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Abstract 
 
This dissertation describes GammaFinder, a Java application which automatically 
searches for galaxies in the 3-dimensional datacubes produced by two major 
astronomical surveys: the HI Parkes All Sky Survey (HIPASS) and the HI Jodrell All 
Sky Survey (HIJASS). These surveys are mapping the entire sky, searching for galaxies 
by their emission in the 21-cm spectral line of neutral atomic hydrogen (HI). The core 
functionality of GammaFinder is based upon the Gamma Test, a near-neighbour data 
analysis routine that estimates the variance of the noise in continuous data. The Gamma 
Test is shown to also be a highly effective way of detecting discontinuities in otherwise 
continuous functions (in the presence of noise). This makes it an excellent way of 
selecting possible galaxies from HI spectra since a galaxy’s HI emission line forms a 
discontinuity in an otherwise smoothly varying, but noisy, spectrum. GammaFinder 
searches for discontinuities in the 21-cm spectra of which a HIJASS/HIPASS datacube 
is comprised. It returns a list of possible sources along with a measurement of the 
strength of the discontinuity. GammaFinder is a GUI-based application, utilising Java 
Swing components. The results of the search are displayed on the GUI where they can 
be edited, annotated and saved to a text file. The spectra can also be examined on the 
GUI. The requirements specification, design and implementation of GammaFinder are 
described. In a preliminary evaluation, GammaFinder found at least an extra 50% more 
galaxies over those currently included in the published HIJASS catalogue. 
GammaFinder can select galaxies with significantly lower HI flux values than can 
previously used galaxy detection techniques. Hence, the use of GammaFinder could 
lead to a large increase in the number of galaxies which can be found in HIPASS and 
HIJASS data and significantly boost the scientific exploitation of these two major 
surveys.  
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 1. Introduction 

1.1 GammaFinder 

This dissertation describes a new Java application, GammaFinder, which automatically 

searches for galaxies in the 3-dimensional datacubes produced by two major 

astronomical surveys: the HI Parkes All Sky Survey (HIPASS) and the HI Jodrell All 

Sky Survey (HIJASS). The core functionality of GammaFinder is based upon the 

Gamma Test (Jones et al. 2002a). 

 

1.2 HIPASS and HIJASS  

The author is a member of the teams undertaking these two surveys which, between 

them, will map the entire sky, searching for galaxies by their emission in the 21-cm line 

of neutral atomic hydrogen (HI).  

 

HIPASS and HIJASS have created a huge dataset of 3-dimensional ‘datacubes’. A 

datacube can be considered to be a collection of spectra. Each (x, y) pair represents a 

spatial position on the sky. The ‘z’-axis represents the 21-cm spectrum at that position. 

Thus far, two methods have been employed to find galaxies within this data. Firstly, the 

datacubes have been visually inspected by astronomers. Secondly, automatic finding 

algorithms have been run over the datacubes. The automatic finding algorithms have 

proved to be no more effective than visual inspection. If an automatic finder could be 

devised which could find fainter galaxies (in HI flux) than visual inspection, this would 

have a big impact on the scientific exploitation of the two surveys, effectively making 

the surveys more sensitive. This was the main impetus for developing GammaFinder.  

 

1.3 The Gamma Test 

The Gamma Test (Stefansson et al. 1997) is a near-neighbour data analysis routine that 

estimates the variance of the noise in continuous data. Though developed as a tool to 

assist in the construction of data-derived models, it has also been applied to problems in 

control theory (Koncar 1997), feature selection (Chuzhanova et al. 1998; Durrant 

2001), secure communications (de Oliveira 1999) and controlling chaotic systems (Tsui 

et al. 2002; Jones et al. 2002b).  
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The original aim in applying the Gamma test to HIPASS and HIJASS datacubes was to 

obtain an accurate estimate of the variance of the noise on the data. However, as 

described in this dissertation, the Gamma Test has also proved a highly effective way 

of detecting discontinuities in otherwise continuous functions. This makes it an 

excellent basis for an automatic finding algorithm.  

 

1.4 Structure of the dissertation 

Some background information about the nature and purpose of HIJASS and HIPASS is 

presented in Chapter 2, along with an explanation of the currently used techniques for 

detecting galaxies in HIJASS/HIPASS datacubes. 

 

Chapter 3 contains a description of the Gamma Test and a discussion of the way in 

which the Gamma Test can be utilised to analyse spectral line data. This chapter 

concludes with three procedures which utilise the Gamma Test to analyse properties of 

a HIJASS / HIPASS datacube. These (a) measure the average noise in the datacube; (b) 

identify frequencies in the spectra which are affected by local interference; (c) select 

potential sources from the datacube. GammaFinder implements these three procedures. 

 

The requirements specification and design of GammaFinder are described in Chapter 4. 

A description of the implementation of the application is given in Chapter 5. 

 

Chapter 6 contains the results of an evaluation of GammaFinder, both in terms of its 

ability to detect real galaxies in HIJASS/HIPASS data and in terms of its computational 

efficiency.  

 

Chapter 7 contains a summary of the main results and some suggestions for further 

work. 
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2. Background 

 

2.1 Introduction 

This chapter presents some introductory information about HI spectral line astronomy. 

