
Toward Scalable and Proactive Multi-Agent Teams

John Yen, Jianwen Yin, Michael S. Miller, Dianxiang Xu, and Richard A. Volz
Department of Computer Science

Texas A&M University
College Station, 77843-3112

Abstract
Teamwork becomes very important in many dynamic,
multi-agent environments. A multi-agent team can scale up
in at least two ways: the size of the team and the complexity
of the problem. In this paper, we tackle these issues through
proactive information exchange to improve team
effectiveness and communication efficiency, and through
dynamic task assignment to improve the flexibility of team
formation. We also propose a three-tier communication
infrastructure to support efficient and flexible
communication among team members. We have done
some experiments to demonstrate the advantage of
proactive information and dynamic task assignment over
teamwork.

1. Introduction

Teamwork and team training become very important in
many dynamic, multi-agent environments, such as fire
fighting team, Command and Control AWACS team,
battlefield team, Space Fortress team, etc.[8, 9, 10,12]
These teams may have larger team size as well as high
complexity of the problem. How to design a scalable multi-
agent system to simulate such kind of teams is a very
challenging issue. In the CAST (Collaborative Agents for
Simulating Teamwork) architecture [11], we address this
issue through proactive information exchange and dynamic
task assignment. By proactive information exchange, agents
can anticipate the information needs of others and provide
timely information, and agents can know whom to ask for
information when they need any information. This helps
make communication more efficient and teamwork more
effective. By dynamic task assignment, tasks can be re-
allocated among agents and responsibilities can be
distributed among agent on-the-fly. So the most appropriate
agent can be found for fulfilling certain task, which makes
the teamwork more effective especially in a team with large
number of agents and a complex problem domain. This also
helps balance the workload among team members.

To support proactive information exchange and
dynamic task assignment, a basic issue is that we should
have a flexible communication infrastructure. Many
different communication methods have been developed for

different purposes, such as: conflict-resolution [8],
coordination [2], distributed plan generation [3],
coordination (of individual steps; i.e. synchronization), and
maintenance of mutual beliefs about current and achieved
goals and commitments [1,10]. There are several different
ways for decision on agent communication. Tambe [10]
defines a utility for deciding when to communicate. But
how to define a utility function in certain domain itself is a
hard problem. Based on a three-tier communication
mechanism, our approach would be for the agents to simply
reason about the team plan itself. We not only allow
complicated communication task to be encoded in
teamwork language, but also reason about information need
of team members in order to support proactive information
exchange and dynamic task assignment.

The rest of this paper is organized as follows. Section
2 presents an overview of our approach. In section 3, we
elaborate on the three-tier communication mechanism,
which is the basis for proactive information exchange and
dynamic task assignment. In section 4, we will show some
experiment results. Finally we will discuss the contribution
of our work as well as some limitations.

2. Overview of Our Approach

2.1 CAST Architecture

CAST (Collaborative Agents for Simulating Teamwork) is
a multi-agent architecture that simulates and supports
teamwork involving both human and agents. CAST has two
goals to achieve. First, it aims to model effective teamwork
by capturing team structures and teamwork processes. A
well-defined team structure enables the team to have
predefined roles. A well-defined teamwork process
specifies responsibilities of various roles, as well as the
goals, strategies, and plans for accomplishing the team’s
goals. These common prior knowledge about the structure
and the process of the team enables members of the team to
develop an “overlapping shared mental model’’, which is
the source for a team member to reason about the states and
the need of his/her teammates.

While both goals are desirable, they conflict with each
other. The emphasis on predefined team structure and
processes often reduce the flexibility of the team, while
maximizing the flexibility of the team usually reduces the

amount of predefined responsibilities for members of the
team. To balance these two conflicting goals, we focus on
two specific effects of the shared mental model: making
teamwork efficient through anticipating the actions and
expectations of others (e.g. by knowing others’ roles,
capabilities, and commitments), and by information
exchange (knowing who to ask for information, or
providing information proactively just when it is needed by
someone else to accomplish their task). To avoid issues of
computational complexity with belief reasoning (e.g.
higher-order modal logics), we use Petri Nets as an
approximate finite and computable model of mental states.

