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ABSTRACT

Estimating 3D hand pose and recovering the full hand surface
mesh from a single RGB image is a challenging task due to
self-occlusions, viewpoint changes, and the complexity of
hand articulations. In this paper, we propose a novel frame-
work that combines an attention mechanism with heatmap
regression to accurately and efficiently predict 3D joint lo-
cations and reconstruct the hand mesh. We adopt a pooling
attention module that learns to focus on relevant regions
in the input image to extract better features for handling
occlusions, while greatly reducing the computational cost.
The multi-scale 2D heatmaps provide spatial constraints to
guide the 3D vertex predictions. By exploiting the comple-
mentary strengths of sparse 2D supervision and dense mesh
regression, our method accurately reconstructs hand meshes
with realistic details. Extensive experiments on standard
benchmarks demonstrate that the proposed method efficiently
improves the performance of 3D hand pose estimation and
mesh recovery. The reproducible recipes are available at
https://github.com/SDiannn/AHRNET-Heatmap.

Index Terms— Hand Pose, Mesh Recovery, Deep Learn-
ing, Human-computer Interaction, Heatmap

1. INTRODUCTION

Hand pose estimation and surface reconstruction from single
RGB images enable many applications in human-computer
interaction [1, 2, 3, 4, 5], augmented/virtual reality [6, 7],
and robotics [8]. However, this task remains challenging due
to complex hand articulations, self-occlusions, and viewpoint
variations. Whilst data-driven deep learning approaches have
achieved promising results, efficiently predicting accurate 3D
hand joints and reconstructing a realistic surface mesh from
limited 2D supervision remains an open challenge.

Prior model-based methods use an articulated hand model
and optimize model parameters to fit observations. However,
these methods often fail to capture finer details of hand ge-
ometry. More recent data-driven approaches utilize neural
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Fig. 1. A simple game interaction scene. (a) A scene in which
the linear blend skinning model of the hand is driven by the
predicted 3D joint points of the hand in the video to interact
with the object at low FPS. (b) Interactive scene at high FPS.
At low FPS, there is a possibility that the prediction of the 3D
joint points of the hand in a certain frame is inaccurate, re-
sulting in abnormal hand deformation when driving the linear
blend skinning model of the hand, as highlighted by the ex-
ample in the red circle where the finger deforms abnormally.
Best viewed in color.

networks and large datasets to learn a direct mapping from
an input image to 3D hand pose and shape. While achiev-
ing more realistic outputs, these methods still struggle with
occluded joints, limited training data, and computational con-
straints.

Recently, driven by the evolution of the Transformer
architecture in natural language processing, the Vision Trans-
former (ViT) [9] has successfully introduced the Transformer
architecture into the field of computer vision. This ground-
breaking development has brought new perspectives and
approaches to computer vision research. With this trend,
Transformer-based models have spurred various computer
vision tasks, including object detection, semantic segmen-
tation, and video understanding, achieving impressive re-
sults. Currently, a plethora of research has adopted this
approach to address tasks such as hand pose estimation and
mesh reconstruction, yielding remarkable outcomes [10, 11].
METRO [10] is a pioneering work in human mesh recov-
ery via Transformer, showcasing significant superiority over
other methods. However, it demands substantial compu-
tational resources. To address this issue, FastMETRO [11]
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Fig. 2. The overall architecture of our AHRNET for 3D hand pose estimation. The light blue background shows the multi-scale
heatmap module. The high-resolution feature map obtained by the high-resolution feature extraction module is passed to four
different branches, namely the global feature branch, the joint heatmap branch, the vertex heatmap branch and the attention
feature branch. The figure on the right shows the multi-scale heatmap module structure. Best viewed in color.

introduces a novel Transformer encoder-decoder architecture,
tackling bottlenecks by disentangling the interactions.

