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ABSTRACT 
The CoABS Grid arguably provides the most successful and 
widely used infrastructure for the large-scale integration of het-
erogeneous agent frameworks with object-based appli cations, 
and legacy systems. In this paper we describe how we are 
extending Grid capabiliti es by integrating the NOMADS agent 
environment for strong mobilit y and safe execution and the 
KAoS framework for poli cy-based management of agent domains 
to support long-li ved agents and their communities. 
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INTRODUCTION 
During the 1940s, under the pseudonym of Will Stewart, Jack 
Willi amson publi shed a series of fictional stories describing a 
process for attaching atmospheres to planets in order to make 
them capable of sustaining li fe. ‘Terraforming,’ the term he 
coined for this activity was first picked up by other science fic-
tion writers. Eventuall y, it captured the imagination of a small 
but zealous core of scientists, space advocacy groups, and seg-
ments of the publi c who began focusing on Mars as the most 
li kely target for transformation and eventual colonization. The 
May 1991 issue of Life Magazine ran a cover story describing a 
150-year plan for a Martian metamorphosis through orbiting 
solar reflectors that would melt polar water, surface factories that 
would produce needed gases in the atmosphere, and the ultimate 
planting of hearty plant species as the temperature approached 
the freezing point of water. Today many articles, books, and Web 
sites continue to develop the theme. 

Cyberspace is currently a lonely, dangerous, and relatively im-
poverished place for agents [1]. Consequently, most of today’s 
agents are designed for short insignificant lives and a small and 
relatively static world. Though promoted as collaborative, agents 
do not easil y sustain rich long-term peer-to-peer relationships, let 
alone any semblance of meaningful community involvement. 
While their features for secure reliable interaction are often 
touted, there is no social safety net to help agents out when they 
get stuck, or worse yet to prevent them from setting the network 
on fire when they go off the deep end. Despite the fact that agent 
designers want them to communicate at an “almost human” 
level, agents are cut off f rom most of the world in which humans 
operate. Though capable of self-directed mobilit y, they are hob-

bled by severe practical restrictions on when and where they can 
go. Ostensibly endowed with autonomy, an agent’s very exis-
tence can be terminated unceremoniously by the first passerby 
who happens to find the power switch. 

In short, the kinds of agents that we want—full -fledged citi zens 
of the wired world, equipped with their own stamped passports 
and Berlit z traveler’s guides explaining foreign phrases and 
places that allow them to hail , meet, and greet comrades of any 
sort in an open networked landscape and, if not able to team up 
on a project, at least able to ask intelli gibly for directions—these 
kinds of agents, alas, exist today only in our imaginations (and, 
of course, in the vision sections of our research proposals). 

Fortunately, the basic infrastructure on which we can build the 
solutions to these problems is becoming more available. De-
signed from the ground up to exploit next-generation Internet 
capabil ities, grid-based approaches aim to provide a universal 
source of dynamicall y pluggable, pervasive, and dependable 
computing power, while guaranteeing levels of security and qual-
ity of service that will make new classes of appli cations possible 
[7]. By the time these approaches become mainstream for large-
scale appli cations, they will also have migrated to ad hoc local 
networks of very small devices [8]. 

The CoABS Grid (hereafter referred to simply as the “Grid” ), 
developed at Global InfoTek (GITI) under DARPA’s Control of 
Agent-Based Systems (CoABS) program, arguably provides the 
most successful and widely used infrastructure to date for the 
large-scale integration of heterogeneous agent frameworks with 
object-based appli cations, and legacy systems [13; 14]. Based on 
Sun’s Jini services, it includes a method-based appli cation pro-
gramming interface to register and advertise capabiliti es, dis-
cover services based on capabiliti es, and provide the necessary 
communication between services. Systems and components on 
the Grid can be added and upgraded without reconfiguration of 
the network. Failed or unavailable components are automaticall y 
purged from the registry and discovery of similar services and 
functionality provides fail over. In addition to its use to integrate 
components produced by some two dozen independent CoABS 
projects and large-scale joint experiments, it has been used suc-
cessfull y in a series of naval Fleet Battle Exercises (FBEs). It is 
also being used by the Army Communications and Electronics 
Command, the Air Mobilit y Command, and in the Air Force’s 
Joint Battlespace Infosphere project. A bridge to the Grid was 
built for DARPA‘s agent-based Advanced Logistics Program 
(ALP). 



