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ABSTRACT

With thewide adoptionof web-agentsimproving the efficiency of
theirinteractionss of greatimportance Therestartmethodaimsto
reduceoverall completiontimes of suchinteractionsby usingthe
distribution of completiontimesto determinea besttimeoutafter
which it is more promisingto re-issuea requestthanto wait for
completion.

In this paper we review existing work on the restartmethod
andself-similarity of internettraffic. We extend existing work by
analysingherestartmethodfor thefour interactionphasegonnec-
tion, requestprocessingreply. We obtainresultsfor web-agents
retrieving staticallyanddynamicallygeneratedvebpagesanddis-
cussimplicationsfor agentsbasedon middlevare suchas RPC,
Corba,or mobileagents.

Regardingthe connectiorphase previouswork by Hubermaret
al. found a lognormaldistribution in UDP connections.In con-
trastto the simplerUDP, we focuson the morecomplec andmore
widely usedTCP/IP connectionsfor which we obtainmore com-
plicateddistributions, which lead nonetheles$o improvementsin
65% of our experiments Furthermorein contrasto previouswork
we relatedocumensizeto reply times.

1. INTRODUCTION

Interactionsof web-basedgentsvary in time andaregreatlyin-
fluencedby hardware on both sides,the networks used,and the
operatingsystems softwareused.As interactioncompletiontimes
vary in time, they canbe describedasrandomvariables. Knowl-
edgeaboutthis randomprocesss very usefulto improve perfor
mance Knowing thedistributionanagentcancomeupwith amax-
imumtimeit is willing to wait for areplyto its requestThischoice
hasto be taken carefully, astherequeswill have to bere-issuedo
the sameor anotheragenthopefully with a betterresponsdime.
This performancamprovementis knowvn asrestartmethod[8, 9,
12,11, 3]. It is often encounteredn practicewhenbrowsing the
web: aweb pagetakesagesto beretrieved. After sometime users
impatientlyreloadthe pageandit is promptlydowvnloaded.

Theprincipleunderlyingthisexampleis generaln nature.Given
aclientandasener, theclientissuesarequesto the sener. If the
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requests not sened after a certainamountof time, the client re-
issuesthe requestpossiblyto anothersener. Using this strateyy,
the client expectsan overall improvement,if thetimeoutperiodis
setcorrectly

How canthis beachieved?First of all dataneedgo be collected
to find out the distribution of completedrequests For certaindis-
tributions[3] a cutoff canbe chosenwhich reduceshe meanand
varianceof the new distribution in comparisorto the one, which
doesnot employ therestartmethod.An exampleof a distribution,
wherethe restartmethodworks, is the lognormaldistribution [11,
12]. It is asymmetricahndafterapeakthedistribution slowly tails
off. Thereforeperformancemprovementscan be expectedif re-
questsaretimedout afterthe peak.

Hubermanetal. [8, 9, 12, 11] investigatecthe restartmethod
for UDP-connectionandretrieval of index web pageswherethey
found lognormaldistributionsin the data. While Hubermaret al.
aremainly interestedn social processeifluencingnetwork traf-
fic, our work aimsto put the restartmethodto practice. This re-
quiresin particulara detailedanalysisof the different phasesof
agentinteractionswhichis not consideredy Hubermaretal.

Basically aninteractionbetweeragentanbebrokendown into
four phases{(1) the client connectgo the sener, (2) the client is-
suestherequest(3) thesener processetherequest(4) thesener
sendsthereply to the client. Thesefour phasecanhave very dif-
ferentcharacteristicsLet us considerfour scenarios:

(1) StaticwebpagesAn informationagentretrievesplain, static
webpagesi e. they werenotgeneratedlynamicallyby CGl. Phase
1 involvesconnectiorwith TCP. Will this have alognormaldistri-
bution asthe UDP-connectionsnentionedabore, especiallybear
ing in mind that UDP is muchsimplerthan TCP?In phase2, the
clientsubmitsthequery As theagenfustrequestaplainwebpage
only the filenameneedso be transmittedandwe canassumehat
this phasetakesnearlyconstantime with very little variance.The
sameholdsfor answeringthe query asthe sener simply locates
thefile to be transmittedn the next phase.This last phase how-
ever, will have an interestingdistribution, which we expectto be
dominatedby the network’s capabilitiesandthe sizeof thefile.