While Transformer-based approaches have demonstrated
promising results, they still face challenges in effectively
handling tasks like hand pose estimation and mesh recovery.
In this paper, we propose an Attention and Heatmap-based
Regressor (AHRNet) for hand pose estimation and mesh re-
covery. We also construct a simple game scene scenario to
test and demonstrate the effectiveness and efficiency of our
algorithm, as shown in Figure 1. The main contributions can
be summarized as follows:

• We propose the new AHRNet for 3D hand pose esti-
mation that has achieved comparable performance to
state-of-the-art works on public datasets while offering
improved efficiency.

• In the network architecture, we utilize multi-scale
heatmaps and multi-layer transformer encoder-decoder
modules to enhance performance.

• To improve interaction efficiency, we employ a high-
resolution feature extraction module to greatly boost
the algorithm’s efficiency, enabling better virtual inter-
action for the user.

2. OUR APPROACH

The 3D hand pose estimation task based on RGB images I ∈
RH×W aims to estimate the 3D joint positions P ∈ RJ×3 of
the hand in the camera coordinate system from a given RGB

image, where H and W denote the height and width of the
input hand image, respectively, and J is the total number of
hand joints, usually 21. Accurately estimating the relative
depth coordinates of each finger joint in an RGB image is a
challenging task.

Regression-based methods first extract joint-related fea-
tures and detection-based methods utilize convolutional neu-
ral networks to generate heatmaps from extracted features and
accurately obtain hand joint positions. Our proposed method
combines regression-based and detection-based approaches.
First, we use the regression method to predict the 3D ver-
tex coordinates and 3D joint coordinates of the hand, and
then project them into the 2D image respectively through the
camera parameters (scale, translation-x, translation-y). At the
same time, we use multi-scale heatmaps (vertex heatmap and
joint heatmap) to supervise these two projections and obtain
features related to the projection from the features extracted
from the input RGB image. This feature is used to further
predict the 3D vertices and 3D joints of the hand. The de-
tails of the proposed method are as shown in Figure 2, which
mainly consists of three modules: the high-resolution feature
extraction module, the multi-scale heatmap module, and the
multi-layer transformer encoder-decoder module.

2.1. High-Resolution Feature Extraction Module

Although frameworks such as Swin-Transformer [12] could
extract plausible feature representation, however, as the num-
ber of layers increases, the resolution of the feature continu-
ously decreases. Experimental analysis shows that the high-
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resolution image features help the Transformer to regress
the 3D coordinates of the human joints and mesh vertices.
In order to obtain high-resolution feature maps, we need to
aggregate different-resolution features from different layers.
Specifically, we upsample the low-resolution image features
from each module to obtain high-resolution features, which
are then summed with the high-resolution features from the
previous module to obtain fused high-resolution features.
Next, we process these fused features to obtain the final
high-resolution features.

2.2. Multi-scale Heatmap Module

Through the high-resolution feature extraction module, we
obtain global features and high-resolution features, which
are then passed to the vertex heatmap branch, joint heatmap
branch, and attention feature branch. The structures of these
branches are shown on the right side of Figure 2. We employ
the Resblock [13] module to process the high-resolution fea-
tures. Firstly, the obtained high-resolution feature map (size
D × H

4 × H
4 , D = 64) is input to the Resblock module.

For the vertex heatmap branch, the vertex number N1 in the
Resblock module is set to 195, representing the number of
3D hand vertices. For the joint heatmap branch, the vertex
N2 is set to 21, representing the number of 3D hand joints.
The dimension of the attention map feature N3 is set to 512.

Through this network, we obtain the vertex heatmap fea-
ture fv ∈ N1 × H

4 × H
4 (N1 = 195), the joint heatmap feature

fj ∈ N2 × H
4 × H

4 (N2 = 21), and the attention map fea-
ture fa ∈ N3× H

4 × H
4 (N3 = 512). Next, the vertex heatmap

features and joint heatmap features are concatenated and mul-
tiplied with the transposed attention map feature matrix by the
Softmax layer to obtain two-scale heatmap features fs. The
features are used as vertex queries and joint queries for subse-
quent Transformers. Additionally, the vertex heatmap feature
is transformed into a feature of dimension (1, B, 512) through
a fully connected layer, serving as the initial weak-perspective
camera parameter query (cam-queries).