The purpose of HI surveys is discussed in Section 2.2. Section 2.3 contains an overview 

of the techniques of spectral line observing and a description of the main features of an 

HI spectrum. The information about a galaxy obtainable from its HI emission line is 

described in Section 2.4. The HIPASS and HIJASS surveys are described in Section 

2.5, whilst in Section 2.6 the characteristics of the datacubes produced by these surveys 

are discussed. The techniques and problems of detecting galaxies in HIPASS / HIJASS 

data are described in Section 2.7. Section 2.8 presents some concluding remarks.  

 

2.2 The purpose of HI surveys  

We require a complete and bias-free census of the local Universe to fully understand a 

range of astrophysical problems (e.g. galaxy formation and evolution, the mass density 

of the Universe). However, our knowledge of the contents of the Universe is primarily 

based on surveys made at optical wavelengths. Such surveys identify galaxies from the 

light emitted by the stars they contain. Hence, the catalogues of galaxies compiled from 

these surveys will preferentially contain those morphological types of galaxies that are 

optically bright. There are known to be classes of extragalactic objects (e.g. dwarf 

galaxies, low surface brightness galaxies) that are relatively faint in optical light. These 

types of object will tend to be under-represented or missed altogether from optically-

selected catalogues.  

 

Besides their stellar content, many galaxies also contain large amounts of neutral 

atomic hydrogen (HI). This provides an alternative way of searching for galaxies since 

neutral atomic hydrogen has a spectral emission line (at a wavelength of 21-cm) that 

can be detected by radio telescopes. Searches for galaxies based on their HI content 

may provide a very different perspective on galaxy populations compared to optical 

surveys since there is no reason to assume that a galaxy’s HI content will be directly 

correlated with its optical brightness.  

 

HIPASS and HIJASS are the first HI surveys to search for galaxies over a large area of 

sky. These surveys will be described in Section 2.5. 
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2.3 The 21-cm spectral line of neutral atomic hydrogen 

The 21-cm spectral line of HI results from a magnetic dipole transition between the two 

levels that characterise the ground state of the hydrogen atom. Depending on whether 

the electronic and nuclear spin vectors are parallel or anti-parallel, a slightly higher 

(triplet) or lower (singlet) hyperfine level is obtained. Spontaneous transitions from the 

triplet to the singlet level occur with a transition probability of 2.868 x 10-15 s-1  (see e.g. 

Rohlfs 1986). The vast reservoirs of hydrogen in many galaxies means that sufficient 

numbers of transitions are happening per second for the HI line to be detectable. 

 

Figure 2.1. The main stages of observing a 21-cm spectrum. 

  

Figure 2.1 shows a simplified schematic diagram of the process of observing a 21-cm 

emission line from a galaxy. A radio telescope antenna collects the electromagnetic 

radiation arriving from the sky in the direction to which it is pointed. The receiver is 

tuned (by filters) to select radiation from a relatively narrow frequency ‘bandpass’ 

around the rest frequency of the HI line. The radiation within this bandpass, collected 

by the antenna, is converted into an AC signal by the receiver. This signal is then 

passed to the spectrometer. The spectrometer samples the received signal at a number 

of discrete, equally spaced frequencies within the bandpass. The output from a 

spectrometer is a ‘spectrum’, i.e. the detected power of the received electromagnetic 

radiation at a set of discrete frequencies (known as ‘channels’) within the bandpass.  

 

An example of the resulting HI spectrum for a galaxy is shown in Figure 2.2. The main 

features of this spectrum are described below.  
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Figure 2.2. A HI spectrum resulting from the observing process shown in Figure 2.1.  

 

2.3.1 The axes on the spectrum 

A spectrum is a plot of the intensity of observed radiation (y-axis) against the frequency 

of that radiation (x-axis). Note that this is really a plot of discrete (x,y) pairs since the 

output from the spectrometer measures the intensity in a set of discrete frequency 

‘channels’. It is conventional to connect each adjacent (x,y) pair (i.e. adjacent in x) 

together to aid the interpretation of the data.  

 

The y-axis is labelled in a unit called the ‘Janksy’ (‘Jy’). The units W m-2 Hz-1 describe 

the power arriving per square metre of the antenna surface per unit frequency width. 

However, such small amounts of radiation are received from astronomical sources that 

the Jy is a more convenient unit. By definition 1 Jy = 10-26 W m-2 Hz-1 . 

 

The ‘Ra’ and ‘Dec’ labels refer to the ‘Right Ascension’ and ‘Declination’ of the 

position on the sky to which the telescope was pointing. Right Ascension and 

Declination describe the angular coordinates of a position on the sky. They are 

analogous to the longitude and latitude coordinate system on the Earth (see e.g. Duffet-

Smith 1988).  

 

2.3.2. The detected HI emission line 

The prominent peak in the spectrum in Figure 2.2 is due to HI emission from a galaxy. 

The galaxy is emitting over a range of frequencies and, hence, has been detected in 
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several frequency channels. If all the gas in the galaxy were stationary relative to the 

centre of that galaxy, then we would expect a very narrow emission line. However, in 

many galaxies, the gas is undergoing some kind of rotation about the centre of the 

galaxy. Some gas is moving towards us and some away from us (relative to the general 

motion of the galaxy). Due to the Doppler Effect (see Section 2.4.1), the HI emission 

from the gas moving towards us has its frequency shifted to higher frequencies and the 

gas away from us to lower frequencies. Hence, the observed HI profile is broadened by 

the rotation. This issue is discussed further in Section 2.4.4.  