(2) Dynamically generatedHTML pages. Let us considerthe
samescenarianvolving dynamicallygeneratedveb pages.Phase
1 and 4 arethe sameasin (1), but phase2 canvary nov from
sendinga few shortparametersyhich couldbe assumeaonstant,
to uploadinga largefile, whichwill bedominatedby the document
size. Also, phase3 becomesow an interestingrandomvariable,
asthe dynamicgeneratiorof the webpagedependsighly on the
applicationrun, rangingfrom a quick lookupin a databas¢o long
computationof results.In generalthe distribution of dynamically
generateghagescannotbe estimated.

(3) Remoteprocedurecalls and mobile agents. This scenario



is similarto (2). In particular phase2 and4, involve the transmis-
sionof objects/agentandcanbedescribedy adistribution,which
couldsignificantlydiffer from the onegoverningphases.

With thesescenarioslefined we setoutto developabenchmark-
ing tool for performanceémprovementsof web-agents.The tool
hasto addressn particulara detailedanalysisof TCP connection
to websites benchmarkingf CGI seners, anddistribution of in-
ternettraffic in general.

The paperis organizedas follows. We briefly review TCP/IP
andits methodsto dealwith congestion.We describethe restart
methodandreview the log-normaldistribution and self-similarity
in internettraffic. Next, we review andcriticize Hubermanrs work
ontherestartmethod.Thenwe setout for adetailedanalysisof in-
teractionsof web-agentsWe give analgorithmto estimatehebest
restartime andtheninvestigatehedistributionsandrestartmethod
appliedto the differentphase®f interactionsof web-agents.

2. BACKGROUND
2.1 TCP/IP and UDP

The TCP/IP internetprotocol suite is a collection of protocols
thatcanbeusedto communicatdetweermary differentnetworks.
Theseprotocolsare openprotocolswhich meanghatthey arenot
proprietaryandnot for profit. They arefreely available andthey
canrun on differenthardwarearchitecturesnddifferentoperating
systemq10]. This spirit of opennesss oneof the foundationsof
the internet. TCP/IP protocolsare designedisinglayeringprinci-
plesin suchaway thatthe protocolsareindependentf thevarious
transmissiortechnologiegshat may be usedin differentnetworks.
Therearefour layersin the TCP/IP suite: (1) The lowestlayeris
calledthelink layerwhich correspondso hardwaresuchasaPC’s
network interfacecard. (2) Next comesthe network layerwhichis
wherethe internetprotocol (IP) operates.This protocolis usedto
definelP datagramghat are sentthrougha network. IP provides
connectionlesdyesteffort paclet delivery service.Connectionless
meanghatthe routeshetweerhostsarenot fixedi.e. eachpaclet
males its own route throughthe network andthey are often dif-
ferent. Whatcharacterizehe besteffort paclet delivery serviceis
thatit doesnot guarantydelivery. (3) The TCP/IP protocol suite
hastwo protocolsin the next layer calledthe transportlayer: the
User DatagramsProtocol (UDP) for an unreliableconnectionless
delivery serviceandthe TransmissiorControl Protocol(TCP) for
reliablestreamdelivery. (4) Thelastlayeris known astheapplica-
tion layerwhereservicesuchasFTPandHTTP resides.

2.2 Congestion

The Internetis a worldwide collection of heterogeneouset-
works connectedwith routersand gatevays that use TCP/IP for
interconnectiondetweenthem[10]. This comple structurecre-
atesonelarge virtual network. A routeror gatevay is a computer
that connectdwo or more networks andforwardspaclets of data
betweerthem[2]. Whentraffic througha routeris sointensethat
the routercannotprocessor storeall datagramshatarrive atit, a
conditionknown asInternetcongestioroccurs.