However, we must go far beyond current Grid capabiliti es to 
enable the vision of terraforming cyberspace (Figure 1). Current 
infrastructures typicall y provide few resource guarantees and no 
incentives for agents and other components to look beyond their 
own selfish interests. At a minimum, future infrastructures must 
go beyond the bare essentials to provide pervasive lif e support 
services (relying on mechanisms such as orthogonal persistence 
and strong mobilit y [18; 19]) that help ensure the survival of 
agents that are designed to li ve for many years. Beyond the ba-
sics of individual agent protection, long-li ved agent communities 
will depend on legal services, based on expli cit poli cies, to en-
sure their rights and help them fulfill t heir obligations [4; 9]. 
Benevolent social services will also eventuall y be provided to 
offer help when needed. Although some of these capabiliti es 
exist in embryo within specific agent systems, their scope and 
effectiveness has been limited by the lack of underlying support 
at the platform level. 

In this paper we describe how we are working toward extending 
the Grid to provide support for rudimentary initi al “ terraforming” 
services. We will first describe the current Grid implementation. 
Then we will show how we are adapting and exploiting capabil i-
ties of the NOMADS and KAoS agent frameworks to provide 
Grid li fe support, legal, and social services. 

THE COABS AGENT GRID 
The Grid is built using the Sun Microsystems’ Jini services. The 
robust and dynamic nature of the Grid is derived from Jini. Grid 
software is written in Java and uses Java Remote Method Invoca-
tion (RMI) as a default for communication among Grid compo-
nents and for transport of agent messages represented in the 
agent’s language of choice. The Grid runs on Unix, Linux, Win-
dows NT/2000, and Mac OSX operating systems. Although many 
of the agent systems using the Grid are written in Java, members 
of the research community have created proxies that integrate the 
Grid with agent systems written in C++, Lisp, Prolog, SOAR and 
the Palm Pilot KVM. Legacy systems written in other program-
ming languages can also be easil y integrated with the Grid using 
the Java Native Interface. With respect to our incorporation of 
Jini services, we had two complementary design objectives: 1. to 
make the use of Jini services easier for beginning developers, 
and 2. to intentionall y expose advanced Jini features for sophisti-
cated developers In this way, basic and Grid-enhanced Jini fea-
tures are made available to a wider community than ever before. 

The Grid supports a wide variety of appli cations, from simple 
monitoring and information retrieval to complex, dynamic do-
mains such as milit ary command and control. Using the Grid, 
agents and wrapped legacy systems can (1) describe their needs, 
capabiliti es and interfaces to other agents and legacy systems; (2) 
find and work with other agent components and legacy systems 
to accomplish complex tasks in flexible teams; (3) interact with 
humans and other agents to accept tasking and present results, 
and (4) adapt to changes in the appli cation domain, the task at 
hand, or the computing environment. The Grid does this by pro-
viding access to shared poli cies and ontologies, mechanisms for 
describing agents’ capabiliti es and needs, and services that sup-
port interoperabilit y among agents and legacy systems with sim-
ple or rich levels of semantics—all distributed across a network 
infrastructure. 

Although most agent frameworks provide some of the 
interoperabilit y and other services that the Grid provides, each 
framework typicall y supports speciali zed constructs, communica-
tion, and control mechanisms. This speciali zation is desirable 
because particular systems can use mechanisms appropriate to 
the problem domain/task to be solved. The Grid is not intended 
to replace current agent frameworks but rather to augment their 
capabiliti es with services supporting trans-architecture teams. 
Agent technologies support semanticall y rich conversations 
among these agents (and wrapped legacy systems), which allow 
them to interoperate with agents outside their “community” . An 
analogue is the Internet’s bridging of heterogeneous networks by 
gateways and protocols. Programmers will make their compo-
nents “Grid Aware”, much as many network appli cations are 
now made “Internet ready” or “Web ready” by supporting proto-
cols and languages such as TCP/IP, HTTP, HTML, and XML. 
Furthermore, programmers will want to make their components 
“Grid Aware” to enable them to participate in dynamic teams 
that leverage other components discovered at runtime. 

After discovering needed services and appli cations, an agent or 
an appli cation does not need to use the Grid communications 
services: communication can be establi shed point-to-point. For 
this reason, it scales to a large number of agents with no restric-
tions beyond those imposed by network bandwidth. Agent regis-
tration and discovery, on the other hand, are reliant on one or 
more lookup services. 

