
Modeling and Simulation of Cooperative Multi-Agents
in Transactional Database Environments

Khaled Nagi
Institute for Program Structures and Data Organization, Universität Karlsruhe.

Am Fasanengarten 5,
D-76131 Karlsruhe, Germany.

+49-721-608-7336

nagi@ira.uka.de
ABSTRACT

Multi-Agent Systems (MAS) are finding their way into large-scale
information systems. Unfortunately, current prototypes often lack
the stability and robustness necessary for real-world deployment.
We propose transaction mechanisms as a possible remedy. For
this, we divide MAS into two layers:(1) a planning layer, whose
actions are idempotent, do not cause any real-world side-effects
and are therefore easily recoverable, and (2) an execution layer,
which is responsible for all real-world actions and runs under
transactional protection to achieve robustness.

The execution layer consists of special Execution Agents, one for
each agent in the planning layer. An Execution Agent is responsi-
ble for the robust execution of the plan developed by its peer
planning agent. For this purpose, it implements an extended data-
base transaction model - which models the execution dependen-
cies between agent actions - and provides recovery mechanisms to
deal with possible according to a predefined contingency behavior
within the agent plan.

To assess the overhead induced by the plan execution layer, we
built a simulator to analyze the scalability and the performance of
the system under various workloads, resource supplies, and dis-
turbance frequencies. In contrast to our previous simulation
work, we concentrate in this paper on modeling cooperative -
instead of antagonist - agents and on long-running plan execu-
tions. After a brief outline of the transaction model, we describe
the simulation model and report on the experimental results of
introducing two types of disturbances into a system of cooperat-
ing agents.

Keywords
Modeling and simulation, performance analysis, planning and
execution, robustness, transaction management.

1. INTRODUCTION
Multi-Agent Systems (MAS) have been traditionally employed in
Artificial Intelligence to solve highly complex distributed plan-
ning problems (see [12] for a good introduction). Today, this
technology is increasingly applied to information systems. Their
ever-growing complexity and the difficulty to foresee all poten-

tially arising disturbances makes them an inviting test bed for
MAS. As can be seen in [6], many research efforts are dedicated
to deploying this emerging technology in the fields of intelligent
information retrieval, web assistants, information trading, match-
making, etc. Yet, this technology is slow to find its way into
large-scale information-rich applications, in which actions are to
be automatically executed instead of just providing decision sup-
port services. The reason is the lack of robustness in existing
MAS. By robustness, we mean that both individual agents and the
MAS as a whole overcome disturbances, failure, or uncontrolled
interactions by reaching well-defined states.

In order to combine robust execution of agent actions with the
planning power of agents, we need to represent the plan together
with its possible contingency behavior in one structure. In [9], we
argued for the use of open-nested transaction trees to build this
structure. In our solution, we entrust the execution of each of
these trees to a special component, called the Execution Agent,
which is also responsible for the robustness of execution.

1.1 System Architecture
Embedding the Execution Agent in a general MAS architecture is
illustrated in Figure 1. The MAS is situated in a world (environ-
ment) that is represented by a federation of databases. Agents can
perceive their environment by reading the databases and can mod-
ify it by writing to the databases. The agents are divided into
groups and the members of each group are cooperating to achieve
a shared common goal. Each agent is actually divided into two
physical entities: a Planning Agent and an Execution Agent. The
Planning Agent develops the agent-specific part of an overall
shared plan based on the common goal. This requires, of course,
cooperation between the different planning agents. Then, each
Planning Agent delegates its part of the shared plan to a peer Exe-
cution Agent. Each local plan of this shared plan defines a set of
simple agent actions and a set of execution dependencies between
them. The plan is formulated as a transaction tree, as described in
[9]. In these trees, each simple agent action is encapsulated in one
ACID transaction, i.e., transaction satisfying the Atomicity, Con-
sistency, Isolation, and Durability conditions [2], that access the
database. The cooperation between the individual agent plans
appears in a series of coordination primitives connecting the
transaction trees at the execution layer. Through the definition of
various control parameters and control flow rules, the contingency
is also defined within the transaction tree, thus capturing both
normal and contingency behavior in one execution structure.



