QoS Issues for Multiplayer Gaming

By Alex Spurling 7/12/04

I ntroduction

Multiplayer games are becoming large part of tosalgital entertainment. As more
game players gain access to high-speed internaeections multiplayer games can
grow becoming more ambitious than ever before. idlayer games can provide a
much richer experience than single player gamematuopponents can be much
more challenging than artificial opponents. Theartteand adapt and can be much
more rewarding to defeat. Collaborative gameplaylsaequally compelling with
humans when using teamwork to achieve a common goal

Early multiplayer games used to be restricted torfgatwo players on the same
machine. This could be done with either sharingstimae input device such as a
keyboard or each player might have their own jakstir joypad. The game would
accept input from both players and display the gata& on a single screen. Later
local area network games emerged which involveddivmore computers
communicating across a local network. Each plagértheir own screen and input
device. Finally with the internet a player couldyivith or against anyone anywhere
in the world.

In order for this to be possible there are manyasgo deal with in order to achieve a
level of quality that is satisfactory to the playkerthe past with single-machine
games either each player would share the sameofidlve game or the screen would
be split in two. Split-screen games had to dedh wahdering two displays at the same
time which can be cumbersome and this is rarely seeodern games. With
multiplayer games today the key issue to tackiymechronisation of the individual
game states so that each player will see the daingstas the others. We shall see the
various methods of dealing with this and other fois.

Different Types of Game

There are two different types of multiplayer ganteesonsider. One ieal-time
games and the othertign-based games.

Real-time games are the most challenging whemitesoto maintaining a decent
quality of service for the players. The playerd witen have a lot more information
to transmit between each other than in a turn-bgaatk. For example in a
multiplayer game of chess the only data that nezte transmitted could be the
current player’s turn and the square the curremyeslhas moved to. Also this
information does not need to be periodically updatelata would only be transmitted
after each player’s turn. Real-time games howearmroduce very large amounts of
data all of which would be needed to keep the gstetes in synch. For example in a
car racing game, the position of each car woulcehawbe updated frequently. Also in
order to give the cars smooth motion you might neddansmit their speed, and the
current forces acting on them etc. The main probietin real-time games that makes

them difficult to implement compared with turn-bdggmmes is that the data needs to
be transmitted repeatedly at very short intervEfss can cause problems when
bandwidth is limited.

Multiplayer Game Models

There are two main types of multiplayer game maodéte first is theclient-server
model. This consists of a single central servevhiah all the players (clients)

connect. This model is usually simple to implemauntcan cause problems as there is
a single point of failure; if the server crashdgta clients will be disconnected. Also
this creates a bottleneck of bandwidth at the seand as all data passes in and out of
this single point. The game state is stored asémeer which periodically sends
update messages to each client.

The second model is thestributed game model also known Bser-to-peer or P2P.
This model does not require a centralised seneashElient communicates with all
the other clients and each stores a copy of theegdate. Messages are sent between
clients to notify them of changes to the game siatbéthe bottleneck of a server is
eliminated. This method is more complicated to enpént and unless
synchronisation is kept between the clients, theeagatates will diverge over time due
to network delays and other factors.

The most popular game architecture by far is tlentkerver model. There are a
number of reasons why this method is so populast e networking code is often a
lot simpler to write and it can be separated male from the main game code.
There are no elaborate protocols required as treren P2P. Often a single player
version of a game can be quickly adapted for cleemver play with only minor
changes. Secondly having a centralized server ginegame publisher more
administrative control. Having control over gamevses lets publishers perform
authentication, copy protection, accounting anlingil and easy update of client
code. [1]

There are other hybrid models such asmireored-server architecture proposed in
[2] or thenetwork server architecture shown in [3] and [4] which consist$wo or
more servers connected by a local network to whliemts connect to as they would
in the client/server model. This allows servershare information with each other
very quickly and opens the possibility of havingaahitrary number of players in a
single game world. This type of game is called asizely Multiplayer Online Game
or MMOG and is growing to be hugely popular. In gansuch akverquest or

Ultima Online players can jump in and out of a massive perdisterid at any time,
continually developing their character and intaragtvith other players in the game.
This creates perhaps the greatest challenges tarQbB type of game. [3, 5]

We will concentrate on the client-server model #rabasic QoS issues to begin
with.

Synchronisation

The biggest concern when making multiplayer gare@mime state synchronisation.
This is the problem of maintaining the same garageshformation on each of the

,;r
&

Server
-~
]
!
£
,
(a)
;,;r
f Event
&Y
S Message
i
Server Server
A e >
~—~ mm——— >
Ay

[[Game Update

’ ! .ﬁ MESSEQE

(c)

Figure 1. Multiplayer Game Models. (a) The client-server model, (b) The peer-to-
peer model, (c) The network server model.

players’ instance of the game and generating tleetedf each player belonging to the
same game instance. This problem is very impottatite QoS of a multiplayer
game. For example in a racing game the exact paosiof all the players’ cars must
be represented on the players’ screens at the wammelf there was a delay in the
updating of the position of the cars then two pftaymight think they were in first
position at the same time, which of course willsmproblems when they cross the
finish line.

