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Abstract This paper develops a novel adaptive gradient-based block compressive
sensing (AGbBCS_SP) methodology for noisy image compression and reconstruc-
tion. The AGbBCS_SP approach splits an image into blocks by maximizing their
sparsity, and reconstructs images by solving a convex optimization problem. The
main contribution is to provide an adaptive method for block shape selection, im-
proving noisy image reconstruction performance. Experimental results with different
image sets indicate that our AGbBCS_SP method is able to achieve better perfor-
mance, in terms of peak signal to noise ratio (PSNR) and computational cost, than
several classical algorithms.

Key words: Block Compressive Sensing (CS) Block Compressive Sensing (CS);
Adaptive; Convex Optimization; Sparsity

1 Introduction

Compressive Sensing (CS) is a sampling paradigm that provides signal compres-
sion at a significantly lower rate than the Nyquist rate [8]. It has been successfully
applied in a wide variety of applications in recent years, including image process-
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ing [5, 15, 18], Internet of things [23, 16], video [26, 17], and solder joint image
compression [28].

In this paper, we develop a novel CS algorithm named AGbBCS_SP for image
compression and reconstruction, which is particularly beneficial for noisy images.
The main contributions of this paper are summarized as follows:

• We propose a multi-shape block splitting strategy for block Compressive Sensing.
Besides splitting the image into square blocks, we also split it into rectangular
blocks with different shapes.

• Our adaptive Compressive Sensing scheme makes a practical assumption that
only a small, randomly chosen image part requires to be known. Our method
automatically selects the appropriate block shape which maximizes the sparsity
of the signal in the known region.

• We propose an adaptive approach to selecting a suitable control factor, by com-
paring the sparsity of the reconstruction results.

2 Related work

Compressive Sensing Algorithms: In recent years, many methods have been pro-
posed which can be roughly divided into several categories: (1) ConvexOptimization
Algorithms. These techniques solve a convex problem which is used to approximate
the target signal, including Greedy Basis Pursuit (GBP) [12]. (2) Greedy Iterative
Algorithms. Thesemethods includeOrthogonalMatching Pursuit (OMP) [24], Com-
pressive Sampling MP (CoSaMP) [20] and Subspace Pursuit (SP) [6]. (3) Iterative
Thresholding Algorithms. Such as Hard thresholding [2]. (4) Combinatorial / Sub-
linear Algorithms. such as Heavy Hitters on Steroids (HHS) [22]. (5) Non Convex
MinimizationAlgorithms. This techniques recover compressive sensing signals from
far less measurements by replacing the l1-norm by the lp-norm where p ≤ 1 [4]. (6)
Bregman Iterative Algorithms. When applied to CS problems, the iterative approach
using Bregman distance regularization achieves reconstruction in four to six itera-
tions [21].
Block Based Compressive Sensing (BCS): In the methods above, a column or row
of an image is normally viewed as a vector. But in many applications the nonzero
elements of sparse vectors tend to cluster in blocks [9]. In order to improve the
performance, [11] proposed and studied block compressive sensing for natural im-
ages and this method involves Wiener filtering and projection onto the convex set
and hard thresholding in the transform domain. [19] proposed a BCS_SPL method
with a variant of projected Landweber (PL) iteration and smoothing. [10] developed
BCS_SPL methods based on a smoothed projected Landweber reconstruction algo-
rithm. BCS_SPL has obvious defects since the Wiener filter and iterative projected
Landweber discard partial information in the image. [25] proposed a block com-
pressed sensing method based on iterative re-weighted l1 norm minimization. [27]
developed a block compressed sensing method for solder joint images based on
CoSaMP.
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3 Compressive Sensing Methodology

Given an image, the first step of CS is the construction of a k-sparse representation,
where k is the number of the non-zero entries of the sparse signal.And most natural
signals can be made sparse by applying orthogonal transforms, such as Wavelet
Transform, Fast Fourier Transform and Discrete Cosine Transform (DCT) [3].

