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A B S T R A C T

Depth images can be easily acquired using depth cameras. However, these images only
contain partial information about the shape due to unavoidable self-occlusion. Thanks
to the availability of large datasets of shapes, it is possible to use a learning-based
approach to produce complete shapes from single depth images. State-of-the-art gen-
erative adversarial network (GAN) architectures can produce reasonable results. How-
ever, the use of relatively local convolutions restricts GAN architectures from producing
globally plausible shapes. In this study, we develop a novel dynamic latent code selec-
tion mechanism in which the model learns to select only important codes from the latent
space. Furthermore, a novel 3D self-attention (3DSA) layer is introduced that is able to
capture non-local relationships across the 3D space. We further design a GAN archi-
tecture that uses a multistage encoder-decoder to recover the shape, where our 3DSA
layer is introduced to the discriminator to help attend to global features, which stabilizes
the model learning and encourages shape refinement, making our reconstruction more
structurally plausible. Through extensive experiments, we demonstrate that our method
outperforms other state-of-the-art methods for single depth image 3D reconstruction.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

Many tasks of modern technology, such as robotic vision2

and obstacle avoidance, rely heavily on 3D reconstruction for3

which depth images are a common source of data. Until re-4

cently, capturing depth information was challenging, but with5

the availability of low-cost depth cameras, depth images can6

now be quite easily obtained, allowing datasets to be created [1]7

that make possible novel applications such as virtual reality8

(VR) [2, 3]. However, estimating the full 3D shape from a9

depth image, which only represents one viewpoint, is still chal-10

lenging. Since a depth image only contains partial information11

about the shape due to unavoidable self-occlusion [4], shape12

completion is naturally present as part of many 3D application13

pipelines, e.g., SLAM [5], robot grasping [6] or autonomous14
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driving [7]. A single depth image may not be sufficiently de- 15

scriptive to fully reconstruct a shape, causing holes and spuri- 16

ous surfaces in the reconstruction. Ideally a system should be 17

able to cope with such difficult or unusual viewpoints. The al- 18

ternative, capturing sufficient depth maps to form complete 3D 19

data, is not feasible for many real-world applications due to the 20

increase in cost and time. For example, in indoor scene model- 21

ing, capturing complete furniture would be near-impossible due 22

to substantial occlusion. 23

Our work focuses on reconstructing a 3D shape from a sin- 24

gle depth image using a 3D convolution neural network (CNN). 25

The CNN approach shows impressive results compared to other 26

non-learning-based models [8, 9, 10] where the bounding ray 27

cone or voxel hashing are used. Non-learning models usually 28

require multiple viewpoints of the shape, while the learning- 29

based models can learn from existing full shapes to reconstruct 30

complete shapes from single depth images [11, 12], or single 31

RGB images [13, 14, 15]. 32

In this work, we present a model capable of producing a com- 33
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Fig. 1. The generator turns an input volume from a depth image to a high-resolution 3D volumetric output.

