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Abstract:

Hydrological modelling is a complicated procedure and there are many tough questions facing all modellers: what input data
should be used? how much data is required? and what model should be used? In this paper, the gamma test (GT) has been
used for the first time in modelling one of the key hydrological components: solar radiation. The study aimed to resolve the
questions about the relative importance of input variables and to determine the optimum number of data points required to
construct a reliable smooth model. The proposed methodology has been studied through the estimation of daily solar radiation
in the Brue Catchment, the UK. The relationship between input and output in the meteorological data sets was achieved
through error variance estimation before the modelling using the GT. This work has demonstrated how the GT helps model
development in nonlinear modelling techniques such as local linear regression (LLR) and artificial neural networks (ANN).
It was found that the GT provided very useful information for input data selection and subsequent model development. The
study has wider implications for various hydrological modelling practices and suggests further exploration of this technique
for improving informed data and model selection, which has been a difficult field in hydrology in past decades. Copyright 
2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Solar radiation is one of the key inputs for most hydro-
logical models in estimating reference evapotranspiration
(Tan et al., 2007). Daily solar radiation data is more pop-
ular than data at other time intervals for crop growth sim-
ulation models and hydrological and soil water balance
models (Ball et al., 2004). In spite of the great impor-
tance of solar radiation, many published studies point out
the major challenges associated with solar radiation data
collection. Lack of solar radiation data is quite common,
even in developed countries such as the USA (Richard-
son, 1985; Hook and McClendon, 1992) and Canada (De
Jong and Stewart, 1993). Many researchers note the fact
that solar radiation is an infrequently measured meteoro-
logical variable compared with temperature and rainfall
(Liu and Scott, 2001; Weiss and Hays, 2004).

In past decades, many empirical and physical radia-
tion models have been proposed (Sabbagh et al., 1977;
Noia et al., 1993a,b; Tovar and Baldasano, 2001). The
Angstrom equation, which was proposed by Angstrom
(1924) and subsequently modified by Prescott (1940), is
considered as the most popular and widely used method
for the estimation of monthly averaged daily (global)
irradiation value. Later several physical based empiri-
cal models were devised based on Chang (1968), who
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reported that there was a good relation between net
radiation and global solar radiation, since the latter is
the principal source of energy. Based on this argument
Bristow and Campbell (1984), suggested an empirical
relationship for daily global radiation, as a function of
daily net radiation and the difference between maxi-
mum and minimum temperature. Later, Allen (1995)
suggested the use of a self-calibrating model to esti-
mate mean monthly global solar radiation based on the
work of Hargreaves and Samani (1982). His research
suggested that the mean daily global radiation can be
estimated as a function of net radiation, and mean
monthly maximum and minimum temperatures. The
Bristow–Campbell model has been used in numerous
hydrological related studies, and improvements have
been developed over the years (Donatelli and Camp-
bell, 1998). The Campbell–Donatelli method was imple-
mented in many weather generators including MarkSim
(Jones and Thornton, 2000) and ClimGen (Stöckle et al.,
2001). Recently Donatelli et al, (2003, 2006) developed
a windows based model named RadEst3Ð00 which esti-
mates and evaluates daily global solar radiation val-
ues at given latitudes. Some other interesting work has
been done in the area of solar radiation prediction using
ARMA (autoregressive moving average) and Fourier
analysis (Goh and Tan, 1977; Mustacchi et al., 1979).
Furthermore, new approaches to predict solar radiation
series have been developed using artificial neural net-
works(ANN), particularly in Turkey (Saylan et al., 2003;
Ogulata and Ogulata, 2002; Tırıs et al., 1996; Togrul and
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Onat., 1999; Dinçer et al., 1996), but also in other places
(Negnevitsky and Le, 1995; Alawi and Hinai, 1998;
Mohandes et al., 1998; Kemmoku et al., 1999; Sfetsos
and Coonick, 2001).

