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ABSTRACT: 

 

Building on the richness of recent contributions in the field, this paper presents a state-of-the-art CNN analysis method for automating 

the recognition of standardised building components in modern heritage buildings. At the turn of the twentieth century manufactured 

building components became widely advertised for specification by architects. Consequently, a form of standardisation across various 

typologies began to take place. During this era of rapid economic and industrialised growth, many forms of public building were 

erected. This paper seeks to demonstrate a method for informing the recognition of such elements using deep learning to recognise 

‘families’ of elements across a range of buildings in order to retrieve and recognise their technical specifications from the contemporary 

trade literature. The method is illustrated through the case of Carnegie Public Libraries in the UK, which provides a unique but 

ubiquitous platform from which to explore the potential for the automated recognition of manufactured standard architectural 

components. The aim of enhancing this knowledge base is to use the degree to which these were standardised originally as a means to 

inform and so support their ongoing care but also that of many other contemporary buildings. Although these libraries are numerous, 

they are maintained at a local level and as such, their shared challenges for maintenance remain unknown to one another. Additionally, 

this paper presents a methodology to indirectly retrieve useful indicators and semantics, relating to emerging HBIM families, by 

applying deep learning to a varied range of architectural imagery. 

 

1. INTRODUCTION 

1.1 Standardisation in modern heritage and the case of 

Carnegie Public Libraries 

The philanthropic contribution of Andrew Carnegie to fund the 

erection of over 2000 public library buildings across Britain and 

America at the turn of the Twentieth century outnumbered any 

other single interest in the commissioning of a single public 

building type at the time. Despite the final library buildings 

resulting from competitions among different architects, 

Carnegie’s common influence over the design of these buildings 

had a significant impact upon their standardisation (Van Slyck, 

1998, Prizeman 2012). The design of public libraries themselves 

had become a highly refined and systematic field in which 

multiple modular elements of furniture would dictate standard 

dimensions for window sills etc. Indeed by 1911, in his ‘Notes 

on Library Bilding’ [sic] Carnegie’s private secretary, James 

Bertram, recommended just 5 different standard library plans 

(Bertram,1911).  

 

These buildings, along with all other public buildings of the time, 

were designed to maximise natural light and ventilation at a time 

when electric light was expensive and coal, as fuel for heating, 

was cheap. As a result, they responded to specific needs in 

engineering aspects whose priorities are now reversed. Given 

such peculiarities, these libraries therefore seem to provide a 

suitable and sufficiently large platform from which to explore the 

potential for the automated recognition of standard architectural 

components in early twentieth century buildings. This study is 

part of an Arts and Humanities Research Council (AHRC) 

funded research project aiming to investigate the potential for 

standard elements of Carnegie libraries to be adequately 

understood and suitably rehabilitated where necessary, so 

developing efficient methods for conservation practice.  

The identification of such elements using deep learning is 

proposed here to recognise families of elements across a range of 

buildings. This will then facilitate subsequent matching of such 

families to their manufacturers through pairing them to 

illustrations in their contemporary trade literature. Future work 

will also address the indirect retrieval of useful indicators to 

relate to emerging HBIM families, such as geometric parameters 

and material specifications. This will include the creation of a 

series of HBIM elements particular to the era and therefore 

potentially relevant to a much wider range of buildings. To this 

end, patterns in the use of architectural elements in this more 

defined set are first found and, at a later stage, matched with a 

benchmark imagery dataset taken from the technical literature of 

the time. This way the degree to which elements of these and 

other similar buildings were originally specified is used to inform 

and support their ongoing care.  

 

Specifically, this paper presents a methodology to apply deep 

Convolutional Neural Networks (CNNs) to a varied range of 

architectural images (e.g. standard frames, 360-degree views, 

scanned reproductions) to automatically recognise architectural 

components directly related to the engineering of ventilation 

systems in Carnegie library buildings. Hygienic design strategies 

with respect to ventilation for public interiors were iteratively 

refined at the time of their construction. The results will disclose 

how the most advanced tools in the fields of Computer Vision 

and Machine Learning can support the retrieval of relevant data 
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for the informed conservation of these and similar modern 

heritage buildings.  

The paper first discusses precedents in the literature for the use 

of these techniques in Cultural Heritage (CH) conservation. 

Secondly, the workflow is presented and explained step by step. 

The proposed pipeline is illustrated through its implementation 

in the case of Carnegie libraries in the UK. The results show that 

the method enhances an understanding of the shared formal 

features and functional properties of these buildings such as 

common ventilation principles and lighting properties. This, in 

turn, could foster the adoption of fine-tuned sustainable 

development strategies both for public libraries and for other 

public buildings of the time. Suggestions about how it can be 

integrated in conservation practice, including surveying (sensor 

based or photogrammetric) and design (e.g. through CAD 

modelling) are presented in the final discussion. 