Figure 1. CAST Architecture

The Petri Net is a natural representation for parallel action
and synchronization in a multi-agent world [6]. Transitions
can represent actions, with input places corresponding to
pre-conditions and output places corresponding to effects.
We extend the standard (colored) Petri Net formalism with
special kinds of places called control nodes. Control nodes
represent the belief an agent has about the current actions
being performed by others in the team. We note that belief
nodes can represent first-order knowledge, which is
adequate for many training applications. From the
viewpoint of BDI (belief, desire, intentions) agents,
markings and places in Petri Net are efficient representation
of an agent’s belief about its teammates. In addition to
serving as the shared mental model, Petri Nets in CAST
also play the dual role of monitoring and tracking the
execution of team plans.

As shown in Figure 1, CAST generates Petri Net-based
representation according to team specification in MALLET
(a Multi-Agent Logic-based Language for Encoding
Teamwork), which contains 1) team structures (roles and
responsibilities), and 2) teamwork process knowledge (e.g.,
individual plans, team plans). The CAST kernel enables

the CAST agents to decide on the fly how to accomplish
desired goals, how to select responsibilities to commit or
delegate, how to proactively assist others in the team, and
how to effectively communicate with the team.

2.2 Proactive Information Exchange

Different communication protocols can be selected for
information exchange for different kinds of information.
Intuitively in a team, when any team member needs any
information, they just ask for it. That is the simplest way for
information exchange. They just need to figure out whom to
ask and when to ask. This may reduce the communication
overhead in the sense of only needed information is
exchanged. But there are two major disadvantages for this
way of information exchange: 1) Every time when agents
need certain critical information, they need to ask and wait
for an answer, which may waste time or even fail in time
critical situation. 2) Whenever there are multiple candidates
who can answer the question, agent who needs the
information may pick the wrong teammate to ask for the
question. This may cause failure either because the agent
being asked is too busy and delayed the answer too long or
because the agent being asked does not have the updated
information in that situation. So we believe in a better team,
agents should be able to anticipate the information needs of
others and proactively provide information to others who
need the information. This certainly solve the two issues of
applying only ask. People may argue that this may cause
other problems such as: 1) Agents may keep sending
similar information whenever there is a change; 2) Different
agents may pass the same information around. This is true
and this is where we make our point: we need to use
different communication protocols for different kinds of
information.

We differentiate information into the following two
types:

• Infrequently changing information, but frequently
needed information, let us call it I1;

• Frequently changing information, but infrequently
needed information, let us call it I2.

We start by defining a simple belief language and model
theory to be able to talk about the mental states. We model
beliefs using a modal operator BEL, e.g. (BEL Ca
(have Fi arrow)), with the usual possible worlds
semantics [1]. We need to be able to talk about ‘pieces’ of
information, which in this present context refer
syntactically to sentences, but semantically are equivalent
to constraints over possible worlds, i.e. those worlds
satisfying the expression. Goals, however, refer to specific
steps in plans in MALLET (i.e. operators to be executed),
to which agents can make commitments. Similarly we
define another modal operator KNOW, e.g. (KNOW A x)
meaning that A knows about x.

Using this framework, we can formally characterize the
(normative) conditions under which information exchange
should take place. If information I falls into the category of
I1, then information I1 should be sent from one agent A to

Team Process
and Structure
in MALLET

Reactive Agent
Rules and
Agent Belief in
JARE

Java
implementation
for Domain

MALLET
Parser
and offline
DIARG

Petri
Nets

Info.
Flow

CAST
Kernel

JARE

Interface

Env. Simulator

Actor

CAST

another agent B when: 1) agent A knows the truth-value of
I1, 2) agent A believes that agent B does not currently know
I1, and 3) B has a current goal G that depends on knowing
I1, i.e. if B does not believe I1, then it will never be able to
accomplish it’s goal, but if it knew I1, it would be able to:

(BEL A I1) ∧ (BEL A ¬(BEL B I1)) ∧
(BEL A (GOAL B G)) ∧
[¬(BEL B I1) → ¬(DONE B G)] ∧
[(BEL B I1) → ¬ ¬(DONE B G)]
→ (GOAL A (Inform B I1))

where is the temporal operator for ‘always’. In CAST, we
use the pre-conditions of operators to determine the
information I1 that an agent needs to know to achieve its
goals. Note, the communication is suppressed only when
(A believes that) B already believes I1 is true; but if B does
not have a belief about the truth value of I1 at all, or B
incorrectly believes it is false, then the message will be
sent. For simplicity, we assume that all agents share
common (and correct) knowledge of the team, e.g. team
goals and plans, roles and responsibilities, operator pre-
conditions, etc. As in real teams, efficiency may go down if
the team members do not have the same overall mental
model of the team.

