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ABSTRACT
With thewideadoptionof web-agents,improving theefficiency of
their interactionsis of greatimportance.Therestartmethodaimsto
reduceoverall completiontimesof suchinteractionsby usingthe
distribution of completiontimesto determinea besttimeoutafter
which it is more promisingto re-issuea requestthan to wait for
completion.

In this paper, we review existing work on the restartmethod
andself-similarity of internettraffic. We extendexisting work by
analysingtherestartmethodfor thefour interactionphasesconnec-
tion, request,processing,reply. We obtainresultsfor web-agents
retrieving staticallyanddynamicallygeneratedwebpagesanddis-
cussimplicationsfor agentsbasedon middleware suchas RPC,
Corba,or mobileagents.

Regardingtheconnectionphase,previouswork by Hubermanet
al. found a lognormaldistribution in UDP connections.In con-
trastto thesimplerUDP, we focuson themorecomplex andmore
widely usedTCP/IPconnections,for which we obtainmorecom-
plicateddistributions,which leadnonethelessto improvementsin
65%of ourexperiments.Furthermore,in contrastto previouswork
we relatedocumentsizeto reply times.

1. INTRODUCTION
Interactionsof web-basedagentsvary in timeandaregreatlyin-

fluencedby hardware on both sides,the networks used,and the
operatingsystem’s softwareused.As interactioncompletiontimes
vary in time, they canbe describedasrandomvariables.Knowl-
edgeaboutthis randomprocessis very useful to improve perfor-
mance.Knowing thedistributionanagentcancomeupwith amax-
imumtimeit is willing to wait for areplyto its request.Thischoice
hasto betakencarefully, astherequestwill have to bere-issuedto
the sameor anotheragenthopefully with a betterresponsetime.
This performanceimprovementis known asrestartmethod[8, 9,
12, 11, 3]. It is often encounteredin practicewhenbrowsing the
web: a webpagetakesagesto beretrieved. After sometime users
impatientlyreloadthepageandit is promptlydownloaded.

Theprincipleunderlyingthisexampleis generalin nature.Given
a client anda server, theclient issuesa requestto theserver. If the

Permissionto make digital or hardcopiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
Copyright 2001ACM 0-89791-88-6/97/05...$5.00.

requestis not served after a certainamountof time, the client re-
issuesthe request,possiblyto anotherserver. Using this strategy,
theclient expectsanoverall improvement,if the timeoutperiodis
setcorrectly.

How canthis beachieved?First of all dataneedsto becollected
to find out thedistribution of completedrequests.For certaindis-
tributions[3] a cutoff canbechosen,which reducesthemeanand
varianceof the new distribution in comparisonto the one,which
doesnot employ therestartmethod.An exampleof a distribution,
wheretherestartmethodworks, is the lognormaldistribution [11,
12]. It is asymmetricalandafterapeakthedistributionslowly tails
off. Thereforeperformanceimprovementscanbe expectedif re-
questsaretimedout afterthepeak.

Hubermanet al. [8, 9, 12, 11] investigatedthe restartmethod
for UDP-connectionsandretrieval of index webpages,wherethey
found lognormaldistributionsin the data. While Hubermanet al.
aremainly interestedin socialprocessesinfluencingnetwork traf-
fic, our work aimsto put the restartmethodto practice. This re-
quiresin particulara detailedanalysisof the different phasesof
agentinteractions,which is not consideredby Hubermanet al.

Basically, aninteractionbetweenagentscanbebrokendown into
four phases:(1) theclient connectsto theserver, (2) theclient is-
suestherequest,(3) theserver processestherequest,(4) theserver
sendsthereply to theclient. Thesefour phasescanhave very dif-
ferentcharacteristics.Let usconsiderfour scenarios:

(1) Staticwebpages.An informationagentretrievesplain,static
webpages,i.e. they werenotgenerateddynamicallyby CGI. Phase
1 involvesconnectionwith TCP. Will this have a lognormaldistri-
bution astheUDP-connectionsmentionedabove, especiallybear-
ing in mind that UDP is muchsimplerthanTCP?In phase2, the
clientsubmitsthequery. As theagentjustrequestsaplainwebpage
only thefilenameneedsto be transmittedandwe canassumethat
this phasetakesnearlyconstanttime with very little variance.The
sameholds for answeringthe query, as the server simply locates
the file to be transmittedin the next phase.This last phase,how-
ever, will have an interestingdistribution, which we expect to be
dominatedby thenetwork’s capabilitiesandthesizeof thefile.