plete shape from a single depth image. Given a 2.5D depth im-1

age as input, the model can learn to reconstruct a high resolu-2

tion shape. As shown in Figures 1 and 2, an end-to-end learning3

model containing a sequence of multiple encoder-decoders with4

global and local skip links is trained to complete the volumet-5

ric shape, where the later stages take both the input and outputs6

from previous stages to further improve completion. We also7

introduce a self-attention layer that helps refine the 3D shapes,8

mimicking the human ability to focus on a region of interest in9

the volumetric space. In addition, if a 3D shape is missing cer-10

tain features (e.g., due to occlusion), self-attention aids in im-11

proving its details by exploiting clues from non-local regions.12

Such non-local information is useful as only partial single-view13

depth is given. For example, the geometry of one table leg gives14

a useful clue for reconstructing the other table legs. We fur-15

ther introduce a dynamic latent space where the model has the16

ability to select only relevant codes to estimate 3D shapes. As17

we will later demonstrate, this strategy provides a strong sparse18

regularization that improves the robustness. Furthermore, we19

extend the shape completion to a multi-task setting, where the20

generated shape is further classified into one of the object cat-21

egories, as shown in Figure 3. As properly completed shapes22

are easier to classify, these two tasks help with each other, con-23

tributing to improved shape completion results.24

Our contributions are:25

• We propose a cascade architecture consisting of multiple26

encoder-decoder blocks with additional skip links, which27

provides better 3D reconstruction than a single encoder-28

decoder.29

• We incorporate a self-attention layer to refine the 3D30

shapes, mimicking human ability to focus on a region of31

interest in the volumetric space.32

• We introduce a dynamic latent space where the model has33

the ability to select only relevant latent codes to estimate34

3D shape. This provides a strong sparse regularization that 35

enhances the robustness of the network. 36

• A classifier network is introduced as an auxiliary task to 37

provide additional guidance to the reconstruction model. 38

Extensive experiments show that our method outperforms state- 39

of-the-art methods. 40

2. Related Work 41

Our work reconstructs a complete 3D shape from a single 42

depth image, so we review related papers which use either a 43

single RGB or depth image as input to reconstruct a 3D ob- 44

ject. This is a challenging problem, and has received significant 45

attention in recent years. Reconstructing 3D shapes from sin- 46

gle RGB images requires addressing the domain differences, 47

as it can be difficult to obtain training data in both domains. 48

Yan et al. [16] built a model that uses RGB images as input. 49

The authors generate the dataset inputs by using projection (i.e. 50

rendering). The projection was made from 24 different angles. 51

Furthermore, the network model contains a 2D encoder and a 52

3D decoder, and the authors add a transformer layer to get tar- 53

get projection. However, the model results in shapes that are of 54

low resolution. Yu et al. [17] took multiview images as input. 55

They estimated a depth image for each input image. After that, 56

they reconstructed a coarse volumetric shape by fusing mul- 57

tiview depth images, and then utilized a refinement model to 58

reconstruct a high-resolution shape. 59

Xie et al. [18] took a similar approach, but the model has 60

a fused network where high-quality parts are selected and 61

fused. By applying a differentiable renderer on the recon- 62

structed shape, Huang et al. [19] found nearest neighbor images 63

from the dataset to semantically enhance the reconstructions. 64

Wu et al. [13] employed synthetic data as ground truth to disen- 65

tangle unwanted features like color and texture. After that, the 66

model is fine-tuned on realistic appearance images to improve 67
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Fig. 3. The classifier that classifies the type of the shape helps the generator
to produce shapes with proper structure and details to improve the chance
of correct classification.

its performance. Zhang et al. [14], on the other hand, used a1

depth estimator as a middle step before generating a 3D shape,2

in a way similar to [13] but with skip links used for shape re-3

finement. Wu et al. [15] estimated the 2.5D depth image from4

a given 2D image before reconstructing a full 3D shape. They5

proposed to penalize the reconstructed shape according to the6

lack of realism of its appearance. Xian et al. [20] also estimated7

multi-depth images as an intermediate step, and then projected8

the depth images to a point cloud followed by voxelization. Hui9

et al. [21] estimated topology as a step before predicting a mesh.10

Hafiz et al. [22] took a different approach, using a single en-11

coder and multiple decoders to predict point clouds from mul-12

tiple viewpoints, which were then fused to obtain a complete13

shape.14

The approach Kurenkov et al. [23] investigated was recon-15

struction through deformation. The authors suggested retriev-16

ing the closest shape from the dataset to the given input image.17

Then both the image and the retrieved shape are used as in-18

put for the model. The output of the model is a vector con-19

taining an offset of control points for free-form deformation20

(FFD). Kanazawa et al. [24] demonstrated deforming a mesh21

shape based on an image collection as ground truth rather than 22

a 3D shape. Their model also learns to find the keypoints used 23

for mapping the input texture. Wang et al. [25] worked on de- 24

forming a mesh driven by a single image; the model consists 25

of three blocks: the first block deforms an ellipsoid mesh and 26

each following block completes the deformation by increasing 27

the number of vertices. 28

Wen et al. [26] also deformed an ellipsoid. However, fea- 29

tures extracted were split to edge features and local features, 30

and the edge features were used to deform the ellipsoid to a 31

coarse shape while local features were for refining the shape. 32

Richter and Roth [27] built a 3D shape from a single image 33

where the method reconstructs a low resolution model, along 34

with depth images for each higher resolution. The shape is then 35

obtained through the fusion of those images. Peng et al. [28] 36

utilized a transformer for each view’s latent codes before fusing. 37

Lin et al. [29] generated 3D data from multiple viewpoints of an 38

image by using an image encoder and a 3D decoder, which are 39

then combined to produce a complete shape. In addition to us- 40

ing a 2D-encoder and a 3D-decoder, Gao et al. [30] also trained 41

a 3D autoencoder to concatenate the latent codes for enhanced 42

reconstruction. In the works of [31, 32] a single image is used 43

as input and a mixed dataset of labeled and unlabeled samples 44

for training. Robert et al. [32] employed two models, each one 45

is responsible for reconstructing a partial shape, while Jiang 46

et al. [33] introduced two losses: a geometric loss that forces 47

each view of the reconstructed shape to be close to the ground 48

truth, and an adversarial loss that is responsible for finding the 49

differences in the output and the ground truth. Gwak et al. [34] 50

addressed an ill-posed problem which takes one or more views 51

of the shape as input, and through adversarial learning, it aims 52

to make the shape more plausible rather than with fine details. 53

To produce higher resolution shapes, some works utilize space 54

partitioning data structures such as octrees. Given an input im- 55

age, Tatarchenko et al. [35] used an octree as the output of a 56

CNN, which is able to reconstruct high-resolution (up to 5123) 57
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voxel grids.1