Despite an abundance of studies on prediction and
modelling of solar radiation and many other variables
using nonlinear techniques such as artificial neural net-
works (ANN), there are still many questions that need to
be answered. For example, to what extent do the inputs
determine the output from a smooth model? Given an
input vector x how accurately can the output y be pre-
dicted? How many data points are required to make a
prediction with best possible accuracy? Which inputs are
relevant in making the prediction and which are irrele-
vant? So far, these questions have not been addressed
adequately by the hydrological community (Han et al.,
2007). However, owing to the advancement of mod-
ern computing technology and a new algorithm from
the computing science community called the gamma test
(GT) (Agalbjörn et al., 1997; Končar, 1997), it is possi-
ble that significant progresses could be made in tackling
these problems. A formal proof for the Gamma Test
can be found in Evans (2002) and Evans and Jones
(2002). It is accomplished by estimating the variance of
the noise var(r), computed from the raw data using effi-
cient, scalable algorithms. This novel technique, the GT,
enables one to quickly evaluate and estimate the best
mean squared error that can be achieved by a smooth
model on unseen data for a given selection of inputs,
before model construction. This technique can be used
to find the best embedding dimensions and time lags
for time series analysis. This information would help
to determine the best input combinations to achieve a
particular target output. Overtraining is considered to be
one of the serious weaknesses associated with almost all
nonlinear modelling techniques including ANN, giving
excellent results on the training data but very poor results
on the unseen test data. The GT is designed to solve this
problem efficiently by giving an estimate of how closely
any smooth model could fit the unseen data. Thus we
can avoid the guesswork associated with nonlinear curve
fitting techniques.

The main objective of this study is to assess the perfor-
mance of nonlinear techniques like local linear regression
(LLR) and neural networks to estimate daily (global) irra-
diation values with the GT, based on different meteoro-
logical input data. This paper demonstrates the capability
of the Gamma Test to identify the appropriate embedding
nonlinear model dimensions through the estimate of vari-
ance of the noise associated with the data, before model
construction and evaluation.

MATERIALS AND METHODS

Gamma test, V-ratio and M-test

The GT estimates the minimum mean square error
(MSE) that can be achieved when modelling the unseen
data using any continuous nonlinear models. The GT

was first reported by Konča (1997) and Agalbjörn, et al.
(1997), and later enhanced and discussed in detail by
many researchers (Chuzhanova et al., 1998; De Oliveira,
1999; Tsui, 1999; Tsui et al., 2002; Durrant, 2001; Jones
et al., 2002).

Only a brief introduction to the GT is given here and
the interested readers should consult the aforementioned
papers for further details. The basic idea is quite distinct
from earlier attempts with nonlinear analysis. Suppose
we have a set of data observations of the form

f�xi, yi�, 1 � i � Mg �1�

where the input vectors xi 2 Rm are vectors confined to
some closed bounded set C 2 Rm and, without loss of
generality, the corresponding outputs yi 2 R are scalars.
The vectors x contain predicatively useful factors influ-
encing the output y. The only assumption made is that the
underlying relationship of the system is of the following
form

y D f�x1 . . . xm� C r �2�

where f is a smooth function and r is a random variable
that represents noise. Without loss of generality it can
be assumed that the mean of the distribution of r is
zero (since any constant bias can be subsumed into the
unknown function f) and that the variance of the noise
Var(r) is bounded. The domain of a possible model is now
restricted to the class of smooth functions which have
bounded first partial derivatives. The Gamma statistic 
is an estimate of the model’s output variance that cannot
be accounted for by a smooth data model.