(2) DynamicallygeneratedHTML pages. Let us considerthe
samescenarioinvolving dynamicallygeneratedwebpages.Phase
1 and 4 are the sameas in (1), but phase2 can vary now from
sendinga few shortparameters,which couldbeassumedconstant,
to uploadinga largefile, whichwill bedominatedby thedocument
size. Also, phase3 becomesnow an interestingrandomvariable,
asthe dynamicgenerationof the webpagedependshighly on the
applicationrun, rangingfrom a quick lookupin a databaseto long
computationof results.In general,thedistribution of dynamically
generatedpagescannotbeestimated.

(3) Remoteprocedurecalls and mobile agents. This scenario



is similar to (2). In particular, phase2 and4, involve thetransmis-
sionof� objects/agentsandcanbedescribedby adistribution,which
couldsignificantlydiffer from theonegoverningphase3.

With thesescenariosdefined,wesetoutto developabenchmark-
ing tool for performanceimprovementsof web-agents.The tool
hasto addressin particulara detailedanalysisof TCP connection
to websites,benchmarkingof CGI servers,anddistribution of in-
ternettraffic in general.

The paperis organizedas follows. We briefly review TCP/IP
and its methodsto dealwith congestion.We describethe restart
methodandreview the log-normaldistribution andself-similarity
in internettraffic. Next, we review andcriticize Huberman’s work
on therestartmethod.Thenwesetout for adetailedanalysisof in-
teractionsof web-agents.Wegiveanalgorithmto estimatethebest
restarttimeandtheninvestigatethedistributionsandrestartmethod
appliedto thedifferentphasesof interactionsof web-agents.

2. BACKGROUND

2.1 TCP/IP and UDP
The TCP/IP internetprotocol suite is a collection of protocols

thatcanbeusedto communicatebetweenmany differentnetworks.
Theseprotocolsareopenprotocolswhich meansthat they arenot
proprietaryandnot for profit. They arefreely availableandthey
canrun on differenthardwarearchitecturesanddifferentoperating
systems[10]. This spirit of opennessis oneof the foundationsof
the internet.TCP/IPprotocolsaredesignedusinglayeringprinci-
plesin suchawaythattheprotocolsareindependentof thevarious
transmissiontechnologiesthatmaybe usedin differentnetworks.
Therearefour layersin the TCP/IPsuite: (1) The lowest layer is
calledthelink layerwhichcorrespondsto hardwaresuchasa PC’s
network interfacecard.(2) Next comesthenetwork layerwhich is
wherethe internetprotocol(IP) operates.This protocolis usedto
defineIP datagramsthat aresentthrougha network. IP provides
connectionless,besteffort packet delivery service.Connectionless
meansthat theroutesbetweenhostsarenot fixed i.e. eachpacket
makes its own route throughthe network and they are often dif-
ferent. Whatcharacterizethebesteffort packet delivery serviceis
that it doesnot guarantydelivery. (3) The TCP/IPprotocolsuite
hastwo protocolsin the next layer calledthe transportlayer: the
UserDatagramsProtocol(UDP) for an unreliableconnectionless
delivery serviceandtheTransmissionControl Protocol(TCP) for
reliablestreamdelivery. (4) Thelastlayeris known astheapplica-
tion layerwhereservicessuchasFTPandHTTP resides.

2.2 Congestion
The Internet is a worldwide collection of heterogeneousnet-

works connectedwith routersand gateways that useTCP/IP for
interconnectionsbetweenthem[10]. This complex structurecre-
atesonelargevirtual network. A routeror gateway is a computer
that connectstwo or morenetworks andforwardspacketsof data
betweenthem[2]. Whentraffic througha routeris so intensethat
theroutercannotprocessnor storeall datagramsthatarrive at it, a
conditionknown asInternetcongestionoccurs.

Accordingto Comer[5] datagramscanarrive at a router faster
thanthe routercanprocessthemfor two reasons:(1) they canbe
generatedby a singlevery fastcomputer;(2) or they canbegener-
atedbyanumberof computers,whichsendtheirdatagramsthrough
thesamerouter.

If thedatagramsstartarriving to therouterfasterthat it canpro-
cessthem,the routerstoresthe datagramsin its memoryfor pro-
cessingat a later time. If this conditioncontinues,the routerwill
eventuallyexhaustthememoryallocatedfor storingthedatagrams

andit will startdiscardingthem. A routercanwarn thecomputer
that originally sentthe datagramsof this conditionandrequestit
to lower its transmissionrate. This is achieved by sendingwhat
is calledan ICMP sourcequenchmessage.Onesuchmessageis
usuallysentfor eachdiscardeddatagram.