Clearly this approach requires A to monitor B’s mental
state, both in terms of what his beliefs and goals
(commitments) are. This might be easy to do in a highly
observable environment, but might require extensive
communication in other cases (e.g. verbal updates of what
each teammate is currently doing). Alternatively, agents
might use a probabilistic mechanism like Bayesian
reasoning to infer on their own the likely states of their
teammates, based on observations of the effects of their
actions reflected in the environment. Regardless of how
difficult this state estimation or tracking might be to
implement (inference in almost any non-trivial logic
generally has high computational complexity), the
definition above describes the ideal conditions under which
one would want to communicate. As much as possible, we
want to restrict communication to cases where it can be
inferred to be useful, which is what the DIARG algorithm
below is designed to approximate.

If information I falls into the category of I2, then agent
A should ask agent B about information I2 when: 1) agent
A does not currently know the truth-value of I2, 2) agent A
believes that agent B currently know I2, and 3) A has a
current goal G that depends on knowing I2, i.e. if A does
not believe I2, then it will never be able to accomplish it’s
goal, but if it knew I2, it would be able to:

¬ (BEL A I2) ∧ (BEL A (KNOW B I2)) ∧
(BEL A (GOAL A G)) ∧
[¬(KNOW A I2) → ¬(DONE A G)] ∧
[(KNOW A I2) → ¬ ¬(DONE A G)]
→ (GOAL A (activeAsk B I2))
And B should reply to A upon receiving the activeAsk

request if B really knows it, we will introduce the DIARG
algorithm [11,12].

2.3 Shared Mental States

In order for agents in a team to exchange information
proactively, to coordinate and cooperate, agents should
share certain information. Joint intention [1] and shared
plans [7] can all be regarded as part of the shared mental
models. In our approach, we assume our agents have the
following information in their shared mental model: static
information, such as knowledge of team structure,
knowledge of responsibilities, knowledge of capabilities,
knowledge of team goals, knowledge of team plans, and
knowledge of information flow. And dynamic information,
such as knowledge of the state of each agent, including
which plan an agent is executing, where agents could
possibly be in their team plans, etc.

The static information of team structure,
responsibilities, capabilities, team goals all come directly
from the MALLET team specification. The MALLET
parser reads in the MALLET file and generates Petri Net
from its goal related plans. Information flow is represented
through a 3-turple: <Info, Providers, Needers>. Information
flow of type I1 and I2 information can be detected through
offline DIARG algorithm and stored in different data
structure. The dynamic information about the status of each
agent in its plan is tracked through Petri Net. The Petri Net
is not only used as the shared mental model for the static
information of team plan, but a tool to keep track of the
plan execution. The static knowledge of the process of team
plan is maintained in the Petri Net hierarchically and the
detailed information is also represented in the Petri Net.

Each goal related team plan in MALLET becomes a
Petri Net. This Petri Net has a start node and consists of
transitions that are either actions or conditional tests by the
agent that is executing that Petri Net. A Petri Net may not
always be executed by a single agent, sometimes different
parts of the Petri Net can be executed by different agents
(e.g. parallel execution or sequential execution). Therefore
once an agent has completed its part of the plan as
embodied in the Petri Net, it must hand over control if there
follows a portion that is to be executed by another agent. So
by having the shared knowledge of the team plan as
represented in MALLET, the first agent knows whom to tell
whenever it finishes its own part of the process in the
current plan, and the second agent knows from whom to
expect the information of process control.

2.4 Scalability via Dynamic Task Assignment

A role serves as a preference constraint in assigning agents
to responsibilities. Associating a role to a generic agent
(i.e., an agent variable) with certain responsibilities is called
a role specification, while associating a role to a actual
agent is called a role selection or task assignment. There are
two kinds of role specifications: (1) global role
specification, and (2) plan-specific role specification. A
global role specification describes a role the generic agent
can play in all situations (called responsibility in

MALLET). A plan-specific role specification serves as a
constraint for selecting agents in a plan.