The Grid takes advantage of three important components of 
Jini™: 

1. the Jini™ concept of a service, which is used to rep-
resent an agent, 

2. the Jini™ Lookup Service (LUS), which is used to 
register and discover agents and other services, and 

3. Jini™ Entries, which are used to advertise the capa-
biliti es of an agent or service. 

A Jini™ service is a Java object that is seriali zed and stored in 
the LUS. The LUS supports lookup of services based on type, 
attribute values, and unique identifier. When a Jini™ client per-
forms a lookup through the LUS, the service object is returned to 
the client. The service may optionall y be a proxy that uses a re-
mote connection to communicate back to the true service at a 
different location. The remote connection is transparent to the 
client and can be of any type, e.g. RMI, CORBA, or secure 
socket. An important property of Jini services is that they are 
described by service interfaces. Thus, clients do not need to have 
local knowledge of how a service is implemented, but only local 
knowledge of the interface. The interface describes the semantics 
of the service. The actual code for the service implementation is 
downloaded to the client on an as-needed basis. This is what 
allows Jini services to be installed without local configuration. 

The LUS grants leases to registered services, assigns globall y 
unique identifiers to services, and supports lookup of services. It 
is the service’s responsibilit y to maintain its lease with the LUS, 
however Jini™ provides helper classes to do this automaticall y. 
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If a service can’ t maintain it’ s lease because of either failure of 
the service or failure of the network connection between the serv-
ice and the LUS, the service will be purged from the LUS, so 
that the LUS contents remain current. LUS security is also a 
concern. Secure LUS products are offered by some commercial 
companies. 

Jini™ provides helper classes that use a multi cast protocol to 
find any LUSs that are running within a local area network. No 

prior knowledge of the machine name or port that the LUS is 
running on is required. Jini™ provides a unicast protocol to find 
LUSs outside the local area network. Service registration is 
maintained in all l ocal and distant LUS. The registration is 
automaticall y propagated to any new LUS processes that are 
started. Multiple LUSs can be run for robustness and scalabilit y. 
If one goes down, the others will still maintain registration and 
lookup. A sample LUS is provided in the Jini™ Development Kit 
and is currently used by the Grid. 

Jini™ services are described in the form of a Jini™ Entry. An 
Entry is a collection of service attributes that is stored in the LUS 
along with the service. Many Entries can be stored for a single 
service. An Entry is an object that has publi c fields, cannot con-
tain primiti ve types, and has a no-parameter constructor. Any 
Seriali zable object that meets these criteria can be an Entry as 
long as it implements the marker Jini™ Entry interface. Entry 
templates are used in Jini™ and Grid lookup methods to match 
registered services. A null Entry field is a wildcard. Non-null 

fields are used for exact matching. Entry templates and service 
types can be used to filt er the number of services that are down-
loaded from a LUS over the network. Predicates can than be used 
local to the client to further restrict the number of services re-
turned. 

The Grid uses Jini™ Entries for agent or service capabilit y ad-
vertisements. Currently, the Grid provides three classes that 
implement the Entry interface, though more are being added and 

Grid users are encouraged to add new ones that are relevant to 
their appli cations. The CoABSAgentDescription Entry has fields 
for agent name, description, organization, architecture, ontolo-
gies, content languages, display icon URL, documentation URL, 
and unique ID.  The CoABSStatusDescription Entry is used to 
advertise agent performance and status information. The Loca-
tion Entry has fields ranging from room number to latitude and 
longitude. The user fill s in only those attributes that are relevant 
to a particular agent or service. 

The Grid provides both local and distributed components as 
shown in Figure 2. The Grid provides AgentRegistrationHelper 
utilit y classes that are local to an agent and that hide the com-
plexity of Jini™. These classes automaticall y find any LUS in 
both the local area network and user-designated distant ma-
chines. The Grid supports agent and service discovery based on 
Jini™ Entries and arbitrary predicates as well as by service type. 
The Grid also provides event notification when agents register, 
unregister, or change their advertised attributes. The Grid de-
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fines a Jini™ service interface called the AgentRepInteface, 
which is a proxy to the agent. This proxy is distributed to clients 
throughout the network. The AgentRepInteface interface defines 
a method called addMessage(), which uses a remote connection 
to deli ver a message back to the agent. Thus, when a client agent 
call s a Grid lookup method, a proxy that allows immediate direct 
communication back to the agent is returned. The client agent 
can include its own AgentRepInterface in the message it deli vers, 
so that two-way communication can be establi shed with no fur-
ther lookup. The Grid is transport neutral in terms of agent 
communication. The Grid defines the interface, but the agent 
proxy is free to use any transport. 