2.3 Impr ovementsto Inter netnetwork perfor-
mance

Severalmechanismsin TCPhavebeendevelopedto improvethe
problemof internetcongestion:

(1) TCPprovidesa sliding window schemefor controllingend-
to-endflow. The window indicatesthe sizeof the buffer that the
receiver haspresentlyavailableandthis sizeis advertisedin every
acknowledgement[4].

(2) TheMaximumSegmentSizeOption in TCPcanaffect effi-
ciency in two ways: large segmentscan increasethroughput,but
too largesegmentscancauseIP fragmentationwhich canresultin
the lossof somefragments.This would againdecreaseefficiency
[16].

(3) Two further techniquescanbe implementedin TCP to help
with congestion:Slow Start and Multiplicative Decrease.Both
techniquesusethecongestionwindow limit to controltraffic. Slow
Startusesthe congestionwindow limit to decreasetraffic follow-
ing the lossof a sentsegment,while Multiplicative Decreaseuses
it to increasethe traffic after the network hasrecoveredfrom the
congestionproblem[5].

(4) Congestioncanoften be causedby retransmission.There-
fore, therequirementsfor internethostspublishedby theNetwork
Working GroupForcestipulatethat ”a hostTCP mustimplement
Khan’s algorithmandJacobson’s algorithmfor computingthe re-
transmissiontimeout.” By ensuringthat thesealgorithmsare al-
ways implemented,the occurrenceof congestiondue to retrans-
missionis diminished[2].

(5) Anothercommonreasonfor congestionis dueto a network
beingoverloadedwith single-charactermessagescreatedby a key-
board,a conditionknown as’small-packet problem’. Thesolution
to this is to prevent new TCPsegmentsbeingsentwhennew out-
goingdataarrivesfrom theuser, if any previously transmitteddata
on theconnectionremainsunacknowledged[13].

As a conclusion,let ussummarizethatTCPprovidesa number
of mechanismsto dealwith congestion.In contrast,thiscomplexity
andsophisticationis notpresentin UDP.

2.4 Impr oving congestionbasedon the restart
strategy

While the above methodsareintegratedinto TCP, Lukose,Hu-
berman,Maurer, Hogg[8, 9, 12, 11] andChalasani,Jha,Shehory,
andSycara[3] describeapplicablemethodsfor efficiency improve-
mentsbasedon therestartmethod.

The idea is that it is often advantageousto restarta request,
which is takinga long time to beserved,ratherthanto keepwait-
ing for the original requestto be fulfilled. But how long should
onewait? To answerthis questiononefirst needsto find out about
thedistributionof thetime it takesto serve a request.As anexam-
ple, [11] performedmultiple connectivity testsfrom theUS to the
UK measuringUDP packet round trip-times, which follow quite
closelya lognormaldistribution. As an exampleconsiderFigure
1, which shows thedistribution of roundtriptimesof UDP packets
from theUK to Japanandthe right figureclearlyshows theclose
matchof thecumulativedistributionof therealdatato a lognormal
distributionwith mean9.25andvarianceof 0.5.

With the distribution known, a bestcutoff time canbe chosen.
Figure2 shows analgorithmto computethebestcutoff timebased
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Figure 1: Distrib ution of round-trip times of UDP packetssent
fr om the UK to Japan. The right shows the match of the cu-
mulative distrib ution to the cumulative lognormal distrib ution
with mean9.25and variance 0.5.

GiventimingsX � �
x1 ��������� xn 	

for c � 1 to max
�
X 	

i � 0;
Y � �

0 ��������� 0	 ;
for j � 1 to n

yi � yi 
 min� c � x j � ;
if x j 
 c theni 
�
 ;

µc � 1
j ∑y j ;

returnindex c, whereµc minimal

Figure2: Computing the bestcutoff time for a given testset.

on theexisting data.For every possiblerestarttime it derivesfrom
theexistingdatathedistributionresultingfrom usingthecutoff un-
derconsideration.Thecutoff leadingto thedistributionwith small-
est meanis then selectedas bestcutoff. The complexity of this
algorithm is O

�
nm	 , wheren is the sizeof the dataandm is the

numberof possiblecutoff values.
With a cutoff valuechosen,therestartmethodcanbeemployed

andthequestionremainswhetherthetheoreticallybestcutoff leads
to improvementsin practice.But beforeweanswerthisquestionlet
usreview theresultsobtainedin previouswork.

