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Abstract - Detection of duplicated regions in digital images has been a highly investigated field in recent years  

since the editing of digital images has been notably simplified by the development of advanced image processing 

tools. In this paper, we present a new method that combines Cellular Automata (CA) and Local Binary Patterns 

(LBP) to extract feature vectors for the purpose of detection of duplicated regions. The combination of CA and 

LBP allows a simple and reduced description of texture in the form of CA rules that represents local changes in 

pixel luminance values. The importance of CA lies in the fact that a very simple set of rules can be used to 

describe  complex  textures,  while  LBP,  applied locally,  allows efficient  binary  representation.  CA rules  are  

formed on a circular neighborhood, resulting in insensitivity to rotation of duplicated regions. Additionally, a  

new search method is applied to select the nearest neighbors and determine duplicated blocks. In comparison 

with similar methods, the proposed method showed good performance in the case of plain/multiple copy-move 

forgeries and rotation/scaling of duplicated regions, as well as robustness to post-processing methods such as 

blurring, addition of noise and JPEG compression. An important advantage of the proposed method is its low 

computational complexity and simplicity of its feature vector representation.
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1. Introduction

Digital images are nowadays commonly used thanks to the simplicity of their acquisition, sharing, storing and  

editing. Many advanced processing tools allow editing of digital image without any visible traces, leading to the  

fact that digital images cannot be trusted any more [1]. Copy-move forgery (CMF) is one type of digital image 

forgery methods in which part of an image is selected, copied and moved to a new location in the same image [2] 

with the aim of adding or hiding an object. Digital image forensic [3], whose goal is to distinguish edited images  

from original images and discover any changes of image content, has two common approaches in the field of  

CMF detection. Active methods require the embedding of some information in the digital image in the process of 

its creation, such as digital signatures or watermarks [4]. Passive methods, on the other hand, do not require any  

additional data since they are based on analyzing properties of the image [5] such as sensor noise, illumination,  

statistical properties, etc. Many different passive approaches were proposed for CMF detection based on defining 

feature sets of small, overlapping blocks of the image [6-16] or key points [17-19].
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A detection method based on Local Binary Patterns (LBP) [20] was introduced by Li et al. [15]. This approach 

was extended with Multi-resolution LBP (MLBP) [16]. The method showed good performance in the case of 

rotation,  scaling,  JPEG  compression,  blurring  and  noise  addition.  However,  use  of  MLBP  for  feature  set 

generation leads to large feature sets. To reduce the complexity of feature sets, 1D Cellular Automata (CA) [21]  

are used to generate feature sets as a binary array representing CA rules [22, 23]. 1D CA implies using pixels  

from one row of an image to learn the pixel’s value in the next row of the image. However, the method was 

sensitive to rotation of duplicated regions due to the use of 1D neighborhoods and showed weak robustness to 

post-processing methods due to the applied search method based on lexicographic sorting.

This paper presents a new idea of combining LBP with CA for the purpose of CMF detection based on circular  

neighborhoods. Prior to the detection process, an image is divided into small, overlapping blocks. A circular  

neighborhood is formed for each block by defining circles of different radii around the block’s central pixel and 

by sampling points on those circles using bilinear interpolation. The sampled points are used to form small  

neighborhoods  in  such  a  way that  points  from one angle  are  used  to  learn  point  value  on  the  next  angle.  

However, use of point values as an input to CA leads to a combinatorial explosion in the number of possible 

rules.  To  cope  with  that,  a  reduced  description  of  point  values  based  on  LBP is  applied  locally  on  every 

neighborhood in each block. The feature vector is defined as a binary array where each element describes the use 

of a specific binary pattern. Furthermore, the Fast Library for Approximate Nearest Neighbors (FLANN) [24] is  

used to select  nearest  neighbors for every feature vector allowing better performance of the post-processing  

methods. A new search method based on analysis of spatial relationships between detected blocks is applied to 

identify true duplicated block pairs.

The rest of the paper is organized as follows. In Section 2, the brief background about CA and LBP is given.  

Section 3 presents a new approach with explanation of feature vector and detection method. Testing setup is 

given in Section 4 and experimental results are presented in Section 5. The conclusion is provided in Section 6.

2. Background

In this section, a brief introduction to cellular automata and local binary patterns is given to illustrate their role in  

texture description for the purpose of CMF detection.

2.1 Cellular Automata

A cellular automaton [21] is a discrete system containing a regular grid of cells whose states can be in only 

one finite-state set. The use of CA for image processing is interesting because of its property that very simple  

CA rules can result in very complex behavior, so it can be used for texture description. 

A CA can be presented by a quadruple <C, S, N, f> where C is a d-dimensional cellular space that consists of c 

cells, S is an s-value state space, N is an n-cell CA neighborhood, and f:Sn → S is a cell-state transition function 

[25]. Each observed cell  co is in one finite state  so determined by the states of a surrounding neighborhood of 

cells  N(co), usually spatially close to the cell  co. The state of each cell in the next time step is defined using a 

transition function f, which can be represented by a set of rules. Each rule defines the next state of the observed  

2



cell  co corresponding to a specific combination of the neighborhood cells' values, called neighborhood pattern, 

and is represented as

oono scssscN == then},...,,{)(if 21 (1)

Application of CA to digital images is possible using the following hypothesis:

 Set C  is a 2-dimensional image that consists of  X ×  Y pixels (each pixel  pi is one cell  ci so cell  c will be 

marked with p),

 Set S contains all possible pixel values (s = 256 for 8-bit images or s = 2 for binary images);

 Set N(po) is an arbitrarily selected group of n pixels spatially close to the observed pixel po,

 Function f is defined by a set of rules in a way that it represents the connection of a pattern in the selected  

neighborhood N(po) and the value of the observed pixel po. For example, rule 0 means that all combinations 

of neighboring elements (sn possible patterns) result in value of the observed pixel  po equal to 0 (more 

details in Subsection 3.1).