2.3. Multi-layer Transformer Encoder-Decoder Module

Inspired by the progressive dimension reduction scheme in
[10] and the novel transformer encoder-decoder architecture
in [11], we have designed a progressive dimension reduction
transformer encoder-decoder architecture for regressing the
final 3D hand vertices and 3D joints. We use the global fea-
tures as the Key and Value in the decoder, and the features
fs as the queries in the decoder. By incorporating the cross-
attention module in the decoder, we can effectively capture
the non-local relationships between hand joints and mesh ver-
tices. Ultimately, we obtain the joint features Xj ∈ RN2×2D

and vertex features Xv ∈ RN1×2D together. Additionally, we
employ the progressive attention masking scheme proposed
in [14], which focuses more on the vertices and joints within

different distance thresholds during the learning process.

2.4. Loss Function

This method employs five loss functions for training, includ-
ing vertex loss Lvert, 3D joint loss Lj3d, 2D joint loss Lj2d,
and vertext heatmap loss Lv hp and joint loss Lj hp. These
five loss functions have been introduced and utilized in pre-
vious research [10, 11, 14]. The vertex loss Lvert uses the
L1 loss function to calculate the difference between predicted
vertices and ground truth vertices. The 3D joint loss Lj3d uses
the mean squared error (MSE) loss function to calculate the
difference between predicted joints and ground truth joints, as
well as the difference between the 3D joints regressed from
predicted vertices and the ground truth joints. The 2D joint
loss Lj2d uses the L1 loss function to calculate the differ-
ence between the projected 2D joint points of predicted ver-
tices using camera intrinsic parameters and the ground truth
2D joint points. It also calculates the difference between the
projected 2D joint points of predicted 3D joints using camera
parameters and the ground truth 2D joint points. To calculate
the difference, the vertex heatmap loss Lv hp utilizes binary
cross-entropy loss and Dice loss [14]. The calculation pro-
cess for Lj hp is the same as described above. In the end, our
overall loss function is defined as follows:

Ltotal =Wvert × Lvert +Wj3d × Lj3d +Wj2d × Lj2d

+Wv hp × Lv hp +Wj hp × Lj hp

(1)

where Wvert, Wj3d, Wj2d, Wv hp, Wj hp are the balance fac-
tors, which are set to 0.01, 0.1, 0.01, 0.5, and 0.5, respectively.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Implementation details

All the experiments of our AHRNet are trained using the
Adam optimizer with a batch size of 8 on Geforce 4090
GPUs by PyTorch. We record the model parameters saved by
PyTorch for METRO [10], Fast METRO [11] and our AHR-
Net. The size of METRO and Fast METRO are 230.4M and
153.0M, respectively, and our model is 52.3M. Hence, the
proposed modules do not bring substantial parameter incre-
ments to the compared models. For training time, METRO
and Fast METRO take around 1.05×103 ms and 0.9×103 ms
per iteration, and our AHRNet is 0.72 × 103 ms, while
for inference time, METRO and Fast METRO take around
0.51 × 102 ms and 0.46 × 102 ms per iteration under batch
size 1, and our AHRNet is about 0.3× 102 ms.