The Grid currently provides an AgentRep implementation that 
uses RMI for message transport. Other transport mechanisms are 
anticipated. An AgentRep downloaded to a client is connected to 
a MessageQueue object local to the agent using RMI. A Mes-
sageListener interface is also defined to allow agents automatic 
notification of incoming messages. Several classes of Grid mes-
sages are provided. Some include text messages only, while oth-
ers allow data attachments. The Grid is language neutral; any 
agent communication language can be used. It is up to the com-
municating agents to decipher the contents. The Grid also pro-
vides methods to send a message to a group of agents matching a 
particular template or satisfying a particular predicate. 

Agent communication is full y distributed, in that each agent 
sending a message communicates directly with the receiver, us-
ing the proxy registered by the receiver. The sender is unaware 
of the transport mechanism being used, although currently RMI 
is the default. Thus, as the number of agents on the Grid in-
creases, agent communication performance is only affected by the 
distribution of the agents in the network and the network band-
width. 

Although agent-to-agent communication is peer-to-peer, and thus 
scales to a large number of agents with no restrictions beyond 
those imposed by network bandwidth, agent registration and 
discovery are reliant on one or more Jini™ lookup services. Ini-
tial experiments of sequential registration and lookup have found 
no degradation of performance with up to 10,000 agents regis-
tered. 

To address security concerns secure versions of the AgentRep 
and ServiceRep are being developed. The secure AgentRep or 
ServiceRep will act as a privileged-code wrapper between the 
client and an agent or service written to take advantage of Jini. 
What makes this approach possible is that the Rep is provided by 
the service and is thus under the control of the service – not the 
client. The secure Rep will be able to authenticate the client. It 
will also be able to associate service method call s with the client. 
Finall y, based on the basic NOMADS and KAoS capabiliti es 
described later on in the paper, it will be able to enforce and 
dynamicall y effect changes of security poli cy of arbitrary com-
plexity, for components that are running in any combination of 
standard Java and Aroma VM’s. The secure Rep will be tied to 
the KAoS Poli cy-based Administration Tool (KPAT), Domain 
Managaer, and Guards described later in the paper to provide 
these capabil ities. 

The abilit y to place limits on the communication between the 
client and service is especiall y important in the case of hand-held 
devices or phones. The Jini™ community is in the process of 

developing a Jini Surrogate Architecture for devices that aren’ t 
able to currently run Jini. One of the premises behind the devel-
opment of this architecture is that even if Jini could run on a 
small device, you would still need to protect the device from 
being overwhelmed by data from a client, due to memory con-
straints. The secure Rep mechanisms proposed here would be an 
alternate way to protect such small devices. Denial-of-service 
and data overload would be prevented at the client side. 

NOMADS LIFE SUPPORT SERVICES 
Java is currently the most popular and arguably the most mobil-
ity-minded and security-conscious mainstream language for agent 
development. However, current versions fail to address many of 
the unique challenges posed by agent software. Security services 
for Jini are also similarly limited, although there is an initi ative 
underway for the adoption of a secure version of RMI. While few 
if any requirements for Java mobilit y, security, and resource 
management are entirely unique to agent software, typical ap-
proaches used in non-agent software are usuall y hard-coded and 
do not allow the degree of on-demand responsiveness, configura-
bilit y, extensibilit y, and fine-grained control required by agent-
based systems. 

We are interested in particular in extending the Grid with basic 
lif e support services that will provide environmental protection 
for agents that need: 

• guaranteed availabilit y of some quantity of system re-
sources, even in the face of buggy agents or denial-of- serv-
ice attacks; 

• protection of agent execution state, even in the face of unan-
ticipated system failure. 

Given the current limitations of Java, such protection cannot be 
provided by merely bolting on new services on top of the Grid; it 
must be built directly into the Java Virtual Machine. 

Our approach for li fe support services has thus far been two-
pronged. For standard Java Virtual Machines (VMs), we create 
software-based Guards, which enforce poli cies by relying on the 
capabilit ies of the Java 2 security model (including permissions 
and privileged code wrappers) and the Java Authentication and 
Authorization Service (JAAS). In contrast to other implementa-
tions of Java security, our enhanced JAAS-based approach allow 
revocation of access permissions under many circumstances as 
well as the granting of different permissions to different in-
stances of agents from the same code base. For the Aroma VM, 
we can create a guarded environment that is considerably more 
powerful in that it not only provides the capabiliti es described 
above, but also supports access revocation under all circum-
stances, dynamic resource control and full state capture on de-
mand for any Java agent or service. NOMADS is the name we 
have given to the combination of IHMC’s Aroma VM with its 
Oasis agent execution environment [18; 19]. 