By analyzing  an  image or  region,  it  is  possible  to  select  a  subset  of  sn possible  patterns  (combinations of 

neighboring elements) that describes local changes of pixels’ luminance values, e.g. it is possible to define a rule 

that can be used to generate a specific texture. Detection of duplicated regions is based on the fact that similar 

areas in an image should produce similar rules.

2.2 Local Binary Pattern

Local Binary Pattern (LBP) [20] is a simple texture descriptor that transforms an image into a set of labels 

that describe the appearance of the image luminance values. A very important property of LBP, which is based  

on a local pattern and texture, is gray-scale invariance. The LBP of a neighborhood P with radius r is obtained 

by using the value of the central pixel pc of P as the threshold to define the values of the m neighborhood pixels 

located  within radius  r around the  central  pixel  pc.  The binary values  of  the  neighborhood pixels  are  then 

weighted by powers of two and summed to form a decimal number stored on the location of the central pixel pc, 

which is denoted by LBP(P, r).
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Applying a CA on a gray-scale image implies using a whole range of image intensities as cell states (s = 28 = 

256) leading to a large number of possible patterns (sn  = 256n) and even larger number of possible rules. For 

illustration,  use  of  a  CA neighborhood  of  n =  7  pixels  results  in  2567 possible  patterns.  A  proper  binary 

representation ensures that only two values (0 and 1) are used as cell states (s = 2), leading to a reduction of the 

possible patterns to 27 for a neighborhood of n = 7 pixels.

Although LBP treats regions locally, the representation still has 2P LBP values so it is inappropriate as an image 

representation for CA. However, the main idea of local thresholding of image values according to a central pixel 

is mapped to the task of dealing with values of CA's neighborhood pixels as described in Subsection 3.1.
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3. Proposed Method

The proposed method combines CA and LBP for description of image texture, i.e. it focuses on local changes 

in pixel luminance values. The CA rules (feature vectors) are formed by analyzing binary patterns on a circular  

neighborhood which are used as a reduced texture description. Binary values are generated using LBP locally on 

every CA neighborhood (note that the CA neighborhood differs from the circular neighborhood as described in  

more detail in Subsection 3.1).

Detection of duplicated image regions using the proposed method is done through the following steps:

 Pre-processing - Conversion of the image to gray-scale space is performed to adjust the image for the  

detection process. As an alternative to that, detection can be done for every color channel separately.

 Image subdivision - The image is divided into overlapping blocks of size b × b pixels. Due to the fact that 

sliding by one pixel is used, dividing an X ×Y image with a b × b block gives Z blocks in total.

 )1)(1( +−+−= bYbXZ (3)

 Feature  vector  formation  -  A  description  of  every  block,  based  on  local  changes  of  luminance,  is 

accomplished by combining CA and LBP (see Subsection 3.1). A feature vector fvi of size sn for each block 

i {1, ..., ϵ Z} is calculated and stored in a matrix F defined by
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 Duplication Detection - Feature vectors  fvi from matrix  F are analyzed to detect duplicated blocks (see 

Subsection 3.2).

 Result  generation  -  Detected  pairs  of  blocks  are  marked  as  duplicated  regions  and  mathematical 

morphology is applied to remove small regions using opening and smooth detected areas using closing.

3.1 Forming Feature Vector

After  image pre-processing  and subdivision, every defined block is  analyzed  separately  with the goal  to 

describe  local  changes  in  pixel  luminance  values  using  a  reduced  set  of  patterns.  Those  patterns  actually 

represent  the  relationship  between  spatially  close  pixels  that  form  its  neighborhood.  The  main  idea  is  to 

determine the frequencies of particular pattern occurrences and represent them in as simple a manner as possible  

(in the form of a short feature vector). Automation of this process, i.e. generating the feature vector, is possible 

using pixel values as input to the CA, which results in a description of generated patterns by CA rules. CA rules  

are formed for each overlapping block and used as feature vectors in the proposed method as described below.

3.1.1. 1D CA rules

We first use a 1D CA to illustrate  the main idea of CA rules as feature vectors and highlight the main  

disadvantage. In the case of 1D CA, CA rules and neighborhood patterns are formed using pixels from two 

neighboring rows of an image. The 1D neighborhood of n pixels from one row of the image is used to define the 

pattern,  which  together  with  a  single  pixel  from  the  next  row  of  the  image  (at  half  the  length  of  the 

neighborhood) is used to form a CA rule. The detailed rule learning process for 1D CA is presented in [22, 23]  

and is omitted from this paper because it is not relevant for understanding the main concept. 
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Table 1 represents a few 1D CA rules R for all possible combinations of CA neighborhood patterns N(po) on a 

binary image. In the presented example, a neighborhood of n = 3 pixels above the observed pixel po are selected 

and s = 2 for a binary image so there are sn = 23 = 8 binary neighborhood patterns N(po). Moreover, there are s8 = 

28 = 256 possible rules R with values from 0 to 255. A rule's value defines the value of the observed pixel po for 

all possible neighborhood patters N(po) (Table 1) and is used as a reduced feature vector fvi. Note that a higher 

number of neighborhood pixels (n) results in more neighborhood patterns and more rules. However, the main 

issue in describing a block’s texture by 1D CA is its sensitivity to rotation of a duplicated region due to its one 

dimensional neighborhood.