Hane et al. [11] used an octree to represent the boundaries2

of the shape, which they first reconstructed at a low resolution3

and then refined using a “block octree”. Wang et al. [36] took4

as input an incomplete point cloud represented by an octree.5

Due to incomplete input and the nature of octree representa-6

tion, the authors add dynamic skip connections, which leads to7

improved performance. The work [12] instead reconstructed a8

shape by giving a single depth image to the model with an ad-9

versarial component for the purpose of refinement. These meth-10

ods are capable of generating high-resolution 3D shapes. How-11

ever, the generated shapes may still suffer from incorrect struc-12

ture and/or geometry, because these methods largely depend on13

convolution layers which only capture local information. To14

produce appropriate reconstruction from partial single-view in-15

formation, non-local relationships between locations are essen-16

tial. This however is not considered in previous single depth17

image 3D reconstruction works.18

Some works address 3D shape completion with more general19

partial input, although they can also be applied to cope with20

single-depth input as a special case. Hu et al. [37] leveraged a21

generator to complete shapes where the model renders multi-22

view depth images and pools across all outputs. Wang et al.23

[38] proposed to use a GAN model to reconstruct coarse shapes,24

followed by refinement to match the ground truth while Huang25

et al. [39] completed shapes implicitly by generating latent vec-26

tors of depth shapes. However, both [38] and [39] suffer from27

geometric inconsistency. Wen et al. [40] addressed the issue28

by adding folding-block and skip attention where the features’29

locations are matched against the input.30

In the work [41] they implemented parallel models for com-31

plete and incomplete shapes where the models share weights32

during training to preserve geometric consistency. However, the33

models may not work well for unseen objects. ForkNet [42] ad-34

dresses this issue, and the model consists of three parallel gen-35

erators with shared latent features. Two branches reconstruct36

the SDF (Signed Distance Field) representation and complete37

the surface respectively, while the third branch concatenates38

features from both previous reconstruction branches to semanti-39

cally complete the volume scene. Park et al. [43] also suggested40

using an SDF, where the input is a latent code concatenated with41

3D point locations to elevate a high dimensional representation.42

At first, the model optimizes the weights and the latent code43

to generate plausible SDF values while during inference, the44

model optimizes latent code to generate an appropriate SDF.45

Wu et al. [44] claimed that the Chamfer Distance is not sen-46

sitive to outliers, and queries for nearest points could make the47

model unaware of the shape density. So they also added a dis-48

criminator that separates the points to form groups based on49

the shape surface. Alliegro et al. [45] introduced a contrastive50

model. They utilized pretrained encoders to capture semantic51

information and geometry features. The model naturally com-52

pletes the missing parts, Li et al. [46] leveraged a transformer53

to extract meaningful features. The model generates features54

for both partial and complete shapes, and learns to complete a55

shape by matching partial to complete features. Chen et al. [47]56

proposed to locate anchor points instead of generating them.57

The network learns to locate sparse points that capture global 58

features. Wang et al. [48] sorted generated latent features based 59

on activation scores, and the sorted features were then utilized 60

to reconstruct a complete shape. Zhang et al. [49] suggested 61

using k-nearest neighbor points to capture local features before 62

using an MLP (Multi-layer Perceptron) to generate the latent 63

features. 64

Some methods achieve 3D reconstruction by locally deform- 65

ing 2D planar patches to provide local structures. Yang et al. 66

[50] suggested extracting features of a point cloud to guide the 67

model to deform 2D planes. On the other hand, Wei et al. [51] 68

believed the randomness of the 2D plane generation could intro- 69

duce noise to the complete shape. To address this, they added 70

rules for generating the planes, which could enhance the de- 71

formation and reconstruction. Xiao et al. [52] proposed to use 72

folding blocks on latent features to enhance the reconstruction 73

for regions with missing points. 74

Previously described methods require paired data of incom- 75

plete/complete shapes for supervision during training. Alter- 76

natively, some unsupervised models try to avoid such explicit 77

supervision. Zhang et al. [53] generated full 3D shapes in an 78

unsupervised manner through Generative Adversarial Network 79

(GAN) inversion. 80

Given a pre-trained GAN for complete shape generation, the 81

method tries to optimize the latent code for the GAN such that 82

it produces a complete shape that matches the partial input. 83

To achieve this, the generated complete shape goes through a 84

degradation function to retain partial points that match the input 85

based on k-nearest neighbors, and both Chamfer Distance and 86

Feature Distance are used to measure the differences between 87

the degraded and the input shapes, which in turn optimizes the 88

latent code through gradient descent. The method can achieve 89

similar performance as supervised approaches. 90

In this paper, we address the problem of 3D completion 91

from single-view depth input. We introduce a 3D self-attention 92

(3DSA) layer and develop a GAN-based framework including 93

the 3DSA layer in the discriminator which effectively improves 94

the performance of 3D reconstruction. We also present a novel 95

dynamic latent space, that can learn to weight latent features 96

and select important latent dimensions. Furthermore, the model 97

consists of multiple stages where the next stage further refines 98

prediction from the previous stage. 99

3. 3DCascade-GAN 100

Our model addresses the problem of reconstructing a 3D 101

shape from a single depth image where the 3D space is vox- 102

elized. The voxel representation provides flexibility for topo- 103

logical change, which is required when turning the depth image 104

into a complete 3D shape. A cascade approach was adopted 105

in which shape estimation was enhanced at each stage of the 106

model. In addition, instead of passing the entire latent vector, 107

we suggest a selection process to dynamically select appropri- 108

ate latent codes. Furthermore, self-attention has the ability to 109

find links between features; the self-attention layer works glob- 110

ally on the whole space while convolution works on the local 111

region with the volume occupancy represented by 1 for occu- 112

pied and 0 for unoccupied. 113
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Fig. 4. The n-dimensional latent code is first processed by two fully connected layers to predict an n-dimensional weight vector. Then the top K codes are
selected according to the weight vector and values in the remaining dimensions are set to zero, leading to a sparsified latent space.