Mini

World

Execution Agent

Local plan

Execution Agent

Local plan

Planning Agent

Plan development

Planning Agent

Plan development

Action (DB transaction)

Shared goal

Shared plan

Coordination
primtives

Cooperation

pe
rc

ep
tio

n

E
xe

cu
ti

ve

pe
rc

ep
tio

n

Mini

World

Execution Agent

Local plan

Execution Agent

Local planLocal plan

Execution Agent

Local planLocal plan

Planning Agent

Plan development

Planning Agent

Plan development

Action (DB transaction)

Shared goal

Shared plan

Coordination
primtives

Cooperation

pe
rc

ep
tio

n

E
xe

cu
ti

ve

pe
rc

ep
tio

n

Figure 1. A MAS architecture with Execution Agents

The Execution Agent, illustrated in Figure 2, receives a transac-
tion tree, either complete or incrementally from its peer Planning
Agent. The Agent Transaction Manager (ATM) module is re-
sponsible for the correct and robust execution of these actions.
The simple agent actions are submitted to the underlying data-
bases through the Database Interface module in the form of
ACID transactions. This module is responsible for establishing
the connection to the database, submitting the SQL commands,
receiving the execution results of the transaction, and coupling
robustness mechanisms of the Database Management System with
those of the Execution Agent. On the other hand, the Communica-
tion Interface module is responsible for communication with
other Execution Agents of the same agent group. Based on the
incoming messages, it reports the status of the relevant parts of
the various transaction trees to the ATM.

Execution
A gent

A ction (D B transaction) feedback

D B Interface

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

A gent Transaction
M anager (A TM )

ot
he

r
E

xe
cu

tio
n

A
ge

nt
s

P lan feedback

Planning A gent

M ini W orld

Execution
A gent

A ction (D B transaction) feedback

D B Interface

C
om

m
un

ic
at

io
n

In
te

rf
ac

e

A gent Transaction
M anager (A TM )

ot
he

r
E

xe
cu

tio
n

A
ge

nt
s

ot
he

r
E

xe
cu

tio
n

A
ge

nt
s

P lan feedback

Planning A gent

M ini W orld

Figure 2. The Execution Agent

In order to keep the Execution Agent open for integration with
different MAS, we designed the interface of the Execution Agents
to be compliant with the FIPA Agent Communication Language
standards [5]. This allows diverse planning agents to use the Exe-
cution Agents. However, a key to the success of this architecture
in large-scale information systems is its ability to scale.

To quantitatively assess the scalability of the system and to have a
better understanding of the behavior of the transaction trees and
their interactions, we built an event-driven simulator around it.
This is very important in evaluating the overall quality of solu-
tions provided by the MAS. For this reason, we present the simu-
lator as a tool and encourage MAS developers to use it to evaluate
their systems before the actual deployment. In our previous work
presented in [8], we restricted our analysis to antagonist agents
competing on the same database. In this paper, we concentrate on
cooperative agents executing a shared plan. More specifically, we
investigate the effect of executing contingencies in coordinated
transaction trees in case of disturbance on the overall performance
of MAS. Contingencies are executed due to failures during the
simultaneous execution of multiple Execution Agents working on
the same shared plan or due to changes in the mini world during
long-running plan execution. Such execution usually spans the
time interval between the point of decision making till the point
of actual execution. For concrete examples refer to Section 4.

The remainder of the paper is organized as follows. Section 2
contains an overview of the agent transaction model. In Section 3,
we describe the main contribution of this paper, which is the
simulation model and the simulator. Section 4 analyses the simu-
lation results. Finally, Section 5 summarizes the paper.

2. THE AGENT TRANSACTION MODEL
We use a model based on open nested transaction trees introduced
in the early 80s for database management systems [11]. A hierar-
chical transaction model seems to be best suited for representing
planning strategies [10], since the majority of planning algorithms
is based on hierarchical decomposition (for a good overview,
please refer to [1] and [12]). Under this model, a transaction can
launch any number of subtransactions, which, in turn, can launch
any number of subtransactions, thus forming a transaction tree. In
general, a transaction cannot commit unless all its children are
committed. However, if one of the children fails, its parent does
not have to abort. It has the choice between: ignoring the failure
(a non-vital transaction), retrying the subtransaction, or aborting.
Subtransactions may commit or abort independently and appear
atomic to other subtransactions. A committed subtransaction
makes its results available to other subtransactions in other trans-
action trees as soon as it commits. The global correctness criterion
maintained by the Execution Agent is: either the complete execu-
tion of the transaction tree or it appears to not have executed at
all. Thus, in case of transaction abort, a backward recovery must
take place, in which committed subtransactions of the aborted
subtree are compensated by executing so-called compensating
transactions, whose role is to undo the effects of the original sub-
transactions.