Accordingto Comer[5] datagramsanarrive at a routerfaster
thanthe routercanprocesgshemfor two reasonsi(1) they canbe
generatedby a singlevery fastcomputer;(2) or they canbegener
atedby anumberof computerswhich sendheirdatagramshrough
the samerouter

If the datagramstartarriving to the routerfasterthatit canpro-
cessthem, the router storesthe datagramsn its memoryfor pro-
cessingat a latertime. If this conditioncontinuesthe routerwill
eventuallyexhaustthe memoryallocatedfor storingthe datagrams

andit will startdiscardingthem. A routercanwarnthe computer
that originally sentthe datagramsf this condition and requestit

to lower its transmissiorrate. This is achiered by sendingwhat
is calledan ICMP sourcequenchmessage One suchmessagés

usuallysentfor eachdiscardeddatagram.

2.3 Impr ovementsto Inter netnetwork perfor-
mance

Severalmechanism# TCP have beendevelopedto improve the
problemof internetcongestion:

(1) TCP providesa sliding window schemeor controllingend-
to-endflow. Thewindow indicatesthe size of the buffer that the
recever haspresentlyavailableandthis sizeis advertisedin every
acknavledgemen{4].

(2) The Maximum SegmentSize Optionin TCP canaffect effi-
cieny in two ways: large sggmentscan increasethroughput,but
too large segmentscancausdP fragmentatiorwhich canresultin
the lossof somefragments.This would againdecreasefficiency
[16].

(3) Two furthertechniquesanbeimplementedn TCPto help
with congestion: Slow Start and Multiplicative Decrease. Both
techniquesisethe congestiorwindow limit to controltraffic. Slow
Startusesthe congestiorwindow limit to decreaséraffic follow-
ing the lossof a sentsggment,while Multiplicative Decreaseaises
it to increasethe traffic after the network hasrecoveredfrom the
congestiorproblem[5].

(4) Congestioncan often be causedby retransmission.There-
fore, therequirementdor internethostspublishedby the Network
Working Group Force stipulatethat"a host TCP mustimplement
Khan's algorithmand Jacobsors algorithmfor computingthe re-
transmissiortimeout! By ensuringthat thesealgorithmsare al-
ways implemented the occurrenceof congestiondue to retrans-
missionis diminished[2].

(5) Anothercommonreasorfor congestioris dueto a network
beingoverloadedwith single-charactemessagesreatedy akey-
board,a conditionknown as’small-paclkt problem’. The solution
to thisis to prevent new TCP segmentsbeingsentwhennew out-
goingdataarrivesfrom the user if ary previously transmittecddata
ontheconnectiorremainsunacknaledged[13].

As a conclusion Jet us summarizethat TCP providesa number
of mechanismgo dealwith congestionIn contrastthis compleity
andsophistications notpresenin UDP.

2.4 Improving congestionbasedon the restart
strategy

While the abore methodsareintegratedinto TCP, Lukose,Hu-
berman Mauretr Hogg[8, 9, 12, 11] andChalasaniJha,Shehory
andSycard3] describeapplicablemethoddor efficiency improve-
mentshbasedn therestartmethod.

The ideais that it is often adwantageougo restarta request,
which is taking along time to be sened, ratherthanto keepwait-
ing for the original requestto be fulfilled. But how long should
onewait? To answetrthis questiononefirst needso find out about
thedistribution of thetime it takesto sene arequestAs anexam-
ple, [11] performedmultiple connectiity testsfrom the US to the
UK measuringUDP paclet round trip-times, which follow quite
closely a lognormaldistribution. As an exampleconsiderFigure
1, which shavs the distribution of roundtriptimesof UDP paclets
from the UK to Japanandtheright figure clearly shavs the close
matchof the cumulative distribution of therealdatato alognormal
distribution with mean9.25andvarianceof 0.5.