Table 1. Examples of a few CA rules R for all possible neighborhood patterns N(po) on a binary image with 
neighborhood of n = 3 pixels. The value of rule R transformed into binary indicates the value of the observed 
pixel po for all possible binary combination of neighborhood patterns. For example, rule R = 0 means that the 

value of observed pixel po is equal to 0 for all possible combinations of neighborhood patterns N(po).

Rule R = 0 
(binary: 00000000)

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000

Observed pixel po 0 0 0 0 0 0 0 0

Rule R = 60 (binary: 
00111100)

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000

Observed pixel po 0 0 1 1 1 1 0 0

Rule R = 124 
(binary: 01111100)

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000

Observed pixel po 0 1 1 1 1 1 0 0

Rule R = 255 
(binary: 11111111)

Neighborhood pattern N(po) 111 110 101 100 011 010 001 000

Observed pixel po 1 1 1 1 1 1 1 1

3.1.2. Introducing a circular neighborhood

To ensure robustness to rotation, we introduced a circular neighborhood on each overlapping block using the 

following steps:

 j circles of radius rj with the origin at the block’s central pixel pc are formed.

 A set of mrj points is selected on each circle, located on radius rj with angles αi = i·360°/mrj, i {1,2,...,ϵ mrj}. 

The number of selected points differs for each circle, i.e. on circles with smaller radius a smaller number of 

points is defined. The set of points sampled on all the defined circles in one overlapping block is called a  

circular neighborhood (note that CA cells c are represented by points in this case so term m will be used 

instead of c).

 Bilinear  interpolation  is  used  to  sample  each  of  the  points  using  values  of  the  closest  four  pixels  

surrounding the sampled point. The value of a sampled point is equal to a weighted average of those 4  

pixels. 

 Linear interpolation is used to extend a set of points sampled from each circle to get the same number of  

points on every circle. The number of points at each circle is expanded to equal the number of points at the 

largest circle.

 The selected set of points from each of the circles is transformed in such a way that points sampled at one  

circle form one column. Therefore, we can define that each row of a transformed set of points contains  

points located on different radii rj with the same angle αi.

The concept of circular neighborhood forming and learning process is illustrated in Fig. 1.
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3.1.3. Forming CA neighborhood and CA rules

Points  sampled  on  circular  neighborhoods  (and  transformed into columns)  are  used  to  define  CA rules 

(feature vector in the proposed method) that describe luminance changes in a block. To determine CA rules, the  

CA neighborhood is defined for each observed point separately:

 CA neighborhood N(mo) is defined for observed point mo as a set of n points from the row above the point 

mo. One point straight above mo and an equal number of neighboring points from both sides of that point is 

selected as the neighborhood according to equation (5), where we use mx,y to represent  the point  mo at 

position (x, y) in the transformed set of points.
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Therefore,  the value for  observed  point  mo in row  i,  i.e.  on radius  with the angle αi,  is  defined  using 

neighborhood N(mo) from row i-1, i.e. on radius with the angle αi-1. In the example at Fig. 1, n = 5 points 

from the first row, on radii with the angle α1, are used as neighborhood N(mo) for the observed point mo (at 

half the length of the neighborhood) from the second row, at radii with the angle α2.

Note that a circular neighborhood contains a set of points sampled on j circles in one block of an image, 

while  a  CA neighborhood is  defined  for  each  sampled  point  separately  and  include  n points  from all 

possible points. Therefore, each CA neighborhood can be observed as a subset of a circular neighborhood 

(more precisely, a CA neighborhood is a subset of extended set of point from a circular neighborhood).

Fig. 1. Texture description using circular Cellular Automata for one block in an image: j circles 

are formed with radius rj;  mrj points are sampled on every circle by bilinearly interpolating the 

closest four pixels; the set of points at each circle is extended using linear interpolation and 

transformed into columns; rule learning is done using points from one row (at angle α i-1 in the 

circular neighborhood) to form neighborhood N(mo) for an observed point mo in the next row (at 

angle αi in the circular neighborhood). For example, 5 points from the first row (at angle α1) are 

used as neighborhood N(mo) for the observed point mo (at half the length of the neighborhood) 

from the second row (at angle α2).

 For every CA neighborhood, the mean value is calculated using the value of the point mo and the values of 

all pixels from the CA neighborhood N(mo). Hereafter, we will use mo/mi to represent both the value of the 
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point mo/mi and the point itself without confusion.

 Thresholding based on the LBP method is applied locally to each CA neighborhood to obtain a binary 

representation by assigning every point mi a binary value bi .
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After defining binary values, the fast rule identification method proposed by Sun et al. [25] is applied to generate  

a pattern that describes the relation between each point bo and its binary CA neighborhood N(bo). The main idea 

proposed in [25] is to determine frequencies of specific (binary neighborhood) pattern occurrence in cases when 

the observed point bo = 1 and bo = 0, as presented below. 