Figure 3 is an example of a transaction tree. A Control Node is a
non-leaf node. It is executed by the ATM of the Execution Agent
according to the control parameters supplied to it by its peer Plan-
ning Agent. Typical control parameters include the number of
retries in case of failure and the time interval between retries. For
a detailed description of the parameters, please refer to [7]. Dur-



ing normal execution, the children of a control node can execute
either in parallel or sequentially. An Action Node is always a leaf
node. It represents a simple agent action, which is submitted
through the DB interface module to the corresponding database
management systems in the form of an ACID transaction. Each of
these actions returns either success or fail to its parent. For each
action node, a compensating action is defined. Also, a reassess-
ment action can be defined as will be seen later in this section.
The semantic of compensation and reassessment actions, their
place within the trees and the triggering rules define the contin-
gency behavior in case of disturbance.

In order to support agent cooperation in implementing the shared
plan, the corresponding transaction trees must be coupled in the
execution layer. For this reason, we introduce so-called Synchro-
nization Nodes. They represent the basic coordination primitive
between transaction trees and their operation is defined through
Event, Condition, Action (ECA) rules. There are two types of
Synchronization nodes: a sender node and a receiver node, situ-
ated in different transaction trees. The sender node sends a mes-
sage to the receiver node if an event occurs, which is the change
in the execution state of the sender node and a certain condition is
met. A typical condition would be the commitment of a transac-
tion subtree. The receiver node waits for the arrival of the mes-
sage and executes the action defined in the message. The action is
a command to change the state, usually a commit or an abort, of
the receiver node. The presence of the synchronization nodes
violates the strict hierarchical structure of the transaction trees,
since receiver nodes are now controlled by two nodes: directly by
their parents in the tree and indirectly through the message re-
ceived from their sender nodes. A typical coordination problem
arises when the synchronization node receives a commit message
from its sender node and, as a result, commits. At a later point, the
foreign subtree, corresponding to the sender node is to be com-
pensated due to a failure. This logically invalidates the status of
the receiver node and all subsequent nodes in the tree. In this
case, the ATM starts a forward recovery process. It tries to reas-
sess all subtransactions depending on (i.e., occurring after) the
receiver node. By reassessment, we mean launching a reassess
transaction that primarily undoes the effect of the original transac-
tion then retrying it in case that the guarding condition for this
transaction is violated. A guarding condition specifies the limit
for the change in the mini world that would still not invalidate the
effects of a committed transaction. Reassessment transactions are
similar in concept to compensation transactions. If this forward
recovery fails, a backward recovery takes place.

Parallel Execution Sequential Execution

Message from
communication

interface module

Message to/from DB-
interface module

Action Node Synchronization NodeControl Node

Parallel Execution Sequential ExecutionParallel ExecutionParallel Execution Sequential ExecutionSequential Execution

Message from
communication

interface module

Message to/from DB-
interface module

Action Node Synchronization NodeControl NodeAction NodeAction Node Synchronization NodeSynchronization NodeControl NodeControl Node

Figure 3. A transaction tree

Figure 4 illustrates a simplified state transition diagram that ap-
plies to all node types. At the beginning, the transaction node is in
the Waiting state until the ATM starts it. It then moves to the
Executing state. According to the result of the execution (e.g.,
success or fail of an action node or the final state of the children
of a control node), the node moves either to the Committing state
or to the Aborting state. If aborted, the node waits for a time in-
terval before moving again to the Executing state as long as the
number of retries is not yet exhausted. A committing node moves
to the Compensating state if the must undo flag is set in its control
parameters and its parent node fails. After compensation, it waits
again for execution by the ATM. Similarly, if a forward recovery
takes place and the committed transaction is affected, it moves to
the Reassessing state, then to the Executing state for a new retry.
Otherwise, the committed node remains in its current state until
all root nodes in the cooperating agent group commit. Here, a
procedure similar to the 2-Phase Commit protocol [2] is instanti-
ated to coordinate their terminations. Then, all the committed
nodes in the tree enter the Terminating state. However, if the root
node fails and exhausts all its retries, all of its descendents enter
the Abandoning state.