With the distribution known, a bestcutof time canbe chosen.
Figure2 shavs analgorithmto computethe bestcutof time based
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Figure 1: Distrib ution of round-trip times of UDP packetssent
from the UK to Japan. The right shows the match of the cu-
mulative distrib ution to the cumulative lognormal distrib ution
with mean9.25and variance 0.5.
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Figure 2: Computing the bestcutoff time for a given testset.

ontheexisting data.For every possiblerestarttime it derivesfrom
theexisting datathedistribution resultingfrom usingthe cutoff un-
derconsiderationThecutof leadingto thedistributionwith small-
estmeanis then selectedas bestcutof. The compleity of this
algorithmis O(nm), wheren is the size of the dataandm is the
numberof possiblecutoff values.

With a cutoff valuechosentherestartmethodcanbe employed
andthequestiorremainswvhetherthetheoreticallybestcutof leads
toimprovementsn practice.But beforewe answetthis questioriet
usreview theresultsobtainedn previouswork.

2.5 Review of existingwork

The motivation of Hubermanet al. is not the improvementof
low-level protocolsbut the study of social phenomenan the in-
ternet. Lukoseand Huberman[11] argue e.g. thatthe lognormal
distribution “reflectsthe dynamicsof millions of usersconfronted
with thedilemmaof eitherconsumindgandwidthgreedilyandthus
creatingcongestion,or postponingaccesso remoteinformation
and payingthe correspondingcostin utility”. The authorsarein
particularinterestedn the questionwhetheremploying the restart

methodon a large scalestill combatscongestion{12]. And they
shav basedon their theoreticalmodelthat an overall adoptionof
therestartmethodleadsto anoverallimprovement12].

However, [6] questionthe above approachby pointing out that
althoughtheinternetis influencedby socialprocesseghereis no
evidenceof theseprocesses theexperimentdHubermaretal. car
ried out. In particular [6] point out thatthe experimentshasedon
UDP reportedin [9, 11] shaws very low ratesof paclet lossand
thuscannotsene asevidencefor ary congestion.

In anotherpaper [12] investigatethe restartmethodwhen ap-
plied to web pageretrieval. They shav the distribution of 40,000
index-pagesandarguethatit fits alog-normaldistribution andthat
the restartmethodis applicable. [15] confirmsthat bulk transfer
traffic suchasFTP, SMTP, and NNTP datacanbe fitted by a log-
normaldistribution, but alsopointsoutthatthisis anapproximation
as experimentsshov self-similarity in network traffic [7, 19, 14,
18], which meansthat the distributions are heary-tailed approxi-
matingx~?® (ratherthanlognormal).

Thereis anotheraspecto the distribution for systemsjn which
clientrequesservicesandsenersreply. Thedistributionis acom-
plex mixture of mary differentdistributions. We can generalize
thescenarioAn agentrequestinga servicefrom anotheragenthas
to connect,transmitthe request,the requesthasto be processed,
andthereply sentback. Thesefour phaseganhave very different
distributionsleadingto quite differenta distribution overall. Be-
fore we presentour findings, we will give the relevant detailson
the importantlognormaldistribution and review the literatureon
self-similarity of webtraffic.

3. DEFINITIONS
BACKGROUND

3.1 Thelognormal distrib ution

Let X beanormallydistributedrandonwvariablewith meanuand
varianceg, for shortX ~ N(y, o). Thedistribution functionfor a
normally distributedvariableis givenas

1 o tew?ee

o) =57

and @ denotesthe cumulative distribution function, i.e ®(x) =
[ ®(x)dx. The following relation holds betweennormally and
lognormally distributed randomvariables: X is lognormally dis-
tributed,shortX ~ LN(p, o) if In(X) is normally distributed. This
implies that the cumulatve distribution function of alognormally
distributed variable can be expressedn termsof ®, namely as
®(In(x)).

Oneof thereasonsvhy bothdistributionsaresoimportantis due
to the CentralLimit Theorem,which relatesary infinite number
of randomvariableswith the samedistribution to the normaland
lognormaldistribution:

AND  STATISTICAL

THEOREM 1. Central limit theoem(e.g. [1]). LetX; beran-
domvariableswith the samedistribution, then 372 ; Xi ~ N(l,0)
and[]i2, X ~ LN(p,0).