 

1.2 Computer Vision and Machine Learning in CH studies 

Machine learning and computer vision are fields of scientific 

research concerned with the development of algorithms that 

allow machines to respectively see and take decisions based on 

empirical training data. The use of computer vision techniques 

and machine learning in CH conservation is not unexplored 

territory. Precedents in the literature show applications in relation 

to the creation of multiple HBIM libraries (Murphy et al., 2013; 

Bruno et al., 2018). In addition, automated feature recognition for 

existing and historic buildings has a significant body of literature 

(Wang et al., 2015; Ochmann et al., 2016).  

 

An active area of research in which Computer Vision has been 

successfully applied to the documentation of Cultural Heritage is 

in the analysis of the facades of historical buildings. Whilst early 

work required human experts to write grammars defining, for 

example, building styles, machine learning was subsequently 

applied, requiring only a set of images with pixel-wise 

annotations of defined architectural elements such as windows, 

doors, chimneys, etc. In their pioneering work, Martinovic and 

Van Gool (2013) explicitly learnt a two-dimensional attributed, 

stochastic, context-free grammar, which could then be used to 

either segment facade images or alternatively, synthesise new 

ones. Despite this, most of the literature to date focuses on image 

segmentation methods rather than on generative models. For 

instance, Teboul et al. (2013) apply reinforcement learning to 

parse images according to binary split grammars and Li &Yang 

(2016) perform image classification using the well-established 

conditional random field approach. The increase in machine 

learning activity has been facilitated by the creation of publicly 

available databases of annotated building facades, such as: the 

Ecole Centrale Paris (ECP) Facades dataset (Teboul et al., 2010); 

eTRIMS (Korc & Forstner, 2009); CMP Facade Database 

(Tyleček & Šára, 2013). Consequently, in recent years deep 

learning techniques have been explored in many studies. Liu et 

al. (2017), propose a deep learning method to segment building 

facades in semantic categories using symmetry rules and region 

proposal to refine the segmentation results. Fathalla & Vogiatzis 

(2017) suggest a novel method for the semantic segmentation of 

building facades integrating appearance and layout cues in a 

single framework. Schmitz & Mayer (2016) use CNN and 

transfer learning to enable the use of smaller datasets for deep 

learning applications in facade segmentation and interpretation. 

 

1.2.1 Related work 

Machine learning techniques developed in the field of computer 

vision, have quickly become key drivers for the many recent 

technical advances in the recording, digitisation and (data) 

mining of heritage buildings and monuments worldwide. A 

relevant work by Amato et al. (2015) has exploited a simple 

supervised machine learning technique based on the k-Nearest 

Neighbour (kNN) algorithm to rapidly classify Pisa’s monuments 

and landmarks. Their algorithm processes local features, 

extracted from the images using SIFT (Lowe, 2004) and SURF 

(Bay, 2008) descriptors. Oses et al. (2014) perform an image-

based delineation of masonry walls using 5 machine learning 

classifiers (kNN, Support Vector Machines, Probabilistic 

Classifiers, and Classification Trees). Grilli et al. (2017), in their 

review of point cloud segmentation and classification algorithms, 

highlight the following as suitable machine learning methods: K-

means clustering, hierarchical clustering and mean shift. 

Recently, Grilli et al. (2018) proposed a supervised machine 

learning method to classify 3D heritage models by segmenting 

2D textures using traditional Random Forests (RF).  

 

1.2.2 Deep Learning  

Among machine learning methods, deep learning refers 

exclusively to a sub-class of end-to-end machine learning 

techniques involving the use of Deep Neural Networks (e.g. 

CNN, deep reinforcement learning, GAN etc.); whose integration 

in computer vision applications has started only in the last few 

years. Specifically, the passage from “shallow” to “deep” 

methods happened in 2013, after the success obtained in a 

computer vision challenge of the first CNN model. In previous 

machine learning methods features such as vectors of shape 

measures, edge and colours distributions, feature points etc. were 

not automatically learned and the trainable classifiers, such as 

SVM kernels or Decision Forests, were often generic. In contrast, 

deep learning methods allow the machine to learn feature 

hierarchies all the way from pixels to classifiers. Each layer - 

there are many stratified ones with a similar structure performing 

different transformation functions - extracts features from the 

output of the layers below and above in a directly connected way. 