One of the most important issues in modeling team-
based agents is selecting agents for roles (i.e., for actions or
plans). Roles in CAST are specified with some constraints
about the agents who can take the responsibility. For
example, a specific participant of a team plan may be
constrained to agents with certain attributes. If a team
consists of one carrier (who scouts) and ten fighters (who
shoot), an instantiation of the team uniquely determines the
agent who will take the responsibility of scout in the plan,
but leaves the choice for fighter unclear. This leaves an
ambiguity about which fighter should actually shoot the
wumpus in a particular wumpus hunt. This ambiguity may
be resolved through a coordination protocol (e.g., a fighter
who first volunteers gets to shoot the wumpus) or through a
commonly understood criteria (e.g., a fighter who is closest
to the location of the wumpus as illustrated in Section 4).
Obviously, the second criteria can work only if all fighters
have the same assessment about each fighter’s distance to
the wumpus. Like role specification, a role assignment can
be made globally or locally in a plan. A plan-specific role
specification allows different instantiations of a plan to
have different agent assigned to a particular role in the plan.
For instance, the fighter for a wumpus found can be
different from that of another wumpus. This is a situation
of “multiple legal candidates” for a responsibility. This is
similar to XOR responsibility mentioned in our previous
paper.

In general, role selection can be made in several ways:
(1) choose the agent (e.g., randomly or intelligently) at the
compile time, (2) choose the protocol for determining the
assignment at compile time, select the agent based on the
protocol at run time, (3) choose the protocol as well as the
agent at run time. The current CAST implementation
provides a volunteer protocol for role selection of
unconstrained roles and a dynamic role selection protocol
for role selection of constrained roles; but other protocols
can also be added. A problem related to dynamic role
selection is that of team reconfiguration due to losing a
portion of the team. Under such circumstances, a back up
agent needs to be assigned to the responsibility.
 In order to introduce the dynamic role selection
algorithm, we need to first introduce several concepts about
plans and operators in MALLET. In MALLET, there are
two types of plans: individual plans (I-plan) and team plans
(T-plan). And there are two types of operators: individual
operators (I-op) and team operators (T-op). Individual
plans and individual operators are assumed to be executed
by only one agent at a time. However, team plans and team
operators have the possibility of being invoked on a set of
agents (e.g. those playing a given role). How the agents
handle the team operators depends on what sub-type it has.
We have identified three modes of operator-sharing:
• AND operators, which require simultaneous action by

all the agents involved

• XOR operators, which require at most one agent to act
(mutual exclusion, e.g. to avoid conflicts)

• OR operators, which can be execute by any of the
agents (possibly >1) without conflict

The basic idea of the current dynamic role selection
protocol is: whenever an agent start a team plan, for all
roles not constrained by any constrained condition, agent
will use the volunteer protocol to select one agent to fit in
that role; for all roles constrained by any constrained
condition, postpone the role selection until starting an
individual plan or individual operator involving that role.
Whenever an agent encountering a step in its plan body (the
step could be another team plan, a team operator, an
individual plan or an individual operator), the agent will use
the following algorithm to decide who is going to take the
role:
role-selection(step A)

1) If A is a Team Plan return;
2) If all roles involving in A has been bound to

certain agents in the plan A comes from then
return;

3) If self can not play any role which has not been
bound to any agent in the plan A comes from, then
return;

4) For all other cases, call select-role(step A) to
decide who will take the untaken roles

select-role(step A)
1) For any role that has not been bound to any agents

in the plan A comes from
2) Let CANDIDATE be all the agents that can play

that role;
3) Remove from CANDIDATE any agents that is

busy;
4) If CANDIDATE is empty, then return;
5) Let ROLE-BINDING be a partial role-binding

traversed from the plan A comes from and include
any commitment made so far;

6) Let CONSTRAINT be the constrain condition on
the role;

7) Let CANDIDATE = checkConstraint
(CANDIDATE, ROLE BINDING,CONSTRAINT),
the checkConstraint is a domain related method
which return a new list of candidate;

8) If CANDIDATE is empty then return;
9) If A is an I-plan, I-op, XOR-op or OR-op then

let agent x be the first one in CANDIDATE;
set commitment(A) = x;
set x as busy;
return;

10) If A is an AND-OP then
set commitment(A) = all agent in CANDIDATE;
set all agent in CANDIDATE as busy;

11) If ROLE-BINDING is a complete binding, and the
agent plays one of the roles, then agent takes the
step A.