TerminatingAbandoning

Waiting

Executing

Aborting Committing Compensating

Reassessing

TerminatingAbandoning

Waiting

Executing

Aborting Committing Compensating

Reassessing

Figure 4. State transaction diagram for a transaction node

3. THE SIMULATION MODEL
In [8], we analyzed the behavior of a system consisting of a grow-
ing number of antagonist agents, each realizing its own goal while
operating on the same database. In this paper, we model and
simulate cooperative multi-agents. More formally, according to
[4], we handle the case of coordinated collaboration between
agents with collective conflicts over resources. We concentrate on
the scalability and the analysis of system behavior in face of exe-
cuting contingencies occurring either due to failures in the execu-
tion of coordinated transaction trees or due to changes in the mini
world that invalidate the decision taken by some Execution Agent
during a long-running plan execution. As illustrated in Figure 5,
we replace the levels above and underneath the execution layer
with two simulated models and a disturbance simulator. In the
following subsections, we describe these models and the transac-
tion tree model executed by the Execution Agents.



Agent group

Agenti, i = 1..n

Workload Simulator

PG

PG
PG

PG

Agent group

Execution Agents

Resource Simulator

Agent group Agent group

Disturbance
Simulator

DG

Agent group

Agenti, i = 1..n

Workload Simulator

PG

PG
PG

PG

Agent group

Execution Agents

Resource Simulator

Agent group Agent group

Disturbance
Simulator

DG

Figure 5. The simulation environment

3.1 System Parameters
3.1.1 The workload model
The agent population is divided into agent groups. Each group
contains a fixed number of agents that work on a shared plan.
Each Planning Agent in the group is represented by a Plan Gen-
erator (PG) module. This module generates a transaction tree and
submits it to its peer Execution Agent. When the Execution Agent
finishes executing the transaction tree, it waits until all other Exe-
cution Agents in the group also finish before requesting a new
transaction tree from the PG. In those simulations, where plan
reassessments due to changes in the mini world are considered,
committed trees are transferred to a list of pending trees as illus-
trated in Figure 6, until the lifetime of the plan execution comes
to end. Meanwhile, the Execution Agent can process other trans-
action trees as long as no reassessment of a pending tree is
needed.

D
is

tu
rb

an
ce

H
an

dl
er

1

2

3

Execution
Agent

Pending Trees

Incoming Tree

Current Tree

C
oo

pe
ra

ti
on

E
nv

ir
on

m
en

t

D
is

tu
rb

an
ce

du
e

to

Terminated Tree

D
is

tu
rb

an
ce

H
an

dl
er

1

2

3

Execution
Agent

Pending Trees

Incoming Tree

Current Tree

C
oo

pe
ra

ti
on

E
nv

ir
on

m
en

t

D
is

tu
rb

an
ce

du
e

to

Terminated Tree

Figure 6. Simulation Model for an Execution Agent

Three parameters specify the tree configuration as illustrated in
Figure 7.

� Average Number of Children (C): is a uniformly distributed
random variable between 1 and 2C; determining the number of
children of a control node.

� Probability of Simple Transactions (S): is a Bernoulli trial
with probability S that a child is an action node.

� Probability of Parallel Execution (P): is a Bernoulli trial
with probability P that the children of a control node are exe-
cuted in parallel.

We notice the absence of explicit synchronization nodes in the
generated transaction trees. During normal operation, they act
only as means for synchronization and show an effect similar to
normal action nodes. In case of disturbances, the important role of
their ECA rules is already modeled through the disturbance simu-
lator as will be shown in Subsection 3.1.4.

P +

C

S
+

P +

C

S
+

Figure 7. Parameters for the transaction tree

3.1.2 The transaction tree model
As in [8], we adopt a persevering strategy to yield more concrete
and quantitative results for our chosen performance indices. This
means the following settings of control parameters of transaction
tree nodes. All nodes must be undone in case of backward recov-
ery and all dependent action nodes must be reassessed in case of
forward recovery (i.e., the guarding conditions always fail during
the reassessment phase). In the experiments summarized in Sec-
tion 4.1, the number of retries of action nodes is set to 2 in nor-
mal, compensation, and reassessment modes. Control nodes are
retried 5 times. This setting helps analyzing the effect of compen-
sation of subtrees on the other Execution Agents of the same
group; and hence the effect of propagating contingencies in coor-
dinated transaction trees. In the experiments summarized in Sec-
tion 4.2, the number or retries of action nodes is raised to 5 in
order to avoid unnecessary aborts of control nodes. In both types
of experiments, we fix the time interval between successive retries
to 60 seconds for all node types in all operation modes.