 

2.3.3 The noise on the spectrum 

Outside the frequency range occupied by the galaxy, we expect zero radiation to be 

detected. However, the measured spectrum clearly deviates above and below the zero 

intensity level. This deviation from the expected function is known as ‘noise’.  

 

During an observation of an HI spectral line, the radiation associated with the emission 

line is generally a tiny fraction of the total power received by the antenna. At each 

frequency channel within the band, a large amount of thermal radiation is also detected. 

This comes mostly from the antenna and receiving system. During the data reduction 

process an attempt is made to remove this thermal radiation from the spectrum, leaving 

just the residual radiation from the galaxy. However, this cannot be done perfectly 

since the noise associated with the thermal radiation cannot be removed. This noise 

results from the fundamental uncertainty in the number of photons emitted by a thermal 

source in a given period of time. The probability function of the number of photons 

emitted in a given time interval forms a Poisson distribution about the mean number of 

photons emitted in that time.  

 

The following equation describes the root-mean-squared (rms) noise per channel on a 

HI spectrum:  

 

 σnoise  = 
tBW

Tsys

*
                                                                                                   (2.1) 

 

where Tsys is the ‘system temperature’ (a measure of the total power in the bandpass),  

BW is the width in frequency of a single channel and t is the integration (observing) 
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time (see e.g. Rohlfs 1986). The Poissonian nature of the noise means that the noise on 

the final spectrum only decreases as t . This places a strong constraint on the 

sensitivity which can be obtained by increasing integration time: to reduce the noise on 

a spectrum by a factor of 2, we have to increase the integration time by a factor of 4.  

 

2.4 Information in an HI Spectrum 

An HI spectrum can provide a great deal of information about the galaxy detected. This 

information is summarised in this section.  

 

2.4.1 The distance to the galaxy.  

All external galaxies with measured HI emission lines are found to have central 

frequencies of the 21-cm line shifted from the rest frequency of the line. The standard 

interpretation is that this is due to the Doppler effect, i.e. it occurs because the galaxy is 

moving either towards us (in a few cases) or (in most cases) away from us. The 

‘redshift’, z,  of a galaxy is defined as  

 

z  =  
rest

restobs

λ
λλ −

                                                                                                   (2.2) 

 

where �obs is the observed wavelength of the 21-cm line and �rest is the rest 

wavelength of the line. We can calculate the recession velocity, v, causing this Doppler 

effect via the equation   

 

v  =  cz                                                                                                                     (2.3) 

 

where c is the velocity of light (see e.g. Burke & Graham-Smith 2002).  

 

The Universe is believed to be expanding such that, on a large scale, all points within it 

are expanding away from all other points. The speed of this expansion is proportional 

to the distance between the two points. Hence, the further away from each other two 

galaxies are, the faster they are receding from each other. This is the generally held 

explanation for the fact that nearly all galaxies have redshifts that imply they are 

receding from our own.  
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It is standard practice to label the frequency axis of HI spectra in units of cz (km s-1) 

rather than frequency (MHz). This gives a useful indicator of the distance to a galaxy. 

According to Hubble’s law, the velocity of recession of a galaxy, v, is related to its 

distant, d (in Mpc), via the equation  

 

v = cz = Ho d                                                                                                            (2.4) 

 

where Ho is Hubble’s constant. Current measurements of Ho place it in the region 60 – 

80 km s-1 Mpc-1 (see e.g. Branch 1998). It is standard practice to assume a value of  

Ho=75 km s-1 Mpc-1. For example, if we have a galaxy with a cz = 6000 km s-1, then we 

can estimate its distance to be about 80 Mpc.  

  

2.4.2 Derived parameters from an HI profile 

Figure 2.3 shows a spectrum from the spiral galaxy UGC 02855. Note that the 

frequency axis is now labelled in units of Velocity (i.e. cz). This spectrum has been 

annotated to illustrate several parameters which can be derived from a spectrum.  

 

 

Figure 2.3. An HI spectrum of UGC 02855, annotated to show the parameters 

measured from an HI spectrum.  

 



 9

The Peak Flux, Spk, (measured in Jy)  is the largest measured flux value in any of the 

channels in which the galaxy is detected.  

 

The Integrated Flux, Sint, (measured in Jy km s-1) is the sum of the fluxes in all the 

channels in which the galaxy is detected.  

 

The Signal-To-Noise Ratio of a detection refers to the flux value of the detection 

compared to the rms noise in the data. If an emission line has a Spk = 60 mJy and the 

rms noise per channel in the spectrum is 15 mJy, then this detection has a ‘signal-to-

noise ratio’ of 4.  

 

The velocity-width of a profile is the frequency range over which the line is observed, 

expressed in cz units. This is commonly expressed as the velocity-width at half the Spk 

value (W50) or at 20% of the Spk value (W20).   

 

2.4.3 The mass of HI in a galaxy.  

This can be found using the equation 

 

MHI = 2.356 x 105 d2 Sint                                                                                                                                        (2.5) 

 

where MHI is measured in Mo (1 Mo = 2 x 1030 kg), d is measured in Mpc and Sint in Jy 

km s-1 (see e.g. Rohlfs 1986).  

