Evolving Real-Time Local Agent Control for Large-Scale
MAS

Thomas Wagner and Victor Lesser
Computer Science Department
University of Maine and University of Massachusetts
wagner@umcs.maine.edu

ABSTRACT

Control for agents situated in multi-agent systems is a com-
plex problem. This is particularly true in hard, open, dy-
namic environments where resource, privacy, bandwidth,
and computational limitations impose restrictions on the
type of information that agents may share and the control
problem solving options available to agents. The M@ or
motivational quantities framework addresses these issues by
evaluating candidate tasks based on the agent’s organiza-
tional context and by framing control as a local agent op-
timization problem that approximates the global problem
through the use of state and preference.

1. INTRODUCTION

Many researchers believe that one of the dominant fu-
ture models of distributed computation will involve large
networks of interacting heterogenous software agents. We,
as a community, are showing significant progress in making
this a reality but many research questions remain. Consider
the requirements and characteristics of the problem space.
The overall objective is to create open, large-scale, informa-
tion and computational systems that are flexible, adaptable,
robust, persistent, and autonomous. Now, consider the im-
plications of this. Openness means that agents may interact
freely, come and go from the network, and that the entire
problem solving environment is dynamic. Openness thus of-
ten acts to thwart agent technologies that rely on detailed
predictability or static properties of the problem space. In
our work, we take the view that openness leads to a require-
ment for real-time agent control problem solving so that
agents can respond to change and unexpected outcomes on-
line.

Moving the scale of multi-agent systems from small groups
to large groups, e.g., tens of thousands, throws two other
problems into the mix: increased interaction overhead and
soctal complezity. The term interaction overhead denotes
the increase in communication between agents required to
detect interactions in their problem solving and to coor-
dinate their activities, i.e., it denotes the sheer volume of

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistritute to lists, requiresprior specific
permissiorand/orafee.

Copyright 2000ACM 0-89791-88-6/97/05$5.00

message traffic and problem solving required to evaluate
the messages. This is being dealt with by imposing orga-
nizational structure on the agents so that they do not all
communicate and by creating coordination and communi-
cation technologies that are adjustable [6, 10, 38, 11]. The
other issue is social complexity and we do not mean social
complexity in the human sense. Or rather, the goal of this
research is not to study social complexity in human orga-
nizations [33] per se as our work in agent control has very
specific task-centered properties. When agents are situated
in a large open environment, and organizational structure
is imposed upon them, they have different organizational
objectives and they must reason about how their problem
solving relates to satisfying their multiple, and possibly con-
flicting, organizational objectives.

This research focuses on exactly this problem — how agents
in large-scale open environments reason about their organi-
zational context and make appropriate choices about which
actions to perform and how to go about performing them.
It is important to emphasize that this research pertains to
complex problem solving agents, e.g, the BIG Information
Gathering Agent [28] and [23, 6, 19], where the agents are
situated in an environment, able to sense and effect, and
have explicit representations of candidate tasks and explicit
representations of different ways to go about performing the
tasks. Additionally, tasks are quantified or have different
performance characteristics and, following in the thread of
complex problem solving [14, 9, 31] there are relationships
between the tasks. The implications are that tasks can-
not be reasoned about independently and that the value or
utility of particular tasks differs depending on the context.
We call the process of reasoning about which tasks to per-
form, when, with what resources, how or in what fashion,
and with whom to coordinate, the local agent control prob-
lem. The term “local” is used in this expression because
agency, as we use it, denotes an autonomous distributed
problem solving entity. In our work, there is no global pic-
ture' of all activities being carried out by all agents nor are
the agents situated in specialized, tightly coupled environ-
ments like Tambe’s teams [38] or robotic soccer [40].

'In multi-agent systems we take the position that it is not
generally possible to compose a global picture of the activi-
ties happening at all the agents. This is due to the combina-
torics involved in gathering the information and reasoning
about it. It is also due to privacy, intellectual property, and
autonomy issues. For example, an agent affiliated with Mi-
crosoft is unlikely to share its entire knowledge base with a
Department of Justice agent even if it were computationally
feasible.

We view local agent control in this context as a real-time
action-selection-sequencing problem where an agent has n
candidate tasks and alternative different ways to perform the
tasks. Tasks have deadlines and other constraints as well as
different performance properties, e.g., consuming different
resources or producing results of varying quality. Control in
this context is an optimization problem where different solu-
tions are possible and they have different degrees of utility.

Historically in our work this class of control problem has
been dealt with using the TAEMS task modeling framework
[7, 27], GPGP coordination [7], and Design-to-Criteria (D'TC)
real-time agent scheduling [34, 42, 41, 45, 15]. Using these
tools, an individual agent for use in a multi-agent environ-
ment is constructed by coupling a domain expert or plan-
ner with GPGP and DTC. In this model, the domain ex-
pert’s function is to perform domain problem solving and
to translate its internal representations into TAMS for con-
trol problem solving by the coordination (GPGP) and trade-
off /scheduling (DTC) experts. GPGP and DTC then work
together to guide the actions of the individual agent and to
coordinate the activities of the agent with the other agents
in the network. This is the approach used in the BIG infor-
mation gathering agent [29, 28], the Intelligent Home project
(IHome) [26], the DARPA ANTS real-time agent sensor net-
work for vehicle tracking [15, 19], and others [47]. Though
in some of these applications GPGP is replaced by other
communication machinery that forms commitments between
agents about which tasks will be performed and when. In
all of these applications, DTC or its predecessor, Design-
to-Time [17], is the oracle that guides and constrains the
communication and commitment formation processes.