As described in Subsection 2.1, selection of  n neighboring points for binary CA neighborhood results in 2n 

possible patterns, so two vectors of size 2n are generated: v1 to store the number of patterns for bo = 1 and v0 to 

store the number of patterns for bo = 0. The number of specific pattern is stored at location l={0, 1, …, 2n-1} in 

vectors v1 and v0 that is determined as the decimal value of binary CA neighborhood N(bo) of the observed point 

bo. 
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For CA neighborhood of n = 5 points, vectors v1 and v0 have total of 25 = 32 elements, where locations l = {0, 1, 

…, 2n-1} represent  number of  patterns  N(bo)  = {‘00000’,  ‘00001’,  …, ‘11111’}.  For example,  vector  v1(0) 

contains number of patterns N(bo) = ‘00000’ when bo = 1, and vector vo(0) contains number of patterns N(bo) = 

‘00000’ when bo = 0.

Finally, a feature vector  fvi is formed by comparing the number of specific pattern  N(bo) in cases when the 

observed point bo = 1 and bo = 0, i.e. by comparing values from vectors v1 and v0 at each location l: 
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Figure 2 illustrates the process of forming a feature vector fvi with a neighborhood of n = 5 elements. The feature 

vector  fvi contains 2n = 25 = 32 values defined as described above. For example,  for binary pattern  N(bo) = 

‘00000’, the values of vectors  v1 and  v0 are determined and stored at location  l = 0 that  corresponds to the 

selected binary pattern. If v1(0) < v0(0), then feature vector fvi(l) = fvi (0) = 0. In contrast to that, values of vectors 

v1 and v0 for binary pattern N(bo) = ‘10100’ are stored at location l = 20. In this case, v1(20) > v0(20) so feature 

vector fvi(l) = fvi (20) = 1. Each value in the feature vector is defined in the same way and is set to:

 1 if most times when the pattern N(bo) appears, the value of point bo is 1,

 0 if most times when the pattern N(bo) appears, the value of point bo is 0.
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Fig. 2. Example of forming a feature vector (for one block in an image): number of each 

binary pattern N(bo) is determined in the case when bo = 1 and bo = 0; determined values 

are stored in vectors  v1 and  v0 at location  l;  location  l is determined by conversion of 

binary pattern N(bo) to its decimal number; feature vector fv at location l is set to 1 if v1(0) 

> v0(0) or to 0 is v1(0) < v0(0). In this example, binary pattern bo = 00000 at location l = 0 

appears more often in the case when bo = 0 (v1 < v0), therefore fv(0) = 0. Elements at other 

locations in feature vector fv are determined in the same way.

All generated feature vectors are stored in matrix F in such a way that the i-th row contains 2n values of feature 

vector  fvi. Therefore, matrix  F contains  Z feature vectors for each overlapping block defined in the analyzed 

image.

3.2 Detection Process

3.2.1 Identifying k nearest neighbors

Having in mind the large number of overlapping blocks (for an image of size 512×512 pixels, and block of  

size b = 13, the number of overlapping blocks is Z = 250 000), brute force searching for duplicated blocks would 

be highly time consuming, and therefore inefficient. Brute force searching means that each overlapping block of 

an image is selected in turn, and all the other blocks are compared with it. In case of a CMF, brute force is not  

effective because the search area is the whole matrix F of Z elements, e.g. every block has to be compared with 

Z-1 blocks. To improve the efficiency of the detection process, a sorting algorithm can be applied to matrix F to 

group similar feature vectors and search can then be done on a subset of the data.

The described feature vectors have an important property - each element shows use of a particular binary pattern 

and therefore has the same level of importance for the description of texture. Use of a sorting algorithm which 

gives higher importance to some elements in a feature vector (e.g. lexicographic sorting which gives higher  

importance to first elements in feature vectors) is not suitable for this problem, so selection of similar feature  

vectors is done using a kd-tree. Due to the fact that feature vectors contain only binary values, FLANN [24] is 

used to find the  k most similar feature vectors for all the feature vectors (i.e.  k most similar blocks for every 

defined block in an image). 

FLANN hierarchically decomposes the search space (matrix of all feature vectors F) by clustering the input set 

and constructing trees. The tree building process divides feature vectors into K clusters by selecting K feature 

vectors at random as the cluster centers and assigning the rest of the feature vectors to the closest center. The 
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algorithm is recursively repeated until the number of feature vectors in each leaf is below a certain threshold  

(called the maximum leaf size  lsmax). At the end, every cluster contains one non-leaf node (cluster center) and 

leaf nodes with input feature vectors to be matched. The process of searching multiple clustering trees in parallel 

starts with a single traverse of each of the trees. The algorithm selects the feature vector closest to the query  

feature vector and recursively explores it, while adding the unexplored feature vectors to a priority queue. After  

each of the trees has been explored once, the search is continued by extracting from the priority queue the closest  

node to the query feature vector and resuming the tree traversal from there. The search ends when the number of  

examined feature vectors exceeds a maximum limit, i.e. the degree of approximation  daprox. A higher value of 

daprox results in the more exact neighbors, but it also leads to more expensive search. Thanks to the hierarchical 

clustering trees, FLANN accomplishes significant speedups over linear search ranging between one and two 

orders of magnitude for search precisions in the range 50-99% [24].

Application of FLANN to the matrix F gives k nearest feature vectors for each feature vector fvi, i.e. it results in 

a matrix of  Z ×  k possible duplicated feature vectors  P, where row i defines  k nearest feature vectors for  i-th 

feature vector fvi.