The role binding information should be traversed vertically
but not horizontally, which means that the role binding
information and dynamic role selection information will be
kept within the scope of current sub-plan, if agent move to
the next sub-plan, it needs to do the dynamic role selection
again. For example, in the following team plan:

(t-plan explore-cave ()
(role carrier ?ca)
(role fighter ?fi ((closestToWumpus ?fi)
)
(process (seq

(do ?ca (find-wumpus))
(do ?fi (moveto-wumpus))
(do ?fi (kill-wumpus))))

)

whenever a fighter is selected for ?fi in (do ?fi (moveto-
wumpus)), the role binding will be kept within the
individual plan without further role selection, but after the
step is finished, the dynamic role selection algorithm should
be called again for (do ?fi (kill-wumpus)), which is
unnecessary in this particular example.

The major benefits of dynamic roles selection we have
demonstrated are better performance especially in high
complex environment, relatively balanced workload, and
thus better scalability. Certainly, in order to do dynamic
role selection, agents need some extra communication.

3. Communication Support for Agent Teams

3.1 Types of communication

Communication in our approach serves four purposes for
effective teamwork:

• Proactive information providing;
• Information request and reply;
• Disambiguating a shared responsibility;
• Control token propagating.
The first type of communication is very important for

agent to anticipate the information needs of other agents
and proactively provide information to others. By having a
shared mental model of teamwork, agent can keep track of
the teamwork process as well as the current states, agent
can figure out what kind of information others may need.

Information request and reply is mainly applied for the
type I2 information. Whenever agent needs certain
information to fulfill its goal, it can apply DIARG
algorithm to figure out who can provide the relevant
information and use this kind of communication to get the
information. There is always trade-off about which method
to apply depending on the differentiation of type I1 and
type I2. This information should be provided by domain
experts.

When there are multiple candidates for one task (for
example, the role played by multiple agents involved in a
plan), then there is ambiguity about who is going to really
take action toward the plan. In this case, our CAST agent
can use volunteer for roles not constrained by any

conditions and dynamic role selection algorithm for role
with constraint.

Agents in a team need to be aware of each other’s
steps, such as the control sequence. In real world, agents
may know part of it by observation, and part of it through
communication. Since we use Petri Nets to model the
execution of plans, we should provide communication for
propagating control tokens among agents.

Moreover, there are other communication needs in
teamwork, such as synchronization, which we will not
elaborate in this paper.

3.2 Communication protocols

Our three-tier communication mechanism consists of:
1) Low level communication methods based on Java

RMI;
• Broadcast and wait
• Broadcast and do not wait
• Multicast and wait
• Multicast and do not wiat
• Unicast (one-to-one) and wait
• Unicast and do not wait

2) Atomic level communication operators;
• Tell (multicast and do not wait)
• Ask (unicast and wait)
• Reply (unicast and do not wait)
• Selec-role (broadcast and do not wait)
• Control-token (broadcast and do not wait)

3) High level communication protocols.
• ProactiveTell through Tell
• ActiveAsk through Ask and Reply pair
• Volunteer through Select-role
• Dynamic role selection through Ask, Reply and

Select-role (after calculation)
• Coordinating information propagation through

Control –token mechanism
There are three most popular communication methods:
broadcast, multicast and unicast. Broadcast allows agents to
send the information to all team members within a team,
including itself. It is useful for team coordination and
control the sequential actions among team members.
Multicast allows agents to send information to a partial
team. It can make teamwork more efficient when only
partial team is involved in a task. The information is only
important to the partial team. Unicast allows
communication happens between two parties without
disturbing anyone else. For each of the method, there are
two situations : wait for a reply or acknowledge, or do not
wait for anything. For important information or when agent
wants to ask for certain information, agent needs to know
whether information is successfully sent in the first
situation, or agent needs to get reply in order to go on. In
both case, agent need to wait. But there are other cases that
agent just provide certain information and go on with its
own task without waiting for any response.

For the second tier, it is similar to those KQML
performatives. Tell multicast information to a sub-group of
agents without waiting for a response. Ask and Reply are
used together for agents to query and pass information
between each other in a team. Select-role is used to
announce the role selection of an agent within the whole
team. And Control-token is used to announce the status of
agents within a team plan.