TAMS and DTC are mature research artifacts and have
been successfully reused in many applications (DTC since
1995). However, TEMS is not suited to addressing the sit-
uational complexity that arises when agents are deployed in
larger groups or in open environments. One of the funda-
mental limitations of TAMS is that it is a static representa-
tion of an agent’s problem solving process at a given instant
in time. It is, in essence, a snapshot of the options available
to the agent and a snapshot of their characteristics. In our
applications, generally, when the situation changes and the
characteristics of tasks (used to determine utility) change,
the problem solver must adjust the performance profiles and
emit a new TAEMS task structure. Another limitation is
that in TAEMS, action performance produces gquality which
then propagates throughout the entire graph-like structure
in ways that is intended to model distributed problem solv-
ing as in a distributed interpretation problem [13]. The for-
mal details of TAEMS are in [8]. While this view is appropri-
ate for reasoning about interrelated domain problem solving
activities at a detailed level, it is not readily used to model
concepts like tasks that contribute to one organizational ob-
jective while being detrimental to another. TAMS also does
not adequately support concepts like the value of forming a
commitment with another agent or the penalty for decom-
mitting from an activity once a commitment is formed.

To address these limitations, we have developed a new
framework for representing tasks and actions at a different
level of abstraction. The framework, called the motivational
quantities (MQ) [39, 44, 43, 46] framework, uses state to
achieve “automatic” changes in task valuation or utility (un-
like the static view taken in TAEMS). The MQ framework
also describes tasks in many different attribute dimensions

so that we can model tasks contributing to, or detracting
from, different objectives to different degrees. While con-
trol at the TAEMS level pertains to detailed evaluation of
domain problem solving activities of an agent, control at
the M@ level pertains to high-level valuation of candidate
tasks based on an understanding of the relationship between
tasks and organizational objectives. In other words, in the
MQ@Q framework, task value is determined not only by the
intrinsic properties of tasks, but by the benefits and costs of
the intrinsic properties as determined by the agent’s current
organizational situation. From another view, there is an in-
termediate evaluation step in the control process whereas
such processes typically focus on intrinsic value rather than
contextually interpreted value. While we have ideas about
how to combine and interface [39] the two levels, integration
is clearly unnecessary for many applications.

A preliminary version of the M@ framework was pre-
sented in [44]. In this paper we refine the framework based
on experiences gained by implementing and working with
the model.

2. QUANTIFYING AND COMPARING MO-
TIVATIONS

In the M@ model we make the control restriction that
for an agent to perform a task, or to consider a task, the
task must produce value for the local agent. On the sur-
face, this implies that the M@ model is only for control-
ling interacting self-interested agents. This is not the case.
The restriction is to guarantee the ability to compare tasks
from a unified perspective. Consider the issue of task value.
When agents are isolated problem solving entities, task per-
formance produces value that is entirely of local benefit.
In multi-agent systems, value may be of local benefit and
of benefit to other agents. The extremes are also possible;
tasks may be only of local benefit and tasks may be only
of benefit to agents other than the local agent. This latter
case appears problematic for the control restriction above:
all tasks produce local value. This case is problematic only
on the surface. For the local agent to consider performing
such a task, it must indeed have value, however, in this case
the value is of a different type or class than the value of
its other candidate tasks. The task, for example, may be
performed to meet some organizational directive, e.g., ser-
vice requests from agent B, or to reduce favors owed to the
agent, to accumulate favors for future use with the agent, or
because a different agent with which the local agent holds
common goals requested it.

In the M @Q framework, all tasks have value or a motivation
for performing the task where the value is determined both
by the value of the task and by the importance of the organi-
zational objective with which the task is associated (and the
current state of goal achievement). This enables the agent to
compare and value tasks that are associated with different
organizational goals, or tasks that are detrimental to one or-
ganizational goal while having positive benefit to a different
organizational goal, or tasks associated with different orga-
nizations entirely, or tasks motivated by self-interested rea-
sons to cooperative reasons. The M@ framework quantifies
these different underlying motivational factors and provides
the means to compare them via a multi-attributed utility
function. Definitions:

Agents are autonomous, heterogenous, persistent, comput-

ing entities that have the ability to choose which tasks to
perform and when to perform them. Agents are also ratio-
nally bounded, resource bounded, and have limited knowl-
edge of other agents.” Agents can perform tasks locally if
they have sufficient resources and they may interact with
other agents. Additionally:

e Fach agent has a set of M@s or motivational quanti-
ties that it tracks and accumulates. M@s represent
progress toward organizational goals®. MQ@s are pro-
duced and consumed by task performance where the
consumption or production properties are dependent
on the context. For example, two agents interacting
to achieve a shared organizational goal may both see
an increase in the same local MQ levels as progress is
made (this is not a zero sum game), whereas agents
interacting to satisfy different goals may each obtain
different types and quantities of M @s from the same
interaction.

e Not all agents have the same M@ set. However, for
two agents to form a commitment to a specific course
of action, they must have at least one M@ in com-
mon (or have the means for forming an M@Q dynam-
ically). If they do not have an M@ in common, they
lack any common goals or objectives and lack any com-
mon medium of exchange. (Proxy and reducibility are
somewhat addressed in [44].)

e For each MQ; belonging to an agent, it has a prefer-
ence function or utility curve, Uy,, that describes its
preference for a particular quantity of the M@, i.e.,
VMQ;, 33Uy () such that Uy (MQ;) +— U; where
U; is the utility associated with M@Q); and is not di-
rectly interchangeable with U; unless ¢ = j. Differ-
ent agents may have different preferences for the same
MQ@;. Preferences in the framework are defined by the
relation between task performance and organizational
goals or directives.

e An agent’s overall utility at any given moment in time
is a function of its different utilities: Uagent = y(Us, Uj,
We make no assumptions about the properties of (),
only that it enables agents to determine preference or
dominance between two different agent states with re-
spect to MQs.

e For simplicity of presentation, let us assume that ()
is not a multi-variate utility function and instead that
for each U; there is an associated function w;() * that
translates M@ specific utility into the agent’s general

utility type, i.e., YU;, Jw;() such that w;(U;) — Uagent-

Uk,

Thus Usgent may take the form of Ungent = Y 1o wi(Us)-

e Change in agent utility, denoted AU,gent, is computed
through changes to the individual utilities, U;, Uj, etc.
Let U; denote the utility associated with M Q; before
the quantity of the MQ changes (e.g., as the result of

2As agents are heterogenous, they may be associated with
different corporate entities (privacy issues), and because the
contextual valuation of tasks is generally an exponential
problem we do not assume agents know each other’s util-
ity functions, plan libraries, etc.

