
L12
unsup,k + L13

unsup,k + L21
unsup,k

+ L23
unsup,k + L31

unsup,k + L32
unsup,k

)
.

(7)

The total loss L is the linear addition of Lsup,s and Lunsup,k,
which is previously given in equation (4)
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Fig. 6. The upper section displays Grad-CAM outputs from individual networks within the DiverseModel architecture using the Potsdam dataset. The lower
section showcases both the ground truth and pseudo labels generated through predictions from each network. In the lower right corner, the pseudo-label from
DiverseModel is presented.

Algorithm 3 DiverseModel Semi-supervised Learning Pseudocode.
The Labelled Training Dataset is defined as Bl. Since the number of
labelled data is smaller than that of unlabelled data, the labelled data
is used in cycles for one epoch. We define it as cycle

(
Bl

)
.

INITIALIZATION:
Randomly initialise three models, PSPNet Q1,
UNet Q2, SegNet Q3

INPUT: Labelled Training Dataset Bl = {(xi, yi)}Mi=1

Unlabelled Training Dataset Bu = {ui}Ni=1

for {(xs, ys) , uk}Nk=1,s=k%M ∈
{

cycle
(
Bl

)
,Bu

}
do

Lsup,s = loss(Q1(xs), ys) + loss(Q2(xs), ys)
+ loss(Q3(xs), ys) based on (1)

r̂1k ← argmax(Q3(uk))
r̂2k ← argmax(Q3(uk))
r̂3k ← argmax(Q3(uk))
Lunsup,k = loss(Q1(uk), r̂

2
k) + loss(Q1(uk), r̂

3
k)

+ loss(Q2(uk), r̂
1
k) + loss(Q2(uk), r̂

3
k)

+ loss(Q3(uk), r̂
1
k) + loss(Q3(uk), r̂

2
k)

L ← Lsup,s + λLunsup,k

Minimize L to update model Q1, Q2, Q3

OUTPUT: Trained Model Q1, Q2, Q3

V. DATASET DESCRIPTION

We employed diverse remote sensing datasets to assess
both the proposed techniques and state-of-the-art methods,
specifically including (1) the ISPRS Potsdam dataset [56],
(2) the DFC2020 dataset [57], (3) the RoadNet dataset [58],
and (4) the Massachusetts Buildings dataset [59]. In the sequel,
we share the details of each dataset utilised in this paper.

1) ISPRS Potsdam Semantic Labelling dataset is an open-
access benchmark dataset provided by the International So-
ciety for Photogrammetry and Remote Sensing (ISPRS). The
true orthophoto (TOP) and DSM modalities have a ground
sampling distance of 5 cm. Six land cover classes were iden-
tified by hand annotation of this dataset: impervious surfaces,
buildings, low vegetation, trees, cars, and clutter/background.
This dataset has 38 patches, each measuring 6000 × 6000
pixels. The patches include orthorectified optical pictures of
red, green, and blue bands, as well as infrared (IR) and

matching digital surface models (DSM). All of these data tiles
were divided into 512×512 patches for computational reasons,
yielding 3456, 201, and 1815 samples for the training, valida-
tion, and test sets, respectively. We randomly select a quarter
of the training data as labelled data and use the remaining
three quarters as unlabelled data for all SSL approaches.

2) DFC2020 is the 2022 IEEE GRSS Data Fusion Contest
dataset, which is based on the SEN12MS dataset [60]. It
provides Sentinel-1 SAR imagery, Sentinel-2 multispectral
imagery, and corresponding land cover maps with ten coarser-
grained classes. The size of all patches is 256× 256 pixels.
There are 6112, 986 and 5127 images for training, validation
and test sets, respectively. In this paper, one-fifth of the
labelled data is for training, while the remaining four-fifths
of the data is employed as unlabelled data.

3) RoadNet is a benchmark dataset for roadnet detection
with 0.21-m spatial resolution.It includes RGB images and
related road surface maps for the segmentation task. The
number of samples for training, validation and testing is 410,
45 and 387, respectively. A quarter of the annotated training
data is used for the supervised part, while the remaining three-
quarters of the training data are employed as unlabelled data
for SSL training purposes.

4) Massachusetts Buildings dataset predominantly encom-
passes urban and suburban regions, encompassing structures
of varying scales. It consists of 151 aerial RGB images with
a resolution of 1 m2 per pixel and corresponding building
masks with the size of 1500 × 1500 pixels. The dataset was
split into 137 training, 10 testing, and 4 validation images with
labels. One-quarter of the annotated training images are used
for supervision, while the remaining three-quarters are treated
as unlabelled for SSL.