The GT is based on N[i, k], which are the kth (1 � k �
p) nearest neighbours xN[i,k]�1 � k � p� for each vector
xi�1 � i � M�.Specifically, the GT is derived from the
Delta function of the input vectors:

υM�k� D 1

M

M∑
iD1

∣∣xN�i,k� � xi

∣∣2
�1 � k � p� �3�

where j . . . j denotes Euclidean distance, and the corre-
sponding Gamma function of the output values:

�M�k� D 1

2M

M∑
iD1

∣∣yN�i,k� � yi

∣∣2
�1 � k � p� �4�

where yN�i,k� is the corresponding y-value for the kth
nearest neighbour of xi in Equation (3). In order to
compute  a least squares regression line is constructed
for the p points (υM�k�, �M�k�)

� D Aυ C  �5�

The intercept on the vertical axis (υ D 0) is the  value,
as can be shown

�M�k� ���! Var�r� in probability as υM�k� ���! 0
�6�

Calculating the regression line gradient can also pro-
vide helpful information on the complexity of the system
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under investigation. A formal mathematical justification
of the method can be found in Evans and Jones (2002).

The graphical output of this regression line (Equation
(5)) provides very useful information. First, it is remark-
able that the vertical intercept  of the y (or Gamma) axis
offers an estimate of the best MSE achievable utilizing
a modelling technique for unknown smooth functions of
continuous variables (Evans and Jones, 2002). Second,
the gradient offers an indication of the model’s com-
plexity (a steeper gradient indicates a model of greater
complexity).

The GT is a non-parametric method and the results
apply regardless of the particular techniques used to
subsequently build a model of f. The result can be
standardized by considering another term Vratio, which
returns a scale invariant noise estimate between zero and
one. The Vratio is be defined as

Vratio D 

�2�y�
�7�

where, �2�y� is the variance of output y, which allows a
judgement to be formed independent of the output range
as to how well the output can be modelled by a smooth
function. A Vratio close to zero indicates that there is a
high degree of predictability of the given output y.

The reliability of the  statistic can be determined by
running a series of GT for increasing M, to establish the
size of data set required to produce a stable asymptote.
This is known as the M-test, and the result helps to
avoid wasteful attempts at fitting the model beyond the
stage where the MSE on the training data is smaller than
Var(r), which may lead to ‘overfitting’. The M-test also
helps to decide how much data are required to build a
model with a mean squared error which approximates
the estimated noise variance. In practice, the GT can be
achieved through winGamma software implementation
(Durrant, 2001). Corcoran et al. (2003), applied the GT as
a method for crime incident forecasting by focusing upon
geographical areas of concern that transcend traditional
policing boundaries. The authors believed this technique
was very effective and could be potentially used for
water management including flood prediction and other
hydrological nonlinear modelling.

NONLINEAR MODELS

The GT helps to make decisions about input data
selection and the actual modelling can then be carried out
using one the nonlinear mathematical models. Nowadays,
owing to the advancement of computer technology, there
are a large number of nonlinear methods such as artificial
neural networks, support vector machines, fuzzy logical
systems, polynomial functions, local linear regressions,
Bayesian belie networks, decision trees, etc. This study,
because of constraints of time and resources, focused on
only two popular model types: local linear regression
(LLR) and artificial neural networks (ANN). Only brief

introductions to them are given here and further details
can be found in the references.

Local linear regression (LLR)

The LLF technique is a widely studied nonparametric
regression method that has been widely used in many
low-dimensional forecasting and smoothing problems.
The advantage of the LLR technique is that reasonably
reliable statistical modelling can be performed locally
with a small amount of sample data. At the same time,
LLR can produce very accurate predictions in regions
of high data density in the input space. The LLR
procedure requires only three data points to obtain an
initial prediction and then uses all newly updated data as
they becomes available to make further predictions. The
only problem with LLR is to decide the size of pmax, the
number of near neighbours to be included for the local
linear modelling. The method of choosing pmax for linear
regression is called influence statistics and is explained
below.

Given a neighbourhood of pmax points, we must solve
a linear matrix equation

Xm D y �8�

where X is a pmax ð d matrix of the pmax input points in
d dimensions, xi�1 � i � pmax� are the nearest neighbour
points, y is a column vector of length pmax of the
corresponding outputs, and m is a column vector of
parameters that must be determined to provide the
optimal mapping from X to y, such that




x11 x12 x13 . . . x1d

x21 x22 x23 . . . x2d
...

...
...

