Terraforming Cyberspace: Toward a Policy-Based Grid Infra-
structurefor Secure, Scalable, and Robust Execution of Java-

Based Multi-Agent Systems
Jeffrey M. Bradshaw," Niranjan Suri,* Martha Kahn,? Phil Sage,> Doyle Weishar,” and Renia Jeffers'

1. Ingtitute for Human and Machine Cognition (IHMC)

40 South Alcaniz Stred
Pensacola, FL 32501
8502024400

{jbradshaw, nsuri, rjeffers} @ai.uwf.edu

ABSTRACT

The CoABS Grid arguably provides the most successul and
widely used infrastructure for the large-scale integration of het-
erogeneous agent frameworks with object-based applications,
and legacy systems. In this paper we describe how we ae
extending Grid capahiliti es by integrating the NOMADS agent
environment for strong mobility and safe execution and the
KAOoS framework for poli cy-based management of agent domains
to support long-lived agents and their communiti es.

Keywords

Multi-agent systems, frameworks, infrastructure, policy, do-
mains, Java, security, resource management, grid, mobility

INTRODUCTION

During the 194Gs, under the pseudonym of Will Stewart, Jack
Williamson pubished a series of fictiona stories describing a
process for attaching atmospheres to planets in order to make
them capable of sustaining life. ‘Terraforming,” the term he
coined for this activity was first picked up ly other science fic-
tion writers. Eventualy, it captured the imagination of a small
but zedous core of scientists, space alvocacy groups, and seg-
ments of the puldic who began focusing on Mars as the most
likely target for transformation and eventual colonization. The
May 1991isaie of Life Magazine ran a cover story describing a
150yea plan for a Martian metamorphosis through orhiting
solar reflectors that would melt polar water, surface factories that
would produce nealed gases in the amosphere, and the ultimate
planting d heaty plant species as the temperature gproached
the freezing point of water. Today many articles, bodks, and Web
sites continue to devel op the theme.

Cyberspace is currently a lonely, dangerous, and relatively im-
poverished place for agents [1]. Consequently, most of today's
agents are designed for short insignificant lives and a small and
relatively static world. Though promoted as coll aborative, agents
do not easily sustain rich long-term peer-to-pee relationships, let
aone aiy semblance of meaningful community involvement.
While their feaures for secure reliable interaction are often
touted, there is no social safety net to help agents out when they
get stuck, or worse yet to prevent them from setting the network
on fire when they go df the deg end. Despite the fact that agent
designers want them to communicate & an “almost human”
level, agents are cut off from most of the world in which humans
operate. Though capable of self-directed mobility, they are hob-

2. Global InfoTek, Inc. (GITI)

156E. Maple Ave.

Vienna, VA 22180

7033193994

{mkahn, psage, doyle} @globali nfotek.com

bled by severe practical restrictions on when and where they can
go. Ostensibly endowed with autonomy, an agent’s very exis
tence can be terminated urceremoniously by the first passerby
who happens to find the power switch.

In short, the kinds of agents that we want—full-fledged citi zens
of the wired world, equipped with their own stamped passorts
and Berlitz traveler's guides explaining foreign phrases and
places that alow them to hail, med, and gree comrades of any
sort in an open networked landscape and, if not able to team up
on aproject, at least able to ask intelli gibly for directions—these
kinds of agents, alas, exist today only in our imaginations (and,
of course, in the vision sections of our research proposals).

Fortunately, the basic infrastructure on which we can buld the
solutions to these problems is becoming more available. De-
signed from the ground upto exploit next-generation Internet
capabilities, grid-based approaches aim to provide a universal
source of dynamically pluggable, pervasive, and dependable
computing power, whil e guaranteang levels of security and qual-
ity of service that will make new classes of applications possble
[7]. By the time these gproaches become mainstream for large-
scale gplications, they will also have migrated to ad hoc local
networks of very small devices[8].

The CoABS Grid (heredter referred to simply as the “Grid”),
developed at Global InfoTek (GITI) under DARPA's Control of
Agent-Based Systems (CoABS) program, arguably provides the
most successul and widely used infrastructure to date for the
large-scale integration of heterogeneous agent frameworks with
object-based appli cations, and legacy systems [13; 14]. Based on
Sun’'s Jni services, it includes a method-based application pro-
gramming interface to register and advertise capabiliti es, dis-
cover services based on capabiliti es, and provide the necessary
communication between services. Systems and components on
the Grid can be alded and umraded without reconfiguration of
the network. Failed or unavail able components are aitomatically
purged from the registry and dscovery of similar services and
functionality provides fail over. In addition to its use to integrate
components produced by some two dozen independent CoABS
projects and large-scale joint experiments, it has been used suc-
cesqully in a series of naval Fled Battle Exercises (FBES). It is
aso being used by the Army Communications and Electronics
Command, the Air Mobility Command, and in the Air Force's
Joint Battlespace Infosphere project. A bridge to the Grid was
built for DARPA's agent-based Advanced Logstics Program
(ALP).