2.5 Review of existingwork
The motivation of Hubermanet al. is not the improvementof

low-level protocolsbut the studyof socialphenomenaon the in-
ternet. LukoseandHuberman[11] arguee.g. that the lognormal
distribution “reflectsthedynamicsof millions of usersconfronted
with thedilemmaof eitherconsumingbandwidthgreedilyandthus
creatingcongestion,or postponingaccessto remoteinformation
andpayingthe correspondingcost in utility”. The authorsare in
particularinterestedin thequestionwhetheremploying therestart

methodon a large scalestill combatscongestion[12]. And they
show basedon their theoreticalmodelthat an overall adoptionof
therestartmethodleadsto anoverall improvement[12].

However, [6] questionthe above approachby pointing out that
althoughthe internetis influencedby socialprocesses,thereis no
evidenceof theseprocessesin theexperimentsHubermanetal. car-
ried out. In particular, [6] point out that theexperimentsbasedon
UDP reportedin [9, 11] shows very low ratesof packet lossand
thuscannotserve asevidencefor any congestion.

In anotherpaper, [12] investigatethe restartmethodwhenap-
plied to web pageretrieval. They show thedistribution of 40,000
index-pagesandarguethatit fits a log-normaldistributionandthat
the restartmethodis applicable. [15] confirmsthat bulk transfer
traffic suchasFTP, SMTP, andNNTP datacanbefitted by a log-
normaldistribution,but alsopointsoutthatthisisanapproximation
asexperimentsshow self-similarity in network traffic [7, 19, 14,
18], which meansthat the distributionsareheavy-tailed approxi-
matingx� α (ratherthanlognormal).

Thereis anotheraspectto thedistribution for systems,in which
client requestservicesandserversreply. Thedistribution is acom-
plex mixture of many different distributions. We can generalize
thescenario:An agentrequestingaservicefrom anotheragenthas
to connect,transmitthe request,the requesthasto be processed,
andthereply sentback.Thesefour phasescanhave very different
distributions leadingto quite differenta distribution overall. Be-
fore we presentour findings,we will give the relevant detailson
the importantlognormaldistribution and review the literatureon
self-similarityof webtraffic.

3. DEFINITIONS AND STATISTICAL
BACKGROUND

3.1 The lognormal distrib ution
Let X beanormallydistributedrandomvariablewith meanµand

varianceσ, for shortX � N
�
µ � σ 	 . Thedistribution function for a

normallydistributedvariableis givenas

φ
�
x	 � 1

σ � 2π
e��� x � µ� 2 � 2σ2

and Φ denotesthe cumulative distribution function, i.e Φ
�
x	 �� x

� ∞ φ
�
x	 dx. The following relation holds betweennormally and

lognormally distributed randomvariables: X is lognormally dis-
tributed,shortX � LN

�
µ� σ 	 if ln

�
X 	 is normallydistributed.This

implies that the cumulative distribution functionof a lognormally
distributed variable can be expressedin terms of Φ, namely as
Φ
�
ln
�
x	�	 .

Oneof thereasonswhy bothdistributionsaresoimportantis due
to the CentralLimit Theorem,which relatesany infinite number
of randomvariableswith the samedistribution to the normaland
lognormaldistribution:

THEOREM 1. Central limit theorem(e.g. [1]). Let Xi be ran-
domvariableswith the samedistribution, then∑∞

i � 1 Xi � N
�
µ� σ 	

and∏∞
i � 1 Xi � LN

�
µ � σ 	 .

As a consequence,a finite numberof randomvariablesapprox-
imatesthe (log)normaldistribution, whenaddedup (multiplied).
This profound result has an immediateapplicationto networks
suchas the internet. Queuingnetwork modelswith an indepen-
dentqueuelengthsareoften consideredaccuratedescriptionsfor
suchsystems[17].

As a simpleexamplelet usconsiderUDP, whichwe pointedout
above is asimpleandfastprotocolwith nocomplicatedcongestion



Figure 3: Left: Distrib ution of 2.6million web documents[19]
Right: Distrib ution of 500,000webdocuments[7]

control integrated. Accordingto Hubermanet al. [9, 11] andas
confirmedin Fig. 1 round-triptimesof UDP packetsfollow a log-
normaldistribution. Doesthis distribution lend itself to improve-
mentsvia therestartmethod?Chalasani,Jha,Shehory, andSycara
[3] prove a theoremestablishingconditionswhennot to expectan
improvement.Thesecanbeeasilychecked for the lognormaldis-
tributionby anexample:With meanµ � 6 � 89,varianceσ � 0 � 829,
and a cutoff point b � 8, we can checktheir condition that the
cumulative distribution mustbe larger than the cutoff divided by
cutoff andmean;in this caseΦ

��� b � µ
σ 	 � Φ

� 8 � 6 � 89
0 � 829 	 � Φ

�
1 � 34	 �

0 � 9099 � 8
6 � 89� 8 � 0 � 539, henceaccordingto [3], improvements

arenot ruledout.
To summarize,we have threereasonswhy lognormalis impor-

tant in practice:(1) TheCLT statesthatthemultiplicative effect of
any numberof randomvairablesapproximatesthelognormaldistri-
bution. (2) For this reasonit is agoodmodelfor queuingnetworks.
(3) In practice,traffic suchas UDP fits a lognormaldistribution
very well (seeFig. 1).