 

Specifically, in CNN the multiple layers (the higher the number 

the deeper the model) are trained jointly, to provide a larger 

parametrisation space which is useful for retrieving complex 

relationships between inputs and outputs. To this end internal 

layers either: learn how to approximate the results of many 

classical feature extraction and image pre-filtering methods 

(convolution), provide a non-linear input to output mapping 

through a layer’s activation function (non-linearity) or pool input 

layers into intermediate ones by applying filters at different 

locations (pooling). Given its capacity to optimise results towards 

a given problem, deep learning has rapidly gained the attention 

of the scientific community, including using it in applications 

concerning the built environment. For example, Lotte et al. 

(2018) address the issue of transferring labels of rendered images 

back to their 3D urban models combining CNN and Structure 

from Motion (SfM). Similarly, Kelly et al. (2017) use images and 

3D models of urban scenes in combination with deep learning 

techniques to derive structured models of city blocks, addressing 

the automatic fusion of street-level imagery, polygonal meshes 

and GIS building footprints.  

 

This paper aims to provide an alternative to the use of more 

classic machine learning methods previously proposed for CH 

classification such as traditional RF (not deep RF as in Zhou et. 

al., 2017). This enables to overcome the issue that RF needs 

features as input which are generated independently of the RF 

training process. In contrast, deep learning, with its end-to-end 

learning architecture, trains both representation learning and 

classification simultaneously. Hence, feature learning is 

implicitly tailored to the needs of the classification task, which is 

not possible when adopting a two-step process such as, for 

example, the classic RF. 
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Figure 1. Workflow for creating the deep classifier for architectural components recognition, BPMN notation, ©Microsoft Visio. 

 

2. CLASSIFICATION WORKFLOW 

The general workflow for the deployment of the proposed deep 

learning classification method encompasses the following 5 

steps: data collection; data preparation (annotation, processing 

and augmentation); CNN model construction (model 

architecture, training and cross-validation); final training; and 

ultimately, model exploitation with external data.  

 

The model implementation phase covers the first 4 steps, which 

are the specific focus of this paper. A more detailed explanation 

of the pipeline as in the diagram above (fig. 1) shows the micro-

steps involved in the implementation of the proposed supervised 

deep learning classification model. The adopted method is 

supervised, as previous knowledge is associated to the row input 

data (image) in the form of labels (class) prior to training with the 

aim to predict classes for new data entries. Conversely, an 

unsupervised method would work without prior knowledge of 

output class, producing internal self-evaluations to determine 

data patterns or groupings, which may or may not have direct 

correspondence with concepts in use in CH documentation 

applications. In the following paragraph the relevant sub-steps 

are explained in detail to allow an easy replication of the method. 

 

2.1 The image dataset and data annotation process 

CNN methods enable effective data-driven learning provided that 

a sufficient amount of training data is available for training the 

model. It is therefore common practice to exploit existing large-

scale annotated image datasets with millions of categorised 

photographic images and adapt a model trained on one task to use 

it for another related one. However, similar datasets specifically 

built for CH imaging are not currently available and the specific 

complexities of tasks emerging in CH studies require the 

adoption of a fine-tuned, customised classifier.  

 

2.1.1 Carnegie library dataset 

Over the last two years, a comprehensive campaign of 

documentation has been undertaken across the United Kingdom 

(UK) to be able to provide high-quality data to record the 

condition of the Carnegie library building stock in the country 

today. It included building recording through laser scanning and 

photogrammetric surveys. Among other data, we collected a set 

of more than 13,000 images of the almost 600 Carnegie library 

buildings still standing in the UK. The photos present varied 

features in terms of lenses types (standard, zoom, wide-angle, 

360), image dimension and resolution (made with crop, 360, full 

frame cameras and smartphones). This paper presents, for the 

first time, some preliminary results obtained using this new 

architectural imagery dataset. During the process of its creation, 

a GIS map was created, which set out the spatial distribution of 

these buildings across England (62%), Scotland (27%), Wales 

(8%) and Northern Ireland (3%).  

 

2.1.2 Image annotation 

The dataset retrieved from this survey was annotated using 

around 20 classes such as: wooden panelling, internal glazed 

partitions, internal and external skylights, barrel vaults, glazed 

domes and ceramic tiles, among others. The classes correspond 

to specific categories of original architectural components 

present in the interior and exterior architecture of the library 

buildings, which are relevant to the focus of this ongoing research 

project. This initial annotation step was done using ©Adobe 

Bridge, which makes it easy to assign labels to pictures and then 

to filter them accordingly. Next, around 2000 images have been 

sub-sampled from the initial dataset, by filtering out the images 
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that did not contain the labels required for the analysis of the 

libraries’ ventilation systems. The relevant ones correspond to 

the following 4 classes: 

 

a) ventilation turret (prefabricated ventilation 

components typically found on top of pitched roofs); 

b) ventilation tower (built-in elements with the same 

function as the corresponding prefabricated ones); 

c) ventilator grille external (customised or standardised); 

d) ventilator grille internal (mainly standardised). 