To understand the features of Aroma and NOMADS, some un-
derstanding of the current Java security model is needed. Early 
versions of Java relied on the sandbox model to protect mobile 
code from accessing dangerous methods. In contrast, the security 
model in the current Java 2 release is permission-based. Unli ke 
the previous “all or nothing” approach, Java applets and appli ca-
tions can be given varying amounts of access to system resources. 



Unfortunately, current Java mechanisms do not address the prob-
lem of resource control. For example, while it may be possible to 
prevent a Java program from writing to any directory except /tmp 
(an access control issue), once the program is given permission 
to write to the /tmp directory, no further restrictions are placed 
on the program’s I/O (a resource control issue). As another ex-
ample, there is no way in the current Java implementation to 
limit the amount of disk space the program may use or to control 
the rate at which the program is allowed to read and write from 
the network. 

Resource control is important for several reasons. First, without 
resource control, systems and networks are open to denial of 
service attacks through resource overuse. Second, resource con-
trol lays the foundation for qualit y-of-service guarantees. Before 
any qualit y-of-service guarantees can be made about the avail-
abilit y of resources, the system must be able to limit resource 
utili zation of other tasks (which is currently not possible in the 
Java environment). Third, resource control presupposes resource 
accounting, which allows the resources consumed by some com-
ponent of a system (or the overall system) to be measured for 
either billi ng or monitoring purposes. Monitoring resource util i-
zation over time allows the detection of abnormal behavior as 
part of the system. 

Finall y, the availabilit y of resource control mechanisms in the 
environment simpli fies the task of developing systems for re-
source-constrained situations. Consider the task of developing 
and deploying a new system requiring concurrent execution and 
resource sharing with existing systems. In such scenarios, the 
developer of the new system often has to limit the resource 
util ization of the new system in order to not interfere with the 
operations of the existing systems (for example, maybe the new 
system can only use 500 Kb/sec of network bandwidth because 
the rest of the available network bandwidth is required by the 
existing systems). Providing such a guarantee requires significant 
effort on behalf of the developer of the new system. However, if 
the underlying environment were to provide resource control 
mechanisms, then the new system could simply make a request 

nisms, then the new system could simply make a request to the 
underlying environment, which can then provide the necessary 
guarantees. 

Aroma currently provides a comprehensive set of resource con-
trols for CPU, disk, and network (Figure 3). The resource control 
mechanisms allow limits to be placed on both the rate and quan-
tity of resources used by Java threads. Rate limits include CPU 
usage, disk read rate, disk write rate, network read rate and net-
work write rate. Rate limits for I/O are specified in 
bytes/milli second. Quantity limits include disk space, total bytes 
written to disk, total bytes read from the disk, total bytes written 
to the network, and total bytes read from the network. Quantity 
limits are specified in bytes. One of the major benefits of the 
Aroma VM is that resource controls are transparent to the Java 
code executing inside the VM. In particular, the enforcement of 
the resource limits does not require any modifications to the Java 
code. Also, the existence of rate limits (and their enforcement) is 
completely transparent to the Java component or service. 

CPU resource control was designed to support two alternative 
means of expressing the resource limits. The first alternative is 
to express the limit in terms of bytecodes executed per milli sec-
ond. The advantage of expressing a limit in terms of bytecodes 
per unit time is that given the processing requirements of a 
thread, the thread’s execution time (or time to complete a task) 
may be predicted. Another advantage of expressing limits in 
terms of bytecodes per unit time is that the limit is system and 
architecture independent. The second alternative is to express the 
limit in terms of some percentage of CPU time, expressed as a 
number between 0 and 100. Expressing limits as a percentage of 
overall CPU time on a host provides better control over resource 
consumption on that particular host. 

Rate limits for disk and network are expressed in terms of bytes 
read or written per milli second. If a rate limit is in effect, then 
I/O operations are transparently delayed if necessary until such 
time that allowing the operation would not exceed the limit. 
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Threads performing I/O operations will not be aware of any re-
source limits in place unless they choose to query the VM. 