. . .
...

xxp max1 xxp max2 xxp max3 Ð Ð Ð xxp maxd




ð




m1

m2

m3
...

md




D




y1

y1
...

yp max


 �9�

The rank r of the matrix X is the number of linearly
independent rows, which will affect the existence or
uniqueness of the solution for m.

If the matrix X is square and non-singular then the
unique solution to Equation (8) is m D X�1y. If X is not
square or singular, we modify Equation (8) and attempt
to find a vector m which minimizes

jXm � yj2 �10�

which was proved by Penrose (1955) where the unique
solution to this problem is provided by m D X#y where
X# is a pseudo-inverse matrix (Penrose, 1955, 1956).

In this study, a kd-tree is used to organize the
input training data, with a time-complexity in the order
O(M log M). A kd-tree (short for k-dimensional tree) is
a space-partitioning data structure for organizing points
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in a k-dimensional space so that the LLR algorithms
can be implemented using a minimum number of direct
evaluations. More theoretical aspects of kd-tree can be
found in Durrant (2001) and Jones (2004).

Artificial neural networks (ANN)

The theory of ANNs was first proposed in the early
1940s when McCulloch and Pitts developed the first com-
putational representation of a neuron (McCulloch and
Pitts, 1943). Later Rosenblatt proposed the idea of per-
ceptrons (Rosenblatt, 1962) in which single layer feedfor-
ward networks of McCulloch–Pitts neurons could carry
out various computational tasks with the help of weights
and training algorithm. The applications of ANNs are
based on their ability to mimic the human mental and
neural structure to construct a good approximation of
functional relationships between past and future val-
ues of a time series. The supervised ANN is the most
commonly used ANN, in which the input is presented
to the network along with the desired output, and the
weights are adjusted so that the network attempts to
produce the desired output. There are different learn-
ing algorithms, and a popular algorithm is the back
propagation algorithm, which employs gradient descent
and gradient descent with momentum; these are often
too slow for practical problems because they require
low learning rates for stable learning. Algorithms like
conjugate gradient, quasi-Newton, Levenberg–Marquardt
(LM), etc., are faster algorithms that all make use of
standard numerical optimization techniques. Minsky and
Papert (1969) highlighted the weaknesses of single layer
perceptrons as their ability to solve linearly separa-
ble problems only. In practice nowadays, it is usually
most effective to use two hidden layers (Jones, 2004).
In this study, the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) neural network training algorithm (Fletcher,
1987), and conjugate gradient training algorithms along
with a two layer architecture embedded in WinGamma
software were used. The BFGS algorithm is a quasi-
Newton method performed iteratively using successively
improved approximations to the inverse Hessian matrix,
instead of the true inverse. The performance of the LLR
technique and neural network based models were com-
pared using three global statistics: correlation efficiency,
root mean squared error (RMSE) and mean bias error
(MBE).

RMSE D

√√√√√√
N∑

iD1

�Pi � Oi�
2

N
�11�

The mean bias error can be estimated using the
following equation

MBE D

N∑
iD1

�Pi � Oi�

N
�12�

In both equations, P denotes the predicted values
of daily solar radiation (MJ m�2 day�1), while O

denotes the observed values of daily solar radiation (MJ
m�2 day�1) in the study area and N is the data point
number.