As a consequence finite numberof randomvariablesapprox-
imatesthe (log)normaldistribution, when addedup (multiplied).
This profound result has an immediateapplicationto networks
suchasthe internet. Queuingnetwork modelswith an indepen-
dentqueuelengthsare often consideredaccuratedescriptionsfor
suchsystemg17].

As asimpleexamplelet usconsidetUDP, which we pointedout
above is asimpleandfastprotocolwith no complicateccongestion
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Figure 3: Left: Distrib ution of 2.6 million web documents[19]
Right: Distrib ution of 500,000web documents[7]

control integrated. Accordingto Hubermanet al. [9, 11] andas
confirmedin Fig. 1 round-triptimesof UDP pacletsfollow alog-

normaldistribution. Doesthis distribution lend itself to improve-

mentsvia therestartmethod?ChalasaniJha,ShehoryandSycara
[3] prove atheoremestablishingconditionswhennot to expectan

improvement. Thesecanbe easilychecled for the lognormaldis-

tribution by anexample:With meanu = 6.89, varianceo = 0.829,

and a cutof point b = 8, we can checktheir condition that the

cumulatve distribution mustbe larger thanthe cutof divided by

cutof andmean;in this case®((2F) = d(8:889) = o(1.34) =

0.9099> W&S = 0.539, henceaccordingto [3], improvements
arenotruledout.

To summarizewe have threereasonsvhy lognormalis impor-
tantin practice:(1) The CLT stateghatthe multiplicative effect of
ary numberof randomvairablesapproximateshelognormaldistri-
bution. (2) For thisreasorit is agoodmodelfor queuingnetworks.
(3) In practice,traffic suchas UDP fits a lognormaldistribution
very well (seeFig. 1).

3.2 Self-similarity and heavy-tailed distrib u-
tions

However, in practicethereis evidencethat network traffic is
heary-tailed [15, 19, 7, 14, 18], which meansthat the distribu-
tion approximatesc® in the long-run. This implies that with in-
finitely small probability infinitely large valuesoccur A distribu-
tion is heary-tailedif P[X > x| ~ X~® asx — oo, where0 < a < 2,
i.e. the asymptoticshapeof the distribution follows a power law.
Heavy-tailed distributionsare differentfrom otherdistributionsin
thatthey have infinite varianceif a < 2 andalsoinfinity meanif
a < 1. Intuitively, this meanghatthe smallera is, the biggerthe
areacoveredby the distributionstail becomesAppliedin practice,
[19, 7] find that distributions (seeFig. 3) of web documentsare
heary-tailed. Self-similarity meanshatinfinitely large documents
can occur with infinitely small probability But as Paxsonfinds
[15], bulk transfertraffic suchasFTRP, SMTR, andNNTP data,can
still be bestmodeledby a lognormaldistribution omitting the as-
pectsof self-similarity.

4. EXPERIMENTS AND RESULTS

4.1 Benchmarking tool

Given the theoreticaland practical background we developed
a benchmarkingool to clarify the restartmethodappliedto web-
agentsby contrilkuting answergo thefollowing questions:

(1) Thereis a hugedifferencebetweerthefast,non-reliableand
simple UDP andthe slower, reliable,andmorecomplex TCP pro-
tocol. While the simple UDP traffic fits a lognormaldistribution
neatly it is anopenquestionwhetherTCPwill fit lognormal?
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Figure 4: Distrib ution of 10.000TCP connectionsmade from
UK to a site in France. On average connection 1720msand
most frequently 661ms. After applying logarithm to the data,
meanand variance are 6.89and 0.69,respectvely.

Theoretical Distribution with restart of 1060ms
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Figure5: Basedon data in Figure4, the besttheoretical restart
time is after 1060 ms giving the distrib ution displayed with
meanand variance reducedto 6.71and 0.27

(2) While previouswork treatsanagents requestsasingledis-
tribution, we arguethatthis necessarilyeflectsamix of four differ-
entdistributions,asan agents requesis composedf four phases
of connectionyrequestprocessingreply. Whatdo thesedistribu-
tionslook like?