Quantity limits for disk and network are expressed in terms of 
bytes. If a quantity limit is in effect, then the VM throws an ex-
ception when a thread requests an I/O operation that would result 
in the limit being exceeded. 

Within the Grid, a number of uses of the NOMADS-based re-
source control mechanisms are possible. First, the VM-level 
Guard will be able to utili ze the resource control capabil iti es in 
order to place limits on the resources consumed by services and 
components running within the Aroma VM. The Guard will be 
able to vary the resource limits to accommodate changes in poli cy 
or level of service guarantees. The Guard will also be able to 
take advantage of the resource accounting capabiliti es to measure 
and report back on the resources consumed by services and com-
ponents and to look for patterns of resource abuse that might 
signal denial-of-service attacks. 

With respect to protection of agent state, we need a way to save 
the entire state of the running agent or component, including its 
execution stack, anytime so it can be full y restored in case of 
system failure or a need to temporaril y suspend its execution. 
The standard term describing this process is checkpointing. Over 
the last few years, the more general concept of transparent 
persistence (sometimes called “orthogonal persistence”) has also 
been developed by researchers at Sun Microsystems and else-
where [12]. The goal of this research is to define language-
independent principles and language-specific mechanisms by 
which persistence can be made available for all data, irrespective 
of type. Ideall y, the approach would not require any special work 
by the programmer (e.g., implementing seriali zation methods in 
Java or using transaction interfaces in conjunction with object 
databases), and there would be no distinction made between 
short-li ved and long-li ved data. 

We have used the state capture features of NOMADS extensively 
for agents requiring anytime mobilit y, whether in the perform-
ance of some task or for immediate escape from a host under 
attack or about to go down (we call this scenario “scram”). We 
have also put these features to use for transparent load-balancing 
and forced code migration on demand in distributed computing 
appli cations. To support transparent persistence for agents and 
components on the Grid, we are implementing scheduled and on-
demand checkpointing services that will protect agent execution 
state, even in the face of unanticipated system failure. 



KAoS LEGAL AND SOCIAL SERVICES 
Terraforming cyberspace involves more than regulation of com-
puting resources and protection of agent state. As the scale and 
sophistication of agents grow, and their li fespan becomes longer, 
agent developers and users will want the abilit y to express com-
plex high-level constraints on agent behavior within a given en-
vironment. It seems inevitable that productive interaction be-
tween agents in long-li ved communities will also require some 
kind of legal services, based on expli cit enforceable poli cies, to 
ensure their rights and help them fulfill t heir obligations. Over 
time, it seems li kely that benevolent social services will also 
eventuall y evolve to offer help with individual agent or systemic 
problems. 

In both legal and social services, it is clear that preventive initi a-
tives are nearly always superior to after-the-fact remedies, as the 
following verse by Joseph Malins ill ustrates: 

‘Twas a dangerous cli ff , as they freely confessed, 

Though to walk near its crest was so pleasant; 

But over its terrible edge there had slipped 

A duke and full many a peasant. 

So the people said something would have to be done, 

But their project did not at all tall y; 

Some said, “Put a fence around the edge of the cli ff ,”  

Some, “An ambulance down in the valley.”  

We are basing our approach on the assumption that preventive 
poli cy-based ‘ fences’ can complement and enhance after-the-fact 
remedial ‘ambulance in the valley’ mechanisms. The poli cies 
governing some set of agents aim to describe expected behavior 
in suff icient detail that deviations can be easil y anticipated or 
detected. At the same time, related poli cy support services help 
make compliance as easy as possible. Complementing these pol-
icy support services, various enforcement mechanisms operate as 
a sort of ‘ cop at the top of the cli ff ’ to warn of potential problems 
before they occur. When, despite all precautions, an accident 
happens remedial services are called as a last resort to help re-
pair the damage. In this manner, the poli cy-based fences and the 
after-the-fact ambulances work together to ensure a safer envi-
ronment for individual agents and the communities in which they 
operate. 

Poli cy-based approaches have grown considerably in popularity 
over the last few years. Unli ke previous versions, the Java 2 se-
curity model defines security poli cies as distinct from implemen-
tation mechanism. Access to resources is controlled by a Security 
Manager, which relies on a security poli cy object to dictate 
whether class X has permission to access system resource Y. The 
poli cies themselves are expressed in a persistent format such as 
text so they can be viewed and edited by any tools that support 
the poli cy syntax specification. This approach allows poli cies to 
be configurable, and relatively more flexible, fine-grained, and 
extensible. Developers of appli cations no longer have to subclass 
the Security Manager and hard-code the appli cation’s poli cies 
into the subclass. Programs can make use of the poli cy fil e and 
the extensible permission object to build an appli cation whose 
security poli cy can change without requiring changes in source 
code. 