 

Starting from this reduced sample, the components were isolated 

within the images, using VGG Image Annotator (VIA). This is 

an online open source software developed by the Visual 

Geometry Group at the University of Oxford, that enables 

defining regions in images (e.g. bounding boxes) with associated 

textual descriptions. As a result, 3815 bounding boxes were 

retrieved with the following distribution: a) 701; b) 382; c) 1100; 

d) 1631. Ventilation towers were included as part of this study to 

check the accuracy of the algorithm in recognising subtle 

differences in similar components. For similar reasons, the study 

includes small elements, which are challenging to identify, such 

as internal and external grilles. 

 

2.2 Data processing and augmentation 

In order to create the image classification dataset, each sub-image 

delimited by a bounding box is first cropped away from the initial 

images. As these samples are extracted from larger images, 

randomness in the crop size and centering can be introduced. 

This added variability results in a more realistic dataset where 

objects of interest are not necessarily perfectly centered nor 

normalized. Aside from training a model that is able to 

discriminate the diverse architectural components from one 

another, it seems also important to distinguish these objects from 

the background. To that end, random extracts containing none of 

the objects of interest are sampled randomly from the initial 

images. The inclusion of background images as a concrete 

classification class is even more important in the event that the 

final classifier is used as part of an object detection pipeline. 

Indeed, detection requires the correct discrimination of objects 

from the background.  
 
Data augmentation has been proven to be an important driver of 

performance in modern computer vision pipelines (Perez et al. 

2017). Therefore, in this work, a wide range of data augmentation 

techniques were performed on the initial dataset. More precisely, 

the final complete dataset is comprised of several copies of each 

initial image after application of various random transformations 

such as variations in colour balance, contrast, brightness, 

sharpness or rotation angle. As its name suggests, this process 

artificially increases the dataset size and its richness without any 

requirement for additional data collection. Furthermore, the use 

of such a dataset for training produces models that are inherently 

more robust to variabilities in all transformations applied during 

the augmentation. Overall, there is generally no major drawback 

to implement data augmentation, while its advantages can have a 

significant impact on the quality of the learning process. The 

challenge is to incorporate sufficient transformations that capture 

the expected variability in the real world.   

 
A principle similar to that of data augmentation can also be 

applied for prediction. Thus, just as the application of many 

different transformations on the training dataset for training 

yields a model that is more robust to such transformations, 

predictions can be made on images with different characteristics 

in colour, contrast, sharpness etc. Hence, as for training 

augmentation, one can first make several copies of any test 

sample with different transformations and then feed these to the 

network. This process produces an entire array of predictions for 

each test sample. The final prediction is then obtained by 

aggregation of these individual predictions. The benefits of such 

a technique are twofold: the final predictions display less 

variance and most importantly they are generally more accurate.  
 

2.3 Model architecture and training 

In recent years, deep neural networks have displayed state-of-the-

art results in numerous fields ranging from natural language 

processing to action recognition in videos (LeCun et al., 

2015; Schmidhuber, 2015). As image classification is not an 

exception, this work will focus on deep learning models to solve 

the architectural object classification problem described above. 

This section presents the two deep architectures selected for this 

task as well as a classic machine learning model. The latter is 

used in section 2.5 to measure the potential performance gain in 

using end-to-end trained models with learnt features rather than 

multi-steps ones with hand-crafted features. 

 

2.3.1 Traditional machine learning benchmark model 

In classic machine learning methods feature design and 

classification are performed separately, which means that classic 

machine learning models are typically multi-phased processes. In 

other words, different algorithms are applied one after another. 

This paper presents a Traditional Machine Learning (TML) 

pipeline composed of a sequence of three steps: SIFT, K-means 

clustering, and standard RF. As will be discussed below, in all 

the three phases a set of alternative algorithms can be used to 

substitute or to coordinate with those suggested here. However, 

the proposed benchmark model is chosen as it is representative 

enough of common machine learning workflows and because its 

performance is expected to be at the higher end of the spectrum. 

A good performance is in fact required to get a meaningful result 

out of the final comparative test.  