3.2.2 Identifying duplicated blocks

To identify true duplicated blocks, matrix P is further analyzed using following steps:

 For each row i Euclidean distance vij between values of feature vector fvi and its k nearest feature vectors fvj 

= P(i, j), j = {1, 2, …, k} from i-th row is calculated using (9), and stored in matrix V.

∑
=

−=
n

l
jiij lfvlfvv

2

1

2))()(( (9)

Value  vij represents  similarity  of  two feature  vectors,  i.e.  similarity  of  two generated  CA rules,  so its  

analysis assures removal of blocks that differ in more binary patterns than allowed (defined by similarity  

threshold Ts).

 Then, matrix P is analyzed by calculating the Euclidean distance dij between blocks' coordinates (xi, yi) of 

feature vector  fvi (corresponding to  i-th row of matrix  P) and coordinates (xj,  yj) of its  k nearest feature 

vectors fvj = P(i, j), j = {1, 2, …, k} from i-th row using (10), and stored in matrix D. 

22 )()( ijijij yyxxd −+−= (10)

Value dij represents the spatial distance between two blocks so its analysis allows removal of spatially close  

blocks (especially partly overlapping blocks) which usually have very similar texture, and produce very 

similar feature vectors. Its analysis assures removal of blocks that are spatially closer then allowed (defined 

by distance threshold Td).

 Elements P(i, j) from matrix P are removed from further analysis if distance vij from matrix V is higher than 

threshold Ts or distance dij from matrix D is smaller than distance threshold Td. After this step every row in 

matrix P contains between 0 and k elements.

 Matrix  P is  used to form matrix  I that contains identified pairs of feature vectors in a way that  every 

remaining element in matrix P from i-th row is assigned to corresponding feature vector  fvi. Therefore, a 

two-column matrix I is created using indexes i, j  {1, 2, …, ϵ Z} of identified pairs of feature vectors fvi, fvj.

 Finally, set I is analyzed using the shift vector between blocks so that block pair fvi, fvj is marked as truly 

9



duplicated if at least  ns spatial neighbors of block  fvi are copied to any  ns spatial neighbors of block  fvj. 

Spatial neighborhood Ns(fvi) for feature vector fvi is determined using feature vector index i from matrix I:
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where X is the size of an image in the horizontal direction, and b is the size of overlapping blocks. Note that 

spatial neighborhood Ns(fvi) represents Moore neighborhood. All pairs of blocks fvi, fvj that do not meet this 

condition are removed from matrix I.

After  this  process,  the detection result  is  generated  by marking true duplicated blocks using coordinates  of 

remaining feature vectors in matrix I and applying post-processing.

4. Testing Setup

To analyze the performance of the proposed method 80 plain CMF examples and 80 rotation CMF examples  

from a recent benchmark database called CoMoFoD is used [26]. All images are post-processed by applying 

JPEG compression, noise and blurring, making total  of 1360 images.  Every forgery example consists of an 

original image (without any forgery), a forged image (with a forgery) and two masks (colored and black/white) 

that indicate the forgery. Images in the CoMoFoD database are 512 × 512 pixels, and all forgeries are generated 

using a Photoshop tool. The advantage of this dataset is that it contains examples of forgeries with different sizes  

of duplicated regions,  homogenous/heterogeneous areas  and cases  of multiple forgeries.  Thanks to its  small  

image size, the database is adequate for fast and efficient testing of different detection approaches.

Parameters used for implementation of the proposed method are given in Table 2. A larger block size b makes it 

impossible to detect duplicated regions smaller than (b+1) × b pixels. However, a smaller block size results in a 

larger  number  of  overlapping  blocks.  Therefore  block  size  is  selected  having  in  mind  different  sizes  of 

duplicated regions and the computational complexity of a proposed method. 

Table 2. Parameters used for implementation of the proposed method

Parameter Symbol Value
Block size b 13

Similarity threshold Ts 7
Distance threshold Td = floor(sqrt(2b2)) 18

Number of nearest neighbors k 4
Number of spatial neighbors ns 2

Number of circles j = (b-1) 12
Radii of circles rj=1/2, 1, 3/2, …, (b-1)/2 1/2, 1, 3/2, …, 6 

Number of points on each circle mr1 = 8, mrj = 2mrj-1 8, 16, …, 16384
Radius of disk element for morphology rmorp 3

Number of clusters in FLANN K 8
Maximum leaf size in FLANN lsmax 64

Degree of approximation in FLANN daprox 0.9

Values  of  threshold  Td,  number  of  circles  j,  radii  rj,  number  of  points  mrj and  size  of  a  disk  element  for 

morphological operations rmorp are selected according to block size (Table 2). Note that circles are formed with 
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radii rj to increase the number of circles in block b × b and to ensure a sufficient number of samples for a better 

description of the block pattern.

Similarity threshold Ts is experimentally determined by selecting 10000 blocks of size b × b from 10 images. On 

each block, transformations (scaling with different factors and rotation with different angles) and post-processing 

operations  (blurring,  addition  of  noise  and  JPEG compression)  are  applied.  CA rules  are  obtained  for  all  

variations of each block by the process described in Subsection 3.1. Results showed that most rules for the same 

block differ in less than 7 elements so threshold Ts is set to 7. The same experiment showed that in the case of 

post-processing and transformations, spatially close blocks have more similar rules than true duplicated blocks.  