3.2 Self-similarity and heavy-tailed distrib u-
tions

However, in practicethere is evidencethat network traffic is
heavy-tailed [15, 19, 7, 14, 18], which meansthat the distribu-
tion approximatesx� α in the long-run. This implies that with in-
finitely small probability infinitely largevaluesoccur. A distribu-
tion is heavy-tailedif P �X � x��� x� α asx � ∞, where0 
 α 
 2,
i.e. the asymptoticshapeof the distribution follows a power law.
Heavy-tailed distributionsaredifferentfrom otherdistributionsin
that they have infinite varianceif α 
 2 andalsoinfinity meanif
α 
 1. Intuitively, this meansthat thesmallerα is, thebiggerthe
areacoveredby thedistributionstail becomes.Applied in practice,
[19, 7] find that distributions(seeFig. 3) of web documentsare
heavy-tailed. Self-similaritymeansthat infinitely largedocuments
can occur with infinitely small probability. But as Paxsonfinds
[15], bulk transfertraffic suchasFTP, SMTP, andNNTP data,can
still be bestmodeledby a lognormaldistribution omitting the as-
pectsof self-similarity.

4. EXPERIMENTS AND RESULTS

4.1 Benchmarking tool
Given the theoreticaland practicalbackground,we developed

a benchmarkingtool to clarify the restartmethodappliedto web-
agentsby contributing answersto thefollowing questions:

(1) Thereis ahugedifferencebetweenthefast,non-reliable,and
simpleUDP andtheslower, reliable,andmorecomplex TCPpro-
tocol. While the simpleUDP traffic fits a lognormaldistribution
neatly, it is anopenquestionwhetherTCPwill fit lognormal?
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Figure 4: Distrib ution of 10.000TCP connectionsmade fr om
UK to a site in France. On average connection 1720msand
most fr equently 661ms. After applying logarithm to the data,
meanand variance are 6.89and 0.69,respectively.
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Figure5: Basedon data in Figure4, the besttheoretical restart
time is after 1060 ms giving the distrib ution displayed with
meanand variance reducedto 6.71and 0.27

(2) While previouswork treatsanagent’s requestasasingledis-
tribution,wearguethatthisnecessarilyreflectsamix of four differ-
entdistributions,asanagent’s requestis composedof four phases
of connection,request,processing,reply. What do thesedistribu-
tionslook like?

(3) The relationof a theoreticallyandpracticallybestcutoff is
not straightforward. If the restartmethodis employed, the agents
have to computethebestcutoff. Givensampledata,thealgorithm
in Fig. 2 computesthebestcutoff to minimisethemean.Doesthis
work in practice?

4.2 Resultsfor TCP connections
Each completeconnectivity test performedwas composedof

10,000connectiontrials to a websitespecifiedin that test. The
total numberof differentwebsitescontactedwas20. Thenumber
of completetestsconductedon eachof the20 sitesrangedfrom 2
to 6. In total,53separatetestswerecarriedoutover thecourseof a
two monthperiod.Therefore,resultsrelatingto 53,0000individual
connectiontrials werecollectedto form the basisof the analysis
presented.

Thefirst of eachof theseriesof teststo a particularwebsitewas
atestin whichtherestartmethodwasnotapplied.Fig. 4 shows the
distributionwhicheventuallytailsoff likea lognormaldistribution,
but whichhasthreepeaks,unlikethesimplerdistributionsfor UDP
packets,whichHubermanet al. [8, 9, 11] considered.

Next, we computedthe bestcutoff times using the first setof
experiments.Thealgorithmin Fig. 2 basicallycomputesthe dis-
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Figure 6: Distrib ution of 10.000TCP connectionsmade fr om
UK to a site in France with a restart of 1060ms. The average
is down to 472 ms and mean and variance are 6.04 and 0.15,
respectively. The restart method works better than predicted
in fig. 5.

tributions for all possiblecutoff times and selectesthe one with
minimal meanvalue. Fig. 5 shows the resultingdistribution after
applyingthealgorithmto thedatain Fig. 4.