 

In this model, firstly, the images’ keypoints are detected and 

described using SIFT. At this point each image is represented by 

an inhomogeneous bag/collection of features, whose number 

varies from case to case. Since machine learning algorithms work 

better with well-defined inputs, in a second step, a bag of visual 

word is generated by performing a classical K-means clustering 

(MacQueen, 1967; Steinhaus, 1956) with k=50 on all SIFT 

features of the training images dataset. Each image is then 

described by mapping each SIFT feature to its visual word (i.e. 

cluster) and by computing the distribution of occurrences of each 

word in the image. Here, the number of visual words is kept low 

to prevent overfitting and its subsequent negative influences on 

the remaining part of the object recognition pipeline. However, a 

significant discrepancy between in-sample and out-of-sample 

performance suggests that in our case using a small value of k is 

not enough to fully prevent the benchmark model to overfit the 

training data. A possible alternative to obtain uniform image 

representations is to use other algorithms such as, for instance, a 

PCA (Pearson, 1901). Finally, a standard RF (Breiman, 2001) of 

100 trees is used to perform the classification using as input the 

visual word occurrence distribution of the training samples. 

Again, other classification models such as Support-Vector 

Machines (SVM), (Cortes and Vapnik, 1995) could have been 

used in the third step instead of RF, but the latter is inherently 

more suitable for multi-class problems. The final performance 

score (see table 1) is computed by applying the trained random 

forest model on the test samples. 
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2.3.2 A deep learning benchmark model   

As a deep learning benchmark, we propose the use of a classical 

convolutional neural network (CNN). The model differs from 

well-known architectures (Krizhevsky et al., 2012; Simonyan et 

al., 2014) only in its number of convolutional layers, filters and 

nodes. Indeed, since the architectural dataset at hand is smaller 

than the standard datasets used for deep learning, which typically 

reach the size of millions of images (Deng et al., 2009), the model 

size is kept moderately small to prevent overfitting. More 

precisely, the representation learning part of the network is 

comprised of seven (3x3) convolutional layers with 16 

to 32 filters, intertwined with ReLu activations and max-pooling 

layers. This first step transforms the (512x512) input images 

into 32 meaningful convolutional feature maps. After that, two 

fully-connected layers followed by a softmax transformation are 

used to map the representation space to class probabilities.   
 
2.3.3 Feature Pyramid Network   

Standard convolutional neural networks have demonstrated 

outstanding performance on a wide variety of tasks. Their 

structure is however not developed to cope easily with the 

detection or classification of objects of different scales. A scale 

invariance property is important in the context of architectural 

objects. To that end, an alternative architecture is tested, namely 

the feature pyramid network (FPN) (Lin et al., 2017). Throughout 

the years, feature pyramids have been used in numerous 

computer vision tasks to cope with scale variability. The 

FPN model simply applies this classical concept to deep 

convolutional neural networks. On a more technical level, once 

again, the number of filters is adjusted to suit the quite limited 

size of available data; so, each convolutional layer is comprised 

of 16 to 32 filters. In addition, as our input image size 

differs from that of the original research (we use larger images), 

additional convolutional and max-pooling layers are used to 

produce the final convolution representations that are then fed to 

the fully connected-layers.   

 

2.3.4 Training  

Regardless of their architecture, both deep learning models are 

trained using the gradient-based Adam optimizer (Kingma et 

al., 2014). A total of 30000 training steps with 32 images per 

batch are used to complete the training. A link to the full model 

architecture, TensorFlow implementations and additional details 

will soon be available on the official website of the AHRC 

funded “Shelf-Life; reimagining the future of Carnegie public 

libraries” project.  

 

2.4 Model Evaluation   

In order to assess the performance of the three presented models 

(TML, CNN and FPN), the dataset is first split into train and test 

sets. The same training and testing splits have been used for the 

classical machine learning benchmark and for the two deep 

learning models in order to obtain an unbiased comparison of 

relative performance in image classification. In contrast to 

classical cross validation methods, no validation set is used, as no 

hyper-parameter optimization is performed. Furthermore, in our 

pipeline the test set is not simply sampled uniform randomly from 

the dataset. Indeed, images taken at similar dates and times are 

regrouped and automatically put into the training set. This 

criterion ensures that similar images cannot end up in both 

training and test sets, which would certainly bias the final results. 

In addition, the test set is further sampled in such a way that each 

class is represented by a sufficient number of images. This 

manual balancing of the test sets ensures that the various per-

class performance measures are not the product of single (or a 

few) predictions, thus both reducing the variance and increasing 

the relevance of the result. Once the separation of the dataset is 

done, the model is trained using solely the training set. After 

completion of the learning phase, the test images are fed to the 

network and the outputted predictions are then compared to their 

true class. More precisely, the per-class f1-score (which is the 

harmonic mean between precision and recall) and the overall 

mean f1-score are chosen as measures to assess the model 

performance:  

  

F1 = 2* (precision * recall) / (precision + recall)        (1) 

  

This entire process is then repeated 5 times, and the final cross-

validated results are defined as the mean result over all 

independent evaluations. Performing the splitting of the sets and 

the evaluation several times assures a greater variety of test sets 

and allows most images to be part of the test set at least once. The 

final f1 averaged measure is known to be a good performance 

indicator for the two proposed models on new unseen input data.  