VI. EXPERIMENTAL ANALYSIS

A. Implementation Details

Our approaches are implemented using PyTorch. Follow-
ing [37], we employed a polynomial learning rate policy
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with a mini-batch SGD optimizer, where the current learning
rate is calculated as the initial learning rate multiplied by(
1− iter

max-iter

)power
. The initial learning rate and power are set

to 0.01 and 0.9, respectively. All experiments were conducted
on the GW4 Isambard with an NVIDIA A100-sxm GPU and
an AMD EPYC 7543P CPU [61].

For a fair comparison, both the state-of-the-art meth-
ods and the proposed DiverseHead use DeepLabv3+ with
a ResNet-50 backbone pre-trained on ImageNet as the se-
mantic segmentation network. We comprehensively analysed
all methods by quantifying performance via class-related
measures, including overall accuracy (OA), user’s accuracy
(UA), producer’s accuracy (PA), mean intersection over union
(mIoU), and F1-score. Expressions of all five performance
metrics are given as follows: OA = TP+TN

TP+TN+FP+FN ,
UA = TP

TP+FP , PA = TP
TP+FN , mIoU = |TP|

|TP+FN+FP| ,
F1 = 2·PA·UA

PA+UA , where TP, TN, FP, and FN refer to the
numbers of pixels that are true positives, true negatives, false
positives, and false negatives for each class, respectively.

B. Quantitative Results and Analysis

We evaluate the proposed approaches, along with classic and
state-of-the-art SSL methods, using the five performance met-
rics outlined above, across four remote sensing imagery seg-
mentation datasets: Potsdam, DFC2020, RoadNet, and Mas-
sachusetts Building. The average results across four datasets
are presented in Table I. It presents an overall performance of
the proposed methods using a single network in comparison
to traditional SSL methods that employ dual networks. Since
some state-of-the-art SSL methods in computer vision, such as
UniMatch, iMAS, and AugSeg, are designed for RGB image
segmentation and rely on RGB-based datasets for pretraining,
these methods are not included in the average performance
across the four datasets, including multi-band remote sens-
ing data. However, a detailed performance comparison of
these state-of-the-art and classic SSL methods across various
datasets, including both multi-band and RGB remote sensing
imagery, will be presented and discussed later in this section.
From the average results in Table I, the proposed DiverseHead
(DF) delivers the best overall performance, achieving the
highest score in 4 out of 5 metrics, which are highlighted in
red. DiverseModel demonstrates the second-best performance
across most of the metrics. In particular, for metrics of UA,
the proposed DiverseModel exhibits an improvement of over
3.48% compared to another network-perturbation-based ap-
proach, CPS. Although the performance of DiverseHead (DT)
is slightly lower than that of DiverseHead (DF) and Diverse-
Model, these three methods show similar average performance,
but both of them outperform the other compared methods.
With these used remote sensing datasets, MT demonstrates
notably inferior average performance across various metrics.
CCT, GCT, and CPS exhibit comparable performance, yet the
performance superiority of CPS is notably evident in its PA
metric. It is important to highlight that DiverseHead is a very
lightweight method and reaches a very competitive average
performance compared to others.

TABLE I
AVERAGE PERFORMANCE COMPARISON WITH THE CLASSIC SSL

METHODS WITH MULTIPLE NETWORKS ON FOUR DATASETS. DT AND DF
INDICATE DROPOUT AND DYNAMIC FREEZING, RESPECTIVELY.

Models OA UA PA mIoU F1

MT [50] 86.35% 74.93% 81.53% 66.03% 77.99%
CCT [48] 87.14% 76.49% 82.50% 67.76% 79.23%
GCT [49] 87.45% 75.35% 82.31% 67.19% 78.65%
CPS [24] 88.06% 75.97% 85.27% 68.23% 80.22%
DiverseModel [25] 88.77% 79.54% 85.18% 70.92% 82.02%
DiverseHead (DT) 88.69% 78.51% 85.42% 70.63% 81.64%
DiverseHead (DF) 89.00% 79.14% 85.83% 71.28% 82.17%