3.1.3 The resource model
Execution time of database transactions, normally consisting of
read and write operations, is represented by an exponential distri-
bution with mean 15 seconds. To determine whether a transaction
is to be committed or aborted, we construct a transaction seriali-
zation graph. Each executing transaction is represented by a node
in the graph. A directed edge indicates a conflict between two



transactions. A conflict occurs if two transactions access the same
data object and at least one operation is a write. A transaction is
aborted if its introduction results in a cycle in the graph [2].
Edges are added with three probabilities: P1 for nodes belonging
to the same agents, a higher P2 for nodes belonging to the same
agent group, and a highest P3 for nodes belonging to different
agent groups. This reflects an assumption about the planning al-
gorithm: Planning Agents tend not to submit conflicting actions
simultaneously. This applies to actions specified in plans belong-
ing to the same agent group and to a greatest extent to actions
belonging the same agent. P1, P2 and P3 are set to 0.03, 0.06 and
0.09 respectively. Sources for these values as well as mean execu-
tion time are taken from the literature in database modeling such
as [3], where both the database and transaction sizes are reduced
to a small size, while preserving the relationship between them.
Figure 7 illustrates a serialization graph. Each node has an agent
group identifier (AgGpID), an agent identifier (AgID), and a
transaction identifier (TID).

AgGpID:1
AgID:1
TID:1

AgGpID:1
AgID:2
TID:1

AgGpID:2
AgID:3
TID:1

AgGpID:1

AgID:1
TID:2

p1

p1

p3

p3

p2
p2

AgGpID:1
AgID:1
TID:1

AgGpID:1
AgID:2
TID:1

AgGpID:2
AgID:3
TID:1

AgGpID:1

AgID:1
TID:2

p1

p1

p3

p3

p2
p2

Figure 8. Inserting a node into the serialization graph

3.1.4 The disturbance model
While the resource model reflects failures due to conflicts in the
underlying database, the disturbance model describes failures
resulting from two categories of dependencies. The first one is
caused by the synchronization nodes and results from coordinated
transaction trees of Execution Agents in the same agent group; the
second category results from changes in the mini world during
long-running plan executions. A typical pattern of such execution
is a phase of intensive actions, in which the necessary decisions
are taken and registered in the database, followed by a quiet phase
in which changes in the mini world may not invalidate these deci-
sions [10]. At the end, another active phase takes place, in which
these decisions are implemented in the mini world.

In order to model the first category, an Execution Agent making a
backward recovery of a subtree reports the number of affected
simple actions to the disturbance simulator. The disturbance
simulator, in turn, simulates ECA rules for synchronization nodes
typically existing in coordinated transaction trees. It considers all
committed simple actions at Execution Agents belonging to the
same agent group for reassessment. It introduces reassessment for
each committed simple action according to a Bernoulli trial with a
probability directly proportional to the ratio between the number
of affected simple actions of the subtree and the total number of
committed simple actions at all members of the agent group; the
proportion constant being FC.

As for the second category, we built a Disturbance Generator
(DG) module. In time intervals following an exponential distribu-
tion with mean T1, it simulates disturbances occurring due to
changes in the mini world. In our runs, we fix T1 to 300 seconds,
which has the same order of magnitude as the response time of a
transaction tree. These disturbances launch the contingency be-
havior in the transaction trees and cause the reassessment of
committed simple actions that are either part of the current trans-
action tree or part of the list of pending trees. This is done accord-
ing to another Bernoulli trial with probability PD. In this modus, a
committed transaction tree has to remain pending for a certain
time interval before being terminated. This time interval repre-
sents the total lifetime of the plan and follows also an exponential
distribution with mean T2.

3.2 Performance Indices
We consider the same performance indices as in [8]. In this sec-
tion, we include a brief description of these indices for complete-
ness. The first index is the throughput accounting for the number
of terminated actions per agent per second.

simulationin theagentstimeSimulation

actionssimpleterminated

∑
∑

×
=Throughput

The second index is the response time of the whole transaction
tree. In this index, we also account for the time wasted in aborted,
compensated, reassessed, and abandoned actions. We also include
time spent by the tree waiting in the pending list of the Execution
Agent in our calculation. Formally, we define the response time to
be:

∑
∑

==
simulationin thegeneratedn treestransactio

)noderoottheofStart time-noderoottheoftime(End
1

nsimulatiotheingenerated
treesntransactioofnumber

i
ii

imeResponse T

In many cases, one transaction specification can serve as
compensation well as reassessment. Due to the similarity of the
effects of compensation and reassessment, we combine them into
one index: the ratio of compensated/reassessed actions to the
terminated/abandoned ones.