Thesecondtestto thewebsitewasalwaysconductedusingthis
recommendedrestarttime ascalculatedby thealgorithmin Fig. 2.
Givenadistributionwith norestartasin Fig. 4 andtheoneresulting
theoreticallyfrom thebestcutoff asshown in Fig. 5, let usconsider
thepracticalverificationasdepictedin Fig. 6. For this exampleit
shows clearlyanevenbetterbehavior thantheoreticallypredicted.
After applyinglogarithmto all data,themeanandvarianceof the
datawithout restartwas6.89and0.69,respectively, andpredicted
to godown to 6.71and0.27for thebestcutoff time. But in practice
resultswereevensignificantlybetterat6.04and0.15,respectively.

However, sometimesthe theoreticallybestcutoff time did not
leadto betterconnectivity in whichcasemoretestswereperformed
with different restarttimes in an attemptto obtaina betterresult
thantheoneobtainedin thevery first testwithout restart.Below is
a summaryof the 53 separateteststo 20 websitesthatwerecom-
pleted:

(1) Thetestsconductedon 10 of the20 websitesresultedin im-
provedconnectivity from thefirst attempt(seeFig. 7). This means
thatwhenthesecondtestto thewebsitewasrun, usingtherestart
methodandthecalculatedtheoreticalrestarttime generatedby the
algorithmin Fig. 2, thetestimmediatelyshowedimprovedconnec-
tivity.

(2) The testsconductedon 2 of the 20 websiteseventually re-
sultedin improvedconnectivity. This meansthatwhile thesecond
testbasedon the theoreticallybestrestarttime did not show im-
proved connectivity, when further testswereconductedbasedon
restarttimeslongerthanthetheoreticalrestarttime, improvedcon-
nectivity wasachieved.

(3) In thecaseof testsconductedonanother2 of the20websites,
thebestconnectivity resultsthatcouldbeachievedusingtherestart
methodwereequalto the resultsof the first test, i.e. the test in
which therestartmethodwasnotapplied.

(4) Finally, in the caseof testsconductedon 6 of the 20 web-
sites,improvedconnectivity usingtherestartmethodcouldnot be
achievedgiventhenumberof teststhatwererun (i.e. a maximum
of 6 completeteststo a particularsite).

Anotherpoint worth noting is thata naturalexplanationfor im-
provedconnectivity couldbea differentroutetakenfor successive
connections.Thereforewe checkedpacket routesto all 20 siteson
differentoccasionswith the resultthatalthoughroutesmay differ

Site Restart Avg % Hops

insead.fr 0 1720
1060 472 27 11

uni-lepzig.de 0 305
70 91 30 18

tu-berlin.de 0 108
110 49 45 17

yahoo.co.uk 0 124
371 61 49 15

public.srce.hr 0 949
1000 646 68 15

www.bris.ac.uk 0 20
320 15 75 12

amazon.co.uk 0 236
1000 181 77 13

www.nagoya-u.ac.jp 0 660
1000 506 77 26

usyd.edu.au 0 718
811 610 85 23

ntu.edu.au 0 865
970 747 86 18

www.monash.edu.au 0 734
840 660 90 17

ucd.ie 0 33
90 31 94 15

ucla.edu 0 169
690 166 98 16

Figure 7: Summary of average TCP connectionsfor 10.000
connectionsmadefr om London, where restart led to impr ove-
ments.Timesare in ms.

over longertime periods,successive connectionsalwaysusedthe
sameroute.

4.3 Distrib ution of Index-pageretrieval
Regardingweb-agentsdealingwith staticwebpages,theabove

sectionsdetailedimprovementson phase1 of the interaction,the
TCPconnection.As wearguedin theintroductionthatrequestand
processing(phase2 and3) arenegligible for staticweb-pages,we
can turn now to phase4, the transmissionof the document.Hu-
bermanet al. [12] considered40.000index pagesandfounda log-
normaldistribution. In contrast,[19, 7] foundheavy-tailed distri-
butions.But accordingto [15], thelatterarebestapproximatedby
a log-normaldistributions. However, regardingHubermanet al.’s
findingsthereremainsanopenquestion.Documentretrieval times
areinfluencedby two factors:thenetwork andthedocumentsize.
While network queuingmodelsgive rise to log-normaldistribu-
tions,thelatterareheavy-tailedasdepictedin Fig. 3 [19, 7]. How-
ever, Fig. 8 (left) shows both documentsizesandretrieval times.
A plot of oneseriesdividedby theothershows first linearbehav-
ior, which indicatesthatbothfunctionbehavesthesame.Thisdoes
nothold for thetails. Nonetheless,for therestartmethodtheinitial
peakin thecurvesarethemostrelevantpartsandtheseshow that
documentretrieval time is mostly influencedby documentsize.