For a noisy image, Compressive Sensing can be represented as:

y = ΦΨs+w, (1)

where w is an N-dimensional noise signal (or measurement error), Ψ is an N ×N
orthogonal basis matrix and Φ is an M ×N random measurement matrix (M < N).
As expected, signal x Eq.(1) may be estimated from measurement y by solving the
convex minimization problem [20] as follows.

argmin
x
‖Φx− y‖22 +λ‖x‖1. (2)

Generally Eq.(2) is a constrained minimization problem of a convex function.
One of the simplest methods for solving a convex minimization problem is the
gradient-based algorithm which generates a sequence xk via

x0 ∈ R
N, xk = xk−1− tk∇g(xk−1), (3)

where g(x) is a convex function, and tk > 0 is a suitable step size. For a signal in
Eq.(1), let us think about an objective function F(x) = g(x)+ f (x), where g(x) is
convex, and f (x) = λ‖x‖1 . In our method, it is more natural to study the closely
related problem Eq.(2)

At point xk−1, the function F(x) can be approximated by a quadratic function

QL(x, xk−1) = g(xk−1)+ < (x− xk−1),∇g(xk−1) > +
1

2tk
‖ x− xk−1 ‖

2
2, (4)

This problem can be solved by the gradient-based method, in which tk is replaced
by a constant 1/L which is related to the Lipschitz constant [1].

4 The Adaptive Block Compressive Sensing with Sparsity

4.1 Multi-shape Block Split Strategy

Given an N1×N2 image, it is split into small blocks of size n1×n2. Let fi represent
the vectorized signal of the i-th block through raster scanning, i=1, 2, . . . , K , and
K = N1N2

n1n2
. One is able to get an m-dimensional sampled vector yB through the

following linear transformation,
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yB = ΦB fi, (5)

where ΦB is an m× n1n2 measurement matrix, m� n1n2. The block CS method is
memory efficient as we just need to store an m×n1n2 Gaussian random matrix ΦB,
rather than a full M ×N1N2 one. Small data requires less memory storage and allows
faster processing, while large data produces more accurate reconstruction.

In existing methods, the blocks in the Block Compressive Sensing are fixed as
squares. However, there are many different block aspect ratios with the same number
of pixels. Unlike common methods, we split the image into different shapes. Given
an N ×N image (assuming N is a power of 2 for simplicity), the shape of block is
w× h, so 

w = 2a,
h = 2b,
a = 0,1,2,3, ... log2 N .
b = log2 N − a,

(6)

For example, 9 aspect ratios are defined to split a 256× 256 image with the
following block-shapes: 1×256, 2×128, 4×64, 8×32, 16×16, 32×8, 64×4, 128×2
and 256×1. As we will discuss later in section 5.1, some block shapes (especially
those closer to squares) are more likely to provide effective reconstruction. Also,
using closer-to-square blocks alsomeans that these blocks can be fit in smaller square
regions, e.g. 8×32, 16×16, 32×8 blocks can be fit in 32×32 squares,whereas 1×256
blocks cannot. As we will discuss in section 4.2, this makes adaptive selection more
effective. Detailed discussions will be presented in experimental results.

4.2 Adaptive Block Shape Selection

In most cases, the information of the entire signal (image) is unknown. It is hard
to select one block shape from several shapes if the image content is unknown. So
we make a practical assumption that only a small part of the image is known and
propose a new approach based on sparsity for block shape selection. We highlight
the block shape selection step in our approach.

First, we randomly select a small percentage of image pixels that make up known
regions. These regions are then split into smaller block shapes considering the various
aspect ratios specified in Eq.(6). We reconstruct them, calculate their sparsity, and
then select the block shape which maximizes sparsity.