Another aspect of synchronisation to consideratesdf random values in the game.
For example in a street racing game the playersitnbig racing with traffic on the
streets. The position of the cars would be choaedamly but the traffic must still
appear in the same place for each player. In tkateterver model this decision can
be made by the server and then updated for eaghrdat in a peer-to-peer design
this kind of problem takes more consideration.

There are two main methods for maintaining syncisation:state synchronisation
andinput synchronisation. [6]

State Synchronisation

State synchronisation involves each player senitiaegtate of their instance of the
game to all other players. For example in a muiptAsteroids game the player
would send the current speed, position and oriemtaif their ship and of all the
asteroids. This method is fairly robust as themoipossibility of information loss
and the game state will not diverge to becomeljothiferent on different instances
of the game. However there can be problems wheindeaith larger games such as
an online role playing game. In this case you mesdnto send much more
information about the game world and this informatwould be constantly changing.

I nput Synchronisation

Input synchronisation is where each player seridbell game events to the other
players. For example in a racing game, events ntiglsent when the player
accelerates, turns and brakes. This approach ddésvolve sending large quantities
of data but it is prone to game state divergenoeekample if the event to start
turning left was given for a particular player ther players a delay for this event
might mean the car started turning a few hundrdlisexonds after the actual time.
This could mean the difference between narrowlysmgsand hitting an obstacle.

A Hybrid Solution

A more practical approach to the synchronisati@mbl@m might be to use a
combination of state and input synchronisation. &@mple you could use input
synchronisation for aspects that are not timecaiitsuch as initiating a conversation
between two players and you could use state synidaiion for random aspects such
as the position of traffic on the road. The whdldesof the game does not need to be
transmitted but only aspects that have changeldosetthat are of interest to a
particular player. For example in a massively npldtyer role playing game a player
does not need to know about the position of mosstet another player hundreds of
metres away is fighting. This is calléaterest Management and is described in detail
in [10].

There is no real general solution when designinguliplayer game. Different
techniques need to be combined for use in diffegantes. Next we will look at some
technical problems that can affect quality of segvin multiplayer games.

L atency

Networklatency orlag refers to the time taken for a packet sent toteatcel from its
source to its final destination. It is never impbkesto eliminate lag completely, for
example a signal travelling along a fibre-opticleab still limited by the speed of

light which represents about 15ms to traverse titenéic. In fact for 2004 the global
network communications compaMCl specify an average roundtrip time of 79.30ms
for a packet from any nodes on its network in Lanttnany node in New York. [7]

There are a number of factors that will increasedilay of a packet such as the time
taken to route and queue packets as well as piaggsasckets for transit across

varying types of network. For example IPX packets/meed to be encapsulated into
TCP/IP packets. The acceptable length of delayaoismission depends a great deal
on the type of game. Some games such as FirstiPSremoters (FPS) are very delay
sensitive and others such as turn-based gamekavil a very high tolerance to
latency.

There have been many studies on the acceptableramiolag for various types of
game. Pantel and Wolf [8] demonstrate that a delaore than 100ms in a car
racing game begins to affect the gameplay. Armitage [9] shows how players of
Quake 3 prefer to select a server with a lag below 150r180They also showed how
players who played with a lag of 45ms on averaggesed 1 point per minute more
than players with a lag of 200ms. The acceptahiel lef lag tends to be quite
subjective. Some people can learn to anticipateléteeys caused by a high lag and
adjust their aiming accordingly. Others find delaysre than 100ms unacceptable.

Jitter

Networkjitter refers to the variation in lag of a given connaatiThis factor is almost
as important to QoS of a multiplayer game as lagah be caused by the way a
particular router queues packets or high netwafitr Different packets from the
same connection might take different routes iffitaé high and therefore the transit
times of packets from source to destination willedti A method of attempting to
remove jitter that can be employed by routerfsxexl playout delay. A timestamp is
placed on all packets from the source. When thaghra router they might be in any
particular order and arrive at different times. Theter will then wait for a specific
fixed time and then forward the packets in the@trsequence based on their
timestamp and also with the correct delay betwbherpackets. This method is a
trade-off between delay and loss of packets. Aratiethod isadaptive playout

delay. This is where the jitter of the packets is estedaand the delay between
receiving a packet and forwarding it is adjustedeftect the jitter.

TCPvs. UDP

The internet is based on two main protodd¥ andUDP. An issue that often arises
when designing a multiplayer game is which protdoalse as a transport method
across the network. Each has their advantagesisadvantages.

TCP is a reliable protocol which means that if ekga sent with TCP is lost (for
example if it was misrouted or if a particular reutvas too busy) then that packet
will be retransmitted. Each packet from the sendiegce to the receiving device has
to be accompanied by an acknowledgement packettfierreceiving device to the
sending device. This means that TCP will use mucterhandwidth than is
necessary. UDP does not have any form of religlilecks. Lost packets are not
acknowledged or retransmitted. However it uses niesth bandwidth than TCP. UDP
is connectionless and involves small overhead vasef€P is connection oriented
and uses more overhead. The header sizes of UDPG@Rdre 28 and 40 bytes
respectively [10].