∑ ∑
∑ ∑

+
+

=
actionssimpleabandonedactionssimpleterminated

actionssimplereassessedactionssimpledcompensate

Ratiosmenton/ReassesCompensati

This is a very important economical measure because of the high
cost generally associated with compensation or reassessment. For
example, one gets only a percentage of the full price for a re-
turned theater ticket. A minimization of this ratio is certainly de-
sired. The ratio of abandoned actions to the termi-
nated/abandoned ones accounts for the incidents, in which the
Execution Agent fails to execute a plan and returns control back
to its peer Planning Agent. A low value of this metric is a good
measure for achieving the design goal of separating planning from
the details of execution.

∑ ∑
∑

+
=

actionssimpleabadonnedactionssimpleterminated

actionssimpleabandoned
RatioAbandon

The last performance index is the ratio of aborted actions to the
terminated/abandoned ones. It accounts for work lost due to con-
flicting actions. Here also, a lower ratio is desired.

∑ ∑
∑

+
=

actionssimpleabadonnedactionssimpleterminated

actionssimpleaborted
RatioAbort



4. SIMULATION RESULTS
In the simulation study, we vary the simulation parameters that
trigger the contingency behavior either in coordinated transaction
trees or in long-running plan executions. We repeated the experi-
ments for different setting of workload and resource supplies in
order to explore the domain space. This also helped in carrying
out a sensitivity analysis of the system in the face of variation in
workload and resource parameters. Details of this sensitivity
analysis remain outside the scope of this paper due to space limi-
tations. However, we present two representative sets of results in
the following subsections aided by a set of simple figures illustrat-
ing the behavior of the performance indices. In both sets, we set
the values of P, C, and S to 100%, 5, and 0% respectively. This
results in generating flat transaction trees having a root control
node and 5.5 simple actions on the average that must be executed
sequentially. We also give a small example scenario for each set
of experiments.

4.1 Effect of Disturbance on the Execution of
Coordinated Transaction Trees
4.1.1 Example
In this subsection, we investigate the effect of disturbances in
coordinated execution of transaction trees. Consider the case of a
travel assistant agent. User X wants to travel to place A, and if her
old friend Y is going to be in Place B, she would go and visit her
afterwards in B. Otherwise, user X will prefer to go to place C.
Intuitively, its Execution Agent would receive a plan that reserves
a trip to A, insert a synchronization node waiting for a confirma-
tion from the Execution Agent of user Y. Upon the receipt of the
message, it then executes the subtree reserving a trip from A to B.
If, for any reason, user Y backs-off from going to place B, the
Execution Agent of user X should reassess the subtree reserving
the trip from A to B. It would cancel it and reserve for a trip from
A to C. This ought to be done without the intervention of the
Planning Agent of user X, since the contingency behavior is al-
ready defined within the transaction tree and the semantic of its
synchronization nodes.

4.1.2 Results
In this set of experiments, we fix the size of the agent population
to 120 agents and change the size of the agent groups from 1 to
24; as can be seen along the x-axis of Figure 9 through Figure 13.
We repeat the experiments for increasing values of FC.

First, we start with FC = 0, representing a theoretical optimum in
which cooperating agents work without any negative side-effects

between the members of the agent group. This setting outlines the
positive effect of having several agents solving a problem. An
improvement in all performance indices is observed. This is easily
accounted for if we consider the job mix in the resource simula-
tor. With the increase on the size of the agent group, directed
edges of the transaction serialization graph tend to be added more
with probability P2 than with probability P3. Since P2 is less than
P3, this leads to less cycles in the serialization graph; and hence
less conflicts; less aborts, less compensations and less abandoning
of agent actions.

With the increase in FC, we notice a growing effect, namely, that’s
of agents backing-off their plans and affecting the execution of
other coordinated transaction trees in the same agent group. This
propagation of contingencies works against the positive effect of
agent cooperation. This leads to the deterioration of all perform-
ance indices. Again, this can be intuitively explained. With the
presence of such disturbances (represented by FC > 0), the larger
the size of the agent group gets, the higher the chance of propaga-
tion of such contingencies gets, as illustrated in the previous ex-
ample. For the given setting of workload and resource parameters,
all performance indices tend to achieve asymptotic values for FC

above 6. Precisely for FC = 6, the throughput decreases by a factor
of 250 as the group size increases from 1 to 24. The response time
increases from 1000 to 5000 seconds. The compensa-
tion/reassessment ratio, the abandon ratio, and the abort ratio are
also badly affected.

A point of equilibrium for FC, where both effects seem to equal-
ize, is slightly different for each performance index. It is about 0.5
for both the throughput and the response time, 1 for both the
compensation/reassessment and abort ratio, and 2 for the abandon
ratio.