Therefore  we set  k = 4 to  select  four blocks with similar  rules  for  further  analysis.  The number of  spatial 

neighbors ns defines that at least two neighbor blocks have to be grouped to form duplicated areas.

Values for FLANN (K, lsmax, daprox) are used as proposed in [24] for binary set of data. 

To evaluate the performance of the proposed method, precision P, recall R and F-measure F are calculated at the 

pixel level for every image:
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=
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+
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,, (11)

where  Fp is the number of false positive pixels (mistakenly detected as copied),  Fn is the number of the false 

negative pixels (mistakenly detected as not copied), and Tp is the number of the true positive pixels (correctly 

detected as copied).

5. Detection Results

The accuracy of CMF detection is tested for plain CMF, multiple CMF, rotation of duplicated regions and 

three common types of post-processing: blurring, addition of noise and JPEG compression. Plain CMF refers to 

forgery where a part of an image is copied and translated to a new location in the same image without changing  

any properties. Multiple CMF refers to a case when one or more regions are copied to different locations in the 

same image. The authors in [2] evaluated 13 block-based and two keypoint-based methods for CMFD. Among 

all tested methods, the DCT [6], PCA [14], Zernike [12] and SURF [17, 18] methods gained the best results in  

most tested scenarios so the proposed method is compared with those four methods.

5.1 Plain CMF

 Figure 3 shows the detection results for plain CMF. The accuracy is quite high for all presented cases (F > 

0.92) showing that the method is capable of detecting duplicated regions of different sizes and shapes. Figure 3a 

and 3c illustrate that the proposed method can deal with repetitive image content. Figure 4 contains examples of 

multiple CMFD when one region is copied to different  locations (Fig. 4a and 4b) and different regions are 

copied to different locations (Fig. 4c and 4d). Detection is satisfactorily accurate for all images leading to the 

conclusion that the proposed method can deal  with multiple CMF. Additionally, Fig. 4a presents  successful 

detection of duplicated homogeneous regions (F = 0.9847). The lowest F-measure (among all tested images) is 

achieved in the case when the copied region is very small with respect to the whole image (e.g. the signs’ stands  
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in Fig. 4c).

(a) 360 pixels,

F = 0.9946

(b) 1651 pixels, 

F = 0.9005

(c) 2122 pixels,

F = 0.9206

(d) 15478 pixels,

F = 0.9631
Fig. 3. Detection of plain CMF for different sizes of copied regions 

(a) F = 0.9847 (b) F = 0.9392 (c) F = 0.7105 (d) F = 0.9131
Fig. 4. Detection of multiple CMF: one region on two locations (a, b), two regions on different locations (c, d)

Results for 40 examples of plain CMF are shown in Fig. 5. Results for original images are omitted because all 

methods correctly detect all 40 images (F ≈ 1 in all cases). For almost all images, the proposed method showed 

better performance than the other tested methods (the highest average F-measure). The F-measure is higher than 

0.7 for all images showing that detection is very accurate. Furthermore, detection is successful for different sizes  

of copied areas – the smallest successful detected area is around 0.13% of the image size (360 pixels, Fig. 3a),  

and  the  largest  is  around  14%  of  the  image  size.  The  Zernike  method  produces  many  false  positives  in  

homogeneous regions, while the PCA method failed to detect some small copied regions. The SURF method is  

unable to discriminate repetitive image content from true duplicated regions and falsely detects homogeneous 

duplicated regions. 
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Fig. 5. Value of F-measure for 40 plain CMF images from CoMoFoD dataset with average F-measure: Fproposed = 

0.9428, FDCT = 0.9272, FPCA = 0.7715, FZernike = 0.9036, FSURF = 0.7181
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5.2 Rotation of Duplicated Regions

Figure 6 shows detection result for cases when a copied region is rotated by 90° (Fig. 6a), 7° (Fig. 6b) and  

180° (Fig. 6c), and one case of multiple CMF where the region is rotated by 2° and 3° (Fig. 6d). In all cases the  

copied  regions  are  correctly  detected  demonstrating  that  the  proposed  circular  neighborhood can  deal  with 

different angles of rotation. Note that there are no falsely detected areas in any of the presented cases. Also,  

detection is quite successful for complex textures (Fig. 6a, F =0.7384), as well as for homogeneous regions (Fig. 

6d, F = 0.8097).

(a) α = 90°,

F = 0.7384

(b) α = 180°, 

F = 0.6956

(c) α = 7°, 

F = 0.5688

(d) α1 = 2°, α2 = 3°, 

F = 0.8097
Fig. 6. Examples of detection results for rotation of the copied region for different angle α

Results for 80 images and all tested methods are shown in Fig. 7. Testing is done on images with rotation angles 

α = {1°, 2°, 5°, 7°, 10°, 40°, 90°, 180°}. The DCT method successfully detects rotation by small angles (α < 5°).  

The Zernike method showed good performance for almost all angles, while the PCA method was completely 

unable to handle higher rotation angles (α > 3°). The SURF method exhibits the most stable F-measure but it is  

significantly lower than the Zernike and the proposed method. The proposed method showed high F-measures 

for α < 10° as well as for α = 90° and α = 180°. For other tested cases detection was less accurate but it was still  

possible to partly detect copied regions for most rotation angles.