The basic poli cytool Java currently provides, assists users in 
editing poli cy fil es. However, to be useful and usable in realistic 
settings, poli cy-based administration tools should contain domain 
knowledge and conceptual abstractions to allow appli cations 
designers to focus their attention more on high-level poli cy intent 
than on the detail s of implementation. Moreover, while Java 
provides only for static poli cies, criti cal agent appli cations will 
require tools for the monitoring, visuali zation, and dynamic 
modification of poli cies at runtime. 

In principle, a variety of languages can be used to express poli-
cies. At one extreme they may be written in some propositional 
or constraint language. At the other extreme are a wide variety of 
simpler schemes, each of which gives up some types of expres-
sivity. The choice of language for a particular appli cation is af-
fected by considerations of composabilit y, computabilit y, eff i-
ciency, expressivity, and amenabilit y to the detection of equiva-
lence and the discovery of confli cts. With funding from the 
DARPA CoABS program, we have begun the development of an 
implementation-neutral poli cy language expressions in DAML 
(DARPA Agent Markup Language, http://www.daml.org), which 
will used to represent both simple atomic poli cies (e.g., Java 
permissions) and complex constructions. 

In KAoS, we currently distinguish between two kinds of poli cy 
constraints: those relating to permissions and those relating to 
obligations. These poli cies are often related: by entering into 
particular obligations an agent or component may acquire spe-
cific permissions; and vice versa: when an agent is given permis-
sion to access a shared resource, it may incur obligations as a 
result. We refer to the binding of a particular set of poli cies with 
a given set of agents or components as an agreement. 

Our concept of poli cy-based management of agents extends be-
yond typical security concerns. For example, KAoS pioneered the 
concept of agent conversation poli cies [3; 9]. Teams of agents 
can be formed, maintained, and disbanded through the process of 
agent-to-agent communication using an appropriate semantics [5; 
6; 20]. Conversation poli cies assure coherence in the adoption 
and discharge of team commitments by heterogeneous agents of 
different levels of sophistication [3; 4]. These conversation poli-
cies are designed to assure robust behavior and to keep computa-
tional overhead for team maintenance to an absolute minimum 
[9; 11; 17]. As a generali zation of this work on conversation 
poli cies, we have demonstrated links between KAoS, NOMADS, 
and Java security mechanisms for access control and resource 
management (http:// www.aiai.ed.ac.uk /project/ coax/). Devel-
opment of li braries of poli cy and enforcement mechanisms for 
mobilit y management [15], registration management, and various 
forms of obligation management are also underway. 

Groups of agents are structured into KAoS domains to facilit ate 
poli cy administration. A given domain can extend across host 
boundaries and, conversely, multiple domains can exist concur-
rently on the same host. Poli cies can be scoped variously to indi-
vidual agent instances, agents of a given class, agents running in 
a given instance of a platform (e.g., a single Java VM), or agents 
in a given domain or subdomain. The poli cy language and KAoS 
management and administration tools described below are in-
tended to work identicall y across different execution environ-
ments (e.g., Java VM, Aroma VM, and potentiall y non-Java en-
vironments), however Guards, which enforce poli cies, are neces-



saril y designed for a specific execution environment (which we 
will call for our purposes a platform). Our approach enables pol-
icy uniformity across multiple platforms and hosts, as long as 
semanticall y equivalent monitoring and enforcement mechanisms 
are available as part of those platforms and hosts. Under these 
conditions, it follows that behavior of agents written in different 
frameworks and running in different languages and platforms and 
on different hosts can be kept consistent through the use of these 
poli cy-based mechanisms. 

 The KAoS Poli cy Administration Tool (KPAT), a graphical user 

interface to domain management functionalit y, has been devel-
oped to make poli cy specification, revision, and appli cation eas-
ier for administrators without speciali zed training. Figure 4 
shows how KPAT interacts with other components. Using KPAT, 
an authorized user may make changes over the Web to agent 
policy using a secure http connection. Alternatively, trusted 
authenticated components (such as Guards) may propose poli cy 
changes autonomously based on their observation of system 
events. 