 

2.4.4 The internal dynamics of the gas in the galaxy 

The velocity-width and profile shape of the HI emission line from a galaxy depend on 

both the intrinsic gas motions within the galaxy and the galaxy’s inclination to the line 

of sight. This is illustrated in Figure 2.4 which shows images of 3 galaxies along with 

their HI emission line profiles. The images were taken from the Digital Sky Survey 

(DSS). The DSS is a set of digitised photographic survey plates covering the whole sky. 

The DSS data from any position in the sky can be downloaded from 

http://archive.stsci.edu/cgi-bin/dss_form. This forms an invaluable resource to the 

community and will be utilised further in Chapter 6.  

 

 



 10

 

Figure 2.4.  Images from the Digital Sky Survey of three galaxies along with their HI 

spectra (from HIJASS).  

 

UGC 02855 (top panel) is a spiral galaxy, which is significantly inclined to the line of 

sight. This has a broad, double-peaked emission line profile with W20 ⊄ 450 km s-1. 

This ‘double-peaked’ profile is typical of that observed from spiral galaxies which are 

inclined to the line of sight. The HI in a spiral galaxy is usually rotating about the 

centre of the galaxy. However, it is only that component of this motion along the line of 

sight which will cause a Doppler shift  in the frequency of  the observed  radiation. If  a 
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galaxy  is inclined to the line of sight then that component of the HI moving towards us 

will be blueshifted (relative to the general redshift of the whole galaxy) and that 

component moving away from us will be redshifted. Hence, we see two peaks in the 

emission, each displaced from the canonical redshift of the galaxy. 

 

NGC 4393 (middle panel) is also a spiral galaxy. However, its spectrum has W20 ⊄ 

130 km s-1, much narrower than that of UGC 02855, although we still a double-peaked 

profile. As the image makes clear, NGC 4393 is much more face-on than UGC 02855. 

This makes the profile of NGC 4393 much narrower since the gas is moving at much 

smaller projected velocities along the line of sight (relative to the recession velocity of 

the galaxy).  

 

Holmberg I (bottom panel) is a dwarf galaxy in the nearby M81 Group. This has no 

disk or spiral structure and only turbulent motions in its internal gas. Hence, compared 

to the spiral galaxies, it has a very narrow velocity-width (W20 ⊄ 60 km s-1). 

 

2.5  HIPASS and HIJASS  

HIPASS was commenced in February 1997 and concluded in March 2002. HIPASS 

surveyed the entire southern sky, as well as the northern sky up to Declination = +25o. 

A cz range of –1280< cz < 12700 km s-1 was surveyed. This survey was made feasible 

by the fitting of a 13-beam ‘multibeam’ receiving system to the Parkes Radio 

Telescope in New South Wales (see Figure 2.5). This enables the telescope to observe 

13 closely-spaced positions on the sky simultaneously. A full explanation of the survey 

technique and data reduction process can be found in Barnes et al. (2001).  

 

Figure 2.5. The Parkes Radio Telescope and the 13-beam multibeam receiver (pictures 

courtesy of CSIRO).  
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HIJASS is surveying the northern sky above Declination = +22o, to similar sensitivity 

to HIPASS, using the Multibeam 4-beam receiver mounted on the 76-m Lovell 

Telescope at the Jodrell Bank Observatory, Cheshire (see Figure 2.6). HIJASS was 

begun in 2000.  

 

Figure 2.6.  The 76m Lovell telescope at Jodrell Bank.   

 

As expected, HIPASS and HIJASS have added significantly to the census of the local 

extragalactic population. Highlights from HIPASS include the discovery of 10 new 

members to the nearby Cen A group of galaxies (Banks et al. 1999) and the most 

sensitive determination of the HI mass function yet published (Zwaan et al. 2003a). 

HIJASS highlights include the discovery of a new member of the nearby M81 group of 

galaxies (Boyce et al. 2001). A catalogue of confirmed sources from the HIPASS 

survey, ‘HICAT’, has been submitted for publication (Meyer et al. 2003, Zwaan et al. 

2003b). Lang et al. (2003) have published a catalogue of confirmed sources from the 

first part of the HIJASS survey.  

 

2.6 Characteristics of a HIPASS/HIJASS datacube.  

The final result of the survey and data reduction process with both HIPASS and 

HIJASS (see Barnes et al. 2001) is a 3-dimensional ‘datacube’. The characteristics of 

these datacubes are described in this section.  

 

The datacube can be considered to be a collection of spectra. Each (x,y) coordinate pair 

represents a spatial position on the sky (measured in Right Ascension and Declination). 
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The ‘z’ axes represents the measured 21-cm spectrum at that position. HIJASS/HIPASS 

datacubes are stored as 3-dimensional ‘FITS’ (Flexible Image Transfer System) 

images. FITS is an image format designed to enable the transfer of astronomical images 

between different software packages.  

 

Pixels in multi-dimensional astronomical images are generally referred to as ‘voxels’. 

Each voxel along the x and y axes of a datacube represents 4 arcmin on the sky. A 

typical datacube has 150 voxels in the Right Ascension (x) dimension and 150 in the 

Declination (y) dimension (equivalent to about 8o x 8o area of sky). The z axis has 1024 

voxels corresponding to the 1024 channels of the spectra produced by the multibeam 

spectrometers. The frequency width of each z-channel is 13.4 km s-1.  