3In certain cases, M Qs may also be used as a medium of
exchange. Though little meaningful work has been done to
explore this.

“w;i() could be combined with Uy, (). These are partitioned
for mapping different organizational influences.

task performance). Let U; denote the utility associ-
ated with the changed M@ quantity. The change in
overall utility to the agent, in this simplified model, is
expressed as AUagent = | Y i wi(Uf) —wi(Ui)|

MQ Tasks are abstractions of the primitive actions that
the agent may carry out. MQ tasks:

e May have deadlines, deadline;, for task performance
beyond which performance of said task yields no use-
ful results. (This could also be defined via a function
that describes a gradual decrease in utility as deadline;
passes.) This temporal constraint, as with the one fol-
lowing, is particularly important for multi-agent co-
ordination and temporal sequencing of activities over
interactions.

e May have earliest start times, start;, for task perfor-
mance before which performance of said task yields
no useful results. (This could also be defined via a
function that describes a gradual increase in utility as
start; approaches.)

e Each M@ task consists of one or more M@ alterna-
tives, where one alternative corresponds to a differ-
ent performance profile of the task. In many ways,
this extension simplifies reasoning with the prelimi-
nary model presented in [44] while at the same time
increasing the representational power of the framework
by coupling different durations with the other perfor-
mance characteristics. Each alternative:

— Requires some time or duration to execute, de-
noted d;. The durations for all the alternatives of
the task may be the same as the different alterna-
tives may differ in other ways (below). Deadlines
and start time constraints remain at the task level
— the idea being that tasks have constraints that
apply to all of the alternatives.

Produces some quantity of one or more MQ@s,

) called an M@ production set (MQPS), which is

denoted by: MQPS;;r = {4i,4j,qx,-.}, where
Vi, ¢i > 0. These quantities are positive and
reflect the benefit derived from performing the
task, e.g., progress toward a goal or the produc-
tion of an artifact that can be exchanged with
other agents. In this model, the two are equiva-
lent.

Akin to the MQPS, tasks may also consume quan-
tities of M @s. The specification of the M Qs con-
sumed by a task is called an MQ consumption set
and denoted MQCS; ;r = {4i,4;,qx,--}, where
Vi, ¢ < 0. Consumption sets model tasks con-
suming resources, or being detrimental to an or-
ganizational objective, or agents contracting work
out to other agents, e.g., paying another agent to
produce some desired result or another agent ac-
cumulating favors or good will as the result of task
performance. Consumption sets are the negative
side of task performance.

All quantities, e.g., d;, MQPS, MQCS, are cur-
rently viewed from an expected value standpoint.

e Note that the MQPSalternative_i N MQPSalternative_j
may # ¢ as different alternatives may have common

members. This is also true for the MQCS. The rea-
son for this is that alternatives may represent produc-
ing different degrees of benefit (M Q levels) toward an
objective as well as simply producing benefits toward
different objectives (different M@s).

e Tasks whose performance at a given point in time,
t, will miss their deadlines should not be performed.
Likewise with tasks whose performance violates their
start time constraint. If such tasks are executed: 1) all
MQCS will apply, 2) no MQPS will apply, 3) tasks
will take their full duration to execute. Conceptually,
this models performing the task, and consuming the
task’s resources, but having the task fail to produce
any benefit.

e In any given alternative, MQPS and M QCS must be
disjoint. The reason for this restriction is that in order
to reason about an alternative producing and consum-
ing the same M@Qs, we must have a detailed model of
the execution characteristics of the alternative. For
example, we must know when it consumes (at the be-
ginning, at the end, linearly across the execution, etc.)
and when it produces. This is not consistent with the
MQ task abstraction — for situations in which such
detailed reasoning is desired, the M@ task must be
broken into multiple different tasks.

e MQCS defines quantities that are required for task
performance. If a task lacks sufficient M @s for execu-
tion it is deemed un-executable and will not be per-
formed in any fashion. This means it will have zero
duration, consume zero MQs, and will produce zero
MQs.

e If a task will both violate a deadline/start time con-
straint and lacks sufficient resources to execute, the
MQ@QCS-lacking semantics will apply. The rationale is
that the task lacks the resources to begin execution
and thus does not actually violate the temporal con-
straints.

e Tasks may be interrupted, however, when this occurs
they consume all M@s in the MQCS and produce
none of the M@s in the M@QPS. This restriction is to
simplify the semantics for the reasoning process.

In this section we have presented a model for comparing
tasks that are motivated by different factors. The model
can support comparison between tasks that are performed
for different organizational motivations to task that are per-
formed for other agents in return for financial gain to tasks
that are performed for other agents for cooperative rea-
sons. Via the different preferences for the different quanti-
ties, agent control can be modulated and agents can reason
about mixtures of different task types and different moti-
vations. The use of state in the model also facilitates con-
textually dependent behaviors or adjustments to behaviors
over time. Agent a performing cooperative work with a
closely allied agent, 3, for instance, may need to balance
this work with cooperative work with others over time. As
a accumulates progress toward goals held in common with
B (represented as an MQ), its preference may shift to the
accumulation of other M @s. The use of utility for this ap-
plication is flexible and very general and there are many
different ways to relate organizational goal importance to
the process of task valuation.

The model relates to other recent work in the multi-agent
community, such as agents interacting via obligations [1],
or notions of social commitment [4], but it differs in its
quantification of different concerns and its dynamic, con-
textual, relative, evaluation of these. The model resem-
bles MarCon [32] as the different degrees-of-satisfaction af-
forded by the M@ model is akin to MarCon’s constraint
optimization approach, and MarCon too deals with utili-
ties/motivations that cannot always be commingled. Mar-
Con, however, views constraints as agents, assigning partic-
ular roles to particular agents, and the issue of which tasks
to perform do not enter into the problem space.

In the sections that follow we discuss scheduling M Q) tasks
and present examples of using the framework for agent con-
trol.