The KAoS Domain Manager serves as a poli cy decision point to 
determine whether agents can join their domain and for poli cy 
confli ct resolution. The KAoS Domain Manager is responsible 
for ensuring poli cy consistency at all l evels of a domain hierar-
chy, for notifying Guards in the event of a poli cy change, and for 
storing policies in the repository. 

Poli cies are stored in an implementation-neutral format, currently 
very simple but soon to be based on our DAML poli cy represen-
tation. Available in a secure li brary repository such as an LDAP 

directory, we intend to allow these poli cies to be accessed by 
authorized entiti es in accordance with poli cy disclosure strategies 
[16]. For example, agents may need to understand domain poli-
cies in advance of submitting a registration request to a new 
domain. Because the poli cies in the li brary are expressed de-
claratively, they can be analyzed and verified in advance and 
off li ne, permitting execution mechanisms to be as eff icient as 
possible. 

The various VM-level Guards interpret these abstract policies 
and enforce them with appropriate native mechanisms as de-

scribed previously. 

Analogous to the AgentRegistrationHelper utilit y classes cur-
rently provided by the Grid, KAoSAgentRegistrationHelper util-
ity classes are under development. Unli ke the current aproach, 
which requires each domain-enabled agent to be wrapped as a 
KAoS agent, the KaoSAgentRegistrationHelper will allow do-
main management functionality to be made available to any Grid-
ready agent or component framework with littl e or no modifica-
tion required to the agent itself. 

The combination of the use of li braries of pre-analyzed poli cy 
sets, separate poli cy decision and confli ct resolution mechanisms, 
and eff icient poli cy enforcement mechanisms make the use of 
poli cy-based administration tools maximall y effective and per-
formant. A poli cy-based approach has the additional advantages 
of reusabilit y, efficiency, context sensiti vity, and verifi abilit y: 

Reusabilit y. Poli cies encode sets of useful constraints on agent or 
component behavior, packaging them in a form where they can 
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be easil y reused as the occasion requires. By reusing poli cies 
when they apply, we reap the lessons learned from previous 
analysis and experience while saving ourselves the time it would 
have taken to reinvent them from scratch. 

Efficiency. In addition to li ghtening the appli cation developers’ 
workload, expli cit poli cies can sometimes increase runtime eff i-
ciency. For example, to the extent that poli cy confli ct resolution 
and conversion of poli cy to a form that can be used by appropri-
ate enforcement mechanisms can take place in advance, overall 
performance can be increased. 

Context-sensiti vity. Expli cit poli cy representation improves the 
abilit y of agents, components, and platforms to be responsive to 
changing conditions, and if necessary reason about the impli ca-
tions of the poli cies which govern their behavior. 

Verifiabilit y. By representing poli cies in an expli citl y declarative 
form instead of burying them in the implementation code, we can 
better support important types of poli cy analysis. First—and this 
is absolutely criti cal for security poli cies—we can externall y 
validate that the poli cies are suff icient for the appli cation’s tasks, 
and we can bring both automated theorem-provers and human 
expertise to this task. Second, there are methods to ensure that 
program behavior which follows the poli cy will also satisfy many 
of the important properties of reactive systems: li veness, recur-
rence, safety invariants, and so forth. Finall y, with expli cit poli-
cies governing different types of agent behavior, we can predict 
how policies may compose. 

FUTURE DIRECTIONS 
As we develop and enhance the agent infrastructure described in 
this paper, we plan to leverage our contacts and experience to 
engage the open-source community in continued collaboration to 
accelerate enhancements to these technologies and make them 
available more widely than ever before. To this end will also 
continue involvement in the Jini community, and in related ef-
forts in FIPA, the OMG, and Java standards and commerciali za-
tion efforts. 

Tomorrow’s world will be fill ed with agents embedded every-
where in the places and things around us. Providing a pervasive 
web of sensors and effectors, teams of such agents will function 
as cogniti ve prostheses—computational systems that leverage 
and extend human intellectual, perceptual, and collaborative 
capacities, just as the steam shovel was a sort of muscular pros-
thesis or the eyeglass a sort of visual prosthesis. Thus the focus 
of AI research is destined to shift from Artificial Intelli gence to 
Augmented Intelli gence [2; 10]. 

Once we have terraformed cyberspace, agents will be freed from 
their current role as short-li ved visitors on the wire to permanent 
colonists in a virtual world where we can feel comfortable with 
not knowing or caring exactly where they are being physicall y 
hosted. They will t ruly li ve among us and we will wonder how 
we ever li ved without them. 
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