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Abstract
This paper describes an algorithm for the detection of ellipses and lines

in image edge data. Connected edge pixels are transformed into polygo-
nal approximations by a two stage algorithm. Then a second two stage
algorithm replaces combinations of lines by ellipses if the ellipse fit is
better. For each algorithm a combination of splitting and merging of the
data is used to enable global and local constraints to fit different rep-
resentations to the pixel data. All merging decisions use a significance
measure to replace a number of representations by a single representation
which removes the need for thresholds in the algorithms. The structure
of the algorithm allows any particular representation to describe the data
e.g. parabolae, splines, etc. instead of ellipses.

1 Introduction

In computer vision the extraction of meaningful features from images is an
important technigue. The most popular approach is based on edge detection.
For model based object recognition, edges must be represented in a more man-
ageable form than simply pixels. The type of representation required is highly
application dependent but is typically based on a combination of straight line
approximations and higher order curves such as arcs, conic sections, spline and
curvature primitives.

A number of techniques have been proposed for determining polygonal ap-
proximations [5] [10]. However it is only recently that attention has been con-
centrated on the extraction of higher order representations because of the in-
creased number of parameters or degrees of freedom and the ill-conditioned
nature of the problem [8] [4].

This paper describes a technique for generating a higher order description
by segmenting the edge data into combinations of ellipses and lines. There
are four stages used: (1) lines are fitted to connected lists of edge pixels using
Lowe's technique [3], (2) lines are grown by combining adjacent lines, (3) ellipses
replace lines and finally (4) ellipses are grown by combining with adjacent
lines and/or ellipses. In all stages replacement occurs only if the resultant
fit is better. The concept of better fit is that suggested by Lowe which is
termed a measure of significance. Significance is the maximum error between
the fitted representation and the data (a line fitted to pixels or an ellipse fitted
to lines) normalised by the length of the representation. The significance is a
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scale invariant measure which allows the replacing of (i) pixels by a line, (ii)
combinations of lines by a line, (iii) combinations of lines by ellipses and (iv)
combinations of lines and ellipses by ellipses. The same measure of significance
is used in all four stages removing the requirement for any thresholds.

Previously published results [8] have demonstrated the utility of ellipse and
line detection based on stages (1) and (3) of the technique described above.
In this paper an improved version of the line and ellipse fitting algorithms
is described which overcomes the disadvantages of using a binary search tree
for stages (1) and (3) by adding new stages (2) and (4). It is shown that the
addition of these stages improves the performance of the algorithm. In addition
the improvements have been added to the algorithm for detecting arcs and lines
(the LAD algorithm [11]).

2 Finding Representations

The problem of finding the optimum segmentation and hence representation
for any curve has resulted in a number of proposed solutions. Simple local
techniques such as segmenting at points of high curvature (vertices) and points
of change in the rate of change of curvature have been proposed as have more
global techniques such as segmenting at the point of maximum distance from
the curve to the representation. These usually result in a sub-optimal result. To
overcome the problem of using local constraints, context dependent local and
global techniques have been proposed. Fischler [2] investigated the performance
of people for segmenting curves for a number of objectives and discovered that
the points of segmentation varied depending on the objective. From the results
he proposed a technique that processed curves using large windows to attempt
to capture more global information. In fact it is only possible to correctly
segment a curve by taking into account the process that formed the curve e.g.
the resulting 2D projections of 3D objects under certain viewing conditions. In
addition a large number of curve models need to be available e.g. sine waves,
parabolas, etc.

Where the objective is to fit a particular representation, an almost optimal
technique can be formulated. All possible combinations of a particular repre-
sentation such as a line can be fitted to the curve and the combination with
the best goodness of fit chosen. Consider the case of dividing a curve up into
n segments of equal numbers of pixels. The task is to determine which of the
possible segmentation points can be removed, e.g. by combining two adjacent
segments to form one line. This is a combinatorially expensive process of order
O(2"~1). For example, for a curve 40 pixels long where n=8, eight 5 pixel long
lines is the maximum number of lines that can fit the curve and the minimum
is one. To determine the best combination, 128 combinations need to be con-
sidered. The combinatorics are compounded if an attempt is made to replace
combinations of lines by ellipses or some other representation in a second stage
of processing, or if different length segments are considered.

It would appear the best technique would be to restrict the number of com-
binations that need to be tested. This can be achieved by using a binary search
tree as proposed by many researchers [3] [6]. However this has disadvantages
as shown in section 3 because some combinations of adjacent representations
are never compared as they are in different branches of the tree. To improve
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Figure 1. Segmentation of curves

the results a second stage is added that compares these representations.