Table II presents the number of parameters of SSL frame-
works during training. Apart from DiverseHead, all other
classic SSL approaches typically involve parameters exceed-
ing three hundred megabytes. Among these approaches, Di-
verseModel is the largest architecture; however, it outper-
forms other network-perturbation-based methods, including
MT, CCT, GCT, and CPS, as demonstrated in Table I. In
contrast, the proposed DiverseHead is highly lightweight,
using just a single segmentation model with multiple heads,
each consisting of only 2 convolutional layers, thus eliminating
the need for multiple networks during training. Specifically,
the parameter size of the DiverseHead (DT&DF) is only 16%
bigger than that of the single network (Base in Table II),
whereas the parameter size of other reference semi-supervised
architectures is at least twice that of the single network.
Despite requiring fewer parameters, the proposed DiverseHead
method surpasses the classic SSL methods by at least 1%
in accuracy and 3% in mIoU, while achieving performance
comparable to the largest method, DiverseModel.

TABLE II
THE REQUIRED PARAMETER SIZE OF EACH SEMI-SUPERVISED LEARNING
APPROACH. BASE MEANS SEGMENTATION NETWORK DEEPLABV3+. DT
AND DF PRESENT DROPOUT AND DYNAMIC FREEZING, RESPECTIVELY.

CPS [24] MT [50] CCT [48] GCT [49]

Size (MB) 303.378 303.378 337.655 335.049
DiverseModel

[25]
DiverseHead

(DT)
DiverseHead

(DF) Base

Size (MB) 936.262 175.806 175.806 151.689

Specifically, we present the results of different semi-
supervised learning methods applied to the two multi-
band remote sensing imagery datasets, namely Potsdam and
DFC2020, in the table III. The performance of the DiverseNet,
namely DiverseHead and DiverseModel, is noticeably superior
to that of the other listed semi-supervised learning methods
across these evaluated datasets. In particular, for the Potsdam
datasets, the proposed DiverseHead (DF) attains the highest
performance across 4 out of 5 segmentation metrics, whilst
DiverseModel emerges as the second-best method based on
its results. However, in the case of the DFC2020 dataset,
DiverseModel reaches the best for most performance metrics,
securing the top position whilst DiverseHead closely follows
as the second-best method, despite their similar performance.
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TABLE III
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART ON DATASETS CONTAINING IMAGES WITH MORE THAN THREE BANDS, NAMELY POTSDAM

AND DFC2020. DT AND DF PRESENT DROPOUT AND DYNAMIC FREEZING, RESPECTIVELY.

Model OA UA PA mIoU F1

Po
ts

da
m

MT[50] 81.98% 73.66% 78.39% 63.07% 75.95%
CCT[48] 82.66% 74.64% 77.62% 64.16% 76.10%
GCT[49] 83.99% 75.65% 80.81% 65.80% 78.14%
CPS[24] 85.00% 75.76% 82.94% 66.69% 79.19%
DiverseModel[25] 85.76% 76.75% 83.45% 67.85% 79.96%
DiverseHead (DT) 84.66% 77.04% 80.78% 67.12% 78.87%
DiverseHead (DF) 85.98% 79.15% 82.87% 69.63% 80.97%

D
FC

20
20

MT[50] 78.64% 59.59% 73.57% 50.44% 65.85%
CCT[48] 79.71% 59.87% 76.40% 51.04% 67.13%
GCT[49] 80.84% 61.47% 71.43% 52.17% 66.07%
CPS[24] 81.49% 61.74% 79.46% 53.20% 69.49%
DiverseModel[25] 81.87% 62.20% 80.69% 53.71% 70.25%
DiverseHead (DT) 82.02% 62.13% 80.61% 53.81% 70.18%
DiverseHead (DF) 81.78% 61.81% 80.21% 53.46% 69.82%

Images from Potsdam consist of 4 bands, while images
from DFC2020 contain 13 bands. The DiverseModel exhibits
greater proficiency in processing datasets with more bands,
while Diverse is more effective in handling images with fewer
bands.

The proposed DiverseHead with two perturbation methods
is a foundational framework, requiring fewer parameters and
making it highly suitable for users with limited computational
resources. Also, this proposed foundational framework can be
easily combined with various teacher-student SSL methods to
improve their performance. Table IV presents the results of
the proposed methods and various SSL methods, including
state-of-the-art methods in computer vision, which incorpo-
rate various enhancement strategies, on RGB remote sensing
image segmentation datasets, specifically RoadNet and Mas-
sachusetts Building. DiverseHead demonstrates superior per-
formance compared to other classic frameworks, such as MT,
CCT, GCT, CPS, FixMatch and UniMatch, while maintaining
a lower parameter requirement and quicker training process.
Although some currently proposed SSL methods, iMAS,
AugSeg and DWL, outperform the proposed DiverseHead,
integrating these state-of-the-art methods with the proposed
DiverseHead idea leads to further performance improvement
and reaches the best result in Table IV.