However, we must go far beyond current Grid capabiliti es to
enable the vision of terraforming cyberspace (Figure 1). Current
infrastructures typically provide few resource guarantees and o
incentives for agents and other components to look beyond their
own selfish interests. At a minimum, future infrastructures must
go beyond the bare esentials to provide pervasive life suppat
services (relying on mechanisms guch as orthoganal persistence
and strong mobility [18; 19]) that help ensure the survival of
agents that are designed to live for many yeas. Beyond the ba-
sics of individual agent protection, long-lived agent communiti es
will depend on legal services, based on explicit policies, to en-
sure their rights and help them fulfill their obligations [4; 9].
Benevolent social services will aso eventualy be provided to
offer help when nealed. Although some of these capabiliti es
exist in embryo within specific agent systems, their scope and
eff ectiveness has been limited by the lack of underlying support
at the platform level.

In this paper we describe how we ae working toward extending
the Grid to provide support for rudimentary initial “terraforming”
services. We will first describe the current Grid implementation.
Then we will show how we ae alapting and exploiting capabil i-
ties of the NOMADS and KAQOS agent frameworks to provide
Grid life support, legal, and social services.

THE COABSAGENT GRID

The Grid is built using the Sun Microsystems' Jini services. The
robust and dynamic nature of the Grid is derived from Jini. Grid
software is written in Java and wses Jva Remote Method Invoca
tion (RMI) as a default for communication among Grid compo-
nents and for transport of agent messages represented in the
agent’s language of choice. The Grid runs on Unix, Linux, Win-
dows NT/200Q and Mac OSX operating systems. Although many
of the ggent systems using the Grid are written in Java, members
of the research community have creaed proxies that integrate the
Grid with agent systems written in C++, Lisp, Prolog, SOAR and
the Palm Pilot KV M. Legacy systems written in other program-
ming languages can also be eaily integrated with the Grid using
the Java Native Interface. With respect to aur incorporation of
Jini services, we had two complementary design objectives:. 1. to
make the use of Jini services easier for beginning developers,
and 2 to intentionall y expose advanced Jini feaures for sophisti-
cated developers In this way, basic and Grid-enhanced Jini fea-
tures are made avail able to a wider community than ever before.

The Grid supports a wide variety of applications, from simple
monitoring and information retrieval to complex, dynamic do-
mains such as military command and control. Using the Grid,
agents and wrapped legacy systems can (1) describe their nedls,
capabiliti es and interfaces to ather agents and legacy systems; (2)
find and work with other agent components and legacy systems
to accomplish complex tasks in flexible teams; (3) interact with
humans and other agents to accept tasking and present results,
and (4) adapt to changes in the gplication domain, the task at
hand, or the computing environment. The Grid does this by pro-
viding accessto shared policies and ontologes, mechanisms for
describing agents’ capabiliti es and reeds, and services that sup-
port interoperability among agents and legacy systems with sim-
ple or rich levels of semantics—all distributed across a network
infrastructure.

Welfare Social Sarvices Get help when readed
Justice Legal Services Get what you deserve
Environmenta Life Suppart Serv- Get enoughto survive
protedion ices

Looking at Bare Esentidls Get what you can take
for #1

Although most agent frameworks provide some of the
interoperability and other services that the Grid provides, each
framework typically supports gecialized constructs, communica-
tion, and control mechanisms. This gecialization is desirable
because particular systems can use mechanisms appropriate to
the problem domain/task to be solved. The Grid is nat intended
to replace current agent frameworks but rather to augment their
capabiliti es with services supporting trans-architecture teams.
Agent technologes apport semantically rich conversations
among these ayents (and wrapped legacy systems), which all ow
them to interoperate with agents outside their “community”. An
analogue is the Internet’s bridging of heterogeneous networks by
gateways and protocols. Programmers will make their compo-
nents “Grid Aware”, much as many network applications are
now made “Internet ready” or “Web ready” by supporting proto-
cols and languages such as TCP/IP, HTTP, HTML, and XML.
Furthermore, programmers will want to make their components
“Grid Aware” to enable them to participate in dynamic teans
that leverage other components discovered at runtime.

After discovering needed services and applications, an agent or
an application does not nea to use the Grid communications
services: communication can be established point-to-point. For
this reason, it scales to a large number of agents with no restric-
tions beyond those imposed by network bandwidth. Agent regis-
tration and dscovery, on the other hand, are reliant on one or
more lookup services.

The Grid takes advantage of three important components of
Jini ™:
1. the Jini™ concept of a service, which is used to rep-
resent an agent,

2. the Jini™ Lookup Service (LUS), which is used to
register and dscover agents and other services, and

3. Jini™ Entries, which are used to advertise the capa-
biliti es of an agent or service.

A Jini™ service is a Java object that is erialized and stored in
the LUS. The LUS supports lodkup of services based on type,
attribute values, and urique identifier. When a Jini™ client per-
forms a lookup through the LUS, the service object is returned to
the client. The service may optionally be aproxy that uses are-
mote connection to communicate back to the true service & a
different location. The remote connection is transparent to the
client and can be of any type, eg. RMI, CORBA, or secure
socket. An important property of Jini services is that they are
described by service interfaces. Thus, clients do not need to have
local knowledge of how a service is implemented, but only local
knowledge of the interface. The interface describes the semantics
of the service. The atual code for the service implementation is
downloaded to the client on an as-needed basis. This is what
allows Jni servicesto be install ed without local configuration.