There are a number of other issues that have to be addressed when con-
sidering the segmentation of edge data into higher order representations. The
majority of algorithms, with the exception of [1], depend on pre-set parameters
to determine such things as the accuracy of fit, the scale at which breakpoints
are located, where breakpoints are, and thresholds for selecting the breakpoints.
However, the results obtained are dependent on the parameters. For the line
and ellipse fitting algorithm [8], breakpoints for the two stages are the well
known points of maximum error between the fitted straight line and the data.
These have the advantage of not requiring any parameters for their detection.
A subset of these become the vertices in the polygonal representation resulting
from the first stage. In the second stage groups of lines are replaced by ellipses
so the breakpoints between representations are still effectively vertices. How-
ever, these may not be optimal breakpoints for higher order representations
such as ellipses and it can be argued that other breakpoints such as points of
inflection should also be used. Most higher order representations have con-
tinuously varying curvature so the detection of breakpoints based on changes
in curvature is not valid. Higher order differentials are necessary which are
difficult to determine in discrete data.

3 Line Fitting

3.1 Stage (1): binary search tree

The line fitting technique used is the familiar recursive binary tree search.
Each curve is hypothesised to be a straight line, figure 1, and segmented at
the point of maximum deviation from the curve to the straight line. The
process is then repeated for each of the two curves recursively. When the
bottom of the tree is reached and the curve cannot be subdivided anymore,
tail recursion is used to combine together those lines for which the combined
line is a better representation than the other lines. This algorithm has been
described in detail elsewhere [11]. The important points to note are (1) the use
of points of maximum deviation for breakpoints and (2) the binary search tree
preventing all adjacent combinations of lines from being compared. Consider
the curve of figure 2a, the result of the algorithm is shown in 2b whereas the
intuitively correct result is that in 2c. Figure 3 shows the interpretation tree
for this curve. The tree shows that the curve has been segmented into the lines
a,b,c,d,e and f, some of which have been combined under tail recursion to give
the result of figure 2b.
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Figure 2. (a) original curve, (b) incorrect interpretation and (c) correct
interpretation

[abcdef]

[b] [c] [d] [e]

Figure 3. The interpretation tree for figure 2

3.2 Stage (2): combining adjacent lines

To overcome deficiencies such as shown in figure 2 a second stage is used that
compares all adjacent lines and combines them if possible. Consider the ex-
ample of figure 1 again. Figure 3 shows the tree that results from processing
this curve. Note the two lines that replace parts of the original curve [be] and
[de] are not compared at all in the tree, hence the incorrect result. The second
stage takes the representations [a], [be], [de] and [f] and computes the goodness
of fit for combinations of a selected representation and its neighbours. Possible
representations centred on [be] when compared and possibly combined with its
neighbours are: [abede], [abc]&[de], [a]&[bcde], and [a]&[bc]&[de] (unchanged)
where [AB] indicates one representation made up of previous representations
[A] and [B]. Note that [abc] has already been tested as [a] and [be] are adjacent
in the tree. The new representation is the one that gives the lowest signifi-
cance, the same measure used for the first stage. By iterating over the whole
curve until no further improvements can be made, all adjacent combinations
are tested. Using the second stage on the example of figure 2b should result in
representations [be] and [de] being combined resulting in the result of figure 2c
- the intuitively correct result. This is because the combination of [be] and [de]
should result in a lower significance than [be] and [de] individually.

For part of the curve of figure 2b, segment [be] and [de] each have a sig-
nificance of approximately 1/6 and segment [bede] has a significance of 1/12.
Hence [bcde] is a better representation that [be] or [de]. For a number of real
images, table 1 shows results for the total number of lines that result from
the original and improved line fitting algorithm. Each of these images contain
a number of generalised cylinders. iccv32 is the image for which results have
previously been presented for line and ellipse fitting [8].
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Image
name

mugs6
iccv32

can3
cyl21

Input
data

Number
of pixels

20870
14391
12887
17659

After 1st
stage

Number
of lines

1195
897
917
1257

After 2nd
stage

Number
of lines

1109
728
774
1166

Table 1. Results for line fitting.

Stage (2) has improved the results in all three images reducing the total
number of lines. The use of significance means that the algorithm favours lines
that are more significant than others. Note a weighting factor can be used to
force the algorithm to favour new combinations i.e. longer lines. Weighting the
new combinations by a factor less than 1.0 will give the new line an artificially
lower significance forcing the replacement by a longer line.