To further support the computational efficiency of the
proposed method, we measured the wall-clock training time
required for 100 iterations across various state-of-the-art SSL
frameworks, using identical hardware and implementation set-
tings. As shown in Figure 7, DiverseHead (dropout) achieves
the lowest training time (40.65 seconds) among all compared
methods. This demonstrates that our approach introduces
minimal computational overhead, providing strong empirical
evidence of its lightweight nature during training.

In order to further prove the efficiency of multi-head su-
pervision, we considered a downgraded version of the current
DiverseHead approach, called single-head supervision (SHS),
which consists of only a single head. During each training
iteration, the current model’s predictions for unlabelled data
are used to generate pseudo labels through an argmax opera-

M
T

CCT
GCT

CPS

FixM
atc

h

UniM
atc

h
iM

AS

Aug
Seg

Dive
rse

Hea
d

0

50

100

150

200

6
3
.9
6

1
2
0
.7
8

2
0
6
.4

9
3
.8

8
7
.8
3

1
0
4
.0
8 1
5
2
.1
8

8
1
.7
2

4
0
.6
5

Tr
ai

ni
ng

Ti
m

e
(s

)

Fig. 7. Training time (in seconds) for 100 iterations across different SSL
methods. DiverseHead refers to the dropout version of our proposed method.

tion. These generated pseudo labels are then used to calculate
the unsupervised loss. Also, we provide the performance of
the segmentation network namely DeepLabv3+, called Base
in Table V, only trained by labelled data (part of each
dataset) without using unlabelled data. The performance of
the Base and SHS, along with the proposed DiverseHead,
are presented in Table V to provide experimental evidence
of the improvement and efficiency of the use of multiple
heads in the DiverseHead architecture. While the single-
head supervision benefits from the pseudo labels and exhibits
better performance compared to the Base model, especially
improving the metric of PA, both versions of DiverseHead
approaches demonstrate a further significant improvement by
taking advantage of multiple heads. Specifically, the mIoU
of DiverseHead (DF) is 6.91% higher than that of Base
and 5.12% higher than that of SHS for Potsdam. While the
performance of DiverseHead (DT) is slightly lower than that
of DiverseHead (DF), its performance is still much better
than that of SHS and Base. Similarly, Both DiverseHead
versions demonstrate superior performance on the RoadNet
dataset compared to SHS and Base, particularly evident in the
mIoU metric, where DiverseHead (DT) exhibits a significant
improvement of 6.8% over the Base.
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TABLE IV
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART ON RGB-BAND DATASETS, NAMELY ROADNET AND MASSACHUSETTS. DT AND DF

PRESENT DROPOUT AND DYNAMIC FREEZING, RESPECTIVELY.

Model OA UA PA mIoU F1
R

oa
dN

et

MT[50] 94.61% 86.87% 88.18% 79.04% 87.52%
CCT[48] 95.58% 88.67% 90.74% 82.18% 89.69%
GCT[49] 95.29% 85.53% 91.99% 80.35% 88.64%
CPS[24] 95.81% 89.10% 91.36% 82.96% 90.21%
FixMatch [62] 96.02% 89.91% 91.63% 83.81% 90.76%
UniMatch [63] 95.93% 90.58% 90.79% 83.71% 90.69%
ICNet [62] 97.15% 93.48% 93.52% 88.19% 93.50%
iMAS [51] 97.15% 94.15% 93.03% 88.32% 93.59%
AugSeg [52] 97.36% 94.26% 93.79% 89.06% 94.03%
DWL [47] 97.88% 94.81% 95.48% 90.96% 95.14%
DiverseModel[25] 96.84% 93.12% 92.58% 87.11% 92.84%
DiverseHead(DT) w/ Sngl-model 96.85% 92.14% 93.31% 86.91% 92.72%
DiverseHead(DF) w/ Sngl-model 96.81% 92.60% 92.80% 86.88% 92.70%
DiverseHead(DT) w/ iMAS 97.47% 94.24% 94.20% 89.40% 94.22%
DiverseHead(DT) w/ AugSeg 97.70% 95.85% 93.96% 90.50% 94.90%
DiverseHead(DT) w/ DWL 97.96% 95.33% 95.36% 91.32% 95.35%