3. SCHEDULING AND ANALYSIS

If the agent’s objective is to simply select which task to
perform next, and tasks do not have associated deadlines or
earliest start times, and the present and future value of M Qs
are equivalent, then it can reason using the maximum ex-
pected utility principle and select the task at each point that
maximizes immediate utility. However, this simple choose-
between-available-tasks model does not map well to situ-
ations in which tasks have individual earliest start times
and/or deadlines. Note that in general, to coordinate the
activities of multiple agents, temporal constraints such as
these are needed to sequence activities over inter-agent in-
teractions. In situations with such temporal interactions, it
is difficult to produce optimal or even “good” results with-
out considering sequences of activities and thus for most
applications, scheduling of M@ tasks is required.

The implemented M@ task scheduler employs a gener-
ative state space search process where states record the
agent’s current M@ levels, utility functions, organizational
roles and objectives, completed task set, candidate task set,
and some estimation of the agent’s future candidate task set.
Transitions correspond to the performance of an MQ task.
During the duration required for task performance (a tran-
sition), new tasks may arrive or the agent’s organizational
situation may change thus transitions can also be viewed
as marking these changes as well. The M model was de-
signed specifically to lend itself to this form of representa-
tion to ease reproducibility and to leverage the large body of
research pertaining to state-based search. For example, the
MQ model can be scheduled using standard real-time search
technologies like SMA™ [35], RTA* [25], and others [21], en-
abling the model to address the real-time requirement of
online control for agents in open environments. This is par-
ticularly important because the search space is exponential
in the number of actions being scheduled. Implementation-
ally, the scheduler is unable to schedule problem instances
of nine or more activities using exhaustive search® and other
techniques are required. Depending on the characteristics of
the problem instance, standard A* may produce results in
a reasonable amount of time on a larger problem instance,
though, approximate rather than admissible heuristics are
sometimes required to avoid exhaustive generation by A*.
Scheduling issues beyond the scope of this paper include ap-
proaches for constructing good search heuristics in the face

®0On Pentium III class machine with 256 megabytes of RAM
running Redhat Linux 6.0 and IBM’s 1.1.6 jdk.

of non-linear utility curves and considering the future value
of M @s when estimating state potentials.

Opportunity cost also factors-into the scheduling process
and into the estimation of the potential value of a given
state. There are many different uses of opportunity cost in
control and many different ways to compute or predict the
future value of a unit of time. In the examples presented
in this paper, the scheduler is configured so that oppor-
tunity cost is used to determine the value of a given ac-
tivity relative to the time it requires to perform and it is
computed using a running average of the amount of util-
ity produced by the agent per time unit. Opportunity cost
is tracked and expressed as a pair < OCM, Window >
where: 1) the OCM or opportunity cost metric expresses
the current value of a unit of the agent’s time, i.e., a utility-
per-time-unit factor, and 2) the Window denotes the time
over which the OCM was produced. The Window is nec-
essary as time moves forward so the agent can reweight
and adjust the OCM based on recent changes. As defined,
opportunity cost is computed from the agent’s initializa-
tion forward and will gradually be prone to little movement
as weight (Window) is accumulated. There are obviously
many different variations for the running average compu-
tation. Once the value of a unit of time is computed, the
issue then becomes how to employ it when considering a
given M@ task or estimating the potential of M Q) tasks
for use in search heuristics. In this paper the opportunity
cost of an M@ task will have the same weight as the util-
ity produced by the task. If ¢; is a task being evaluated:
adjusted utility;, = wutility:, — opportunity_cost;;. Note
that initially the agent’s OCM is 0 and its Window is also
0, thus, in many cases the pair is “seeded” with initial esti-
mations of appropriate values.

4. DEMONSTRATING CONTROL VIA MQS

In this section we demonstrate the use of the M@ model
and the M@ task scheduler in an organizational control
problem. The agent’s objective in this example is to max-
imize its total utility over the set of candidate tasks. The
agent in question is an Information Gathering agent for the
Merrill Lynch corporation, IG 1, and is situated in a net-
work of financial information agents. The agent network is
patterned after the the WARREN [6] style and the space
is populated by three types of agents 1) Database Manager
agents, 2) Information Gathering (IG) agents that are ex-
perts in particular domains and whose task is to plan, gather
information, assimilate it, and produce a report, possibly
accompanied by a recommendation to the client about a
particular action to take based on the gathered information.
3) Personal Agents (PA) that interface directly with the
human client, perhaps modeling the client’s needs. These
agents also decide with which information specialists to in-
teract to solve a client’s information need. In this paper,
we focus on the interactions between IGarr and personal
agents for Merrill Lynch, PAxyr1 and PAwr2, that are as-
sociated with different Merrill Lynch employees. PAnrr1
represents a mutual fund manager and PAp L2 represents
an individual broker, thus, their requests must be evaluated
differently by IGur.

In this scenario, Gz has the organizational roles and
objectives shown in Figure 1. To track contributions toward
each of its organizational roles, and thus to monitor the state
of its requirement to perform a certain amount of mainte-

Task: Updatel
Alternative: Updatel.O
Duration: 3.0
MQPS u MQCS: {(mg_maintenance 2.5),
(mg_update 1.5)}
MQPS: {(mg_maintenance 2.5),
(mq_update 1.5)}
MQes: {7}

Task: Explorel
Alternative: Explorel.0
Duration: 10.0
MQPS u MQCS: {(mg_maintenance 5.0),
(mg_explore 2.0)}
MQPS: {(mg_maintenance 5.0),
(mq_explore 2.0)}
MQcs: {}

Task: Requestl_PAML1
Alternative: Requestl_PAML1.0
Duration: 4.5
MQPS u MQCS: {(mg_service 1.0),
(mq_pamll 4.0)}
MQPS: {(mg_service 1.0),
(mg_pamll 4.0)}
MQcs: {3

Task: Requestl_PAML2
Alternative: Requestl_PAML2.0
Duration: 2.0
MQPS u MQCS: {(mg_service 1.0),
(mg_paml2 5.0)}
MQPS: {(mq_service 1.0),
(mg_paml2 5.0)}
MQcs: {3

Figure 2: Subset of Service Requests and Maintenance
Tasks

nance prior to servicing data requests, IGarr will use two
different MQs: MQservice and MQmaintenance. All tasks
will produce some quantity of each of these M @s in addition
to producing an M@ related to the task itself. IG . mon-
itors and tracks the following MQs: M Qupdate; M Qezpiore,
MQPAMLl, MQPAMLZ, MQsem)ice; a'nd- MQmaintenance-
In accordance with the organizational objectives, the curve
used for MQpayq.is U = 2¢ 4+ 2 and for MQpay,,.is
U=2xz+1 MQupdate and MQezpiore are both assigned a
curve of U = 2z + 2, though exploration tasks produce more
units of MQmaintenance PEr the objectives. We model the
maintenance versus service objective by using a curve with
two segments for M Qmaintenance: U = 2 % x when x <=5
and U = z/2 when = > 5 (the specified quantity of main-
tenance M Qs to produce before servicing requests is 5 in
this example). For MQservice, We use a constant curve of
U = z/2. In all cases, w(U;) = 1. In this scenario, tasks
do not produce unit quantities of M @s but instead produce
different volumes of MQs.