The LUS grants leases to registered services, assgns globally
unique identifiers to services, and supports lookup of services. It
is the service's responsibility to maintain its lease with the LUS,
however Jini™ provides helper classes to do this automatically.

If a service can't maintain it’'s lease because of either fail ure of
the service or fail ure of the network connection between the serv-
ice and the LUS, the service will be purged from the LUS, so
that the LUS contents remain current. LUS security is also a
concern. Secure LUS products are offered by some commercial
companies.

Jini™ provides helper classes that use a multicast protocol to
find any LUSs that are runring within a local areanetwork. No

Maintains connec-
tion

to agent for

fields are used for exact matching. Entry templates and service
types can be used to filter the number of services that are down-
loaded from a LUS over the network. Predicates can than be used
local to the client to further restrict the number of services re-
turned.

The Grid uses Jni™ Entries for agent or service capability ad-
vertisements. Currently, the Grid provides three classes that
implement the Entry interface, though more ae being added and

Agent Capability Advertise-

CoABSStatusDescription Entry

AgentRepln-
rf
HETEEE Distributed
Grid
CoABSAgentDescription Entry infrastructure
objects:

Stored in LUS

Agent

AgentRegistrationHelper

Directory

MessageQueue Message f——

A\ J
Y

Grid elements local to agent:

for lookup and
download by
other agents

Suppo rts push and
Passed from agent to

Hida ~rnmnlavitiae nf TiniTMand nrnavida infractriirtiira far ranictratinn and maccaninn

prior knowledge of the machine name or port that the LUS is
runnng on is required. Jini™ provides a unicast protocol to find
LUSs outside the local area network. Service registration is
maintained in &l local and dstant LUS. The registration is
automatically propagated to any new LUS processes that are
started. Multiple LUSs can be run for robustnessand scalabilit y.
If one goes down, the others will still maintain registration and
lookup. A sample LUS is provided in the Jini™ Development Kit
andis currently used by the Grid.

Jini™ services are described in the form of a Jini™ Entry. An
Entry is a coll ection of service dtributes that is gored in the LUS
along with the service. Many Entries can be stored for a single
service. An Entry is an object that has pubic fields, cannot con-
tain primitive types, and has a no-parameter constructor. Any
Serializable object that meds these criteria can be an Entry as
long as it implements the marker Jini™ Entry interface. Entry
templates are used in Jini™ and Grid lookup methods to match
registered services. A null Entry field is a wildcard. Non-null

Grid users are encouraged to add rew ones that are relevant to
their applications. The CoABSAgentDescription Entry has fields
for agent name, description, organization, architecture, ontolo-
gies, content languages, display icon URL, documentation URL,
and urique ID. The CoABSSatusDescription Entry is used to
advertise aent performance and status information. The Loca
tion Entry has fields ranging from room number to latitude and
longitude. The user fill sin only those dtributes that are relevant
to aparticular agent or service.

The Grid provides both local and dstributed components as
shown in Figure 2. The Grid provides AgentRegistrationHel per
utility classes that are local to an agent and that hide the com-
plexity of Jini™. These classes automaticaly find any LUS in
both the local area network and user-designated dstant ma-
chines. The Grid supports agent and service discovery based on
Jini™ Entries and arbitrary predicates as well as by service type.
The Grid also provides event natification when agents register,
unregister, or change their advertised attributes. The Grid de-

fines a Jni™ service interface called the AgentReplnteface,
which is a proxy to the agent. This proxy is distributed to clients
throughout the network. The AgentReplnteface interface defines
a method call ed addMessage(), which uses a remote connection
to deliver a message back to the gyent. Thus, when a client agent
cals a Grid lookup method, a proxy that all ows immediate direct
communication back to the aent is returned. The client agent
can include its own AgentReplnterface in the message it delivers,
so that two-way communication can be established with no fur-
ther lookup. The Grid is transport neutral in terms of agent
communication. The Grid defines the interface, but the aent
proxy is freeto use any transport.

The Grid currently provides an AgentRep implementation that
uses RMI for message transport. Other transport mechanisms are
anticipated. An AgentRep downloaded to a client is connected to
a MessageQueue object local to the aent using RMI. A Mes-
sagelistener interface is also defined to allow agents automatic
notification of incoming messages. Several classes of Grid mes-
sages are provided. Some include text messages only, whil e oth-
ers alow data atachments. The Grid is language neutral; any
agent communication language can be used. It is up to the com-
municating agents to decipher the contents. The Grid aso pro-
vides methods to send a message to a group of agents matching a
particular template or satisfying a particular predicate.

Agent communication is fully distributed, in that each agent
sending a message communicates directly with the receiver, us-
ing the proxy registered by the receiver. The sender is unaware
of the transport mechanism being used, although currently RMI
is the default. Thus, as the number of agents on the Grid in-
creases, agent communication performance is only affected by the
distribution of the agents in the network and the network band-
width.

Although agent-to-agent communication is pee-to-pee, and thus
scales to a large number of agents with no restrictions beyond
those imposed by network bandwidth, agent registration and
discovery are reliant on one or more Jini™ lookup services. Ini-
tial experiments of sequential registration and lookup have found
no degradation of performance with up to 10,000 agents regis-
tered.