 

2.5 Performance and Results 

The performance of the traditional machine learning benchmark 

(TML), classical CNN and Feature Pyramid Network (FPN) on 

the architectural object classification task is summarized in Table 

1 and Figure 2. Overall, with a F1-score of around 80%, the 

results of the deep learning models are promising, especially if 

compared to the 56% achieved by the TML model. The TML 

overall results are quite disappointing with each class scoring 

significantly below its deep learning counterparts (it is however 

noted that a problem with overfitting as described in paragraph 

2.3.1 might have affected the results of the TLM). If we retrain 

the comparison to those, it is possible to see that the more 

advanced FPN architecture performed, as expected, slightly 

better than the classical CNN architecture.  

 

  Perf. Turret 

a 

Tower 

b 

Gr.ext 

c 

Gr.int 

d 

Othe

r 

Mean 

       

TML 0.60 0.15 0.62 0.61 0.82 0.56 

CNN 0.85 0.60 0.77 0.78 0.91 0.78 

FPN 0.88 0.67 0.81 0.80 0.92 0.82 
       

       

Table 1. Comparative analysis of classification performance (F1 

measures) for the machine learning benchmark and the two 

proposed deep learning architectures 

 

A few additional class-specific observations can be made for all 

models:  

 

• First, the confusion matrices in figure 2 reveal that 

distinguishing between exterior and interior ventilation 

grilles is challenging, which could be expected given 

the similarities that are often encountered between 

these two object classes. This phenomenon, although 

present also in the deep learning models, is much more 

significant in the TLM. This effect could be alleviated 

by feeding images (and bounding boxes) that are more 

loosely focused on the components, thus providing 

more information about context and background.  

• Secondly, the recognition performance of ventilation 

towers, for which the number of observations was 

comparatively limited, is significantly lower than that 

of any other classes. This highlights the importance of 

gathering enough training samples for each object class 

to make the best use of the proposed methods. Here, 

the TML model’s performance is particularly low, with 

only 15% of success rate for class b.  
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• Third, a non-negligible number of objects have been 

classified as ‘other’, which is an indicator of the 

dataset’s complexity.  

 

One important consideration is unique to the TML benchmark:  

 

• Class a, corresponding to the ventilation turrets 

presents a lot of predictions, but almost half of them 

are false. 

 

Figure 2. confusion matrices of benchmark TML model, classic 

CNN model and Feature Pyramid Network (FPN) model 

 

Noticeably, the TLM model is not as fast to train as one might 

expect as the K-means clustering of the SIFT features to generate 

the visual words results is computationally intensive. Overall, the 

model is still faster to train than both the CNN and the FPN, 

however the limited time gain does not compensate for the 

significant loss of performance for most applications, including 

those presented in this paper. On top of this, we can expect this 

computation burden to further increase if the TML model is 

applied to a larger dataset. The emergence of such undesirable 

properties in the TML model is rather hard to explain given that 

the two deep learning models, which have been trained on the 

exact same dataset, do not display the same behaviour. One 

tentative explanation for this performance discrepancy could 

possibly be found in the characteristics of the input data. In fact, 

there are numerous photos in the collected image dataset 

displaying only a few SIFT features (< 5), meaning that the 

dataset information content is not suitably described by means of 

these features alone.  

 

The TML’s results might have benefitted from augmentation of 

local SIFT features with other descriptors, and/or from fine-

tuning the representation mapping as well as the classification 

model. However, the outcome of our tests shows that in this and 

other similar cases, deep learning models (even with no hyper-

parameter tuning) clearly outperform classic TML methods. 

Furthermore, the outcomes of the performance test demonstrate 

that classical hand-defined feature descriptors, including SIFT, 

SURF and HOG, might not be fully optimal for the dataset 

analysed here and, possibly, also for other similar ones. 

Conversely, by learning their own feature representation based 

solely on the training data, deep neural networks can tailor their 

predictions based on a specific dataset independently of the 

degree of its inherent complexity; which better suits the 

characteristics of the data at hand. 

 

As shown by Figure 3, which depicts the 3 best and 3 worst 

predictions of a specific run for each object class, the 

classification problem is far from trivial. Indeed, the image 

reveals that some samples are very challenging. For instance, the 

three worst predicted towers include an image totally occluded 

by a tree, a rotated image and a low-resolution image with high 

levels of distortion.  In addition, Figure 3 reveals how diverse 

each object class is in terms of general shape, structure and 

background. In this context, the final overall high classification 

accuracy of CNN and FPN confirms the potential benefits of 

adopting deep learning models for automating the recognition of 

complex architectural elements.  