We will explore multiple variations using this model. First,
we demonstrate appropriate agent control behavior given
the organizational objectives. Consider the subset of IGas’s
tasks and requests pictured in Figure 2. The tasks in the
figure represent one half of the tasks assigned to the agent;
there are actually two identical tasks of each task instance
assigned to IGnmvr, i.e., two requests from PAprr1, two re-
quests from P A2, two exploration maintenance tasks and
two updating maintenance tasks. Note that each of the tasks

Organizational Membership IG);, belongs to a single organization (Merrill Lynch).
Roles IGjsr, has two different organizational roles and all tasks performed by IGsr, pertain to one role or the other:

1.

2.

IGprr, has a service role that requires servicing requests and queries from other agents seeking information. In this
example, IG s, will service requests from PApsr1 and PAjsro.

IG 1 also has a maintenance role that entails keeping its data repository up to date so that it may effectively service
requests. In this role, IG s, performs update tasks and exploration tasks. Update tasks entail verifying the integrity
of its database by confirming that it has valid and current information on the known database management agents.
Exploration tasks entail seeking out new database management agents and building profiles of such sources for inclusion
into its database.

Organizational Goals Produce profit by servicing requests. Maintain quality of existing repository to ensure long-term revenue
stability. Grow repository to improve coverage and to keep pace with the growth of networked information sources. Repository
growth is considered particularly valuable at this time.

Organizational Objectives The organizational goals translate into several organizational objectives for IG sy, .

1. During any period (we will explore one period), IG a1, is to give preference to maintenance tasks until it has performed
a specified amount and then it is to balance request service with maintenance on the basis of returns.

2. Requests from PA 1,1 are preferred to PAprr2 as they have a higher potential to produce more revenues for the company.
IG s is thus advised to regard one unit of MQ from PAjpsr as having approximately twice the value of one unit of
MQpAy, ;.- (In this scenario there is no strict power relationship between the agents.)

3. Exploration tasks contribute more to the maintenance requirement than update tasks as it is perceived that growth is
currently necessary. However, exploration tasks require more time to perform.

Figure 1: IG)/’s Organizational Context

Task or Request Scheduled

Attributes & Request2 | Requestl Request2 | Requestl
State Init | Explore2 | PAMLI1 PAML1 Explorel | PAML2 PAML2 Update2 | Updatel
in Sequence n/a |1 2 3 4 5 6 7 8
Start Time n/a | 0 10 14.5 19 29 31 33 36
End Time n/a | 10 14.5 19 29 31 33 36 39
Utility After 7 21 29.5 38 44.5 50 55.5 59.75 64
Level MQpamr1 0 0 4 8 8 8 8 8 8
Level MQpanro 0 0 0 0 0 5 10 10 10
Level MQupdate 0 0 0 0 0 0 0 1.5 3
Level MQczpiore 0 2 2 2 4 4 4 4 4
Level MQservice 0 0 1 2 2 3 4 4 4
Level MQmaintenance || 0 5 5 5 10 10 10 12.5 15

Figure 3: Optimal Schedule and Control State Changes for IG,s;, That Balances Maintenance and Service

produce an M@ unique to the task type as well as an MQ
relating to its broader organizational categorization (service
or maintenance). The optimal schedule for IGy1 and the
associated changes to the agent’s state after each task is
performed is shown in Figure 3 (the alternative identifier is
omitted because each task has a single alternative).

In accordance with the specified objectives, the agent first
elects to perform one of the exploration tasks. This produces
the required five units of M Qmaintenance as well as two units
of MQezpiore- Because the utility curve for M Qmaintenance
changes after five units are produced, the agent then elects
to service requests for PAy 1 rather than performing the
remaining exploration task. Subsequent effort returns to the
remaining exploration maintenance task, then the service of
requests for PAprr2, and finally the update tasks are per-
formed. After the initial exploration task, and the change in
Unmnaintenance, the choice between the exploration task, the
two update tasks, and the requests for PAarr1is determined
by the quantity of M@s produced by each as Umaqintenance
== Uservice and Uegpiore == Upamri. The requests for
PApLo are competitive with the update tasks for this same
reason — though Upaar2 is dominated by Uypdate the re-
quests for PApyr2 produce larger quantities of M Qs than
the update tasks.

Consider what happens if the organizational objective is
changed and the maintenance objective is relaxed. In this
case, the curve for the maintenance M(s is the same as
that used for the service M@s, namely U = z/2 at all
times. The optimal schedule and the state changes for the
agent are shown in Figure 4. In this situation, the utility
produced by requests for PAjsr1 outweighs the benefits of
the exploration tasks and they are performed first, rather
than second. The exploration tasks are performed second,
and the requests for PAu 2 follow, and finally the update
tasks are performed. When the organizational objective is
removed, the resulting task / utility curve set produces a
non-interleaved ordering for the tasks (as each task of each
type has the same MQ levels). This underscores the role
of the two-segment utility curve modeling technique of the
previous example in mapping the organizational objective
into utility for the first 5 units of M Qmaintenance-