Figure 4 shows results for the image cyl21. For the original image of fig-
ure 4a, figure 4b shows the results of the new algorithm. The differences be-
tween the results of the old and new algorithms are shown in figures 4c and 4d.
Figure 4d shows the lines that replace the lines shown in figure 4c. Note that
many old lines have been replaced by fewer longer new lines.

4 Ellipse Fitting

4.1 Stage(3): binary search tree

The basic ellipse fitting algorithm has been presented elsewhere [8]. However
a short description is required for completeness. The result of the line fitting
algorithm is used as the input of the ellipse fitting algorithm which is, like the
line fitting algorithm, based on a binary search. Figure 5a shows the output of
line fitting for a curve consisting of two straight lines and one ellipse. In the
original algorithm, an iterative Kalman filter was used to fit an ellipse to the
endpoints of the curve. A standard least mean square conic fitting algorithm
is now used. Although this can generate hyperbolae and parabolae, it usually
generates ellipses if the curve is an ellipse. Non-ellipse fits are ignored by giving
the result a high significance value so it is always replaced. Replacing the
Kalman filter has not altered the results significantly but the algorithm is now
faster. Then the list of lines is split into two lists at the vertex of maximum
deviation from the ellipse. The algorithm is then repeated for the two lists.
Figure 5b shows the resulting interpretation after ellipse fitting which is not
correct. The single elliptic arc has been segmented into two elliptic arcs. The
intuitively correct result is shown in figure 5c. Figure 6 shows the interpretation
tree for figure 5b. Note that the two elliptic arcs [bed] and [efg] do not get
compared in the tree.

When the length of a list of lines reduces to only 5 lines (or 6 vertices) the
ellipse fitting is halted and tail recursion used to choose the combination of
lines and ellipses that best describe the list of lines in the sense of significance.
At each node in the tree the single ellipse describing the list of lines is chosen if
it has a better significance than any of the representations below it in the tree.



202

[c]
* [ a l m [bed] [a] ..

[h] [h] tbcdefg]

Figure 5. (a) result of line fitting, (b) incorrect oversegmentation, (c) correct
segmentation

[abedefgh]

:]
\

[b] [c] [f]
Figure 6. Interpretation tree for figure 5

A number of limitations occur with the algorithm which can be minimised
by the following techniques.

4.2 The use of soft breakpoints

Fitting ellipses to line data is more efficient that fitting to pixel data because of
the reduction in the number of points for ellipse fitting. However this prevents
attempts to fit an ellipse to less that 5 lines (6 vertices) since the fit will be
underdetermined. This leads to poor results as ellipses may be missed. It may
be that an ellipse would be a better fit to the pixel data than the line. To
overcome the problem of not being able to fit an ellipse to less that 5 lines, the
concept of soft breakpoints (edge pixel coordinates) is introduced. Consider the
hypothesis that an ellipse fits the pixel data better than one line. To confirm the
hypothesis 6 data points are required so 4 soft breaks points taken equidistant
along the pixel data are used along with the two vertices of the line. If the
ellipse is a good fit to the data, a lower significance value should occur. This
is the worst case scenario and the algorithm is adaptive such that soft break
points are only used when less that 5 lines are used. With three lines only
four vertices are available so one additional soft break point is needed for each
line. For two lines, two soft breakpoints per line are required. As such it a
variable resolution technique that adapts to the amount of data present using
the minimum required for the fitting so reducing computation. The alternative
of always fitting an ellipse directly to the pixel data is rejected because of the
increased computation in the least mean square conic fitting.



203

4.3 Stage (4): combining ellipses with adjacent ellipses/lines

To overcome the problem of using a binary tree, combinations of adjacent
ellipses and lines are tested in a way similar to that described for stage (2) of
line fitting. An ellipse will be combined with one or both of its neighbouring
lines/ellipses if the significance is better.

Stage (4) is an iterative process that examines each ellipse and determines
if it can be extended by combining it with the adjacent representation (line or
ellipse). There are four possible outcomes: (i) do not combine, (ii) combine
with the left representation, (iii) combine with the right representation and
(iv) combine with both representations. For each of these possibilities, the
significance measure (as used in the previous three stages) is determined. The
resulting representation chosen is the one that results in lower significances
(and hence more accurate fits). Iterating over all the ellipses until no further
changes can be made results in ellipses growing until further increase in size
results in reduced accuracy of fit.