STUDY AREA AND DATA SET

In this study, solar radiation data were collected from a
meteorological station located in the Brue Catchment in
south-west England. It was the site of the NERC (Natural
Environment Research Council) funded HYREX project
(Hydrological Radar Experiment) which ran from May
1993 to April 1997 (its data collection was extended to
2000). The Brue catchment area is located at 51Ð075 °N
and 2Ð58 °W and drains an area of 135Ð2 sq km. It is
predominantly a rural catchment of modest relief with
spring-fed headwaters rising in the Mendip Hills and
Salisbury Plain. The raingauge network at the Brue is
quite dense and consists of 49 Casells 0Ð2 mm tipping
bucket type raingauges, each having a tip time of 10 s.
The average annual rainfall over the catchment is esti-
mated as 867 mm. An automatic weather station (AWS)
and automatic soil water station (ASWS) were located to
record hourly (global) irradiation, net radiation and other
physical parameters. The data sets contain hourly infor-
mation of temperature, rainfall, atmospheric pressure, and
wind velocity. The major issues associated with the raw
data were lack of sunshine ratio, i.e. ratio of average
daily sunshine hours S, and theoretical sunshine dura-
tion S0, which is relevant in solar radiation modelling
(Rietveld, 1978; Benson et al., 1984; Gopinathan 1988;
Akinoglu and Ecevit, 1990). In this study, the following
input parameters were considered: horizontal extraterres-
trial radiation (based on Allen et al., 1998), mean air
temperature (averaged over 24 h), maximum daily air
temperature, minimum daily air temperature, wind speed
(averaged over 24 h), and rainfall (summed over 24 h).
The daily extraterrestrial radiation can be estimated from
the solar constant, the solar declination and the time of
the year (Allen et al., 1998).

A major problem associated with HYREX during the
study period was data discontinuity. In total, 1098 daily
records from 1993–1996 were obtained after the missing
data were taken out. All data were normalized before
analysis by mapping the mean to zero and the standard
deviation to 0Ð5. The process of normalization attempts
to equalize the relative numerical significance between
the input variables and to aid the analysis routines to
perform efficiently, especially in the absence of any
prior knowledge regarding input variable relevance. The
asymptotic nature of the Gamma statistic remained valid
for the normalized data. The training and testing data sets
were selected by the randomization of the input data.

RESULTS AND DISCUSSION
Data analysis and model input selection based on the
gamma test

The GT is able to provide the best mean square
error that can possibly be achieved using any nonlinear
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Table I. Gamma Test results on the daily sunshine data set

Parameters Different combinations

ETR, Tmax , U Tmax , U ETR, U ETR, Tmax ETR, Tmax, U ETR, Tmax , U ETR, Tmax , U

Tmean, Tmin, P Tmean, Tmin, P Tmean, Tmin, P Tmean, Tmin, P Tmin, P Tmean, P Tmean, Tmin

Gamma () 0Ð0354 0Ð0684 0Ð0434 0Ð0357 0Ð0361 0Ð0378 0Ð0401
Gradient (A) 0Ð1108 0Ð2254 0Ð1140 0Ð1731 0Ð1674 0Ð1265 0Ð1914
Standard error 0Ð0019 0Ð0046 0Ð0020 0Ð0019 0Ð0025 0Ð0020 0Ð0037
V-ratio 0Ð1438 0Ð2737 0Ð1736 0Ð1731 0Ð1430 0Ð1431 0Ð1605
Near neighbours 10 10 10 10 10 10 10
M 1098 1098 1098 1098 1098 1098 1098
Mask 111111 011111 101111 110111 111011 111101 111110

Note: Different combinations compared to study the input effects (inclusion and exclusion indicated by 1 or 0 in the mask).

smooth models. In this study, different combinations of
input data were explored to assess their influence on the
solar radiation modelling (Table I). There were 2n � 1
meaningful combinations of inputs; from which, the best
one can be determined by observing the Gamma value,
which indicates a measure of the best MSE attainable
using any modelling method for unseen smooth functions
of continuous variables. In Table I, some very interesting
variations of the best MSE () are observed with different
input combinations. The minimum value of  was
observed when all available input data sets were used,
i.e. extraterrestrial radiation (ETR), daily precipitation
(P), daily mean temperature (Tmean), daily maximum
temperature (Tmax), daily minimum temperature (Tmin)
and daily mean wind velocity (U). The gradient (A) is
considered to be an indicator of model complexity. A
model with low MSE and low gradient is considered to
be the best scenario for modelling. V-ratio is a measure
of the degree of predictability of given outputs using
available inputs. A smaller value of V-ratio was observed
all inputs were considered.