1 2 5 7 10 40 90 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rotation angle

A
ve

ra
ge

 F
-m

ea
su

re

 

 

proposed
DCT
PCA
Zernike
SURF

Fig. 7. Average F-measure for 80 images and different rotation angles (note that testing is done only for the 

highlighted angle values)

5.3 Scaling

Figure 8 shows detection results for cases when a copied region is scaled by the scaling factor  f. Note that 

factor  f has the same value in all directions, e.g. scaling is uniform. Scaling with factor f = 109 % (the copied 
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region is 9 % larger than the original region) is illustrated in Fig. 8a. Detection is only partly possible (F ≈ 0.5), 

but no falsely detected regions are introduced, leading to easy identification of duplicated objects. An example of 

scaling a large region with scaling factor f = 91 % (the copied region is 9 % smaller than the original region) is  

presented in Fig. 8b. Detection is also only partly possible, but it clearly indicates duplicated regions. Figure 8d 

contains an example of multiple CMF when the duplicated region is scaled with factor f1 = 76 % and with factor 

f2 = 111 %. The F-measure is satisfactory high (F = 0.6131) indicating that detection is quite successful even in a 

case of higher scaling factors. Also, both copied regions are successfully detected with no falsely detected areas.

(a) f = 109 %, 

F = 0.5309

(b) f = 91 %, 

F = 0.5549

(c) f = 95 %, 

F = 0.5681

(d) f1 = 76 %, f2 = 111 

%, F = 0.6131
Fig. 8. Examples of detection results for scaling of the copied region for different factor f

Average F-measures for 40 images and different scaling factors are given in Fig. 9. Testing is done for scaling  

factors  f = {91 % - 109 %} with a step of 2 and for  f = {50 %, 80 %, 120 %, 200 %}. The proposed method 

demonstrated good capabilities to handle a moderate amount of scaling with high F-measure for 91 % < f < 109 

%. For the higher amounts of scaling, detection accuracy rapidly decreases. Other block-based methods, namely  

Zernike, PCA and DCT, showed similar behavior but for most scaling factors they gained a lower average F-

measure.  Opposite to that, the SURF method remained stable across the whole scaling range leading to the  

conclusion that keypoint-based methods perform better for scaling factors higher than 9 %.
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Fig. 9. Average F-measure for 80 images and different scaling factors (note that testing is done only for the 

highlighted values of scaling factor)

5.4 Blurring

CMFD on blurred images is done for two cases: an averaging filter of size 3 × 3 and 5 × 5, as shown in Fig. 

10. In the first case (Fig. 10a and 10c), detection is almost perfect even after blurring. However, in the second 
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case, filtering with an averaging filter of size 3 × 3 results in successful detection of forged regions but also 

introduces an additional falsely detected area (Fig. 10b). Note that the falsely detected area is very similar to the  

duplicated areas (letter ”o”). Applying a 5 × 5 filter to the same image reduces the size of detected regions and  

introduces  some other  falsely  detected  blocks  (Fig.  10d).  Those  blocks  can  be  removed by  increasing  the  

threshold Td.

(a) 3 × 3, F = 0.9686 (b) 3 × 3, F = 0.8820 (c) 5 × 5, F = 0.9629 (d) 5 × 5, F = 0.5603
Fig. 10. Examples of detection results on blurred images with different averaging filter

Detection results for all the methods are shown in Fig. 11 which illustrates the average F-measure for 80 original  

and forged images and both testing cases. The proposed method gained the highest F-measure for both cases, 

meaning that it can correctly detect most blurred images. Other tested methods were also successful in detection 

of blurred images but they introduced more falsely detected areas than the proposed method. Also, the Zernike 

method over-detected homogeneous regions, while the SURF method showed over sensitivity on low contrast  

regions after image blurring.
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Fig. 11. Average F-measure for 80 images and different size of averaging filter

5.5 Addition of Noise

Addition of noise randomly changes properties of duplicated image regions so in that case it is not sufficient  

to search for two blocks with the same properties. Therefore, filtering the image with an averaging filter of size 3 

× 3 is applied prior to the detection. Figure 12 contains an example of detection on a noisy image which contains 

added  Gaussian  noise  with  zero  mean  and  different  values  of  variance.  Note  that  image  intensities  were 

normalized to the range [0, 1] prior to the addition of noise. Detection is partly possible even when a large  

amount of noise is added (Fig. 12a). However, note that even a large amount of noise does not introduce any 

falsely detected areas, which is a very important feature for digital image forensics.
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Figure 13 contains results for 80 images when Gaussian noise of zero mean and different values of variance is  

added (0.0001 - 0.1, with multiplier step equal to 10). For a smaller amount of noise, the Zernike method was  

slightly more successful in detection of duplicated areas, but for larger amounts of noise the proposed method 

achieved the best performance in comparison to the other tested methods.

(a) σ2 = 0.1, 

F = 0.1189

(b) σ2 = 0.01, 

F = 0.1195

(c) σ2 = 0.001, 

F = 0.4014

(d) σ2 = 0.0001, 

F = 0.9570
Fig. 12. Example of detection results on a noisy image for different values of variance σ2
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Fig. 13. Average F-measure for 80 images and different values of variance

5.6 JPEG compression

Detection  of  duplicated  images  after  JPEG  compression  presents  a  serious  problem for  most  detection 

algorithms because of its specific compression process where every 8×8 block of the image is treated separately. 