Our model takes 643 voxels representing the input depth im-1

age and reconstructs the 3D shape sampled to 2563 voxels to2

retain more details.3

3.1. Network architecture4

Our 3DCascade-GAN consists of two components: the gen-5

erator and discriminator. Figures 1, 2 and 3 show the complete6

network architecture where Figure 1 is the multistage encoder-7

decoder (generator), Figure 3 is the classifier and Figure 2 is the8

discriminator.9

Generator. The generator is multistage (three stages), and10

each stage is an identical encoder-decoder-like network (except11

the last stage where we add two up-sampling layers). The en-12

coder contains four 3D CNN layers starting with an input X that13

is 643 in size (the depth view of the shape); the kernel size for14

each layer of 4 × 4 × 4, and 1 × 1 × 1 strides. Each layer uses15

a leaky ReLU activation function, and after each convolution16

layer, a max pooling layer with a kernel size of 2×2×2 follows17

2×2×2 strides; the size of the feature maps for each layer is 64,18

128, 256 and 512, respectively, followed by a fully connected19

layer to map the higher abstraction of the shape and generate a20

1000-dimensional latent code. Before the decoder runs, a selec-21

tor layer processes the latent vector to select the top K codes,22

where K is set to 100 (for different K values, see the Dynamic23

Latent Code and the ablation sections). Another fully connected24

layer is then introduced which generates a 512-dimensional fea-25

ture map. The decoder consists of four layers of transpose con-26

volution with each layer followed by a ReLU. Skip links are27

used between the encoder and decoder where feature maps are28

concatenated; skip links enhance the shape details, as the latent29

code appears to preserve the general structure of shape without30

any fine details. No max pooling is used in the decoder; how-31

ever, a kernel size of 4 × 4 × 4 and 2 × 2 × 2 strides is used, and32

each layer is followed by a ReLU except for the last layer where33

we used sigmoid. Note, the third stage has extra up-sampling34

layers so as to reconstruct to 643.35

We concatenate both the output y1 and the original input X at 36

the feature channel to form 643 × 2, which will be the input for 37

stage two. The process is also repeated for stage three, where 38

the input is a concatenation of stage one y1 and stage two y2 39

and the original input X, the concatenated input size is 643 × 3. 40

We found that the model tends to rely heavily on stages two and 41

three, and consequently the output at stage one could be frag- 42

mented and not useful. To address this issue, we added global 43

skip links between the encoder in stage one and the decoder in 44

stage three. 45

Discriminator. The discriminator is useful to ensure the 46

completion of the partial input shape. The input for the dis- 47

criminator is either a fake pair (2.5D and the recovered shape) 48

or a real pair (2.5D and ground truth). Again, the component 49

contains seven 3D convolution layers. Each layer has a ker- 50

nel size of 4 × 4 × 4 and strides of 2 × 2 × 2. At the end of 51

each layer, a ReLU activation function is used; however, the 52

last layer consists of a sigmoid to generate a semantic repre- 53

sentation of the shapes. Finally, we applied the strategy of [12] 54

by outputting the mean of a vector feature rather than a scalar 55

in order to stabilize training because the discriminator cannot 56

discriminate high dimension data (the input concatenated with 57

either ground truth or the reconstructed shape) and the model 58

usually collapses at an early stage. Our 3DSA layer is intro- 59

duced to capture non-local relationships. 60

Classifier. The classifier network consists of 7 CNN layers 61

each with kernel size of 4×4×4 and 1×1×1 strides. Each layer 62

is followed by max pooling layers with kernel size of 2 × 2 × 2 63

follows 2 × 2 × 2. For the activation function, we use Leaky 64

ReLU. The resulting output is reshaped to form a 4 element 65

vector representing the categories {chair, bench, table, couch}, 66

followed by a softmax layer to reconstruct the one-hot vector. It 67

was not necessary to use the full 2563 resolution as input to the 68

classifier, and so we applied max pooling to reduce the input 69

dimensions to 643. 70
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3.2. Dynamic Latent Code Selection1