For an image, firstly, it is split into T non-overlapping regions with size P×Q,
where K1 = T × p are known regions, and p is the proportion. So K1 regions (size
P×Q) are selected. There are K2 block sizes in Eq.(6) wk × hk, (k = 1,2, ...,K2) that
fit within P ×Q regions. Then for K1 regions (size P ×Q), they are split into K3
blocks with size of wk × hk . Given that x̂ is defined as the reconstructed result in
Eq.(2), the summed sparsity of its blocks is defined as
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Algorithm 1: Block Shape Selection with Sparsity
Input : An input image s, a percentage p;
Output
:

The selected block size w×h

Procedure:
Step 1:Split s into T blocks with size of P×Q,K1 =T × p
K1 regions (each of size P×Q) are selected, and those regions collectively form ŝ.
Step 2: K2 block shapes are considered: w1 ×h1,w2 ×h2, ...,wK2 ×hK2 .
ŝ is split into K3 blocks altogether with wk ×hk through Eq.(6)
For the k-th block size ŝ={s̃(k)(1), s̃(k)(2), . . ., s̃(k)(K3)} .
for k = 1 to K2 do

ŝ(k) = ∅.
for j = 1 to K3 do

Add a new signal s̃(k)(j) to ŝ(k).
end

end
for k = 1 to K2 do

Get x̂k through Eq.(2) with ŝ(k)

Spk
= l0ε

(
x̂k ≤ ε

)
through Eq.(7),

end
Spd
=max {Sp1, Sp2, ..., Spk

}

The d-th block shape is chosen, and the block size is wd ×hd .
Output wd and hd .

Sp = l0
ε

(
x̂i, j ≤ ε

)
, (7)

where x̂i, j is the element at location (i, j) in x̂ the reconstructed result and l0
ε(·) is a

function defined in [13]. Thus, we propose the adaptive block shape selection with
sparsity algorithm whose details are shown in Algorithm 1. For example, given a
256×256 image, we set p= 0.25. We consider splitting the image intoT = 64 regions
of size P×Q = 32× 32, and K1 = 64× 0.25 = 16 blocks are randomly selected, so
that K3 = 16×4 = 64. With 32×32 regions, we consider K2 = 3 block sizes 8×32,
16×16 and 32×8 which fit within the region.

4.3 Adaptive Block Compressive Sensing with Sparsity Algorithm

During the minimization of Eq.(2), λ can be used to improve the result with different
sampling rate. Usually λ =M/4, but in our proposed method, we set λ ∈ [1,100], and
we adaptively choose λ such that the largest sparsity is achieved. Thus, we propose
our AGbBCS_SP algorithmwhose details are shown in Algorithm 2, where the basic
sparse optimization is based on [28].
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Algorithm 2: Adaptive Gradient-based Block Compressive Sensing
Input : An image I of size N ×N ; a sparse signal transform matrix Ψ ∈ RN×N ; a

measurement matrix Φ ∈ RM×N ; M is the sample number; Lipschitz constant
L = 0.5; the number of iterations J =M/4.

Output
:

The reconstructed image s.

Procedure
Step 1: I is split into T regions, and p is a percentage, K1 =T × p regions are selected.
One block shapeW ×H is chosen by Algorithm 1, I is split into K4 blocks withW ×H
block size.

Step 2: Set the block counter k=1, λ = 1, and the iteration counter j=1, Spmax = 0.
while λ ≤ 100 do

while k ≤ K2 do
Transform each block into a data vector; y0 = x0 = 0 ∈ RN , t1 = 1;
while j ≤ J do

zkj = PL(yk
j ), solved through [28].

tk
j+1 =

1+
√

1+4t k2
j

2
xk
j =argmin{F(xk ) : xk = zkj , x

k
j−1 }

yk
j+1 = xk

j +
t kj

t k
j+1
(zkj − x

k
j )+

t kj −1
t k
j+1
(xk

j − x
k
j−1)

end
Collect all the x̂k

J to form x̂.
end
Sp = l

0
ε (x̂ ≤ ε) through Eq.(7),

If Sp > Spmax

Spmax = Sp

ˆ̂x = x̂
Endif

end
s′ = Ψ−1 ˆ̂x.
For each one-dimensional data vector in s′, transform it into aW ×H block.
Collect all the blocks to form the reconstructed image s.