The quantity of available input data to predict the
desirable output was analysed using the M-test. The
M-test results help to determine whether there were
sufficient data to provide an asymptotic Gamma estimate
and subsequently a reliable model. The M-test analysis
results are shown in Figure 1. The test produced an
asymptotic convergence of the Gamma statistic to a value
of 0Ð0354 at around 770 data points (i.e. M D 770).
The variation of the standard error (SE) corresponding
to the data points is shown in Figure 2. In the figure
it can be seen that the SE corresponding to M D 770
is very small at ¾0Ð0019, which shows the precision
and accuracy of the Gamma statistic. M-tests were
also performed in different dimensions, varying the
number of inputs to the model (Table I), which clearly
presents the response of the data model to different
combinations of input data sets. From the table it can
be deduced that the combination of precipitation, daily
maximum temperature, daily minimum temperature and
extraterrestrial radiation (ETR) gives a good model,
comparable with the combination using all the inputs.
The significance of the wind velocity and daily mean

temperature data sets was relatively small when compared
with other input sets since the elimination of these inputs
made little difference to the Gamma statistic. The M-
test analysis results for different scenarios are shown in
Figure 3: scenarios are ‘All’, ‘No ETR’, ‘No Tmax’, ‘No
Tmean’, ‘No Tmin’, ‘No P’ and ‘No U’. ETR is observed to
be the most significant input in solar radiation modelling;
the ‘No ETR’ scenario resulted in a very high value of
Gamma statistic.

The embedding 111111 model (a six input and one
output set of I/O pairs) was identified as the best structure

Figure 1. Gamma statistic () for the data set (M D 1098, p D 10)

Figure 2. Variation of standard error for the data set (M D 1098, p D 10)
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Figure 3. Variation of Gamma statistic () for the data corresponding to
different combination of input data sets

because of its low noise level ( value), the rapid decline
of the M-test SE graph (Figure 2), low V-ratio value
(indicating the existence of a reasonably accurate smooth
model), the regression line fit with slope A D 0Ð1108
(low enough for a simple nonlinear model with minimum
complexity) and good fit with SE 0Ð0019. These values
together give a clear indication that it is adequate to
construct a nonlinear predictive model using around 770
data points with an expected MSE around 0Ð0354.

Nonlinear model construction and testing

In this study, two types of model were constructed and
tested to predict daily solar radiation (LLR and ANN).
The ANN were trained using the BFGS algorithm and the
conjugate gradient algorithm. The nonparametric proce-
dure based on LLR models does not require training in the
same way as that of NN models. The optimal number of
nearest neighbours for LLR (principally dependent on the
noise level) was determined by a trial and error method
and 16 nearest neighbours were implemented. The per-
formance of the LLR technique was compared with that
of the NN models using three global statistics (correla-
tion efficiency, root mean squared error and mean bias
error), as shown in Table II. Figures 4 and 5 show scatter
plots of the computed (using LLR model with p D 16)
and observed daily solar radiation during the training and
validation periods. Figure 6 shows the observed and esti-
mated solar radiation using the LLR model for 770 data
points, which resulted in the minimum overall RMSE
value of 1Ð79 MJ m�2 day�1, which is 19Ð1% of the
oserved daily solar radiation and the mean bias error
(MBE) was observed to be �0Ð069 MJ m�2 day�1.

In this study, various hidden layer neuron number
combinations were tested for the ANN models. A feed
forward 6-9-9-1 NN was constructed and trained using
the BFGS algorithm and conjugate gradient algorithm
and the performance was compared with that of the LLR
model (shown in Table II). The size of training data was
already determined as 770 data points through M-test
analysis, and the target mean-squared error (MSError)
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Figure 4. Observed versus LLR model of daily solar radiation in the
training data set

Figure 5. Observed versus LLR model of daily solar radiation in the
validation data set