In a typical encoder-decoder architecture, the latent space2

is fixed l ∈ Rn, where n is the latent dimension. However,3

for a given shape, not all the latent dimensions are relevant.4

Responses from such irrelevant dimensions may have nega-5

tive impact on the reconstruction quality. To address this, as6

shown in Figure 4, we introduce a selection process such that7

only selected latent dimensions are retained, with the remain-8

ing components in the latent code set to zero. Specifically, the9

model first learns to predict the weight for each latent dimen-10

sion, collectively as a latent weight vector w ∈ (0, 1)n, denoted11

as w = ω(l), where ω(·) is the weight prediction network, and in12

practice, it is achieved by passing the latent code l through two13

fully connected (FC) layers each with n units, and ReLU and14

sigmoid activation functions are used after the two FC layers15

respectively. This makes the output w to be in the range (0, 1)16

for each dimension. Then, we use the predicted weights to de-17

termine which latent components should be retained, namely,18

only those with the weights in the top K weights (where K is19

a hyper-parameter) are kept. Then the i-th component of the20

output latent code l̃ satisfies:21

l̃i = li · 1(wi ∈ WK), (1)22

where 1(·) is 1 if the predicate is true, and 0 otherwise. WK is the23

set containing the top K weights. This approach achieves two24

effects. On the one hand, by suppressing low-weight (i.e., rec-25

ognized as unimportant) components, this avoids their negative26

impacts. On the other hand, the network strives to reconstruct27

high-quality complete 3D shapes with at most K latent compo-28

nents, essentially serving as a strong sparse regularization, that29

helps improve the robustness of the network. Note that while30

selecting K latent components, we maintain their positions in31

the latent space, rather than removing zero components. This32

makes the follow-up FC layers more efficient to learn.33

3.3. 3D Self-Attention Layer34

A limitation of convolutions is that they can only capture35

local features, and so convolution tends to distort the shapes36

when attempting to recover non-local features. To overcome 37

this issue, we introduce a self-attention layer in this task. Self- 38

attention has been shown to be effective in the GAN framework 39

for improving image generation [54] and due to the nature of 40

the input in our problem (i.e., single-view depth images), sig- 41

nificant information is missing. The self-attention mechanism 42

focuses attention on the most important global features, which 43

helps to reduce distortion in the reconstruction. The paper [54] 44

incorporates a self-attention mechanism for both the generator 45

and the discriminator. However, in our 3D reconstruction set- 46

ting, self-attention can only be applied to feature maps with rel- 47

atively low resolution (e.g. around 163) since the relationships 48

between every pair of locations need to be considered. This is 49

still useful to help recover more global structures. As we will 50

later show, incorporating such a 3D self-attention (3DSA) layer 51

in the generator is unable to capture meaningful non-local re- 52

lationships and actually leads to worse performance. We there- 53

fore only consider incorporating the 3DSA layer in the discrim- 54

inator network. 55

The network architecture for the 3DSA layer is illustrated in 56

Figure 5. The input feature map x̃ has a spatial resolution of 57

32 × 32 × 33 with 64 channels. It passes through two different 58

1× 1× 1 convolutions to obtain f (x̃) and g(x̃). The contribution 59

β j,i of the jth location from the feature map at the ith location is 60

calculated as follows 61

β j,i =
exp
(

f (x̃i)T g(x̃ j)
)

∑Ñ
i=1 exp

(
f (x̃i)T g(x̃ j)

) (2) 62

where Ñ is the number of spatial locations. β is then used as 63

weights to combine feature maps h(x̃), obtained through 1×1× 64

1 convolution, and then the final output of the 3DSA layer is 65

obtained through another 1 × 1 × 1 convolution v(·). 66

3.4. Loss Function 67

The model has three loss functions: reconstruction loss, 68

GAN loss and classifier loss, and the GAN has generator and 69

discriminator losses. 70
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Fig. 6. Visual comparison of completed single categories on same view sam-
ples.

Input 3D-RecGAN++ Our Method Ground TruthSnowFlakeNetSeedFormer

Fig. 7. Visual comparison of completed Multi categories on same view sam-
ples.

Fig. 8. Visualization of self-attention maps where the layer attends to fea-
tures relating to shapes.

Input Stage1 Stage2 Stage3 Ground Truth

Fig. 9. Visualization of cascade stages.