The third tier is the combination of several atomic
communication operators with certain algorithm to serve a
more complex purpose. ProactiveTell is used to anticipate
information needs (through DIARG) of other and Tell them
the information. ActiveAsk is to figure out its own
information needs and who can provide the information
(through DIARG) and ask for the information and wait for
an Reply. Volunteer is for agents to volunteer for a certain
role which is not constrained by any condition and inform
others to disambiguate among agents about shared
responsibilities. And dynamic role selection is used for
agent to announce its selection on certain role constrained
by condition for the same purpose of disambiguating. But
instead, agents needs to get certain information to do so. So
it needs to go through Ask-wait for Reply- calcuation-
Select-role. Control token propagating is used to propagate
control tokens among agents so that agents can keep track
the states of other team members and the whole team.

4. Experiments

Candidate team domains could be military teams, fire
fighting teams, RoboCup soccer teams, space control teams,
etc. The domain itself is not very important as long as it
meets the following criteria. The team should be well
structured, the role of each team member should be well
defined, the capabilities of each team member should be
well defined, the responsibilities of each team member
should be well defined, there should be information needs
among agents, team plans should be pre-defined, and
communication is assumed to have cost.

For simplicity, we decided to choose multi-agent
Wumpus World as our team domain, which meets our
criteria and has a very easy to understand domain
knowledge. And we will find out that it is also very
convenient for the research purpose. We have constructed a
testbed application based on the multi-agent Wumpus
World, in which we implement two roles: carrier and
fighter.

Agents can communicate in three ways: (1) proactive
tell, (2) broadcast information, and (3) broadcast control
tokens for coordination purpose.

We can evaluate the following four aspects of the team:

• Team performance: (1) the number of wumpus killed,
(2) the number of arrows used, (3) the amount of gold

gathered, (4) the number of actions taken, (5) the
number of agents killed.

• Communication overhead: (1) the number of broadcast
messages, and (7) the number of proactive tell
messages.

In order to evaluate the effectiveness of architectural
supports from CAST, we have designed two sets of
experiments. In the first set of experiment, in order to show
the advantage of proactive information exchange, we have
devised three different multi-agent teams for comparison.
Each team consists of a fighter and a carrier. Team A and
Team B uses a MALLET specification of a team plan that
requires the climber to find a wumpus, then navigate a
fighter to a cave adjacent to the wumpus and shoot the
wumpus. The three teams use the same knowledge base
(i.e., JARE rules) for reasoning about the environment and
for determining the priority of actions. Their differences
are listed below:
1) Team A: CAST agents with both shared mental model

and DIARG support. Proactive information exchange is
being done.

2) Team B: CAST agents with shared mental model, but
not DIARG support. Instead, each agent broadcasts
every new piece of information found.

3) Team C: Agents without shared mental model. They
are simply a group of independent agents.

The experiments were performed on five randomly
generated maps for a world with 10 by 10 cells, 5 wumpus,
2 pits, and 10 piles of gold. Each team is allowed to operate
a fix amount of time. The performance of each team for
each test case is measured by items listed in Table1. The
results of the experiments are summarized in Table 1.

Table 1. Experiment Results
Team V1 V2 V3 V4 V5 V6 V7

W1 4 4 142 0 4 5
W2 5 5 138 0 4 5
W3 4 4 145 0 4 4
W4 2 2 152 0 4 3

Team
A

W5 4 4 149 0 4 3
W1 5 9 144 0 226 0
W2 5 9 149 0 220 0
W3 4 4 144 0 170 0
W4 4 4 155 0 196 0

Team
B

W5 3 10 80 0 134 0
W1 5 14 250 0 0 0
W2 1 2 250 0 0 0
W3 3 17 250 0 0 0
W4 4 21 250 0 0 0

Team
C

W5 2 14 250 0 0 0
V1: test cases (worlds) V2: # wumpus killed
V3: # arrows used V4: # actions
V5: # dead agent V6: # broadcast messages
V7: # proactive info exchanges

As shown in the Table 1, Team A and Team B achieves
comparable performance, because they use an identical
shared mental model specified in MALLET. However,
Team B has a much higher communication overhead. The
main advantage of Team A is that teamwork performance is
improved without significantly increasing communication
overhead. For example, the fighter only needs one arrow to
shoot a wumpus with known location. This is achieved
because the carrier agent tells the shooter agent proactively
about the location of the wumpus, because DIARG infers
that the fighter needs the information to navigate to the
wumpus. In contrast, the fighter in Team C has to randomly

choose a direction for shooting when it senses stench.
Consequently, Team C consumes more arrows on the
average than both Team A and Team B.