 

 

Figure 3. deep learning best and worst predictions sample 

 

2.6 Beyond the Black Box  

Viewed negatively, deep learning models have long been 

considered opaque black boxes that operate without any human 

interpretability. However, over the years, understanding the 

representation learning and decision process underlying these 

models has become an active area of research (Simonyan et al., 

2013; Zeileret al., 2014; Zhang et al., 2018). In this section, one 

of the many currently available interpretability tools, namely 

Grad-CAM, is applied to the classification model presented 

above (Selvaraju et al., 2017).  
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Figure 4. Grad-CAM heat maps 

 

Informally, for each input, this method determines which regions 

of the image are the most relevant for classifying the object 

correctly. This provides some information about where the model 

is focusing on to make its predictions. In Figure 4, 

the coarse Grad-CAM activation map is presented for two 

different images. It can be observed that, in this specific case, the 

proposed deep learning model focuses on the general 3D shape 

of the tower (less on its ventilation components) and on the 

articulated structure of the internal ventilator grille, rather than 

the background, to make its decisions.  

 

This example shows how such interpretability tools can provide 

us with a better understanding of the CNN internal decision-

making process. This is particularly relevant when applied to 

architectural imagery as it may help in disclosing deep analogies 

useful for highlighting complex commonalities (e.g. 

morphological patterns) among heritage buildings as well as 

among their parts.  

 

3. OBJECT DETECTION 

The previous paragraphs have presented a deep learning 

classification pipeline that is able to successfully recognise 

images of a relevant set of architectural components such as 

ventilation turrets, towers and grilles. The main restriction of the 

proposed model resides in the assumption underlying the input 

images: the object of interest has to be the central element of the 

image and well-defined in order to be precisely recognized. 

However, these limitations can be alleviated by extending the 

current object recognition model to become a complete object 

detection model. A trivial extension of the proposed classifier to 

an object detection model would be to use a sliding window to 

scan through the image and attempt to recognize the presence of 

objects within each of these sub-images. This simple exhaustive 

search method presents a wide range of limitations such as the 

fixed detection scale and the slow processing time, which make 

this method unsuitable for most practical applications. As an 

alternative, region proposal algorithms could be used; these 

methods generate numerous bounding boxes representing areas 

where objects are more likely to appear. The presence and 

localization of objects can then be determined by classifying each 

of the sub-images defined by these bounding boxes.  

 
In this work, class-independent region proposals are generated 

using selective search (Uijlings et al., 2013), similar to that of the 

classical R-CNN object detection model (Girshick et al., 2014). 

The algorithm groups pixel regions based on colour, texture, size 

and shape similarities. This method is known for its high recall, 

meaning that the set of bounding boxes is likely to contain our 

objects of interest.   

Each sub-image delimited by a bounding box is then fed to our 

FPN object recognition model as defined in Section 2.3.2. This 

produces a probability estimation for the presence of an object of 

interest in the image. In the event that the probability of 

recognition reaches a value above an arbitrary threshold, the 

specific bounding box is considered to contain the corresponding 

object of interest. Finally, as the region proposal algorithm 

produces several thousand different bounding boxes, the process 

is bound to produce overlapping detections and unwanted false-

positives. Therefore, as a last step, a non-maximum suppression 

has to be applied to clean the detections. The entire process is 

summarized in Figure 5.  

 

As shown by the results on three test images in Figure 5 and 6, 

the proposed object detection pipeline appears suitable for the 

detection of architectural components. These examples 

underline however two limitations of the proposed pipeline. 

First, an exterior ventilation grille was not detected on the 

leftmost image. This omission is due to the fact that no bounding 

box was proposed around that object by the region 

proposal algorithm, thus hinting at the need for a task specific 

region proposal model. Second, the scale of one of the detections 

in Figure 5 is significantly too large. The scale invariance that the 

FPN attempts to achieve is likely the cause of it, indicating that 

the use of scale sensitive object recognition models might be 

more preferable as part of object detection pipelines.   

 

 
Figure 5. Detection process phases: I) original image; II) 

regional proposal; III) all-region prediction; IV) final prediction 

 

Nevertheless, a larger dataset is required for a more in-depth 

analysis. In future work, other more advanced region-proposal 

based detection approaches could be investigated such as Fast R-

CNN (Girshick, 2015) or Faster R-CNN (Ren et al., 2015). The 

regression-based YOLO detector (Redmon et al., 2016) also 

stands as a relevant option. In any of these cases, transfer learning 

(Weiss et al., 2016) will have to be leveraged for training, since 

the model complexity far outweighs the richness of the available 

dataset. 