Reconstruction Loss. As in [12], modified binary cross en- 1

tropy (BCE) [55] is used rather than mean square error (MSE), 2

to avoid a non-convex problem: 3

LBCE = −
1
N

N∑
i=1

[−ȳi log(yi) − α(1 − ȳi) log(1 − yi)]. (3) 4

When using the standard BCE equation the empty space will 5

dominate the generated volume, which encourages the model 6

to classify occupied grid cells as empty voxels, resulting in es- 7

timation errors. Thus, α is introduced in Eq. 3 to represent 8

the cost weight of the terms. ȳi represents the ith voxel in the 9

ground truth and yi represents the ith voxel in the reconstructed 10

shape where N is the number of voxels in the space. 11

GAN Loss. LG (Eq. 4) is the loss for generating fake shapes, 12

while LD (Eq. 5) is the discriminator loss used by WGAN- 13

GP [56]. y represents the generated shape from input x (2.5D) 14

and ȳ is the ground truth for the complete shape. In order 15

to tackle the vanishing gradient problem, WGAN-GP adds a 16

penalty term (with weight λ) to encourage the gradient norm of 17

the discriminator to be close to 1; ŷ is a perturbed version of y. 18

LG = −E[D(y|x)]. (4) 19

LD = E[D(y|x)] − E[D(ȳ|x)] + λE[(∥∇ŷD(ŷ|x)∥2 − 1)2]. (5) 20

Classifier Loss. We use log loss. M represents the number 21

of classes. y is a binary indicator for whether class label c is 22

the correct classification for observation o. p is the predicted 23

probability that observation o is of class c. 24

LClassi f ier = −

M∑
c=1

[yo,c log(po,c)]. (6) 25

Combined generator loss. As the generator has two objec- 26

tives, a weight is applied to balance both losses during opti- 27

mization as follows: 28

Lweighted = γLBCE + (1 − γ)LG + ζLClassi f ier. (7) 29

Lweighted is minimized when training the generator, and LD is 30

minimized when training the discriminator. 31

4. Experiments 32

4.1. Training Details 33

The model was trained for 20 epochs with a batch size of 3. 34

We set the learning rate for both the generator and discrimi- 35

nator to 0.0001. For the optimizer, Adam [57] was used with 36

β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We set the WGAN-GP gra- 37

dient penalty to λ = 10 and α = 0.35 for modified binary cross 38

entropy. Finally, we set the weighted loss parameter γ = 0.8 and 39

ζ = 0.01. The networks were trained on Nvidia GTX 1080ti, 40

and it took on average 4.5 days to train a model. 41
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Fig. 10. Comparison of applying self-attention to the discriminator (left)
and generator (right). A more meaningful self-attention map and shape
are obtained when incorporating self-attention in the discriminator.

Input 3D- RecGAN++ Our Method Ground TruthSnowFlakeNetSeedFormer

Fig. 11. Qualitative results of single category reconstruction on testing
datasets with cross viewing angles.

4.2. Dataset1

In our experiments, we used datasets provided by [12], for2

which the authors had generated depth views from ShapeNet3

datasets. In total, 272 CAD models were used. The break-4

down was: training used 220 models, testing 40 models, and5

validation 12 models. All models in the dataset were voxelized6

to a 2563 grid. Datasets were split into two sets: same view7

(all input depth images captured in one direction, 125 different8

views) and cross view (depth images from multiple views, 2169

different views). For training, only the same view depth images10

were generated, while for testing and validation both same view11

and cross view sets generated. In total, there are 26000 train-12

ing samples. The same view test consists of 4500 samples and13

8000 cross view test samples. The validation set contains 150014

samples for same view and 2500 for cross view. Four categories15

have training sets (chair, table, bench, couch) while the rest are16

used for testing as unseen objects (plane, car, monitor, faucet,17

guitar, firearm).18

4.3. Evaluation19

To compare our work with other state-of-the-art methods, we20

evaluated our model using intersection over union (IoU). IoU21

was applied on a per voxel basis to the ground truth and re-22

covered shape. The second evaluation metric was mean value23

cross-entropy (CE).24

As discussed in [12], Chamfer distance and earth mover dis-25

tance are infeasible for high-resolution voxel sets due to the26

high computational cost.27

Comparison to prior work. To evaluate the performance28

of the model in reconstructing a 3D shape from a single-depth29

view, we compared it to three recent works on reconstructing a30

3D shape from a single-depth image. (1) The 3D-EPN model31

presented by [58] completed the shape by leveraging semantic32

features; the resolution of the reconstructed shape was 323. The33

Input 3D- RecGAN++ Our Method Ground TruthSeedFormer SnowFlakeNet

Fig. 12. Qualitative results of Multi-categories reconstruction on testing
datasets with cross viewing angles.

Input 3D- RecGAN++ Our Method Ground TruthSeedFormer SnowFlakeNet

Fig. 13. Qualitative results of Multi-categories reconstruction on testing
datasets with same viewing angles for unseen objects.

Input 3D- RecGAN++ Our Method Ground TruthSeedFormer SnowFlakeNet

Fig. 14. Qualitative results of Multi-categories reconstruction on testing
datasets with cross viewing angles for unseen objects.
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Table 1. IoU and Cross entropy evaluation metric for Single categories,
same view, comparing 3D-EPN [58], [59], SnowFlakeNet [60], Seed-
Former [61], 3D-RecGAN++ [12] (denoted as Yang in the table) and our
3DCascade-GAN.