(3) The relationof a theoreticallyand practically bestcutof is
not straightforvard. If the restartmethodis emplo/ed, the agents
have to computethe bestcutof. Givensampledata,the algorithm
in Fig. 2 computeghebestcutoff to minimisethe mean.Doesthis
work in practice?

4.2 Resultsfor TCP connections

Each completeconnectiity test performedwas composedof
10,000connectiontrials to a websitespecifiedin that test. The
total numberof differentwebsitescontactedvas20. The number
of completetestsconductedon eachof the 20 sitesrangedfrom 2
to 6. In total, 53 separateéestswerecarriedout over the courseof a
two monthperiod. Thereforeresultsrelatingto 53,0000individual
connectiontrials were collectedto form the basisof the analysis
presented.

Thefirst of eachof the seriesof teststo a particularwebsitewas
atestin whichtherestartmethodwasnotapplied.Fig. 4 shavsthe
distributionwhich eventuallytails off like alognormaldistribution,
but which hasthreepeaksunlike the simplerdistributionsfor UDP
paclets,which Hubermaretal. [8, 9, 11] considered.

Next, we computedthe bestcutoff times using the first set of
experiments.The algorithmin Fig. 2 basicallycomputeghe dis-
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Figure 6: Distrib ution of 10.000TCP connectionsmade from
UK to a sitein France with a restart of 1060ms. The average
is down to 472 ms and mean and variance are 6.04 and 0.15,
respectvely. The restart method works better than predicted
in fig. 5.

tributions for all possiblecutoff times and selecteshe one with
minimal meanvalue. Fig. 5 shavs the resultingdistribution after
applyingthealgorithmto thedatain Fig. 4.

The secondestto the websitewasalwaysconductedusingthis
recommendedestarttime ascalculatedy the algorithmin Fig. 2.
Givenadistributionwith norestarasin Fig. 4 andtheoneresulting
theoreticallyfrom thebestcutoff asshawvn in Fig. 5, let usconsider
the practicalverificationasdepictedin Fig. 6. For this exampleit
shaws clearly an even betterbehaior thantheoreticallypredicted.
After applyinglogarithmto all data,the meanandvarianceof the
datawithout restartwas6.89and0.69, respectiely, andpredicted
togodown to 6.71and0.27for thebestcutof time. Butin practice
resultswereevensignificantlybetterat 6.04and0.15,respectrely.

However, sometimeghe theoreticallybestcutoff time did not
leadto betterconnectiity in which casemoretestswereperformed
with differentrestarttimesin an attemptto obtaina betterresult
thanthe oneobtainedn thevery first testwithout restart.Below is
a summaryof the 53 separatdeststo 20 websiteshatwerecom-
pleted:

(1) Thetestsconductedon 10 of the 20 websitegesultedin im-
proved connectity from thefirst attempt(seeFig. 7). This means
thatwhenthe secondestto the websitewasrun, usingthe restart
methodandthe calculatedheoreticakestarttime generatedby the
algorithmin Fig. 2, thetestimmediatelyshavedimprovedconnec-
tivity.

(2) The testsconductedon 2 of the 20 websitesaventually re-
sultedin improved connectity. This meanghatwhile the second
testbasedon the theoreticallybestrestarttime did not shav im-
proved connectvity, whenfurther testswere conductedbasedon
restarttimeslongerthanthetheoreticarestarttime,improvedcon-
nectvity wasachieved.

(3) In thecaseof testsconductedn another2 of the20websites,
thebestconnectyity resultsthatcouldbeachievedusingtherestart
methodwere equalto the resultsof the first test,i.e. the testin
which therestartmethodwasnot applied.

(4) Finally, in the caseof testsconductedon 6 of the 20 web-
sites,improved connectiity usingthe restartmethodcould not be
achieved giventhe numberof teststhatwererun (i.e. amaximum
of 6 completeteststo a particularsite).