 

 
Figure 6. Object detection for 2 test images 
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4. CONCLUSIONS 

In order to better inform decision-making strategies regarding the 

conservation or adaptation of these early 20th century buildings, 

it is crucial to take advantage of progress in other disciplines. 

This means to adopt an interdisciplinary approach and exploit the 

most advanced computational modelling and analysis techniques 

available to date. For architects, mage recognition does not in 

itself indicate the probable construction layers built beneath a 

building component. Nonetheless, by collating such data with 

technical literature and specifications of the period and focussing 

on manufactured elements as opposed to bespoke pieces, steps 

are made towards enabling educated guesses as to the likely make 

up of that ‘invisible’ information. In this preliminary study the 

automated recognition of elements, which are tiny, difficult to 

spot, blocked or simply elements that have been altered over 

time, such as the internal and external ventilator grilles, has 

proved useful to highlight some of the key principles underlying 

the design of Carnegie library buildings. It illustrates the 

consistency of their design, which is demonstrated by the careful 

engineering of their ventilation systems and so supports a better 

understanding of the consequences of alterations to the buildings’ 

environmental functions. In principle this could assist in the 

swifter application of relevant environmental principles to guide 

practitioners in the analysis of similar historic buildings, thus 

speeding up the initial visual analysis of the building and 

supporting the decision-making process of experts. 

 

The main difficulties in the Scan-to-BIM process to date in both 

academia and practice relate to issues of investigating buildings’ 

geometry and identifying the shapes and structures to be 

captured. Professionals still rely heavily on orthogonal drawings 

to share design and production information. There is a challenge 

in the capacity to interpret 3D scenes produced by technologies 

such as laser scanners in the form of point clouds, to distinguish 

between ambiguities and then create coherent HBIM models. In 

order to speed up the survey process, practitioners may tend to 

avoid the recording of RGB values while scanning buildings 

(unless a coloured point cloud is required by the client). This 

makes the visual support offered by complementary high 

resolution 2D images extremely important to identify the nature 

of the architectural, structural and/or MEP elements surveyed 

(e.g. to distinguish pillars from cupboards, cable trays from 

beams, or even electrical from cardboard boxes). Furthermore, 

pictures are often used to check the 3D model for Quality 

Assurance prior to the delivery of the final models to the client.  

This being the case, the proposed method not only potentially 

assists the path towards further advances in the field in time, but, 

if suitably adapted, could also offer useful support for use in 

contemporary practice. The key advantages of using the 

presented deep learning (FPN) classifier instead of classical 

machine learning methods, are its emphasis on building 

components and its robust architecture. This means that the 

proposed method can accept, as input data, photos collected for 

photogrammetry, which typically capture buildings in fragments 

and thus may include incomplete representations of components.  

 

4.1 Future work 

There is potential for this workflow to inform the creation of 

valuable datasets augmenting the process of conservation 

through the creation of richer parametric libraries in the service 

of HBIM. HBIM parametric families could be created in a two-

step process, namely Photos-to-Specifications-to-BIM, by firstly 

automating the collection of relevant technical specifications and 

then transferring this knowledge into a set of 3D parametric 

models of standard components. A library of CAD elements 

crafted in such a way would be a precious resource to deal with 

the complexities involved in the refurbishment and renovation of 

early 20th century buildings. Among other things, it would enable 

a faster deployment of all kinds of simulations. Furthermore, the 

combination of HBIM and automated image classification 

systems would: foster quality control during the diagnosis, design 

and construction phases; enable rapid interventions in case of 

hazardous events; as well as simply foster awareness in the 

ongoing care of heritage buildings among all stakeholders. 

 

Future research will hence address: (i) the classification of other 

building components with highly complex shapes, such as 

(glazed) barrel vaults and (glazed) domes, which bring specific 

challenges to the object recognition and detection tasks such as 

dealing with reflective surfaces and sharp gradients of lighting 

conditions in the images; (ii) the matching of representations 

found in the trade literature (e.g. pictures, drawings, architectural 

representations) with the photos of corresponding building 

components; (iii) the creation of semantically rich parametric 

families of objects; (iv) creation of a shareable HBIM library of 

standardised components for early 20th century buildings. Future 

work could also tackle the issue of 3D point cloud semantic 

segmentation using deep learning (deep segmentation) and that 

of the automation of positioning of HBIM objects within 3D 

point clouds of suitably surveyed heritage buildings. 
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