IoU Bench Chair Couch Table
3D-EPN 0.423 0.488 0.631 0.508
Varley 0.227 0.317 0.544 0.233
SnowFlakeNet 0.562 0.631 0.745 0.659
SeedFormer 0.553 0.618 0.740 0.656
Yang 0.580 0.647 0.753 0.679
Ours 0.641 0.701 0.809 0.698
CE Bench Chair Couch Table
3D-EPN 0.087 0.105 0.144 0.101
Varley 0.111 0.157 0.195 0.191
SnowFlakeNet 0.037 0.063 0.068 0.043
SeedFormer 0.038 0.065 0.069 0.044
Yang 0.034 0.060 0.066 0.040
Ours 0.030 0.053 0.063 0.038

model then used a retrieval approach to collect similar shapes1

for shape reconstruction. (2) Varley et al. [59] addressed the is-2

sue of robot grasp planning; the model reconstructed a 3D shape3

from 2.5D images that were captured using a depth camera. The4

model resolution was 403 voxels. (3) SnowflakesNet [60] pro-5

cesses a point cloud representation, and the model predicts a6

complete shape from an incomplete point cloud. We process7

the output by voxelizing the output points to 2563 resolution8

for quantitative comparison. (4) SeedFormer [61] also uses9

a point cloud representation where the input is an incomplete10

point cloud and the prediction is a complete shape. We process11

the output by voxelizing the output points to 2563 resolution12

for quantitative comparison. (5) 3D RecGAN++ [12] recon-13

structed a 3D shape from a 2.5D image with a resolution of14

643 and up sampled to 2563. For methods based on implicit15

representations, neither [43] or [62] provided the code for 3D16

completion, so we trained the model of [63] on our datasets, but17

it failed to learn the representation.18

For the qualitative comparison, we show results of 3D Rec-19

GAN++ [12], SnowFlakeNet [60] and SeedFormer [61], as20

these models are state-of-the-art and have the same recovered21

shape resolution as our model. Note, in the qualitative results22

for [60] and [61] we show point cloud representations to avoid23

the potential distortions caused by discretization.24

4.4. Results25

Seen shape category experimental results. The model was26

trained on 4 different datasets (chair, table, bench, and couch).27

A single category means each one was trained separately with28

the same settings as mentioned. On the other hand, Multi-29

categories means the model was trained on all the 4 datasets30

(chair, table, bench, and couch). The IoU and CE results for31

single categories, same view are displayed in Table 1. Table 232

shows IoU and CE results for Multi categories same view. Ta-33

ble 3 presents single categories cross view using IoU and CE34

respectively and Table 4 shows cross view for Multi categories.35

After training, we find the best threshold between [0.1, 0.9] with36

Table 2. IoU and Cross entropy evaluation metric for Multi categories,
same view

IoU Bench Chair Couch Table
3D-EPN 0.428 0.484 0.634 0.506
Varley [59] 0.234 0.317 0.543 0.236
SnowFlakeNet 0.548 0.624 0.736 0.633
SeedFormer 0.542 0.613 0.727 0.628
3D-RecGAN++ 0.581 0.640 0.745 0.667
3DCascade-GAN 0.624 0.669 0.773 0.682
CE Bench Chair Couch Table
3D-EPN 0.087 0.107 0.138 0.102
Varley [59] 0.103 0.132 0.197 0.170
SnowFlakeNet 0.035 0.053 0.064 0.043
SeedFormer 0.036 0.054 0.066 0.045
3D-RecGAN++ 0.030 0.051 0.063 0.039
3DCascade-GAN 0.028 0.049 0.060 0.037

Table 3. IoU and Cross entropy evaluation metric for Single categories,
cross view

IoU Bench Chair Couch Table
3D-EPN 0.408 0.446 0.572 0.482
Varley [59] 0.185 0.278 0.475 0.187
SnowFlakeNet 0.508 0.578 0.628 0.603
SeedFormer 0.503 0.563 0.627 0.601
3D-RecGAN++ 0.531 0.594 0.646 0.618
3DCascade-GAN 0.585 0.628 0.680 0.647
CE Bench Chair Couch Table
3D-EPN 0.086 0.112 0.163 0.103
Varley [59] 0.108 0.171 0.210 0.186
SnowFlakeNet 0.045 0.079 0.118 0.055
SeedFormer 0.046 0.080 0.120 0.056
3D-RecGAN++ 0.041 0.074 0.111 0.053
3DCascade-GAN 0.038 0.070 0.109 0.051