In the second set of experiments, to show the benefit
of dynamic role selection algorithm, we have devised
another three different multi-agent teams for comparison.
Each team consists of a carrier and three fighters. They all
use a MALLET specification of a team plan that requires
the carrier to find a wumpus, then navigate a fighter to a
cave adjacent to the wumpus and shoot the wumpus. The
three teams use the same knowledge base for reasoning
about the environment and for determining the priority of
actions. And they all use the same team plan knowledge in
MALLET. Their differences are listed below:
1) Team D: CAST agents with both shared mental model

and DIARG support. Proactive information exchange is
being done. But agents just neglect the constraints on
roles and do not do dynamic role selection. An agent
team is formed before starting the team plan. (This is
equivalent to Team A, but since the team structure is
different and we run a new set of test, let’s use D for
the time being.)

2) Team E: CAST agents with shared mental model and
DIARG support, agents consider the constraint
condition and dynamically select roles based on the
constraint condition on roles. In order to do this,
besides proactive information exchange, agents need to
use activeAsk to capture the location information in
order to check the constraint condition.

The experiments were first performed on five randomly
generated maps for a world with 10 by 10 cells, 5 wumpus,
2 pits, and 10 piles of gold. Each team is allowed to operate
a fixed amount of time. The performance of each team for
each test case is measured by the same characteristics. The

results of the experiments are summarized in Table 2. The
number of actions each agent performed and total number
of actions performed by each team is summarized in Table
3. Though we listed several items in the following table to
measure the performance, the most important are the
number of wumpuses killed and the number of
communication and actions taken. The other measures
could be uncertain due to random layout of the cave and the
location of agents. For example, carrier can pick up gold
when it walks around and bumped into a pile of gold,
fighter can shoot the wumpus with one arrow when it
knows the location of the wumpus or randomly shoot
certain direction when it senses stench without knowing the
exact location of wumpus. Hence we will focus our
discussion on the important measures.

Table 2. Team Performance
V1 V2 V3 V4 V5 V6 V7

W1 2 2 53 0 4 3
W2 2 2 55 0 4 2
W3 4 4 49 0 4 3
W4 4 15 50 0 4 3
W5 2 4 63 0 4 1

Team
D

A 2.8 5.4 54 0 4 2.4
W1 3 3 45 0 56 9
W2 4 4 47 0 48 9
W3 3 3 38 0 76 12
W4 4 4 53 0 30 9
W5 2 2 34 0 73 9

Team
E

A 3.2 4 43.4 0 57 9.6

Table 3. Action Counts
V1 CA Fi1 Fi2 Fi3 Total W

W1 46 7 0 0 46 2
W2 42 13 0 0 55 2
W3 15 34 0 0 49 4
W4 41 14 0 0 55 3
W5 3 60 0 0 63 2

Team
D

A 29 25.6 0 0 53.6 2.6
W1 32 11 2 0 45 3
W2 29 0 13 5 47 4
W3 26 0 9 3 38 3
W4 45 2 1 5 53 3
W5 25 0 0 9 34 2

Team
E

A 31 2.6 5 4.4 43.4 3

As shown in Table 2, Team E benefits from the dynamic
role selection algorithm in 1) getting higher performance by
choosing the most appropriate agents to do the job; 2)
balancing the workload among agents by selecting different
agents to do similar job at different time. But to guarantee
dynamic role selection, agents need more communication.
There is always tradeoff for teamwork. In teamwork which
communication cost is high (compared with other actions),
we may work without dynamic role selection and only use

Figure 2. The Comparison of teamwork with and
without dynamic role selection in the increased

complex environment

0

1

2

3

4

0 5 10 15 20

Complexity of the problem measured
by number of pits

P
er

fo
rm

an
ce

m

ea
su

re
d

 b
y

n
u

m
b

er

o
f

w
u

m
p

u
s

ki
lle

d

no dynamic role
selection

dynamic role
selection

proactive information exchange. In a team which
communication cost is relatively low, we may consider
dynamic role selection to improve the team performance by

reducing the actions taken by agents and balance the
workload among agents playing same roles.
More experiments have been done on team D and E to
show the performance change with the increasing
complexity of the problem. W have the following
observation with the complexity increasing:
• The communication load keeps stable;
• The performance dropped significantly for Team D;
• The performance keeps stable for Team E.