3.2. Comparison with state-of-the-art methods

To demonstrate the effectiveness of the proposed AHRNet,
we make comparisons with state-of-the-art methods and re-
port the results on the FreiHand dataset in Table 1. Similar
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    (a)                   (b)                   (c)                   (d)                  (e)

Fig. 3. (a) is the visualization of the 3D joint points and
meshes of the Freihand dataset; (b) is the visualization of the
two-dimensional joint points of the RHD dataset; (c) is the
visualization of hand images captured by ourselves; to gain
a more comprehensive understanding of our method, we con-
duct additional experiments with complex backgrounds, vary-
ing lighting as shown in (d); (e) gives the qualitative results
with and without these three modules corresponding to Table
3, from top to bottom gives the result with A1, (b) is with A2,
(c) is with A2 + G, and (d) is our AHRNet. The detail im-
provement please refer to the red dash circle.

to [15], we increase the number of blocks to boost the per-
formance. The last two rows represent small and large mod-
els respectively. From Table 1, it can be observed that our
model obtains 6.7 PA-MPJPE. The comparison results reveal
that our model achieves nearly identical performance but at a
higher frame per second (FPS). We also provide the compar-
ative results of the RHD and DO dataset in Table 2. While
some methods outperform our proposed approach in terms of
performance [16, 17], they either fail to acquire high-quality
hand mesh data or suffer from slow processing speeds, mak-
ing them inadequate for the requirements of interactive tasks
in virtual environments. We believe that our AHRNet can
extract plausible and powerful features, and also be more ef-
ficient. Comparative experiments on the FreiHand, RHD and
DO datasets verify the superiority of our method.

3.3. Ablation studies

For a deeper understanding of the proposed three modules,
we provide quantitative and qualitative ablation studies with
and without these modules on the FreiHand dataset in Table 3
and Fig. 3(e). Since the multi-scale heatmap and multi-layer
transformer encoder-decoder module these two modules are
used in a multi-level manner, we add them into the baseline
one by one. Finally, based on the multi-scale heatmap mod-
ule, this paper achieves the best accuracy and performance.
To verify AHRNet is workable and beneficial, we also con-

Table 1. Performance comparison on the FreiHand dataset
with state-of-the-arts.

Methods FPS Params FLOPs PA-MPJPE↓ F@15 mm
FreiHAND [18] – – – – 0.935
Pose2Mesh [19] – – – 7.7 0.969
I2LMeshNet [20] – – – 7.4 0.973

METRO [10] 19.55 183.8M 41.47G 6.8 0.981
FastMETRO [11] 21.88 133.9M 30.56G 6.5 0.982

Our AHRNet-cls-S12 42.02 27.68M 33.07G 7.2 0.978
Our AHRNet-cls-S24 32.29 37.24M 34.69G 6.7 0.981

Table 2. Performance comparison on RHD dataset and DO
with state-of-the-arts.

Methods AUC of PCK↑ AUC of PCK↑
Zhang et al [21] 0.901 0.825

Rong [22] 0.934 –
Cui-GCN [23] 0.933 0.77

Gu [24] 0.936 –
Our AHRNet 0.943 0.942

Table 3. Ablation study on FreiHand dataset. A1 denotes the
multi-layer transformer encoder-decoder module, A2 denotes
the high-resolution feature extraction module, G denotes the
multi-scale heatmap module.

Methods PA-MPJPE↓ F@15 mm
a. Baseline 7.24 0.978
b. Baseline + A1 7.06 0.979
c. Baseline + A2 7.13 0.979
d. Baseline + A2 + G 6.86 0.980
e. Baseline + A1 + A2 + G 6.74 0.981

duct qualitative experiments as shown in Figure 3.

4. CONCLUSION

In this paper, we have proposed a new attention and heatmap-
based network AHRNet for 3D hand pose estimation and
mesh recovery from monocular RGB images. The core of our
framework is the incorporation of multi-scale heatmaps and
attention masks at multiple network stages. The heatmaps
provide 2D spatial constraints to guide 3D pose regression,
while the attention masks model complex vertex relationships
to handle occlusions. By focusing computational resources on
key image regions, these modules greatly improve efficiency
and enable real-time performance. Through experiments on
public benchmarks like FreiHand, we have demonstrated that
our method achieves comparable state-of-the-art performance
in accuracy while being 1.5x more efficient.
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