4.4 Benchmarking a CGI-server
Having consideredall four phasesfor static web-pageslet us

turn to dynamicallygeneratedpages. While phase1 and4 have
the samedistribution reportedfor the static case,phase2 and3,
requestand processing,can be significantly different. In fact, it
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Figure 8: Left: Distrib ution of documentssize and retrieval
times for index-pagesof ca. 15000websites. Right: Retrieval
time against document size is nearly linear and indicates the
similar behaviour of the two curveson the left.

is not possibleto make generalstatementsabouttheseasthey are
highly applicationdependent.A furtherproblemconcernsobtain-
ing the data. So far we consideredall datafrom the client’s per-
spective, which causesproblemswhenestimatingtheserver’s pro-
cessingtime. However, we canget this dataindirectly. For static
pages,weknow thedistributionof phases2, 3, and4. With 2 and3
beingnegligible this amountsto knowing timingsfor phase4. For
dynamicallygeneratedpages,we canneglectphase2 andmeasure
phases3 and4. With 4 beingknown from thestaticcase,we can
infer timings for phase3. Considere.g. Fig. 9, which shows re-
trieval timesfor staticanddynamicpagesfor threesitesandwhich
allows to infer processingtime from thedifferencebetweenstatic
anddynamicpages(93,33,and130%,respectively).

The samemethodcanbe appliedto the third scenario:remote
procedurecalls andmobile agents. In this scenarioclientscould
infer processingtime of servers, if serverswould provide a stan-
dardoperation,which requiresno processingtime andallows the
client to collect data on result transmission. Alternatively, the
server couldreturnprocessingtime directlyaspartof their replies.
This would enableclientsto constructanexact distribution of the
server’s processingtime, which would enabletheclient to tuneits
restartmethodmoreaccurately.

5. CONCLUSIONS
In thispaper, wesetoutto answerthreemainquestions:(1) With

resultsapplyingtherestartmethodto UDPconnectionsaround,are
they transferableto TCP-connections?(2) If the restartmethod
were to be integratedin protocols,it hasto deal with four very
differentphasesof interactions,namelyconnection,request,pro-
cessing,andreply. Whatdo time distributionsfor thesephasesfor
different typesof agentslook like? (3) Doesthe restartmethod
work in practice?Doesa theoreticallypredictedbestcutoff value

Site Byte/sec Byte/sec Diff %
non-CGI CGI

www.bris.ac.uk 11.5 5.6 5.9 93
www.jayde.com 9.8 7.4 2.4 33
www.princeton.edu 2.2 0.9 1.3 130

Figure 9: Benchmarking the processingof a CGI server by
measuring time for pageretrieval of CGI and non-CGI pages
fr om the samesite. The diff-column showsbytes/secondneeded
for processing,i.e. serving the requestexcl. transmission.

leadto betterresultsin practice?
Regarding(1), wecomparedUDPandTCPandreviewedthelit-

eratureon congestioncontrol andpinpointedthemain difference:
UDP is simple,unreliable, andfast; TCP is morecomplex, reli-
able,slower, andhasanumberof congestioncontrolfeaturesbuilt-
in. UDP andTCPconnectiontimesbehave differently. While the
formerfollowsthelog-normalcurveasputforwardin [11] andver-
ified in Fig. 1, TCPconnectionsseemto consistof three- possibly
lognormal- distributionspeakingatdifferenttimes.

Regarding(2),webrokedown agentinteractionsinto fourphases
andconsideredthemfor differentscenarios:agentsdealingwith
statically and dynamically generatedwebpages;the latter being
similar to agentsusingremoteprocedurecalls andmobileagents.
For the statically generatedpages,we consideredthe connection
phasein detailsandarguedthatphase2 and3 arenearlyconstant.
For the lastphaseof documentretrieval we carriedout anexperi-
mentwith ca. 15,000websitesandwe showedtherelationof doc-
umentretrieval time to documentsizebehaving initially similarly.
For dynamicallygeneratedwebpages,wepointedout thatdistribu-
tionsof timesfor phases2,3and4arehighlyapplicationdependent,
but showeda methodhow to indirectlyobtaintimings.

Regarding(3), we analyzedTCP connectionsandshowed that
the theoreticalbestcutoff ascomputedby thealgorithmin Fig. 2
led to improvementsin 65%of our experiments.In this context, it
is worth noting the numberof hops,which area naturalmeasure
for thedistancethetraffic hasto travel, arenot relevantto improve-
ments.