To address ®curity concerns secure versions of the AgentRep
and ServiceRep are being developed. The secure AgentRep or
ServiceRep will act as a privileged-code wrapper between the
client and an agent or service written to take alvantage of Jini.
What makes this approach posshbleisthat the Rep is provided by
the service and is thus under the control of the service — not the
client. The secure Rep will be @le to authenticate the client. It
will also be ale to associate service method call s with the client.
Finaly, based on the basic NOMADS and KAOS capabiliti es
described later on in the paper, it will be ale to enforce and
dynamically effect changes of security policy of arbitrary com-
plexity, for components that are running in any combination of
standard Java and Aroma VM'’s. The secure Rep will be tied to
the KAoS Palicy-based Administration Tod (KPAT), Domain
Managae, and Guards described later in the paper to provide
these capabil ities.

The aility to place limits on the communication between the
client and service is especially important in the case of hand-held
devices or phones. The Jini™ community is in the process of

developing a Jini Surrogate Architecture for devices that aren’t
able to currently run Jini. One of the premises behind the devel-
opment of this architecture is that even if Jini could run on a
small device, you would still neel to protect the device from
being owerwhelmed by data from a client, due to memory con-
straints. The secure Rep mechanisms proposed here would be an
aternate way to protect such small devices. Denial-of-service
and ceta overload would be prevented at the client side.

NOMADS LIFE SUPPORT SERVICES

Java is currently the most popular and arguably the most mobil-
ity-minded and security-conscious mainstream language for agent
development. However, current versions fail to address many of
the unique chall enges posed by agent software. Security services
for Jini are dso similarly limited, although there is an initiative
underway for the aloption of a secure version of RMI. While few
if any regquirements for Java mobility, security, and resource
management are entirely unique to agent software, typical ap-
proaches used in non-agent software ae usually hard-coded and
do not alow the degreeof on-demand responsiveness configura-
bility, extensibility, and fine-grained control required by agent-
based systems.

We ae interested in particular in extending the Grid with basic
life suppat services that will provide environmental protection
for agents that need:

e guaranteed availability of some quantity of system re-
sources, even in the face of buggy agents or denial-of- serv-
ice dtacks;

* protection of agent execution state, even in the face of unan-
ticipated system fail ure.

Given the current limitations of Java, such protection cannot be
provided by merely bolting on new services on top of the Grid; it
must be built directly into the Java Virtual Machine.

Our approach for life support services has thus far been two-
pronged. For standard Java Virtual Machines (VMs), we creae
software-based Guards, which enforce palicies by relying on the
capabilities of the Java 2 security model (including permissons
and privileged code wrappers) and the Java Authentication and
Authorization Service (JAAS). In contrast to aher implementa-
tions of Java security, our enhanced JAA S-based approach all ow
revocation of acoess permissons under many circumstances as
well as the granting o different permissons to different in-
stances of agents from the same code base. For the Aroma VM,
we can creae aguarded environment that is considerably more
powerful in that it not only provides the capabiliti es described
above, but also supports access revocation uncer al circum-
stances, dynamic resource control and full state capture on de-
mand for any Java aent or service. NOMADS is the name we
have given to the combination of IHMC's Aroma VM with its
Oasis agent execution environment [18; 19].

To understand the feaures of Aroma and NOMADS, some un-
derstanding o the current Java security model is needed. Early
versions of Java relied on the sandbox model to protect mobile
code from accessng dangerous methods. In contrast, the security
model in the current Java 2 release is permisson-based. Unlike
the previous “all or nothing” approach, Java gplets and applica-
tions can be given varying amounts of accessto system resources.

Unfortunately, current Java mechanisms do not addressthe prob-
lem of resource control. For example, while it may be posgbleto
prevent a Java program from writing to any directory except /tmp
(an access contral isaue), once the program is given permisson
to write to the /tmp drectory, no further restrictions are placed
on the program’s 1/O (a resource control isaue). As another ex-
ample, there is no way in the current Java implementation to
limit the amount of disk space the program may use or to control
the rate & which the program is allowed to read and write from
the network.

Resource control is important for several reasons. First, without
resource control, systems and retworks are open to denial of
service atacks through resource overuse. Second, resource con-
trol lays the foundation for quality-of-service guarantees. Before
any quality-of-service guarantees can be made aout the avail-
ability of resources, the system nust be ale to limit resource
utili zation of other tasks (which is currently not possble in the
Java environment). Third, resource control presupposes resource
acoounting, which alows the resources consumed by some com-
ponent of a system (or the overal system) to be measured for
either billing o monitoring purposes. Monitoring resource utili-
zation over time dlows the detection of abnormal behavior as
part of the system.

Finally, the availability of resource control mechanisms in the
environment simplifies the task of developing systems for re-
source-constrained situations. Consider the task of developing
and deploying a hew system requiring concurrent execution and
resource sharing with existing systems. In such scenarios, the
developer of the new system often has to limit the resource
utilization of the new system in order to not interfere with the
operations of the eisting systems (for example, maybe the new
system can only use 500 Kb/sec of network bandwidth because
the rest of the avail able network bandwidth is required by the
existing systems). Providing such a guaranteerequires sgnificant
effort on behalf of the developer of the new system. However, if
the underlying environment were to provide resource control

nisms, then the new system could simply make arequest to the
underlying environment, which can then provide the necessary
guarantees.