a step of 0.05 on a validation dataset using only the IoU crite- 37

rion. After finding the best threshold to represent the model, we 38

applied it on the test dataset as suggested by [12]. In the quan- 39

titative results, both IoU and CE demonstrated that our model 40

outperformed the state-of-the-art model, and qualitatively it can 41

be seen that our method recovered 3D shapes at high resolu- 42

tion with accurate details. For the qualitative results for single 43

categories in same view testing datasets, see Figure 6, where 44

artifacts appear in the results of 3D RecGAN++ such as incor- 45

rect structure/geometry and Multi categories also in same view 46

datasets in Figure 7. Figure 12 shows Multi categorises in cross 47

view datasets. Figure 8 visualizes self-attention maps when 48

completing some shapes, which clearly capture global struc- 49

tures. The intermediate results after each of the three stages are 50

shown in Figure 9. 51

Unseen shape category experimental results. Lastly, we 52

conduct experiments on six more categories where the model 53

is trained on chair, bench, couch, table and then tested on car, 54

faucet, firearm, guitar, monitor, plane for both same view and 55

cross view datasets. The IoU and CE results for cross-view re- 56
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Table 4. IoU evaluation metric for Multi categories, cross view
IoU Bench Chair Couch Table
3D-EPN 0.415 0.452 0.531 0.477
Varley [59] 0.201 0.283 0.480 0.199
SnowFlakeNet 0.534 0.586 0.631 0.612
SeedFormer 0.532 0.583 0.629 0.609
3D-RecGAN++ 0.540 0.594 0.643 0.621
3DCascade-GAN 0.574 0.620 0.673 0.633
CE Bench Chair Couch Table
3D-EPN 0.091 0.115 0.147 0.111
Varley [59] 0.105 0.143 0.207 0.174
SnowFlakeNet 0.039 0.068 0.095 0.050
SeedFormer 0.040 0.069 0.097 0.052
3D-RecGAN++ 0.038 0.061 0.091 0.048
3DCascade-GAN 0.036 0.058 0.089 0.047

sults are shown in Table 5 and same view results in Table 6.1

Figure 13 shows visualization for the same view dataset and2

figure 14 shows cross view visualization. Our method per-3

forms consistently better than state-of-the-art methods in all4

categories, and both same-view and cross-view cases.5

4.5. Ablation Studies6

In this section, we describe three ablation studies: dynamic7

latent code, second self-attention layer and classifier. For com-8

parison, we choose the chair datasets for our ablation experi-9

ments as these samples show more complex structure compared10

to bench, table and couch.11

Dynamic latent code. We conducted an experiment where12

the dynamic layer was disabled and a fixed 2000 code size was13

used; the result was worse compared to the dynamic layer, as14

shown in Table 9. Also, three different experiments with three15

different K values: 50, 100 and 150 on a single encoder-decoder16

conducted. We found that the result was worse when K = 50;17

however, performance with both K = 100 and 150 had the same18

result. We also observe the model behavior when k approaches19

n (K = 600, K = 900), and the results show the performance20

drops gradually. Using the dynamic latent code encoder tends21

to optimize the latent codes where most values are set to zero,22

and these codes vary based on input shape. Furthermore, to23

show effectiveness of dynamic latent code, we trained the model24

with/without each components, the results shown in Table 7.25

Self-attention. We tried using self-attention in both the net-26

works (i.e. the encoder-decoder and discriminator), as shown27

in Figure 10, and tried using it on different layers to achieve the28

optimum results. The trials revealed that adding self-attention29

to the encoder-decoder did not improve the results; in fact,30

the self-attention maps obtained when adding the self-attention31

layer to the generator network did not capture global structures32

well, and lead to poor reconstruction results. On the other hand,33

adding our self-attention layer to the discriminator effectively34

increased its capability to differentiate between real and fake35

3D shapes, and eventually helped improve the capability of the36

generator to produce improved reconstruction.37

Table 5. IoU and cross entropy evaluation metric for multi-category train-
ing and applied to unseen object categories, cross view, comparing 3D-
EPN, [59], SnowFlakeNet [60] (denoted Snow), SeedFormer [61] (denoted
Seed), 3D-RecGAN++ and our 3DCascade-GAN.

IoU car faucet firearm guitar monitor plane
3D-EPN 0.446 0.439 0.324 0.359 0.448 0.309
Varley 0.489 0.260 0.274 0.255 0.334 0.283
Snow 0.534 0.510 0.409 0.437 0.549 0.384
Seed 0.527 0.507 0.407 0.435 0.546 0.383
Yang 0.553 0.529 0.416 0.449 0.555 0.390
Ours 0.564 0.537 0.425 0.455 0.560 0.394
CE car faucet firearm guitar monitor plane
3D-EPN 0.160 0.086 0.033 0.036 0.127 0.065
Varley 0.171 0.123 0.028 0.030 0.136 0.043
Snow 0.103 0.060 0.018 0.016 0.078 0.033
Seed 0.105 0.061 0.018 0.017 0.079 0.034
Yang 0.100 0.055 0.014 0.015 0.074 0.031
Ours 0.098 0.054 0.013 0.013 0.074 0.031

Classifier. For the classifier, we compared the full version 38

of the model (including cascade, dynamic latent code, self- 39

attention and classifier) against a model without a classifier. As 40

shown in Table 8, there are slight differences in that the classi- 41

fier enhances the shapes, and this improvement is consistent. 42

5. Conclusion 43

In this paper, we proposed an end-to-end model for 3D re- 44

construction from a single depth image. We introduced a 3D 45

self-attention layer to attend to the non-local features, help- 46

ing to connect the recovered views with the known view of 47

the 3D shape. We also demonstrate introducing a dynamic 48

latent code as an aid to optimizing the encoder, reducing the 49

effective size of the latent space which enhanced the results. 50

These additions helped stabilize adversarial learning which 51

leads to better estimation as demonstrated on different shape 52

categories, both qualitatively and quantitatively. We further 53

added multi-stage networks to sequentially refine 3D shapes. 54

Furthermore, incorporating the classifier network showed im- 55

provement to the reconstructed shapes. Our method produces 56

shapes with improved structure/geometry, outperforming state- 57

of-the-art methods. 58
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