 

 

Figure 2.7.  A ‘slice’ though a HIJASS datacube showing Declination against Velocity 

(cz) for a single Right Ascension plane.  

 

Reducing the data into datacube format makes the process of analysing the data easier 

than if the final dataset simply consisted of a set of spectra. One can still view the 

spectrum at any (x,y) position but, in addition, the data can be viewed as a set of 2-
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dimension ‘slices’ through the datacube. Figure 2.7 is a plot of Declination against cz 

for a single Right Ascension (‘x’) plane. The source HIJASS J1335+6615 can be seen 

at Declination=66.25o, cz = 3050 km s-1. This has been identified as the spiral galaxy 

UGC08604. There is also a large signal close to 0 km/s at all Declinations. This is due 

to HI emission from our own Galaxy (around cz = 0 km s-1). The standard data 

reduction process does not fully remove this radiation from the final spectra and its 

residue is seen on the plot. 

 

 

 

Figure 2.8. Spectra from different (x,y) positions of the same HIJASS datacube 

showing the differing effects of narrow-line RFI emission at cz = 2640 km s-1. 

 

There are two main problems which beset HIPASS and HIJASS data. Firstly, several z-

channels in a HIPASS / HIJASS datacube can be affected by locally-based radio 

frequency interference (RFI). Figure 2.8 shows two spectra from different (x,y) 

positions in the same HIJASS datacube. This datacube suffers from RFI at cz = 2640 
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km s-1. In the top panel the RFI is producing a peak in the spectrum which could easily 

be mistaken for a narrow velocity-width galaxy. In the bottom panel, however, the RFI 

is producing a negative peak in the spectrum.  The intensity of the peaks and troughs 

produced by the interference vary throughout the datacube.   

 

The second problem, known as “baseline ripple” is illustrated in Figure 2.9. Instead of a 

flat spectrum (with noise), this spectrum has a baseline with a periodic rise and fall. 

This results when standing waves are formed between the focus box and dish of the 

telescope. Figure 2.9 represents one of the worst examples of baseline ripple. Many 

cubes are hardly affected.  

 

 

Figure 2.9. A HIJASS spectrum which suffers from ‘baseline ripple’.   

  

2.7 Detecting galaxies in HIPASS / HIJASS datacubes 

The process of finding galaxies in HIPASS / HIJASS datacubes is outlined in this 

section. This includes a discussion of the contribution which automatic finding 

algorithms can make to this process.  

 

The basic process of finding galaxies in a HIPASS / HIJASS datacube involves an 

astronomer undertaking a ‘visual inspection’ of the datacube by examining each 

Declination-Velocity slice (see Figure 2.7) and also the set of Declination-Right 

Ascension slices for each cz channel. The astronomer is essentially looking for places 

where the signal is significantly above the noise level in several contiguous z-channels.  
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Figures 2.8 and 2.9 illustrate 2 problems which the astronomer has to overcome. 

Firstly, local RFI can easily be confused with a weak narrow velocity-width galaxy. 

Secondly, the effects of baseline ripple can act so as to mask real galaxies in the data, 

but extenuate random fluctuations in the noise and make them appear like real galaxies.  

 

One advantage an astronomer has is that a real galaxy will be detected in several 

adjacent (x, y) positions. This is because the beam widths of the telescope (14 arcmin 

for Parkes and 10 arcmin for the Lovell) are broader than the spatial (i.e. Right 

Ascension and Declination) voxels (4 arcmin) so even a source not resolved by the 

telescope (i.e. having a smaller projected size on the sky than the telescope beam) 

occupies around 3 x 3 spatial voxels. Nearly all sources are actually unresolved by the 

beam.  

 

The end result of such a visual inspection is a list of identified sources. These are 

graded either as ‘definite’ (i.e. those which the astronomer considers undoubtedly real) 

or ‘possible’ detections (generally sources with lower peak or integrated flux values or 

which the astronomer suspects may be the result of RFI or baseline ripple). The 

‘possible’ sources have to re-observed in order to determine if they are real or not. This 

is done by pointing a radio telescope directly at each source, using a smaller bandpass 

(to improve velocity resolution) but longer integration time (to improve signal-to-noise) 

than in the survey data. This process, known as ‘narrow-band follow-up’ is an essential 

part of creating a catalogue of confirmed sources from HIPASS / HIJASS data.  

 

Obviously, the astronomer wants to find the faintest sources possible within the data. 

However, the fainter an astronomer tries to delve into the data, the more likely it is that 

random configurations of the noise will be misidentified as galaxies. The human eye 

tends to select galaxies on the basis of their peak flux, Spk. Hence, the sample produced 

by a visual search will be “peak-flux limited”, i.e. all galaxies with Spk above some 

peak flux limit will be included in the sample. This peak flux limit (the ‘completeness 

limit’) is usually expressed in terms of the rms noise per channel in the data, �noise. For 

example, if the rms noise in the data is 15 mJy per channel and the selection process 

finds all galaxies with Spk > 75 mJy, then we can say that the sample has a 

‘completeness limit’ of  5�noise. Some galaxies will still be found with Spk below the 
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completeness limit, but at Spk values below this limit, the human eye is not finding all 

the galaxies in the data. Below some Spk value no galaxies at all are detected. This is 

known as the ‘detection limit’.  