Aroma currently provides a comprehensive set of resource con-
trols for CPU, disk, and retwork (Figure 3). The resource control
mechanisms all ow limits to be placed on both the rate and quan-
tity of resources used by Java threads. Rate limits include CPU
usage, disk real rate, disk write rate, network read rate and ret-
work write rate. Rate limits for 1/O are specified in
bytes/milli second. Quantity limits include disk space, total bytes
written to disk, total bytes read from the disk, total bytes written
to the network, and total bytes real from the network. Quantity
limits are specified in bytes. One of the major benefits of the
Aroma VM s that resource controls are transparent to the Java
code executing inside the VM. In particular, the enforcement of
the resource limits does not require any modifications to the Java
code. Also, the existence of rate limits (and their enforcement) is
completely transparent to the Java component or service.

CPU resource control was designed to support two alternative
means of expresgng the resource limits. The first aternative is
to expressthe limit in terms of bytecodes executed per milli sec-
ond. The alvantage of expressng a limit in terms of bytecodes
per unit time is that given the processng requirements of a
thread, the thread’s execution time (or time to complete atask)
may be predicted. Another advantage of expressng limits in
terms of bytecodes per unit time is that the limit is g/stem and
architecture independent. The second alternative is to expressthe
limit in terms of some percentage of CPU time, expressed as a
number between 0 and 100 Expresgng limits as a percentage of
overal CPU time on a host provides better control over resource
consumption on that particular host.

Rate limits for disk and retwork are expressed in terms of bytes
read or written per milli second. If a rate limit is in effect, then
I/0 operations are transparently delayed if necessary until such
time that allowing the operation would not exceed the limit.

1B~ A Flhs s
mechani;, - could simply make arequest Control:
Read/Write Rates Read/Write Rates
Read/Write Quantities Read/Write Quantities
Space Used Aroma VM
Java Service / Component
T T
h h
r r
e e
a a
d d
Control: Control:
Usage Rate | 1] Space Used
Duration | | [Allocation Rate
— CPU — Memory

Threads performing 1/0 operations will not be avare of any re-
source limitsin place unlessthey choose to query the VM.

Quantity limits for disk and retwork are expressed in terms of
bytes. If a quantity limit is in effect, then the VM throws an ex-
ception when athreal reguests an 1/O operation that would result
in the limit being exceeded.

Within the Grid, a number of uses of the NOMADS-based re-
source control mechanisms are possble. First, the VM-level
Guard will be ale to utili ze the resource control capabilitiesin
order to place limits on the resources consumed by services and
components running within the Aroma VM. The Guard will be
able to vary the resource li mits to acoommodate changes in policy
or level of service guarantees. The Guard will also be &le to
take alvantage of the resource acoounting capabiliti es to measure
and report back on the resources consumed by services and com-
ponents and to lodk for patterns of resource ause that might
signal denial-of-service atacks.

With respect to protection of agent state, we need a way to save
the entire state of the running agent or component, including its
execution stack, anytime so it can be fully restored in case of
system failure or a need to temporarily suspend its execution.
The standard term describing this processis checkpointing. Over
the last few yeas, the more general concept of transparent
persistence (sometimes call ed “orthogmal persistence”) has also
been developed by reseachers at Sun Microsystems and else-
where [12]. The goal of this reseach is to define language-
independent principles and language-specific mechanisms by
which persistence can be made avail able for all data, irrespective
of type. Idedly, the gproach would not require any special work
by the programmer (e.g., implementing seriali zation methods in
Java or using transaction interfaces in conjunction with object
databases), and there would be no distinction made between
short-lived and long-lived data.

We have used the state capture feaures of NOMADS extensively
for agents requiring anytime mobility, whether in the perform-
ance of some task or for immediate escape from a host under
attack or about to godown (we call this enario “scram”). We
have dso put these feaures to use for transparent |oad-balancing
and forced code migration on demand in dstributed computing
applications. To support transparent persistence for agents and
components on the Grid, we ae implementing scheduled and on-
demand checkpointing services that will protect agent execution
state, even in the face of unanticipated system fail ure.

KA0SLEGAL AND SOCIAL SERVICES
Terraforming cyberspace involves more than regulation of com-
puting resources and protection of agent state. As the scale and
sophistication of agents grow, and their lifespan becomes longer,
agent developers and wsers will want the ability to express com-
plex high-level constraints on agent behavior within a given en-
vironment. It seems inevitable that productive interaction be-
tween agents in long-lived communities will also require some
kind of legal services, based on explicit enforceeble policies, to
ensure their rights and help them fulfill their obligations. Over
time, it seams likely that benevolent social services will aso
eventualy evolve to dfer help with individual agent or systemic
problems.

In both legal and social services, it is clea that preventive initia-
tives are nealy always superior to after-the-fact remedies, as the
following verse by Joseph Malins ill ustrates:

‘Twas a dangerous cliff, as they fredy confessed,
Though to walk nea its crest was 9 pleasant;

But over its terrible edge there had slipped

A duke and full many a peasant.