Image
name

mugs6
iccv32

can3
cyl21

Input data
No. of
lines
1108
728
774
1166

After stage 3
No. of
lines
489
393
451
664

No. of
ellipses

132
76
89
142

After stage 4
No. of
lines
447
381
432
620

No. of
ellipses

130
72

140

Table 2. Results for ellipse fitting.

The results of table 2 show that the additional stage of ellipse growing
results in reduced numbers of ellipses and straight lines. Longer ellipses are
being generated by combining with lines and with some other ellipses. It is
interesting to note that there is an appreciable reduction in the number of lines
which implies the use of the point of maximum deviation is not an optimal
segmentation method for ellipses. However the shortcomings are reduced by
the use of the new stage. The effect of the new algorithm is shown in figure 7
for image cyl21. Figure 7a shows the results of the improved algorithm. Figures
7b and 7c show the differences between the two algorithms. Note that in most
cases one ellipse has been grown by combining it with lines. However, in some
cases, an ellipse has been grown by combining with ellipses and lines.

5 Results

To further demonstrate the performance of the new algorithm, results for a
number of images are shown in table 3. The results of the new algorithm are
shown along with the differences between the new four stage algorithm and the
original two stage algorithm. The differences show the original combinations
of features and those replaced by the new stages.
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Image
name

mugs6
cyl21

iccv32
can3
cup 3

Two stage algorithm
After

stage 1

No. of
lines
1195
1257
897
917
518

After
stage 2

No. of
lines
597
924
550
626
358

After
stage 2

No. of
ellipses

118
77
56
48
33

Four stage algorithm
After
stages
l a n d 2
No. of
lines
1109
1166
728
774
477

After
stages

3 and 4
No. of
lines
447
620
381
432
270

After
stages

3 and 4
No. of
ellipses

130
140
72
88
53

Table 3. Results for the old two stage algorithm and the new four stage
algorithm.

For all the images, the number of lines has been reduced and the number
of ellipses has increased. This is expected because more ellipses are being
detected at the expense of lines. Figure 8 shows some of a sequence of images
of a predominantly circular object. The straight lines and ellipses have been
extracted in all the images and can be tracked reasonably well.

6 Conclusion
The new four stage algorithm shows a significant improvement in performance
over the original two stage algorithm [8] for a small increase in computation. In
the spirit of the original algorithm, the new algorithm avoids the need for any
parameters. There are two reasons for the improvement. The first reason is
the use of soft breakpoints meaning that ellipses are adaptively fitted to what
can be regarded as the minimum number of points. For a curve consisting of
a large number of lines, just the vertices are used. For a part of the curve
consisting of less than 5 lines, other points are used to allow an ellipse to be
fitted in the overdetermined sense. The effect of soft breakpoints is to enable
ellipses to be fitted to more parts of the data than before resulting in more
ellipses being detected. The second reason is the use of the extra stages to
overcome the shortcomings of using a binary search tree. Lines and ellipses
already detected can be extended by combining with other ellipses and/or lines.
Currently a minor extension to deal with closed boundaries is being carried
out. The combining of adjacent lines/ellipses needs to be performed between
the first and last elements of a closed list. Although this is a minor extension
it is necessary for completeness. A further extension which can be used is to
refit the hypothesised ellipses to the original pixel data to get a better estimate
of each ellipse. Hence a good estimate of each ellipse can be determined after
segmentation.

The algorithm is made up of a number of stages that can be regarded as
splits and merges. The sequence of operations is split and merge (stage 1),
merge (stage 2), split and merge (stage 3) and merge (stage 4). Each split
uses global information to determine breakpoints and each merge uses local
information to remove breakpoints.

The improvements increase the usefulness of the algorithm for many appli-
cations which require the detection of ellipses in the 2D image (circles in 3D
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space) such as detection of generalised cylinders [9] and for bottom up percep-
tual grouping [7] [12].

Finally the algorithm can be easily modified such that any parametric curve
can be detected if a fitting algorithm is available e.g. splines and parabolae,
and has been extended to 3D curve data [13].
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Figure 4 ("•) Raytraced image of cylinders.

Figure 4 (b) Lines detected by improved algorithm.
Old lines (c) replaced by new algorithm with single lines (d)

Figure 7 (a) Ellipses and lines detected by improved algorithm
Old lines and ellipses (b) replaced by single ellipses (c).

Figure 8. Results for scene from different viewpoints.