Consider a different scenario. Figure 5 shows the optimal
schedule produced if we reinstate the organizational objec-
tive to produce 5 units of M Qmaintenance before servicing re-
quests, and, if we instruct the agent to factor-in the opportu-
nity cost of the associated tasks. The agent is given an initial
opportunity cost pair of < OCM = 1.0, Window = 100.0 >
In this case, the agent elects to satisfy the maintenance re-
quirement by performing both of the update tasks, each of
which produces 2.5 units of M Qmaintenance, rather than per-
forming a single exploration task (5 units of M Qmaintenance
are produced by a single exploration task). This is because
the exploration tasks require ten time units to execute and
the update tasks require only three time units to execute.
The utility state after each task without considering the op-
portunity cost of the task is given by Utility After whereas
the utility adjusted to reflect opportunity cost is indicated
by Utility,. After. Note that the exploration tasks are the
least appealing options to the agent and are scheduled last
in this scenario. Note also that the agent’s Utility,. actually
decreases when the exploration tasks are performed. This
is because the tasks’ opportunity costs are greater than the
utility they produce. Depending on how the agent is con-

figured, it may elect to wait-and-see while adjusting its op-
portunity cost OCM and Window (as time moves forward)
rather than performing the exploration tasks. In this case,
the agent is configured to keep performing requests regard-
less. The first exploration task causes a net change in util-
ity of —6.6 while the second exploration task incurs a lesser
change of —5.2. This is because after performing the first
exploration action, the agent’s OC M is lowered by the neg-
ative utility produced by the task so that the opportunity
cost of the second exploration task is less.

5. CONCLUSION, LIMIT ATIONS AND FU-
TURE WORK

We have presented and extended the M@ model for local
agent control of organized agents and shown its use in differ-
ent applications. The strength of the model is its use of state
to obtain appropriate local control — the model does not re-
quire common social-level control assumptions like shared
or visible utility functions, which are useful in applications
where shared and static knowledge are possible or as a the-
oretical foundation, e.g., [18].

Inherent in the model’s state-based design are the as-
sumptions that: 1) agents have imperfect knowledge of the
problem solving taking place at other agents; 2) the utility
function of a given agent cannot generally be shared and
computed by other agents because it is dependent on the
agent’s problem solving state; 3) globally optimal behavior
can be approximated through local reasoning. In this latter
case, the precision of the approximation is dependent on the
degree to which agents can communicate or observe progress
toward organizational objectives. Consider IGas1’s mainte-
nance requirement from the previous section. If the mainte-
nance requirement could be met by another IG agent of Mer-
rill Lynch, e.g., IGymr B, and IGmr_g decided to perform
the required maintenance operations, the M Qmaintenance re-
quirement of both IGyr and IGyr_p would be met by
IGmr_B’s operation. However, IG1’s recognition of this
depends on communication between the agents, observation,
default reasoning, plan inference, or a similar mechanism.
The communications required are beyond the scope of the
M@ framework though the framework is designed explicitly
to support such activities. Using the M Q model, notions of
social utility are decomposed and distiled into the control
regime of local agents — a feature we believe is important for
application in large-scale MAS.

Intellectually, one of the contributions of the model is the
attempt to address complexity in MAS - complexity that
is even more important as we move to large-scale MAS and
persistent agents. Agents in complex environments, having
multiple organizational objectives and different relationships
with other agents, require a certain level of complexity in
their objective functions and in their action and situation
models.

Another important characteristic of the framework is its
support of local approximation of the global optimization
problem of a large group of interacting agents. Aspects of
this include the idea that different activities contribute to
different aspects of the global objectives, the need to con-
sider of history or state in decision making, and that in
certain situations there are interactions between the local
utility computations of different agents.

To summarize the model’s positive attributes: 1) it en-

Task or Request Scheduled

Attributes & Request2 | Requestl Request2 | Request 1

State Init | PAML1 PAML1 Explore2 | Explorel | PAML2 PAML2 Update2 | Updatel
in Sequence n/a [1 2 3 4 5 6 7 8
Start Time n/a |0 4.5 9 19 29 31 33 36
End Time n/a | 4.5 9 19 29 31 33 36 39
Utility After 7 15.5 24 30.5 37 42 48 52.25 56.5
Level MQPAMLI 0 4 8 8 8 8 8 8 8
Level MQpanL2 0 0 0 0 0 5 10 10 10
Level M Qypdate 0 0 0 0 0 0 0 1.5 3
Tevel MQeppiore 0 0 0 2 1 1 1 1 Z
Tevel MQoervice 0 1 2 2 2 3 1 1 1
Level M Qmaintenance 0 0 0 5 10 10 10 12.5 15

Figure 4: Optimal Schedule and Control State Changes for G/ When Maintenance Objective is Relaxed

Task or Request Scheduled

Attributes & Request2 | Requestl | Request2 | Requestl

State Init | Update2 | Updatel | PAML1 PAML1 PAML2 PAML2 Explore2 | Explore 1
in Sequence n/a [1 2 3 4 5 6 7 8
Start Time n/a | 0 3 6 10.5 15 17 19 29
End Time n/a | 3 6 10.5 15 17 19 29 39
Utility After 7 15 23 31.5 40 45.5 51 57.5 64
Utilityo. After 7 12 ~16.8 " 204 ~ 23.8 T 27 " 31.2 " 24.6 194
Level MQpanmr1 0 0 0 4 8 8 8 8 8
Level MQpanmL2 0 0 0 0 0 5 10 10 10
Level MQuypdate 0 1.5 3 3 3 3 3 3 3
Level MQegplore 0 0 0 0 0 0 0 2 4
Level MQservice 0 0 0 1 2 3 4 4 4
Level MQmaintenance || 0 2.5 5 5 5 5 5 10 15

Figure 5: Optimal Schedule and Control State Changes for G/, When Opportunity Cost is Considered

ables organizationally appropriate behavior through local
agent reasoning, 2) it is amenable to real-time control prob-
lem solving and this problem solving is fairly straightforward
to reproduce as a state-based search, 3) the model is well
suited to adjustable degrees of approximation — it can be
optimal in a non-local sense when complete information is
available and it can be very coarse when agent’s have lit-
tle information about the activities of other agents, 4) the
model provides a unified evaluation framework for agent ac-
tivities, 5) it represents aspects of the complexity inherent
in large MAS.