M
as

sa
ch

us
et

ts

MT[50] 90.16% 79.58% 85.97% 71.55% 82.65%
CCT[48] 90.59% 82.77% 85.23% 73.67% 83.98%
GCT[49] 89.67% 78.75% 85.01% 70.42% 81.76%
CPS[24] 89.95% 77.26% 87.33% 70.07% 81.98%
FixMatch [62] 90.00% 81.34% 84.41% 72.13% 82.85%
UniMatch [63] 89.86% 79.95% 84.79% 71.28% 82.30%
ICNet [62] 92.24% 84.81% 88.64% 77.34% 86.68%
iMAS [51] 92.40% 83.89% 89.90% 77.26% 86.79%
AugSeg [52] 91.27% 80.92% 88.68% 73.98% 84.62%
DWL [47] 91.92% 88.29% 86.00% 77.98% 87.13%
DiverseModel[25] 90.62% 86.07% 84.01% 75.00% 85.03%
DiverseHead(DT) w/ Sngl-model 91.21% 82.73% 86.98% 74.67% 84.80%
DiverseHead(DF) w/ Sngl-model 91.43% 83.00% 87.45% 75.16% 85.17%
DiverseHead(DT) w/ iMAS 92.92% 85.43% 90.27% 78.84% 87.78%
DiverseHead(DT) w/ AugSeg 93.35% 87.60% 89.93% 80.47% 88.75%
DiverseHead(DT) w/ DWL 92.57% 88.49% 87.37% 79.25% 87.93%

To evaluate the effectiveness of the proposed perturbation
methods, DT and DF, in comparison to input perturbation, we
conducted supplementary experiments involving data perturba-
tion by introducing Gaussian noise to the input images. Con-
sistency regularisation is achieved by enforcing the network
to produce consistent predictions for the original and noisy
input images, which is termed Input Perturbation in Table V.
Both versions of DiverseHead exhibit better performance than
Input Perturbation, whose performance is similar to SHS. To
use the optimal Hyperparameter applied for input perturbation
for fair comparison, hyperparameter tuning experiments are
conducted on two datasets to confirm the standard deviation
(SD) of Gaussian noise. Figure 8 illustrates the variation in
mIoU as the SD changes. The mIoU value for both Potsdam
and Roadnet peaked at an SD of 0.01. Thus, we set the SD
of Gaussian noise for input perturbation 0.01 for the Potsdam
and RoadNet datasets.

To investigate the influence of head count in the Di-
verseHead framework on performance, an ablation study was
conducted on the Potsdam and RoadNet datasets using the
proposed DiverseHead framework with dynamic freezing per-
turbation. The results in Table VI show that using 10 heads
for DiverseHead achieves the best average performance across
most metrics, despite the small performance differences among

TABLE V
PERFORMANCE COMPARISON WITH SINGLE-HEAD SUPERVISION (SHS)

AND BASELINE MODEL WHICH IS ONLY SUPERVISED BY LABELLED DATA.
DT AND DF PRESENT DROPOUT AND DYNAMIC FREEZING, RESPECTIVELY.

Model OA UA PA mIoU F1

Po
ts

da
m Base 81.64% 73.86% 76.05% 62.72% 74.94%

SHS 83.43% 74.57% 79.93% 64.51% 77.16%
Input Perturbation 83.89% 75.73% 80.54% 65.69% 78.06%
DiverseHead (DT) 84.66% 77.04% 80.78% 67.12% 78.87%
DiverseHead (DF) 85.98% 79.15% 82.87% 69.63% 80.97%

R
oa

dN
et Base 95.17% 87.62% 89.81% 80.73% 88.71%

SHS 95.44% 87.31% 91.17% 81.37% 89.20%
Input Perturbation 95.31% 87.42% 90.52% 81.03% 88.94%
DiverseHead (DT) 96.85% 92.14% 93.31% 86.91% 92.72%
DiverseHead (DF) 96.81% 92.60% 92.80% 86.88% 92.70%

the variants. This supports the choice of using 10 heads as an
effective design decision.