The consequence is that the same blocks have completely different binary representations, and so different sets 

of rules are generated.  Also, JPEG blocks are smaller  than the overlapping blocks defined in the proposed  

method (b = 13). However, as in the case of added noise, dealing with JPEG compression is possible by pre-

processing the image using an averaging filter. Figure 14 presents detection results for a forgery example with 

different JPEG quality factors. Accuracy of detection of duplicated areas rapidly decreases for higher levels of 

JPEG compression. However, even for images with high JPEG compression, detection is partly possible, and 

there are no falsely detected areas (Fig. 14a).

Results for all tested methods are presented in Fig. 15, where the average F-measure for 80 test images is given. 

The proposed method was equally successful in detection of JPEG images as the DCT method for higher quality  

factors, while for lower JPEG quality the DCT method showed slightly better performance. The SURF method 

was most stable but it also gained a lower F-measure for most JPEG compression factors in comparison with the 
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proposed method. Additionally,  the proposed method outperformed other tested methods for  all  amounts of  

JPEG compression.

(a) q = 30,

F = 0.2381

(b) q = 50, 

F = 0.4009

(c) q = 70,

F = 0.6010

(d) q = 80,

F = 0.8104
Fig. 14. Examples of detection results on a JPEG image with different values of quality factor q
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Fig. 15. Average F-measure for 80 images and different values of JPEG compression factor

5.7 Feature Vector Complexity 

An important part of every CMF detection algorithm is the description of features using reduced and robust  

feature vectors. Table 3 shows the size of the calculated feature vectors for all tested methods. The size of feature 

vectors for the DCT and PCA methods (as well as computational complexity) depends on block size and image  

content, respectively. The size of the Zernike feature vector is defined by Zernike moment order o, and it is equal 

to 12 for  o = 5 [12], however it is computationally demanding. The size of SURF feature vectors (64 values)  

does not depend on any method specific parameters. Although SURF produces large feature vectors, it contains a 

smaller number of feature vectors than any block-based method. In the proposed method, the size of feature 

vector depends on the size of the CA neighborhood (2n). However,  each feature vector contains only binary 

values so it can be represented as a single decimal number. In comparison with other methods, this property 

allows a significantly simplified description of texture. Computational complexity depends on the number of  

sampling points and the size of neighborhood but it is not more demanding than other block-based methods.

Table 3. Properties of generated feature vectors for all tested methods
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6. Conclusion

Detection of duplicated image regions has been widely researched in the past few years due to the fact that 

digital image content can be easily manipulated. Therefore we presented a new block-based method for detection 

of  duplicated  image  regions  that  combines  LBP  with  CA  to  accomplish  a  powerful  pattern  description. 

Identification of duplicated regions is accomplished by analyzing local changes of pixel luminance values in a 

circular neighborhood. Pixel values are transformed to binary values using LBP to form a reduced representation 

of a block and the binary values are used as an input to CA. The produced feature vector indicates the use of a 

specific  set  of  patterns  in the block texture,  so similar  image areas  should produce  similar  feature  vectors.  

FLANN is applied to the feature vectors set to find the k nearest neighbors for every element and a new search 

method is applied to select the duplicated blocks. 

Testing results showed excellent performance in the case of plain CMF and multiple CMF, where the proposed 

method outperformed the DCT, PCA, Zernike and SURF methods. While the DCT method gained similar F-

measures as the proposed method, the PCA method was unable to detect small duplicated regions. Furthermore,  

the Zernike method generated a lot of falsely detected areas on homogeneous regions (e.g. sky) and the SURF 

method falsely marked a large amount of repetitive image content due to background similarities. Detection of 

rotated regions was quite  successful  for  most rotation angles  in which the proposed  method gained similar  

accuracy as the Zernike method. The SURF method showed most stable detection but with lower average F-

measure, and the PCA and DCT methods successfully detected only at small rotation angles. In detection of  

scaling, the proposed method showed similar behavior to other block-based methods, but with a slightly higher  

average  F-measure  thanks  to  better  robustness  to  homogeneous  regions  and  repetitive  image  content.  The 

keypoint-based method showed the lowest change in detection accuracy, but it also achieve the lowest average 

F-measure for almost all scaling factors. Furthermore, the proposed method showed good robustness to blurring,  

addition of noise and JPEG compression. It gained the best average F-measure for blurred images and images  

with added Gaussian noise, and it showed similar accuracy as the DCT method for JPEG compression. 

An important advantage of the proposed method is its binary coded feature vectors that can be represented as a 
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Group Method Size of feature vector Dependence of parameter

Block-based
 

Proposed 128 (b) = 1 (d) Neighborhood size n*
DCT [6] 256 (d) Blocks size b
PCA [14] / Image content

Zernike [12] 12 (d) Zernike moment order o 
Keypoint-

based
SURF [17, 

18]
64 (d) /

* influence only on size of the feature vector in binary form



single number, in contrast to all previous proposed methods. A simple descriptor of local luminance changes is 

applicable to classification tasks thanks to its low computational complexity and possibility for fast and efficient  

analysis. The strength of the proposed method lies in the description of local changes of pixel luminance values  

so it  is  not  significantly affected  by image post-processing.  Additionally,  the circular  neighborhood assures 

insensitivity  to  rotation  of  the  duplicated  region.  Use  of  a  new  search  method  allows  better  analysis  of 

similarities between calculated feature vectors. The proposed method has low computational complexity and low 

memory  requirements,  and  it  produces  a  significantly  more  reduced  description  of  image  texture  than  all  

previously proposed methods.
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