In terms of problems and limitations, one attribute of the
model that has not been explored in any meaningful fashion
is use of M@s as a medium of exchange. It appears that
such exchanges are synonymous with an agent performing a
task that is of benefit to one of its organizational objectives
while detrimental to another, however, further research in
this area is required.

The most significant criticism of the model is that the

translation of organizational structure into M @s, utility curves,

initial M@ assignments, etc., as presented in this paper is
ad-hoc. Though it required little knowledge engineering to
produce the desired control behavior, experiments with a
randomized assignment of M Q) quantities to tasks illustrate
a potential problem. Without design principles to guide
the mapping, or appropriate corresponding verification tech-
niques, it is difficult to be confident that a given mapping
will result in the desired control behavior in the local agents.
Ideally, the mapping of organizational objectives to organi-
zational roles, the assignment of roles to agents, and the de-
composition into M@s should be automated or performed
by an organizational design component. Given the com-
plexity of the problem, design principles and an approach

for verification are the natural next step.

6. REFERENCES

[1] Mihai Barbuceanu. Agents that work in harmony by
knowing and fulfiling their obligations. In Proceedings
of the Fifteenth National Conference on Artificial
Intelligence, pages 89-96, 1998.

[2] Sviatoslav Brainov. The role and the impact of
preferences on multiagent interaction. In N.R.
Jennings and Y. Lespérance, editors, Intelligent Agents
VI, Lecture Notes in Al Springer-Verlag, Berlin, 2000.

[3] K.M. Carley and M.J. Prietula, editors.
Computational Organization Theory. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1994.

[4] Cristiano Castelfranchi. Commitments: From
individual intentions to groups and organizations. In
Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS95), pages 41-48, 1995.

[6] Phillip R. Cohen, Adam Cheyer, Michelle Wang, and
Soon Cheol Baeg. An open agent architecture. In
Michael N. Huhns and Munindar P. Singh, editors,
Readings in Agents, pages 197-204. Morgan
Kaufmann, 1998.

[6] K. Decker, A. Pannu, K. Sycara, and M. Williamson.
Designing behaviors for information agents. In
Proceedings of the 1st Intl. Conf. on Autonomous
Agents, pages 404-413, Marina del Rey, February
1997.

[7] Keith Decker and Jinjiang Li. Coordinated hospital
patient scheduling. In Proceedings of the Third
International Conference on Multi-Agent Systems
(ICMAS98), pages 104-111, 1998.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[21]

Keith S. Decker. Environment Centered Analysis and
Design of Coordination Mechanisms. PhD thesis,
University of Massachusetts, 1995.

Keith S. Decker, Edmund H. Durfee, and Victor R.
Lesser. Evaluating research in cooperative distributed
problem solving. In L. Gasser and M. N. Huhns,
editors, Distributed Artificial Intelligence, Vol. II,
pages 485-519. Pitman Publishing Ltd., 1989. Also
COINS Technical Report 88-89, University of
Massachusetts, 1988.

Keith S. Decker and Victor R. Lesser. Designing a
family of coordination algorithms. In Proceedings of
the Thirteenth International Workshop on Distributed
Al pages 65—84, Seattle, WA, July 1994. AAAT Press
Technical Report WS-94-02. Also UMass
CS-TR-94-14. To appear, Proceedings of the First
International Conference on Multi-Agent Systems, San
Francisco, AAAT Press, 1995.

C. Dellarocas and M. Klein. An experimental
evaluation of domain-independent fault handling
services in open multi-agent systems. In Proceedings of
the Fifth International Conference on Multi-Agent
Systems (ICMAS2000), 2000.

Robert Doorenbos, Oren Etzioni, and Daniel Weld. A
scalable comparision-shopping agent for the
world-wide-web. In Proceedings of the First
International Conference on Autonomous Agents,
pages 39-48, Marina del Rey, California, February
1997.

Edmund H. Durfee and Victor R. Lesser. Using partial
global plans to coordinate distributed problem solvers.
In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, August 1987.
Edmund H. Durfee, Victor R. Lesser, and Daniel D.
Corkill. Coherent cooperation among communicating
problem solvers. IEEE Transactions on Computers,
36(11):1275-1291, November 1987.

Regis Vincent et al. Distributed Sensor Network for
Real Time Tracking. In Proceedings of Autonomous
Agents (Agents-2001), 2001. To appear.

P. Faratin, C. Sierra, and N. Jennings. Negotiation
Decision Functions for Autonomous Agents.
International Journal of Robotics and Autonomous
Systems, 24(3-4):159-182, 1997.

Alan J. Garvey. Design-to-Time Real-Time
Scheduling. PhD thesis, University of Massachusetts at
Ambherst, Amherst, Massachusetts, February 1996.
Lisa Hogg and Nick Jennings. Variable sociability in
agent-based decision making. In N.R. Jennings and
Y. Lespérance, editors, Intelligent Agents VI, Lecture
Notes in AI. Springer-Verlag, Berlin, 2000.

Bryan Horling, Regis Vincent, Roger Mailler, Jiaying
Shen, Raphen Becker, Kyle Rawlins, and Victor
Lesser. Distributed sensor network for real-time
tracking. In Proceedings of Autonomous Agent 2001,
2001. To appear.

Michael N. Huhns and Munindar P. Singh. Agents and
multiagent systems: Themes, approaches, and
challenges. In Michael N. Huhns and Munindar P.
Singh, editors, Readings in Agents, pages 1-23.
Morgan Kaufmann, 1998.

Toru Ishida. Real-time search for autonomous agents

[22]

(23]

[24]

25]

[26]

[27]

28]

[29]

(30]

31]

32]

[33]

[34]

and multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 1(2):139-167, October 1998.
Nicholas R. Jennings, Katia Sycara, and Michael
Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent
Systems, 1(1):8-38, 1998.

N.R. Jennings, J.M.Corera, L. Laresgoiti, E.H.
Mamdani, F. Perriollat, P. Skarek, and L.Z. Varga.
Using ARCHON to develop real-world dai applications
for electricity transportation management and particle
accelerator control. IEEE Ezpert, 1995. Special issue
on real world applications of DAT systems.