So the people said something would have to be done,
But their project did not at all taly;

Some said, “Put afence aoundthe edge of the cliff,”
Some, “An ambulance down in the valley.”

We ae basing aur approach on the asumption that preventive
policy-based ‘fences' can complement and enhance dter-the-fact
remedial ‘ambulance in the valley’ mechanisms. The policies
gowerning some set of agents aim to describe expected behavior
in sufficient detail that deviations can be eaily anticipated or
detected. At the same time, related policy support services help
make compliance & easy as posshle. Complementing these pol-
icy support services, various enforcement mechanisms operate &
asort of ‘cop at thetop of the cliff’ to warn of potential problems
before they ocaur. When, despite dl precautions, an acddent
happens remedial services are called as a last resort to help re-
pair the damage. In this manner, the policy-based fences and the
after-the-fact ambulances work together to ensure asafer envi-
ronment for individual agents and the communiti es in which they
operate.

Poli cy-based approaches have grown considerably in popularity
over the last few yeas. Unlike previous versions, the Java 2 se-
curity model defines security policies as distinct from implemen-
tation mechanism. Accessto resources is controll ed by a Security
Manager, which relies on a security policy object to dictate
whether class X has permisgon to access ystem resource Y. The
policies themselves are expressd in a persistent format such as
text so they can be viewed and edited by any tods that support
the policy syntax specification. This approach allows policies to
be configurable, and relatively more flexible, fine-grained, and
extensible. Developers of appli cations no longer have to subclass
the Security Manager and hard-code the gplication’s policies
into the subclass Programs can make use of the palicy file and
the extensible permisgon object to build an application whose
security policy can change without requiring changes in source
code.

The basic policytod Java currently provides, asssts users in
editing policy files. However, to be useful and wsable in redistic
settings, policy-based administration tods ould contain domain
knowledge and conceptual abstractions to allow applications
designers to focus their attention more on high-level palicy intent
than on the details of implementation. Moreover, while Java
provides only for static policies, critical agent applications will
require tods for the monitoring, visuaization, and dynamic
modification of policies at runtime.

In principle, a variety of languages can be used to express poli-
cies. At one extreme they may be written in some propositi onal
or constraint language. At the other extreme ae awide variety of
simpler schemes, each of which gives up some types of expres-
sivity. The choice of language for a particular application is af-
fected by considerations of composability, computability, effi-
ciency, expressvity, and amenability to the detection of equiva
lence and the discovery of conflicts. With fundng from the
DARPA CoABS program, we have begun the development of an
implementation-neutral policy language expressons in DAML
(DARPA Agent Markup Language, http://www.daml.org), which
will used to represent both simple @omic policies (e.g., Java
permisgons) and complex constructions.

In KAOS, we currently distinguish between two kinds of palicy
constraints: those relating to permissons and those relating to
obligations. These palicies are often related: by entering into
particular obligations an agent or component may acquire spe-
cific permisgons; and vice versa: when an agent is given permis-
sion to access a shared resource, it may incur obligations as a
result. We refer to the binding o a particular set of policies with
agiven set of agents or components as an agreement.

Our concept of policy-based management of agents extends be-
yond typical security concerns. For example, KAoS pioneeed the
concept of agent conversation policies [3; 9]. Teams of agents
can be formed, maintained, and dsbanded through the processof
agent-to-agent communication using an appropriate semantics [5;
6; 20]. Conversation policies asaure coherence in the aloption
and dscharge of team commitments by heterogeneous agents of
different levels of sophistication [3; 4]. These conversation poli-
cies are designed to asaure robust behavior and to kegp computa-
tional overheal for team maintenance to an absolute minimum
[9; 11, 17]. As a generalization of this work on conversation
policies, we have demonstrated links between KAoS, NOMADS,
and Java security mechanisms for access control and resource
management (http:// www.aiai.ed.ac.uk /project/ coax/). Devel-
opment of libraries of policy and enforcement mechanisms for
mobilit y management [15], registration management, and various
forms of obli gation management are dso underway.

Groups of agents are structured into KAoS domains to facilit ate
policy administration. A given domain can extend across host
boundaries and, conversely, multiple domains can exist concur-
rently on the same host. Palicies can be scoped variously to indi-
vidual agent instances, agents of a given class agents runring in
a given instance of a platform (e.g., asingle Java VM), or agents
in agiven domain or subdomain. The palicy language and KAoS
management and administration tods described below are in-
tended to work identically across different execution environ-
ments (e.g., Java VM, Aroma VM, and potentially non-Java en-
vironments), however Guards, which enforce policies, are neces-

sarily designed for a specific execution environment (which we
will call for our purposes a platform). Our approach enables pol-
icy uniformity across multiple platforms and hosts, as long as
semantically equivalent monitoring and enforcement mechanisms
are available as part of those platforms and hosts. Under these
conditions, it follows that behavior of agents written in different
frameworks and running in dfferent languages and datforms and
on dfferent hosts can be kept consistent through the use of these
poli cy-based mechanisms.

The KAoS Rolicy Administration Tool (KPAT), a graphical user

KAO0S Rolicy
Admin
Tod

HTTP

RMI
Servlet

Event-driven pol=
icy changes .