 

The sample of galaxies selected by visual inspection is not complete above any 

integrated-flux limit. For example, 2 galaxies may the same integrated flux, Sint, but 

one of them have a much broader velocity-width and hence lower Spk. One of these 

galaxies may be included in a visually selected sample and the other not. Ideally, we 

would like to create a sample that included all galaxies above a given HI mass (at a 

given distance). A galaxy’s HI mass is related to its integrated flux (Equation 2.5). 

Hence, we would require an integrated flux limited sample (i.e. where all galaxies 

above a given Sint are included) rather than a peak flux limited sample.  

 

Whilst an astronomer must have overall control of the process of finding galaxies in a 

HIPASS / HIJASS datacube, there is significant scope for an automatic finding 

algorithm to assist in this process. To be of value an automatic finding algorithm must 

be capable of fulfilling one or both of two functions: 

1. Find galaxies that are missed by a visual inspection. If an algorithm could detect 

sources which are not easily seen in a visual inspection, then it would be highly 

valuable.  

2. Save an astronomer the task of visual inspection at all. To be useful in such a 

context, the algorithm must be capable of finding all those sources that would 

have been found in a visual inspection.  

 

Three automatic finding algorithms have thus far been written. MultiFind (Kilborn 

2001) and PolyFind (Minchin 2001) are both based around the idea of searching each 

spectrum in a datacube for peaks in the emission which are greater than a specified 

peak flux density, expressed in terms of an estimated value for the rms noise in the 

spectrum. MultiFind (Meyer et al. 2003) cross-correlates spectra with top-hat profiles 

of various scales: a feature is detected if it rises above a threshold value (determined by 

the variance of the noise) in the convolved spectrum.  

 

The published HIJASS catalogue (Lang et al. 2003) was created by astronomers 

visually searching the datacubes and then subjecting ‘possible’ sources to narrow-band 
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follow-up to confirm or reject them as galaxies. The PolyFind algorithm was also run 

over every datacube. PolyFind actually missed a significant fraction of the sources 

found by a visual search, but did identify a small number of sources not found by the 

visual search. However, PolyFind also returned large numbers of spurious sources.  

 

The HIPASS catalogue (HICAT: Meyer et al. 2003) made use of MultiFind and 

TopHat. A main candidate list was created by running each of these finders over all the 

datacubes. All the candidates were then examined visually by astronomers.  Both 

finders returned a large number of spurious candidates which had to be rejected at this 

stage. Those candidates graded as ‘possible’ by the astromomers were subjected to 

narrow-band follow-up to confirm or reject them as galaxies.  

 

The resulting HIJASS and HIPASS catalogues are both peak flux limited. The HIJASS 

catalogue has a completeness limit at Spk ⊄5�noise and has a detection limit at Spk 

⊄3�noise (Lang et al. 2003). HICAT has similar completeness and detection limits 

(Zwaan et al. 2003b), suggesting that MultiFind and TopHat do not find galaxies to 

significantly fainter flux limits than does a visual search.  

 

Clearly, an automatic finding algorithm which could find galaxies to significantly lower 

limiting HI flux values than can a visual search would be extremely valuable. None of 

the present finders is able to.  

 

2.8 Concluding remarks 

This chapter has provided some background information necessary to understand the 

need for, and the role of, an application which can automatically detect possible sources 

from HIPASS / HIJASS data. In Chapter 3, the application of the Gamma Test to this 

problem is investigated.    
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3. Applying the Gamma Test to HIPASS and HIJASS Data 

 

3.1 Introduction 

The possible applications of the Gamma Test to the analysis of HIPASS / HIJASS 

datacubes are discussed in this chapter. The Gamma Test itself is described in Section 

3.2. Its utility for measuring the noise in HI spectra and for detecting discontinuities in 

the spectra is considered in Section 3.3. The ability of the Gamma Test to find z-

channels suffering from RFI is considered in Section 3.4. The ability of the Gamma 

Test to select possible galaxies from HIPASS / HIJASS data is described in Section 3.5. 

Three procedures which utilize the Gamma Test to analyse properties of HIPASS / 

HIJASS datacubes are presented in Section 3.6. These (a) measure the average noise; 

(b) find z-channels affected by RFI; (c) select potential sources. Some concluding 

remarks are made in Section 3.7.  

 

3.2 The Gamma Test 

A full description of the Gamma Test can be found in Jones et al. (2002a) and a proof 

in Evans and Jones (2002). A brief description is given in this section.   

 

Suppose we are given a set of input-output data of the form { (xi, yi) | 1 � i � M } where 

we can think of the vector x � �m as the input (confined to some closed bounded set C 

� �m) and the corresponding scalar y � �� as the output, i.e. we assume that, in some 

sense, y is determined by x. Suppose that the underlying relationship is of the form  

 

y = f(x) + r                                                                                                                  (3.1) 

 

where f is a smooth function representing the system and r is a random variable 

representing noise. The expected value of the noise variable r may be assumed to be 

zero, since any constant bias can be absorbed into the unknown function f. Despite the 

fact that f is unknown, subject to the condition that f has bounded first and second 

partial derivatives over the input space C, the Gamma Test provides an estimate for the 

noise variance, Var(r). This estimate is known as the Gamma Statistic, denoted by �.  