Henry Kautz, Bart Selman, Michael Coeh, Steven
Ketchpel, and Chris Ramming. An experiment in the
design of software agents. In Michael N. Huhns and
Munindar P. Singh, editors, Readings in Agents, pages
125-130. Morgan Kaufmann, 1998.

Richard E. Korf. Depth-limited search for real-time
problem solving. The Journal of Real-Time Systems,
2(1/2):7-24, 1990.

Victor Lesser, Michael Atighetchi, Bryan Horling,
Brett Benyo, Anita Raja, Regis Vincent, Thomas
Wagner, Ping Xuan, and Shelley XQ. Zhang. A
Multi-Agent System for Intelligent Environment
Control. In Proceedings of the Third International
Conference on Autonomous Agents (Agents99), 1999.
Victor Lesser, Bryan Horling, and et al. The TAEMS
whitepaper / evolving specification.
http://mas.cs.umass.edu/research/taems/white.
Victor Lesser, Bryan Horling, Frank Klassner, Anita
Raja, Thomas Wagner, and Shelley XQ. Zhang. BIG:
An agent for resource-bounded information gathering
and decision making. Artificial Intelligence,
118(1-2):197-244, May 2000. Elsevier Science
Publishing.

Victor Lesser, Bryan Horling, Anita Raja, Thomas
Wagner, and Shelley XQ. Zhang. Sophisticated
Information Gathering in a Marketplace of
Information Providers. IEEE Internet Computing,
4(2):49-58, Mar/Apr 2000.

Victor R. Lesser. Reflections on the nature of
multi-agent coordination and its implications for an
agent architecture. Autonomous Agents and
Multi-Agent Systems, 1(1):89-111, 1998.

Victor R. Lesser and Daniel D. Corkill. Functionally
accurate, cooperative distributed systems. IEEE
Transactions on Systems, Man, and Cybernetics,
11(1):81-96, January 1981.

H. Van Dyke Parunak, Allen Ward, and John Sauter.
A Systematic Market Approach to Distributed
Constraint Problems. In Proceedings of the Third
International Conference on Multi-Agent Systems
(ICMAS98), 1998.

Michael J. Prietula, Kathleen M. Carley, and Les
Gasser. A Computational Approach to Oganizations
and Organizing. In Michael J. Prietula, Kathleen M.
Carley, and Les Gasser, editors, Simulating
Organizations: Computational Models of Institutions
and Groups, pages xiv—=xix. AAAT Press / MIT Press,
1998.

Anita Raja, Victor Lesser, and Thomas Wagner.
Toward Robust Agent Control in Open Environments.

[41]

[42]

[43]

[44]

[45]

[46]

In Proceedings of the Fourth International Conference
on Autonomous Agents (Agents2000), 2000.

S.J. Russell. Efficient memory-bounded search
methods. In ECAI 92: 10th European Conference on
Artifical Intelligence, pages 1-5, 1992.

Paul A. Samuelson and William D. Nordhaus.
Economics. McGraw-Hill Book Company, 1989. 13th
Edition.

Sandip Sen and Anish Biswas. Effects of
misconception on reciprocative agents. In Proceedings
of the Second International Conference on
Autonomous Agents (Agents98), pages 430-435, 1998.
Milind Tambe. Agent Architectures for Flexible,
Practical Teamwork. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence, pages
22-28, July 1997.

Thomas A. Wagner. Toward Quantified Control for
Organizationally Situated Agents. PhD thesis,
University of Massachusetts at Amherst, Amherst,
Massachusetts, February 2000.

Manuela Veloso, Peter Stone, and Kwun Han. The
CMUnited-97 robotic soccer team: Perception and
multiagent control. In Proceedings of the Second
International Conference on Autonomous Agents
(Agents98), pages 78-85, 1998.

Thomas Wagner, Brett Benyo, Victor Lesser, and
Ping Xuan. Investigating Interactions Between Agent
Conversations and Agent Control Components. In
Frank Dignum and Mark Greaves, editors, Issues in
Agent Communication, Lecture Notes in Artificial
Intelligence, pages 314-331. Springer-Verlag, Berlin,
2000.

Thomas Wagner, Alan Garvey, and Victor Lesser.
Criteria-Directed Heuristic Task Scheduling.
International Journal of Approzimate Reasoning,
Special Issue on Scheduling, 19(1-2):91-118, 1998. A
version also available as UMASS CS TR-97-59.
Thomas Wagner and Victor Lesser. Motivational
Quantities: State-based Control for Organizationally
Situated Agents. Computer Science Technical Report
TR-99-68, University of Massachusetts at Amherst,
November 1999. Research abstract appears in the
proceedings of the International Conference on
Multi-Agent Systems (ICMAS) 2000.

Thomas Wagner and Victor Lesser. Relating
quantified motivations for organizationally situated
agents. In N.R. Jennings and Y. Lespérance, editors,
Intelligent Agents VI (Proceedings of ATAL-99),
Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin, 2000.

Thomas Wagner and Victor Lesser. Design-to-Criteria
Scheduling: Real-Time Agent Control. In Thomas
Wagner and Omer Rana, editors, To appear in
Infrastructure for Agents, Multi-Agent Systems, and
Scalable Multi-Agent Systems, LNCS. Springer-Verlag,
2001. Also appears in the 2000 AAAT Spring
Symposium on Real-Time Systems and a version is
available as University of Massachusetts Computer
Science Technical Report TR-99-58.

Thomas Wagner and Victor Lesser. Organizational
level control for real-time agents. In To Appear in the
Proceedings of Autonomous Agents (Agents-2001),

[47]

(48]

[49]

2001.

Thomas Wagner, John Phelps, Yuhui Qian, Erik
Albert, and Glen Beane. A modified architecture for
constructing real-time information gathering agents.
In Proceedings of Agent Oriented Information
Systems, 2001. To appear.

M.P. Wellmen, E.H. Durfee, and W.P. Birmingham.
The digital library as community of information
agents. IEEE Ezxpert, June 1996.

Mary Zey. Rational Choice Theory and Organizational
Theory: A Critique. Sage Publications, Thousand
Oaks, CA 91320, 1998.