Figure 6. Solar radiation as observed (1993 to end 1995) and estimated
using the LLR model for the training data set

was identified as 0Ð0354 (scaled) for M D 770. Scatter
plots of training and validation results produced by the
conjugate gradient algorithm based model are shown
in Figures 7 and 8. The results predicted by the BFGS
method based ANN model for training and validation
data are shown in the form of scatter plots in Figures 9
and10. The conjugate gradient ANN model performed
better on the validation data set than the BFGS algorithm

Figure 7. Observed versus ANN model of daily solar radiation for the
training data set (conjugate gradient algorithm)

Figure 8. Observed versus ANN model of daily solar radiation for the
validation data set (conjugate gradient algorithm)

Figure 9. Observed versus ANN model of daily solar radiation for the
training data set (BFGS algorithm)

based ANN model, with an RMSE value of 3Ð06 MJ
m�2 day�1 (28Ð1% of mean observed solar radiation)
and MBE value of �0Ð014 MJ m�2 day�1, whereas the
latter produced 3Ð39 MJ m�2 day�1 (29Ð7% of mean
observed solar radiation) and �0Ð022 MJ m�2 day�1,
respectively. It is seen that the LLR model had superior
performance to the BFGS and conjugate gradient ANN
models. From Figures 9 and 10 one finds that both ANN
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Figure 10. Observed versus ANN model of daily solar radiation in the
validation data set (BFGS algorithm)

based models struggle to reproduce the highest values. At
the same time, the LLR model is free from this handicap.
Comparative analysis of these models using some basic
statistics has been carried out and is shown in Table II,
where the LLR model is shown to outperform both
ANN models and provides the best performance, i.e. the
lowest RMSE and highest R2, for the training period and
validation periods. The results of the study also indicate
that the predictive capability of the BFGS algorithm is
poor compared with those of conjugate gradient networks
in daily solar radiation modelling.

CONCLUSIONS

This article describes a new approach to estimate daily
solar radiation from meteorological data sets usuing
the gamma test in combination with nonlinear mod-
elling techniques. The study successfully demonstrated
the informative capability of the GT in the selection
of relevant variables in the construction of nonlinear
models for daily (global) irradiation estimations. In this
study, four relevant variables were used to estimate the
daily solar radiation (extraterrestrial radiation, tempera-
ture, precipitation, and wind velocity). The quantity of
data required to construct a reliable model was deter-
mined using the M-test, which identified M D 770 as a
sufficient data scenario. The use of nonlinear modelling
methods such as the LLR and ANNs with the BFGS
NN training algorithm and conjugate gradient training
algorithms has been demonstrated. Both the radial BFGS
NN training algorithm and the conjugate gradient train-
ing algorithm performed reasonably well in modelling the
validation data but both failed to reach the highest possi-
ble values. Among them, the conjugate gradient training
algorithms was shown to be superior because of its bet-
ter performance. The LLR technique was able to provide
more reliable estimates than the ANN models. It would
be interesting to explore this further in other catchments
to confirm if similar results could be repeated.

The methodology described in the study might have
significant implications for other types of hydrological
modelling. In past decades, hydrologists have struggled to

find an objective way of deciding the required data length
for model calibrations. At the moment, the rule of thumb
(e.g. six years) is still popular albeit such a method lacks
consideration of the data characteristics (for example,
how does one decide the required data length for a river
like the Nile where there is only one peak flow per year
or a typical river in England where many peak flows
could be observed in the same period). Furthermore,
if two similar floods are recorded, a hydrologist might
consider one of them as a duplicate which provides
little extra information for modelling. However, from
the statistical point of view, a duplicated flood is still
valuable and would help narrow down uncertainty bounds
for model calibration. Also, there is no effective way for
the hydrological community to check input data quality
(rainfall, flow, temperature, wind, solar radiation, etc.)
for hydrological models; this has hampered many model
comparison activities. If the innate errors in the input
data exceed the model’s capability, it is very difficult
for the model to perform, no matter how good the model
itself is. In this regard, the GT presented in this study has
the potential to help hydrologists to solve the uncertainty
issues in the hydrological modelling process. It is hoped
that this study will stimulate further exploration of this
new technique in hydrology.
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