4.1.3 Lessons learned
The results of this experiment confirm the famous tradeoff be-
tween the gain in having several agents cooperatively working
together on the same problem and the loss represented in the in-
creasing overhead of coordinating their actions. The good news is
that, even under hard conditions, all performance indices tend to
achieve asymptotic values in our system. MAS designers have to
evaluate FC typical for their workload. Using the results of this
type of experiments, they should be able to determine the optimal
group size that meets the required performance indices. Or, in
other words, given a group size, they can predict the MAS per-
formance.

F C

0

0.002

0.004

0.006

0 5 10 15 20 25
Group size

T
ra

n
sa

ct
io

n
/S

ec
.A

g
en

t

0 0.5

1 2

3 6

Figure 9. Throughput

F C

0

2000

4000

6000

0 5 10 15 20 25
Group size

S
ec

o
n

d
s

0 0.5

1 2

3 6

Figure 10. Response Time



F C

0

2

4

6

8

10

0 5 10 15 20 25
Group size

R
at

io

0 0.5

1 2

3 6

Figure 11. Comp.-Reassess. Ratio

F C

0

0.25

0.5

0.75

1

0 5 10 15 20 25
Group size

R
at

io

0 0.5
1 2
3 6

Figure 12. Abandon Ratio

F C

0

2

4

6

0 5 10 15 20 25
Group size

R
at

io

0 0.5
1 2
3 6

Figure 13. Abort Ratio

4.2 Effect of Disturbance due to Long-
Running Execution
4.2.1 Example
In this subsection, we investigate the effects of changes in the
mini world during the execution of long-running of agent plans.
Consider again the case of a travel assistant booking connection
flights from A to B and from B to C. Till the actual start of the
trip, the plan might be invalidated due to a change in the envi-
ronment, such as the cancellation of the first flight. The Execution
Agent would reassess its transaction tree by booking another
flight from A to B and eventually another one for the trip from B
to C in case the new transit time is too short. Again, this ought to
be done without the intervention of its peer Planning Agent since
the Execution Agent has already all the needed information for
the contingency behavior in the transaction tree.

4.2.2 Results
In this set of experiments, we fix the size of the agent population
to 60 agents. Since we are only interested in disturbances result-
ing from changes in the mini world, no agent groups are formed.
Instead, we vary the value of T2 (the average time interval a com-

mitted transaction has to remain pending before termination) from
200 to 2800 seconds, which is about 10 times the value of T1 (the
average time interval between successive disturbances). We repeat
the experiments for increasing values of PD.

First, we start with PD = 0%, representing the theoretical opti-
mum, in which the disturbances generated by the DG module do
not effect either the active or the pending transaction trees. As
expected, all performance indices remain unchanged, except the
response time, illustrated in Figure 15. It increases linearly with
the increase in T2, since the waiting time is also included as part
of the overall response time. This experiment serves as a basis of
comparison.

Apart from this theoretical optimum, all performance indices dete-
riorate with the increase in T2. However, this degree of deteriora-
tion strongly depends on the performance index and PD. Agent
throughput, illustrated in Figure 14, degrades heavily once PD

gets above the zero level. With PD = 50% and T2 = 200 seconds,
the throughput is decreased by a factor of 2.6. This factor be-
comes 7.7 at T2 = 2800 seconds. The good news is that the effect
of T2 seems to weaken with the further increase in T2. This can be
observed in the decrease in the absolute value of the gradient of



the plotted curves. This would intuitively lead to a stabilization of
the throughput value. On the other hand, the response time, illus-
trated in Figure 15, seems to be less affected by the increase in
PD. The increase always remains linear and in the increase in the
slope of the curve is hardly remarkable.

The deterioration of the other performance indices remains almost
linear but seems to be more affected by the increase in PD than the
response time. Both the slope and displacement of the compensa-
tion/reassessment ratio, illustrated in Figure 16 are affected by the
increase in PD. Taking PD = 50% as an example, the slope is more
than doubled with the increase of PD from 5% to 50%. For the
point T2 = 200 seconds and PD = 50%, the ratio jumps from 0.23
to 1.24. To some extent, the same also applies for the abort ratio
illustrated in Figure 18. However, for the abandon ratio, illus-
trated in Figure 17, only the slope seems to be affected. The dis-
placement remains almost unchanged.

4.2.3 Lessons learned
The results of the experiment confirm the intuitive fact that, in a
dynamic environment, decision taken will not always remain valid
especially if the time span between the decision taking process
and the actual execution is too long. The good news is that for
reasonable values of PD, the system behavior is still acceptable.
Moreover, as PD grows beyond 50%, the system shows an asymp-
totic behavior, which speaks for the stability of the system.