5 Experiments and Discussion

In order to evaluate the quality of the reconstructed results, many researchers used
the Peak Signal to Noise Rate (PSNR) to measure the result quality in image pro-
cessing. In our study, the PSNR is also used to compare the experimental results.
The experiments were implemented on a Intel Core i5 with 2.70 GHz CPU. The test
images include some standard ones (such as woman), INRIA Holidays dataset (812
images) [14] to which salt & pepper noise is added with δ = 0.05 by default. Since
some methods require the image size to be a power of 2, we have cropped all the
images to 256×256.
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5.1 Experiments with different block aspect ratios

Given a 256×256 image, the block-shapes 1×256, 2×128, 4×64, 8×32, 16×16, 32×8,
64×4, 128×2 and 256×1, are considered. We used the INRIA Holidays dataset,
containing 812 images and the noise is set δ = 0.05. With sample number M = 128
and λ = M/4, we run different block shapes. Then we select the best shape, and the
number of times that each block shape is best is shown in figures 1 (a) and (b) for
the two datasets, respectively.

Fig. 1 The number of images that each block shape is best in the INRIA Holidays datasets.

We can find that a square block cannot always get the best results, and 8× 32,
16×16, and 32×8 can achieve the top three results. So in our AGbBCS_SP method,
three block shapes are chosen. As described above, we consider splitting a 256×256
image into 64 regions, each of size 32×32, and 64×0.25 = 16 blocks are randomly
selected to calculate sparsity in the three block shapes. Then we choose the block
shape which can get maximum sparsity for the given image.

5.2 The comparison of reconstruction results

Now let us compare the proposed AGbBCS_SP with the popular methods SP [6],
OMP [24], BOMP [9], CoSaMP [7], BCoSaMP [27] and BCS_SPL [10]. In BOMP,
BCoSaMP and BCS_SPL, the block size is set to a square block (size 16×16). The
test image woman is used (size 256× 256) with added noise δ = 0.03, as shown
in figure 2 (a). The reconstruction results based on popular methods with sample
number M = 200 are shown in figures 2 (b-g) and the reconstruction result based on
our AGbBCS_SP with the same sample number, is shown in figure 2 (h).

We can see that our method can achieve a better result than SP, OMP, BOMP,
CoSaMP, BCoSaMP and BCS_SPL. With more noise added and M = 128 in test
image woman, the PSNR comparisons are shown in figure 3(a). One can see from
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(a) Noisy image (b) SP(17.3dB) (c) OMP(18.0dB) (d) CoSaMP(16.7dB)

(e) BOMP(18.1dB) (f)
BCoSaMP(17.0dB)

(g)
BCS_SPL(20.3dB)

(h) AGb-
BCS_SP(21.2dB)

Fig. 2 Reconstruction results based on different methods

(a) Different noise level (b) Different sampling

Fig. 3 PSNR comparison based on different noise level added

figure 3 (b) that when δ > 0.025, our method achieves a better PSNR result than
BCS_SPL. With increasing samples in the noisy image (see figure 2 (a)) the PSNR
comparisons are shown in figure 3 (b) that. And compared to SP, OMP, BOMP,
CoSaMP and BCoSaMP, our method can achieve best result.

In the next experiment, we used the INRIA Holidays datasets with added noise
δ = 0.05. The comparison results are shown through the experiments with different
sample numbers (from 0.1 to 0.9). The results are shown in figures 4 (a) and (b).

From figure 4, one can see that the proposed approach can always obtain better
results in terms of PSNR as compared to SP, OMP, BOMP, CoSaMP, and BCoSaMP.
Increasing the number of samples can improve the reconstruction results. When the
sampling rate u = M/N > 0.3, the proposed algorithm can achieve better results
than BCS_SPL too. With an increasing number of samples, BCS_SPL gets worse
reconstruction results.
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Fig. 4 Quantitative comparison based on different methods for INRIA datasets.

6 Conclusions

This paper proposes an adaptive gradient-based block compressive sensing (AG-
bBCS_SP) approach on the basis of the sparsity of the image. Experiments reveal
that, in block compressive sensing, the square block shape cannot always produce the
best results. Our algorithm can adaptively achieve better results by using the sparsity
of pixels to adaptively select block shape. The proposed algorithm can achieve the
best results in average PSNR than classical algorithms, SP, OMP, BOMP, CoSaMP,
BCS_SPL and BCoSaMP with different datasets.
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