With thesefindings,weextendpreviouswork suchas[3], which
dealtwith theoreticalaspectsof the restartmethodand [8, 9, 12,
11], which focuseson theimpactof collective behavior on internet
traffic andwhich considersUDP connectionsand index-pagere-
trieval. We reviewedthis work andpointedto a critique[6], which
arguesthattheUDP experimentscarriedout by theauthorsdo not
show any signcongestion.Differentfrom this work we focusedon
themorewidely usedTCP-connectionandcomparedtheoretically
predictedbestcutoff to results,when put into practice. Further-
more,we broke down the interactioninto phases,which canhave
verydifferentdistributions.

Futurework, shouldaddresshow to estimatethebestcutoff time
in theoryandin practiceandhow to dynamicallyupdatethe best
cutoff time duringruntime. Theestimationof thebestcutoff time
shouldbebasedondifferentgroupsandprofilesof destinations.To
extendtherestartmethodto remoteprocedurecallsclientsshould
get timings on the server’s processing,which would enablethem
to build a server profile, which they canuseto decidefor thebest
timeoutvalue.

Acknowledgement.We’d like to thankJulieMcCannfor valu-
ablediscussionsand feedback,Jon Crowcroft for discussionand
RicardoLopezfor thedocumentretrieval data.



6. REFERENCES
[1] J.AitchisonandJ.A.C.Brown. TheLognormalDistribution

with specialreferenceto its usesin economics. Cambrdige
UniversityPress,1969.

[2] R. Barden.Requirementsfor internethosts– communication
layers.Technicalreport,InternetEngineeringTaskForce,
RFC:1122,1989.

[3] PrasadChalasani,SomeshJha,OnnShehory, andKatia
Sycara.Queryrestartstrategiesfor webagents.In
Proceedingsof Agents98. AAAI Press,1998.

[4] D. Clark.Window andacknowledgementstrategy in tcp.
Technicalreport,ComputerSystemsandCommunication
Group,RCF:813,1982.

[5] D. Comer. InternetWorking With TCP/IPVolumeI:
Principles,Protocols,andArchitecture. PrenticeHall, 1995.

[6] J.Crowcroft, M. Luby, andV. Paxson.A responseto lukose
andhuberman’s article: Socialdilemmasandinternet
congestion,1998.

[7] CarlosR. Cunha,AzerBestavros,andMark E. Crovella.
Characteristicsof www client-basedtraces”.Technical
ReportTR-95-010,CSdepartmentof BostonUniversity,
1995.

[8] B. Huberman,R. Lukose,andT. Hogg.An economic
approachto hardcomputationalproblems.Science,
275:51–54,1997.

[9] BernardoA. HubermanandRajanM. Lukose.Social
dilemmasandinternetcongestion.Science, 277:535–537,
July25 1997.

[10] C. Hunt.TCP/IPNetworkAdministration. O’Reilley, 1997.
[11] R. LukoseandB. Huberman.A methodologyfor managing

risk in electronictransactionover theinternet.In
Proceedingsof InternationalConferenceon Computational
Economics, 1997.

[12] S.MaurerandB. Huberman.Restartstrategiesandinternet
congestion.Technicalreport,PaloAlto: Xerox PaloAlto
ResearchCenter, 1999.

[13] J.Nagle.Congestioncontrol in ip/tcp internetworks.
Technicalreport,Network Working Group,RFC:896,1984.

[14] KihongPark,GitaeKim, andMark Crovella.On the
relationshipbetweenfile sizes,transportprotocols,and
self-similarnetwork traffic. In Proceedingsof the4th
InternationConferenceon NetworkProtocols(ICNP96),
1996.

[15] V. Paxson.Empirically-derivedanalyticmodelsof wide-area
tcpconnections.IEEE/ACM TransactionsonNetworking,
2(4),1994.

[16] J.Postel.Tcp maximumsegmentsizeandrelevanttopics.
Technicalreport,Network Working Group,RFC:879,1983.

[17] K.S. Trivedi.ProbabilityandStatisticswith Reliability,
Queuing, andComputerScienceApplications. Wiley, 1982.

[18] W. Willinger, V. Paxson,andM.S. Taqqu.Self-similarityand
heavy tails: Structuralmodelingof network traffic. In A
PracticalGuideto HeavyTails: StatisticalTechniquesand
Applications. Birkhauser, 1998.

[19] A. Woodruff, P.M. Aoki, E. Brewer, P. Gauthier, andL.A.
Rowe.An investigationof documentson theworld world
web. In Proceedingsof the5th InternationalConferenceon
theWorld WideWeb, pages963–980,Paris,France,1995.