A
‘ Policy Diredory

interface to domain management functionality, has been devel-
oped to make policy specification, revision, and application eas-
ier for administrators without specialized training. Figure 4
shows how KPAT interacts with other components. Using KPAT,
an authorized user may make changes over the Web to agent
policy using a secure http connection. Alternatively, trusted
authenticated components (such as Guards) may propose policy
changes autonomously based on their observation of system
events.

The KA0S Domain Manager serves as a policy decision point to
determine whether agents can join their domain and for policy
conflict resolution. The KAoS Domain Manager is responsible
for ensuring policy consistency at al levels of a domain hierar-
chy, for notifying Guards in the event of a policy change, and for
storing policies in the repository.

Policies are stored in an implementation-neutral format, currently
very simple but soon to be based on our DAML policy represen-
tation. Available in a secure library repository such as an LDAP

directory, we intend to alow these policies to be accessed hy
authorized entiti es in accordance with poli cy disclosure strategies
[16]. For example, agents may need to understand domain poli-
cies in advance of submitting a registration request to a new
domain. Because the policies in the library are expresed de-
claratively, they can be analyzed and verified in advance and
offline, permitting execution mechanisms to be & efficient as
possble.

The various VM-level Guards interpret these astract policies
and enforce them with appropriate native mechanisms as de-

SRMI

scribed previously.

Analogaus to the AgentRegistrationHelper utility classes cur-
rently provided by the Grid, KAoSAgentRegistrationHel per util-
ity classes are under development. Unlike the current aproach,
which requires each domain-enabled agent to be wrapped as a
KAOS agent, the KaoSAgentRegistrationHelper will allow do-
main management functionality to be made available to any Grid-
ready agent or component framework with littl e or no modifica-
tion required to the gent itself.

The combination of the use of libraries of pre-analyzed policy
sets, separate policy decision and conflict resolution mechanisms,
and efficient policy enforcement mechanisms make the use of
policy-based administration tods maximally effective and per-
formant. A policy-based approach has the alditional advantages
of reusahility, efficiency, context sensitivity, and verifiabilit y:

Reusahilit y. Policies encode sets of useful constraints on agent or
component behavior, packaging them in a form where they can

be eaily reused as the occasion requires. By reusing policies
when they apply, we reg the lesons leaned from previous
analysis and experience whil e saving aurselves the time it would
have taken to reinvent them from scratch.

Efficiency. In addition to lightening the gplication developers
workload, explicit policies can sometimes increase runtime dfi-
ciency. For example, to the extent that policy conflict resolution
and conversion of policy to aform that can be used by appropri-
ate enforcement mechanisms can take place in advance, overall
performance can be increased.

Context-sensitivity. Explicit policy representation improves the
ability of agents, components, and datforms to be responsive to
changing conditions, and if necessary reason about the implica-
tions of the policies which govern their behavior.

Verifiability. By representing policies in an explicitly declarative
form instead of burying them in the implementation code, we can
better support important types of policy analysis. First—and this
is absolutely critical for security policies—we can externaly
validate that the policies are sufficient for the goplication’s tasks,
and we can bring both automated theorem-provers and human
expertise to this task. Second, there ae methods to ensure that
program behavior which foll ows the policy will & so satisfy many
of the important properties of reective systems: liveness recur-
rence, safety invariants, and so forth. Finally, with explicit poli-
cies governing different types of agent behavior, we can predict
how policies may compose.

FUTURE DIRECTIONS

As we develop and enhance the agent infrastructure described in
this paper, we plan to leverage our contacts and experience to
engage the open-source community in continued coll aboration to
accelerate enhancements to these technologes and make them
available more widely than ever before. To this end will aso
continue involvement in the Jini community, and in related ef-
forts in FIPA, the OMG, and Java standards and commerciali za-
tion efforts.

Tomorrow’s world will be filled with agents embedded every-
where in the places and things around s. Providing a pervasive
web of sensors and effectors, teams of such agents will function
as cognitive prostheses—computational systems that leverage
and extend human intellectual, perceptual, and coll aborative
capacities, just as the steam shovel was a sort of muscular pros-
thesis or the e/eglassa sort of visual prosthesis. Thus the focus
of Al reseach is destined to shift from Artificial Intelli gence to
Augmented Intelli gence [2; 10].

Once we have terraformed cyberspace, agents will be freed from
their current role & dhort-lived visitors on the wire to permanent
colonists in a virtual world where we can fed comfortable with
not knowing o caring exactly where they are being physicaly
hosted. They will truly live anong us and we will wonder how
we ever lived without them.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of the DARPA
CoABS and Ultra*Log Programs, the NASA CrossEnterprise
and Intelli gent Systems Programs, the National Technology Alli-
ance, and The Boeing Company while preparing this paper.
Thanks aso to many other colleagues who have asdsted in this

work, including David Allsopp, Patrick Beautement, Magge
Bready, Alberto Canas, Todd Carrico, Rob Cranfill, Ken Ford,
Mark Greaves, Pat Hayes, Jm Hender, Greg Hill, Robert
Hoffman, Heaher Holmback, Wayne Jansen, Mike Kerstetter,
Mike Kirton, Gerald Knoll, James Lott, Thomas Reichherzer,
Austin Tate, Alex Wong, and members of the DARPA CoABS
Caadliti on Operations Experiement (CoAX), the Java Agent Serv-
ices Expert Group (JSR 87) and the FIPA Abstract Architecture
Working Group.