Anotherpoint worth noting is thata naturalexplanationfor im-
proved connectyity could be a differentroutetakenfor successie
connectionsThereforewe checled paclet routesto all 20 siteson
differentoccasionswith the resultthat althoughroutesmay differ

Site | Restart Avg % Hops
insead.fr 0 1720

1060 472 27 11
uni-lepzig.de 0 305

70 91 30 18
tu-berlin.de 0 108

110 49 45 17
yahoo.co.uk 0 124

371 61 49 15
public.srce.hr 0 949

1000 646 68 15
www.bris.ac.uk 0 20

320 15 75 12
amazon.co.uk 0 236

1000 181 77 13
www.hagga-u.ac.jp | 0 660

1000 506 77 26
usyd.edu.au 0 718

811 610 85 23
ntu.edu.au 0 865

970 747 86 18
www.monash.edu.ali 0 734

840 660 90 17
ucd.ie 0 33

90 31 94 15
ucla.edu 0 169

690 166 98 16

Figure 7: Summary of average TCP connectionsfor 10.000
connectionsmade from London, where restart led to impr ove-
ments. Timesarein ms.

over longertime periods,successie connectionsalways usedthe
sameroute.

4.3 Distribution of Index-pageretrieval

Regardingweb-agentslealingwith staticweb pagesthe abore
sectionsdetailedimprovementson phasel of the interaction,the
TCPconnection As we arguedin theintroductionthatrequeseand
processingphase2 and3) arenggligible for staticweb-pageswe
canturn now to phase4, the transmissiorof the document. Hu-
bermaretal. [12] considered!0.000index pagesandfoundalog-
normaldistribution. In contrast[19, 7] found heary-tailed distri-
butions. But accordingto [15], the latter arebestapproximatedy
alog-normaldistributions. However, regardingHubermanetal.'s
findingsthereremainsanopenquestion.Documentretrieval times
areinfluencedby two factors:the network andthe documentsize.
While network queuingmodelsgive rise to log-normaldistribu-
tions,thelatterareheary-tailedasdepictedn Fig. 3[19, 7]. How-
ever, Fig. 8 (left) shaws both documentsizesandretrieval times.
A plot of oneseriesdivided by the othershaws first linear beha-
ior, whichindicateghatbothfunctionbehaesthe same.This does
nothold for thetails. Nonethelesdpr therestartmethodtheinitial
peakin the curvesarethe mostrelevant partsandtheseshav that
documentetrieval time is mostlyinfluencedoy documensize.

4.4 Benchmarking a CGl-server

Having consideredall four phasedor static web-pagedet us
turn to dynamicallygeneratecpages. While phasel and4 have
the samedistribution reportedfor the static case,phase2 and 3,
requestand processingcan be significantly different. In fact, it
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Figure 8: Left: Distribution of documentssize and retrieval
times for index-pagesof ca. 15000websites. Right: Retrieval
time against documentsizeis nearly linear and indicates the
similar behaviour of the two curveson the left.

is not possibleto male generalstatementsibouttheseasthey are
highly applicationdependentA further problemconcernsbtain-
ing the data. So far we consideredhll datafrom the client’s per
spectve, which causegproblemswhenestimatingthe sener’s pro-
cessingtime. However, we cangetthis dataindirectly. For static
pageswe know thedistribution of phase®, 3, and4. With 2 and3
beingnegligible this amountsto knowing timings for phased. For
dynamicallygenerateghageswe canneglectphase2 andmeasure
phases3 and4. With 4 beingknown from the staticcase we can
infer timings for phase3. Considere.g. Fig. 9, which shawvs re-
trieval timesfor staticanddynamicpagedor threesitesandwhich
allows to infer processingime from the differencebetweerstatic
anddynamicpageq93, 33,and130%,respectiely).