 

Let x and x’ be any two points of the input space C. The corresponding outputs will be 
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 y = f(x) + r                                                                                                                 (3.2) 

and  

y’ = f(x’) + r�                                                                                                               (3.3) 

Hence: 

½(y’ - y)2 = ½( (r’ - r) + (f(x’) – f(x) ) )2                                                                        (3.4) 

The continuity of f implies that:  

| f(x’) - f(x) | � 0      as         | x’ - x | � 0                                                                    (3.5) 

Therefore  

½(y’ - y)2  � ½(r’ - r) 2      as         | x’ - x | � 0                                                           (3.6) 

Taking the expectation of both sides of Equation 3.6 

 ( ½ (y’ - y)2 )  � Var(r)     as         | x’ - x | � 0                                                         (3.7) 

 

However, given any finite data set we cannot evaluate this limit directly. Instead the 

Gamma Test computes an estimate of Var(r) by comparing the relationship between 

pairs of nearest neighbour input values and the corresponding output values.  

 

For any ordered sets of points T= {x1,..., xM}, the q-th nearest neighbour of any point xi 

is uniquely defined as follows. The first nearest neighbour of xi is that point xj1 � T 

\{xi} having minimal distance from xi and minimal index j1. The second nearest 

neighbour of xi is that point xj2 � T \{xi , xj1} having minimal distance from xi and 

minimal index j2. In general, the q-th nearest neighbour of xi is that point xjq � T \{xi , 

xj1, …, xjq-1} having minimal distance from xi and minimal index jq. Ordering equidistant 

points (e.g. the channels in a spectrum) by their indices in this way means that every 

point xi has a uniquely defined q-th nearest neighbour.  

 

Let xN[i,q] denote the q-th nearest neighbour of the point xi in the set {x1,..., xM} and let 

yN[i,q]  denote the associated output value. We can compute a sequence of estimates for  

( ½ (y’ - y)2 )  by the sample means: 
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M(q) = 
M2

1
 ∑
=

M

i 1

| yN[i,q] – yi|
2                                                                                                                             (3.14) 

 

where |.| denotes the Euclidean distance. In each case, we can obtain an indication of 

the “error” by computing the mean squared distance between the q-th nearest 

neighbours, defined by: 

 

M(q) =  
M

1
 ∑
=

M

i 1

| xN[i,q] – xi|
2                                                                                                                             (3.15) 

 

It can be shown (Evans and Jones 2002) that there exists some constant A such that  

 

M(q) �����������	� M(q) ��
� M(q))         a�������� M(q) � 0                                    (3.16) 

 

The Gamma Test is, therefore, conducted by computing the pairs ( M���
 M(q))  for 1 ��

q ��p and performing linear regression on these points. This process is illustrated in 

Figure 3.1. The Gamma Statistic � is the constant term of this regression line. 

 

������ M(q ) 

 ( M���
 M(p)) 

 

 . 

  �             ( M���
 M(1)) 

 

 M(q) 

  Figure 3.1. The Gamma Test regression plot.         

 

3.3 Applying the Gamma Test to HIPASS / HIJASS spectra 

The initial impetus for applying the Gamma Test to HI spectra was to test whether it 

provided an accurate way of determining the variance of the noise on the spectra. This 

section describes the results of tests of its utility for this purpose. However, as also 

illustrated in this section, it was found that the Gamma Test is also an effective way of 

detecting discontinuities in a spectrum.  
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A HI spectrum, at a given (RA, Dec) position, in a HIJASS / HIPASS datacube consists 

of a set of z-channels (each representing a particular cz). Each z-channel has a 

corresponding intensity value (in mJy). We can regard the z-channel numbers as the 

input data (x) and the intensity values as the output values (y). In this case, each input x 

vector consists of only one component, the z-channel number. Assuming that the output 

is related to the input via an underlying relationship of the form  

 

y = f(x) + r                                                                                                                (3.18) 

 

where f is a smooth function and r is a stochastic variable which represents noise, then 

we should be able to apply the Gamma Test to the data and, hence, be able to estimate 

the variance of the noise on the spectrum. The conventional way to express the noise 

level in an HI spectrum is as the rms noise per channel. Hence, the input values (x) 

must be expressed in units of  z-channel number (not in MHz or km s-1) and the output 

values (y) in units of Jy.   

 

Figure 3.2(a) shows an artificial spectrum generated using the Mathematica software 

package. The spectrum was generated with a noise variance of 0.000225 Jy, equivalent 

to an rms noise of 15 mJy per channel (typical of HIPASS / HIJASS spectra). The 

spectrum has 300 channels. A Gamma Test was run on this spectrum using the 

winGamma application (Durant 2001). A returned value of � = 0.000233 was obtained 

when running the Gamma Test on all 300 channels (using the default maximum 

number of nearest neighbours, p=10).  The rms noise obtained by taking the square root 

of this is 15.3 mJy, very close to the actual value. 
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Figure 3.2(a) an artificial spectrum with an rms noise per channel of 15 mJy; (b) as in 

(a) but with a baseline ripple with period = 150 channels and peak to peak intensity  !30 

mJy. (c) as in (b) but containing a narrow emission line with W20 = 60 km s-1 and Spk = 

100 mJy. 

 

Figure 3.2(b) shows an artificial spectrum with the same rms noise as in Figure 3.2(a). 