To show the efficiency of DiverseModel, consisting of three
different segmentation networks, we also evaluated the per-
formance of each member network within the DiverseModel
on the Potsdam dataset in Table VII. The component models
UNet, SegNet, and PSPNet use unlabelled data through the
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Fig. 8. Variation in mIoU as the standard deviation of the Gaussian noise
added for input perturbation increases

TABLE VI
ABLATION STUDY ON THE EFFECT OF HEAD NUMBER IN DIVERSEHEAD

WITH DYNAMIC FREEZING.

# of heads OA UA PA mIoU F1

Po
ts

da
m 8 85.92% 77.86% 83.86% 68.91% 80.75%

10 85.98% 79.15% 82.87% 69.63% 80.97%
12 85.70% 78.54% 82.55% 68.96% 80.50%

R
oa

dN
et 8 96.63% 92.15% 92.42% 86.21% 92.29%

10 96.81% 92.60% 92.80% 86.88% 92.70%
12 96.80% 92.59% 92.77% 86.84% 92.68%

A
ve

ra
ge 8 91.27% 85.01% 88.14% 77.56% 86.52%

10 91.39% 85.88% 87.83% 78.25% 86.83%
12 91.25% 85.57% 87.66% 77.90% 86.59%

way of SHS. DiverseModel demonstrates a significant im-
provement across all performance metrics in the segmentation
task compared to each network. In particular, the metric of
PA experiences a notable improvement of 4.57% compared
to the best-performing individual component model. This
phenomenon can be attributed to the enhancement of pseudo-
label diversity through cross-model supervision, resulting in a
significant improvement in PA (recall) during the test phase.
The findings suggest that the cross-supervision of different
networks has the potential to achieve superior performance
compared to the best-performing individual component.

C. Qualitative Results and Analysis

The visible results are presented in Figures 9. For each
dataset, we randomly selected 2 cases of the original image,
its ground truth, and predictions for the proposed methods and
various classic methods. Also, the mIoU scores are calculated
for all predictions with the ground truth for each case, which

TABLE VII
PERFORMANCE COMPARISON OF THE DIVERSEMODEL WITH ITS

CONSTITUENT NETWORKS ON THE POTSDAM DATASET

Model OA UA PA mIoU F1

UNet 83.28% 74.18% 78.88% 64.51% 76.46%
SegNet 82.37% 73.53% 77.46% 63.24% 75.45%
PSPNet 81.96% 74.23% 76.99% 63.08% 75.58%

DiverseModel 85.76% 76.75% 83.45% 67.85% 79.96%

are shown in the sub-caption of each prediction. Based on
the IoU values of visual predictions, the highest score is
obtained by either DiverseModel or DiverseHead (DT&DF)
for most cases. Especially for cases of the RoadNet dataset,
both the DiverseModel and DiverseHead families achieve a
mIoU of over 90% surpassing other methods by at least
6.35%. Visually, the segmentation maps of DiverseModel and
DiverseHead display better overall similarity to the ground
truth than other methods.

VII. CONCLUSION

In this paper, we proposed a lightweight and efficient semi-
supervised learning approach based on a multi-head structure
called DiverseHead. Based on the multi-head structure, we
provide two perturbation methods, namely dynamic freezing
and dropout. Taking inspiration from the theory of bagging, a
voting mechanism is proposed to generate beneficial pseudo-
labels in the training stage. This simple and lightweight
semi-supervised learning framework shows competitive per-
formance for the segmentation of remote sensing imagery.
Also, It can be easily combined with state-of-the-art SSL
methods and further improve their performance. Further-
more, we conducted further analysis and additional evalua-
tion on the previously proposed multi-network-based semi-
supervised learning method known as DiverseModel. Based
on the results obtained from the aforementioned four remote
sensing datasets, DiverseHead and DiverseModel demonstrate
comparable performance while significantly outperforming
various classic semi-supervised learning frameworks. From
the application perspective, the proposed DiverseNet could
theoretically be utilised for a wide range of image-based
tasks, including medical imaging, remote sensing, and nat-
ural image segmentation. Having evaluated the methods on
datasets with multi-band images, our approach is likely to
perform competitively in MRI and other multi-band image
segmentation tasks. We will explore more applications using
the proposed method in the future. For technical improvement,
future work could explore investigating the integration of the
two proposed and other perturbation strategies in SSL, and
designing more sophisticated interaction mechanisms among
component models and optimising the hyperparameters to
enhance their synergy.
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