The samemethodcanbe appliedto the third scenario:remote
procedurecalls and mobile agents. In this scenarioclients could
infer processingime of seners,if senerswould provide a stan-
dard operation which requiresno processingime andallows the
client to collect data on result transmission. Alternatively, the
sener couldreturnprocessindime directly aspartof theirreplies.
This would enableclientsto constructan exact distribution of the
sener’s processingime, which would enablethe client to tuneits
restartmethodmoreaccurately

5. CONCLUSIONS

In this paperwe setoutto answelthreemainquestions(1) With
resultsapplyingtherestartmethodto UDP connectionground,are
they transferableto TCP-connections?(2) If the restartmethod
were to be integratedin protocols,it hasto dealwith four very
different phaseof interactions,namelyconnection requestpro-
cessingandreply. Whatdo time distributionsfor thesephasedgor
differenttypesof agentslook like? (3) Doesthe restartmethod
work in practice?Doesa theoreticallypredictedbestcutof value

Site Byte/sec Byte/sec Diff %
non-CGIl CGil

www.bris.ac.uk 115 5.6 59 093

www.jayde.com 9.8 7.4 24 33

www.princeton.edu 2.2 0.9 1.3 130

Figure 9: Benchmarking the processingof a CGI sewer by
measuringtime for pageretrieval of CGl and non-CGl pages
from the samesite. The diff-column showsbytes/secondeeded
for processingj.e. sewing the requestexcl. transmission.

leadto betterresultsin practice?

Regarding(1), we comparedJDP andTCPandreviewedthelit-
eratureon congestiorcontrol and pinpointedthe main difference:
UDP is simple, unreliable, andfast; TCP is more comple, reli-
able,slower, andhasa numberof congestiorcontrolfeaturesouilt-
in. UDP and TCP connectiontimesbehae differently While the
formerfollowsthelog-normalcurve asputforwardin [11] andver
ified in Fig. 1, TCPconnectionseento consistof three- possibly
lognormal- distributionspeakingat differenttimes.

Regarding(2), we broke down agentinteractionsnto four phases
and consideredhem for differentscenarios:agentsdealingwith
statically and dynamically generatedvebpagesihe latter being
similar to agentsusingremoteprocedurecalls andmobile agents.
For the statically generatecbages,we consideredhe connection
phasein detailsandarguedthat phase? and3 arenearlyconstant.
For the last phaseof documentretrieval we carriedout an experi-
mentwith ca. 15,000websitesandwe shaved the relationof doc-
umentretrieval time to documentizebehaing initially similarly.
For dynamicallygeneratedvebpageswe pointedout thatdistribu-
tionsof timesfor phase®,3and4 arehighly applicationdependent,
but shaveda methodhow to indirectly obtaintimings.

Regarding(3), we analyzedTCP connectionsand shaved that
the theoreticalbestcutoff ascomputedby the algorithmin Fig. 2
led to improvementsin 65% of our experiments.In this contet, it
is worth noting the numberof hops,which are a naturalmeasure
for thedistancehetraffic hasto travel, arenotrelevantto improve-
ments.

With thesefindings,we extendpreviouswork suchas[3], which
dealtwith theoreticalaspectf the restartmethodand[8, 9, 12,
11], whichfocusesntheimpactof collective behaior oninternet
traffic andwhich considersUDP connectionsand index-pagere-
trieval. We reviewed this work andpointedto acritique[6], which
amguesthatthe UDP experimentscarriedout by the authorsdo not
shaw ary signcongestionDifferentfrom this work we focusedon
the morewidely usedTCP-connectiomndcomparedheoretically
predictedbestcutof to results,when put into practice. Further
more,we broke down theinteractioninto phasesyhich canhave
very differentdistributions.

Futurework, shouldaddres$iow to estimatehebestcutof time
in theoryandin practiceand how to dynamicallyupdatethe best
cutof time duringruntime. The estimationof the bestcutof time
shouldbebasedn differentgroupsandprofilesof destinationsTo
extendthe restartmethodto remoteprocedurecalls clientsshould
gettimings on the sener’s processingwhich would enablethem
to build a sener profile, which they canuseto decidefor the best
timeoutvalue.

Adknowled@ment.we'd like to thankJulie McCannfor valu-
able discussionsand feedback,Jon Crowcroft for discussionand
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