Since the value of PD and T1 are relatively easy to estimate even
before the actual deployment of MAS, system designers are en-
couraged to run such experiments under the expected workload in
order to estimate how near to real-time, their plans should be to
meet their performance requirements.

P D

0

0.005

0.01

0.015

0.02

0 500 1000 1500 2000 2500 3000
T 2

T
ra

n
sa

ct
io

n
/S

ec
.A

g
en

t 0 5

10 25

50

Figure 14. Throughput

P D

0

2000

4000

6000

0 500 1000 1500 2000 2500 3000
T 2

S
ec

o
n

d
s

0
5
10
25
50

Figure 15. Response time

P D

0

2

4

0 500 1000 1500 2000 2500 3000
T 2

R
at

io

0
5
10
25
50

Figure 16. Comp.-Reassess. Ratio

P D

0

0.025

0.05

0.075

0.1

0 500 1000 1500 2000 2500 3000
T 2

R
at

io

0
5
10
25
50

Figure 17. Abandon Ratio



P D

0

1

2

3

4

0 500 1000 1500 2000 2500 3000
T 2

R
at

io

0
5
10
25
50

Figure 18. Abort Ratio

5. SUMMARY
In order to increases the robustness of MAS, we entrust the exe-
cution of agent actions to special Execution Agents. These agents
implement an extended transaction model that formally guaran-
tees robustness of execution. To assess the overhead induced by
the Execution Agents, we developed a simulation model and im-
plemented a simulator around them.

In previous work, we restricted our analysis to the case of antago-
nist agents with self-centered goals. In this paper, we generalize
our analysis to include cooperating agents and agents executing
long-running plans. For this purpose, we model, simulate, and
analyze two categories of disturbances. The first category results
in the propagation of contingency among coordinated agent plans.
The second category occurs due to changes in the mini world
during long-running plan execution. In both categories, a deterio-
ration of performance was observed in comparison to an ideal
world without disturbances. However, the degree of deterioration
depends on the degree and frequency of the disturbances. With
extremely high disturbance, the system tends to develop an ac-
ceptable asymptotic behavior. In general, this paper shows the
importance of simulation as a valuable tool for evaluating the
overall quality of solutions provided by the MAS before the ac-
tual deployment.

6. REFERENCES
[1] Allen, J., Hendler J., and Tate A., (eds.). Readings in Plan-

ning, 1st ed., Morgan Kaufmann, 1990.

[2] Bernstein, P., Hadzilacos V., and Goodman, N. Concurrency
Control And Recovery in Database Systems, Addison-
Wesley, 1987.

[3] Carey, M.J., Franklin, M.J., Livny, M., and Shekita, E.J.
Data Caching Tradeoffs in Client-Server DBMS Architec-
tures, Proc. ACM SIGMOD, 357-366, 1991.

[4] Ferber, J. Multi-Agent Systems: An Introduction to Distrib-
uted Artificial Intelligence, 1st ed., Addison-Wesley, 1999.

[5] FIPA ACL standard. http://www.fipa.org, 2000.

[6] Klusch, M. (ed.). Intelligent Information Agents: Agent-
Based Information Discovery and Management on the Inter-
net, 1st ed., Springer-Verlag, 1999.

[7] Nagi, K. Transactional Agents: A Robust Approach for
Scheduling Orders in a Competitive Just-In-Time
Manufacturing Environment. Proc. Workshop on MAS in
logistics and economical perspectives of agent
conceptualization, September 1999.

[8] Nagi, K. Scalability of a Transactional Infrastructure for
Multi-Agent Systems. Proc. 1st Workshop on Infrastructure
for Scalable Multi-Agent Systems at Autonomous Agents
2000, June 2000.

[9] Nagi, K., and Lockemann, P. Implementation Model for
Agents with Layered Architecture in a Transactional Data-
base Environment, Proc. 1st Workshop on Agent Oriented
Information Systems, June 1999.

[10] Nodine, M. Interactions: Multidatabase Support for Planning
Applications. Ph.D. Thesis, Brown University, 1993.

[11] Traiger, I.L., Trends in Systems Aspects of Database Man-
agement. Proc. 2nd International Conference on Databases,
Wiley & Sons, 1983.

[12] Weiss, G. (ed.). Multi-Agent Systems: A Modern Approach
to Distributed Artificial Intelligence, 1st ed., MIT Press,
1999.