Most real-time multiplayer games today will use Udker TCP. UDP allows the
transmission of large amounts of synchronisatida dad this data is usually time-

sensitive so the extra delays of TCP would degcadity of service. Reliability of
the data is not crucial in multiplayer games asnf@mation will often be re-sent

after a short time. It would not be worth re-redinggslost information only for it to

arrive out-of-date. It is better to simply wait fime next arrival of data. There are

methods of dealing with lost information which wélwiscuss later. Some games
might use TCP for certain transmissions such ageplo-player chat and UDP for
time-sensitive data.

Packet Compression and Aggregation

One method of reducing bandwidth use is to comgtesdata being transmitted.
There are two methods of doing tHisternal compression is where each individual
packet is compressed without reference to othefiquisly sent packet&xternal
compression takes place before the data is split into packéts.former method is
more suited to UDP where packets might be lostroreain the wrong order. The
latter method is better when used with a TCP caimreend allows better
compression as it can observe redundancy ovegerlaection of data.

Aggregation is the process of merging the data of one or maokets into a single
packet. This reduces the overhead of packet headers

Both of these techniques decrease bandwidth regaints but they increase delay so
these factors must be balanced.

Dead Reckoning

Dead reckoning is a process of approximating theevaf missing data. The data may
be missing due to lost UDP packets or if the badtwof the particular internet
connection is not large enough. Information is agpnated based on the value of
previously received information. The process cda§two parts therediction
technique and theconvergence technique. [10]

An example of a use of dead reckoning might begaraacing game. If a packet was
lost containing the position of one of the playadss, the game could guess the
current position by assuming that the speed oténdras not changed. In the next
update of the car’s speed and position the valugbtrbe slightly different from the
predicted values. In this case, rather than inlstaetposition the car in the correct
place the game could interpolate the car’s postietveen the predicted and the
correct position. This convergence technique attertgpavoid jerky movement of the
cars.

Multicast and MiM aze

Multicast is a feature of networks which allows Hame packet to be distributed to
more than one recipient on the network at the damee The recipients form a
multicast group and any multicast packets will be received byral people in this
group. This technique avoids having to send theegaawket several times to different
clients and so reduces bandwidth requirements derably. This of course can be of
great benefit to games where the same informasicemt to each of the players.
However it is rarely used in games today. One measthat often ISPs do not support

multicasting across the internet. Also programnbensl to believe that it is difficult to
implement. [11]

MiMaze is a project developed by L. Gautier [12P&monstrate how to create a
completely distributed multicast based multiplagame. It was the first game of this
type and used a synchronisation method called bsgkehronisation which
guarantees consistency regardless of network @aldyt uses a dead-reckoning
system to recover packet loss. MiMaze demonstthteteasibility of a distributed
architecture and a reliable method of maintainymchronisation.

Conclusion

There are many aspects to consider when designimgtgplayer game that requires
high QoS. First there are the three main netwachitectures client-server, P2P and
network-server to choose from. Then there are sépeogramming techniques
needed to maintain synchronisation of the game s@tiveen the players such as
event or state synchronisation and dead reckoAilsg. there are technical issues
such as which protocol to use and methods of cossme and aggregation of
packets. The best choice of course depends ogpibeotf game and its sensitivity to
QoS. There are more details which this paper doegminto but it should help give
an overview of the issues that need to be dedtt witen designing a multiplayer
game.

References

1. Cronin E. et al. 200&n Efficient Synchronization Mechanism for Mirrored

Game Architectures.

Cronin E. et al. 2002 Distributed Multiplayer Game Server System.

Caltagirone S. et al. 2008&r.chitecture For A Massively Multiplayer Online

Role Playing Game Engine.

4. Smed J. et al. 200Aspects of Networking in Multiplayer Computer Games.

5. Fine. R. 2004MMOG Considerations.
http://www.gamedev.net/reference/articles/artic2aspgAccessed
27/11/04]

6. SoftLookuplnternet Game Programming in Java. Chl7.
http://www.softlookup.com/tutorial/games/index.d8gcessed 23/11/04]

7. MCI/UUNET.Latency Satistics.
http://global.mci.com/uunet/be/about/network/latgrféccessed 29/11/04]

8. L. Pantel and L. C. Wolf. 200@n the impact of delay on real-time
multiplayer games.

9. Armitage G.J. 2003n Experimental Estimation of Latency Sensitivity In
Multiplayer Quake 3.

10. Smed J. et. et. 2002 review on Networking and Multiplayer Computer
Games.

11. Lukianov. D. 2001Advanced Winsock Multiplayer Game Programming:
Multicasting http://www.gamedev.net/reference/articles/articB1&asp
[Acessed 4/12/04]

12. Gautier. L. and Diot. C. 199Besign and Evaluation of MiMaze, a Multi-
Player Game on the Internet.

w N