REFERENCES
[1] Bradshaw, J. M. (200J). Steps toward the permanent coloni-
zation of cyberspace. In J. M. Bradshaw (Ed.), Handbod of
Agent Techndogy. (pp. in preparation). Cambridge, MA: AAAI
PresgdThe MIT Press

[2] Bradshaw, J. M., Canas, A., Ford, K. M., Hayes, P,
Hoffman, R., & Suri, N. (2007). Terraforming cyberspace. |IEEE
Computer, in press

[3] Bradshaw, J. M., Dutfield, S., Benait, P., & Wodley, J. D.
(1997. KAOS: Toward an industrial-strength generic agent archi-
tecture. In J. M. Bradshaw (Ed.), Sdtware Agents. (pp. 375418).
Cambridge, MA: AAA | PresdThe MIT Press

[4] Bradshaw, J. M., Greaves, M., Holmback, H., Jansen, W.,
Karygiannis, T., Silverman, B., Suri, N., & Wong, A. (1999.
Agents for the masses: Is it posgble to make development of
sophisticated agents smple enough to be practical ? |IEEE Intelli-
gent Systems(March-April), 53-63.

[5] Bradshaw, J. M., Sierhuis, M., Gawdiak, Y., Jeffers, R., Suri,
N., & Greaves, M. (200]). Teanwork and adjustable aitonomy
for the Personal Satellite Asdstant. Proceedings of the [JCAI-01
Workshop on Autonamy, Delegation, and Control: Interacting
with Autonamous Agents. Seatle, WA, USA,,,

[6] Cohen, P. R., & Levesque, H. J. (199]). Teamwork. Technote
504. Menlo Park, CA: SRI International, March.

[7] Foster, I., & Kesslman, C. (Ed.). (1999. The Grid: Blue-
print for a New Computing Infrastructure. San Francisco, CA:
Morgan Kaufmann.

[8] Gershenfeld, N. A. (1999. When Things Start to Think., New
York: Henry Holt and Company.

[9] Greaves, M., Holmback, H., & Bradshaw, J. M. (2002).
Agent conversation policies. In J. M. Bradshaw (Ed.), Handbod
of Agent Techndogy. (pp. in preparation). Cambridge, MA:
AAAI PresgThe MIT Press

[10] Hamilton, S. (2001). Thinking autside the box at IHMC.
IEEE Computer, 61-71.

[11] Holmback, H., Greares, M., & Bradshaw, J. M. (1999. A
pragmatic principle for agent communication. J. M. Bradshaw,
O. Etzioni, & J. Muédler (Ed.), Procealings of Autonamous
Agents'99, (pp. 368-369). Sedtle, WA,, New York: ACM Press

[12] Jordan, M., & Atkinson, M. (1998. Orthogona persistence
for Java—A mid-termreport. Sun Microsystems Laboratories,

[13] Kahn, M., & Cicalese, C. (2001). CoABS Grid Scalahility
Experiments. AAMS (Special Issue on Infrastructure Scalabil-
ity), uncer review.

[14] Kahn, M., & Sage, P. (2000. DARPA Control of Agent-
Based Systems Grid Tutorial. J. M. Bradshaw (Ed.), PAAM
2000 Manchester, England,,,

[15] Knall, G., Suri, N., & Bradshaw, J. M. (200]). Path-based
security for mobile agents. (pp. under review).,,,

[16] Seamons, K. E., Winglet, M., & Yu, T. (2007). Limiting the
disclosure of accesscontrol palicies during automated trust nego-
tiation. Proceealings of the Network and Distributed Systems
Sympasium.,,,

[17] Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M., &
Holmback, H. (1998. Designing conversation policies using
joint intention theory. Proceedings of the Third Internationd
Conference on Multi-Agent Systems (ICMAS-98), (pp. 269-276).
Paris, France,, Los Alamitos, CA: IEEE Computer Society,

[18] Suri, N., Bradshaw, J. M., Bready, M. R., Groth, P. T., Hill,
G. A., & Jeffers, R. (2000. Strong Mobility and Fine-Grained
Resource Control in NOMADS. Procealings of the 2nd Interna-
tiond Symposium on Agents Systems and Applications and the
4th Internationd Symposium on Mobil e Agents (ASA/MA 2000.
Zurich, Switzerland,, Berlin: Springer-Verlag,

[19] Suri, N., Bradshaw, J. M., Bready, M. R., Groth, P. T., Hill,
G. A., Jeffers, R., Mitrovich, T. R., Pauliot, B. R., & Smith, D.
S. (2000. NOMADS: Toward an environment for strong and
safe gyent mobility. Procealings of Autonamous Agents '99.
Barcelona, Spain,, New York: ACM Press

[20] Tambe, M., Shen, W., Mataric, M., Pynadath, D. V., Gold-
berg, D., Modi, P. J,, Qiu, Z., & Salemi, B. (1999. Teanwork in
cyberspace: Using TEAMCORE to make gents team-realy.
Procedlings of the AAAl Sgring Sympaosium on Agents in Cyber-
space. Menlo Park, CA,, Menlo Park, CA: The AAA| Press