Figure 3. shows that the performance decreases with the
increasing of the complexity of the problem in Team D, but
the communication load does not change much.

Figure 4. shows that the performance keeps stable
with the increasing of the complexity of the problem in
Team D, and the communication load does not change
much. Series 1 stand for performance and Series 2 stand for
communication.
 When there are 20 pits, the carrier can hardly move
around and find any wumpus, so the performance for both
cases will drop to near zero, that is a problem even human
teams do not have good solutions for.

5. Conclusions

In this paper, we have presented proactive information
exchange and dynamic role selection for task assignment.
And a three-tier communication infrastructure has been
introduced to support these mechanisms. Finally our
experiments have demonstrated that with the support of
proactive information exchange and dynamic role selection,

the teamwork becomes more efficient especially when the
problem scales up in complexity. However, we do not deal
with plan failure in this paper. We need to further extend
our dynamic task assignment to handle the failure
conditions. But we believe our approach will be
advantageous in reducing communication overhead and
allowing flexible team formation building to support
effective teamwork.

References
[1] P. R. Cohen, and H. J. Levesque, “Teamwork,” Nous

25(4), Special Issue on Cognitive Science and
Artificial Intelligence, 1991, pp. 487-512.

[2] K. S. Decker, K. S., and V. R. Lesser. “Designing a
Family of Coordination Algorithms”. In Proceedings
of the First International Conference on Multi-Agent
Systems,73-80, 1995.

[3] E. H. Durfee, and V. Lesser, “Using Partial Global
Plans to Coordinate Distributed Problem Solvers”, In
Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, 875-883, 1987.

[4] B. Grosz, “Collaborating Systems”, AI Magazine,
17(2), 1996.

[5] T. Ioerger, R. Volz, R., and J. Yen, “Modeling
Cooperative, Reactive Behaviors on the Battlefield
Using Intelligent Agents”, In Proceedings of the Ninth
Conference on Computer Generated Forces (9th
CGF), 13-23, 2000.

[6] Sowa, J.F. Knowledge Representation: Logical,
Philosophical, and Computational Foundation.
Brooks/Cole: Pacific Grove, CA, 2000.

[7] K. Sycara, “Multiagent Compromise Via Negotiation”,
In Gasser, L. and Huhns, M., editors, Distributed
Artificial Intelligence. Morgan Kaufmann: Los Altos,
CA, 1989.

[8] M. Tambe, “Agent architectures for flexible, practical
teamwork,” in Proceedings of the 14th National
Conference on Artificial Intelligence, Providence,
Rhode Island 1997, pp. 22-28.

[9] M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E.
Laird, P. S. Rosenbloom, and K. Schwamb,
“Intelligent agents for interative simulation
environments,” AI Magazine, 1995.

[10] M. Tambe, “Towards Flexible Teamwork”, Journal of
Artificial Intelligence Research, 7(1), pp.83-124,
1997.

[11] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and
R. A. Volz, “CAST: Collaborative Agents for
Simulating Teamwork,” will appear in Proc. of the
International Joint Conference on Artificial
Intelligence, IJCAI-2001.

[12] J. Yin, M. S. Miller, T. R. Ioerger, J. Yen, and R. A.
Volz, “A Knowledge-Based Approach for Designing
Intelligent Team Training Systems,” in Proceedings of
the Fourth International Conference on Autonomous
Agents, pp.427-434, 2000.

Figure 4. The performance and communication
change in an increased complexit environment (for a

multi-agent team with dynamic role selection)

0
10
20
30
40
50
60
70

0 5 10 15 20

Complexity measured by number of pits

P
er

fo
rm

an
ce

 a
n

d

co
m

m
u

n
ic

at
io

n

performance

communication

Figure 3. The performance and communication
change in increased complex environment (for agent

team without dynamic role selection)

0
1
2
3
4
5
6
7

0 5 10 15 20

Complexity measured by number of pits

P
er

fo
rm

an
ce

 a
n

d

co
m

m
u

n
ic

at
io

n

performance

communication