However, in this example a simulated baseline ripple with a period of 150 channels has 

been added, typical of that seen in HIPASS / HIJASS datacubes. The peak to peak 

intensity variation of this ripple is !30 mJy, among the worse values found in real 

HIPASS / HIJASS data. The Gamma Test was also run on this spectrum. A returned 

value of � =  0.000248 was obtained, equivalent to an rms noise of 15.7 mJy per 

channel. Because the baseline ripple can be described by a smooth function, the 

Gamma Test still returns a reasonably accurate estimate of the noise. 

 

Figure 3.2(c) shows the same spectrum as in Figure 3.2(b) except that a simulated HI 

emission line has been added with W20=60 km s-1 and Spk=100 mJy. The presence of 

the emission line on a spectrum may cause the assumption of a smoothly varying 

function to be broken and the Gamma Test to fail to return an accurate estimate of the 

noise. Running the Gamma Test over all channels on this spectrum returns a � = 

0.000310, leading to an estimate of the rms noise of 17.6 mJy. This invalidates the 
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utility of the Gamma Test (used in this way) to measure the noise on the spectrum. 

However, it does suggest that the Gamma Test could be used to detect the presence of a 

discontinuity in a spectrum, since the � value from a section of the spectrum containing 

the discontinuity may be much higher than the � from any section not containing the 

discontinuity.  

 

Figure 3.3. Result of running a ‘moving-window’ Gamma Test (window size=11 

channels, p=10), using winGamma,  on the spectrum shown in Figure 3.2(c).  

 

This effect is illustrated in Figure 3.3 which shows the result of running a ‘moving-

window’ Gamma Test on the spectrum in Figure 3.2(c). The ‘moving-window’ Gamma 

Test undertakes a Gamma Test centered on each channel in the input spectrum. Each 

Gamma Test is conducted inside a ‘window’ of a fixed number of channels. In Figure 

3.3, a window size of 11 channels was used and a maximum number of nearest 

neighbours, p=10. Figure 3.3 shows the resulting  � returned for each channel of the 

input spectrum. 

 

There is a sharp peak in � (0.002272) at the position of the spectral line. Elsewhere, the 

returned � values are distributed around the input variance of 0.000225. In fact, the 

window size of 11 was chosen because this window size was found to produce the 

largest peak in � at the position of the spectral line compared to the returned � values 

for the rest of the spectrum. A comparison of Figures 3.2(c) and 3.3 illustrates that 

using a moving-window Gamma Test can be a highly effective way of detecting 

discontinuities in a spectrum.  
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Central to the operation of the Gamma Test is the comparison of the output (y) values 

from neighbouring input (x) points. Since the Gamma Test assumes a smooth 

underlying function, if the y values between neighbouring x positions are widely 

divergent, this is considered to be due to noise. The sharp peak in Figures 3.2(c) is due 

to an emission line, not noise. However, the Gamma Test in effect is still trying to 

calculate the variance of the noise, but the whole of the signal caused by the 

discontinuity is being treated as an instance of noise. A very high � is returned since 3 

of the channels in the window have widely divergent output (y) values compared to 

those of the other channels. 

 

A moving-window Gamma Test can also be used to return a reasonably accurate 

estimate of the variance of the noise, despite the presence of a spectral line. Each 

Gamma Test is estimating the noise within its 11-channel window. Clearly those 

Gamma Tests which have the spectral line within their window will give very 

inaccurate measures of the noise. Nonetheless, by taking the median of the returned � 

values, a typical value of � for the spectrum can be derived. The median value of � in 

the ‘gamma-spectrum’ of Figure 3.3 is 0.000251, equivalent to an rms noise of 15.8 

mJy. This is very similar to the returned � from running a Gamma Test using all 300 

channels on spectrum in Figure 3.2(b) (i.e. without the spectral line).  

 

3.4 Using the Gamma Test to detect RFI in HIPASS / HIJASS data 

The utility of the Gamma Test to detect discontinuities in the spectra was demonstrated 

in Section 3.3. The application of this to detecting RFI in spectra is considered in this 

section.  

 

Figure 3.4(a) shows a section of a HIPASS spectrum. The narrow ‘spike’ seen to 

positive intensities is due to local RFI and could potentially be confused with a narrow 

velocity-width galaxy. Figure 3.4(b) shows the result of running a ‘moving window’ 

Gamma Test over this spectrum using a window size of 11 channels. The maximum 

number of nearest neighbours used is p=15 (as opposed to winGamma’s default value 

of 10) since this was found to give the optimum peak in the returned � value at the 

position of the RFI ‘spike’. (Note that Figure 3.4 and subsequent ones were produced 

using a prototype of GammaFinder, since winGamma does not permit a p value larger 
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than the window size – see Section 6.2.) The spectrum in the lower panel of Figure 

3.4(b) shows the resulting � from each test (henceforth referred to as the ‘gamma 

spectrum’).  There is a sharp peak in the gamma spectrum at the position of the RFI 

‘spike’. 

 

 

Figure 3.4. (a) 160 channel-wide (2100 km s-1) section of a HIPASS spectrum with a 

‘spike’ to positive intensities due to local RFI; (b) The ‘gamma spectrum’ resulting 

from running a moving-window Gamma Test (window size = 11 channels, p=15) over 

the spectrum in (a).  

 

Figure 3.5(a) shows part of another spectrum from a different (x,y) position of the same 

HIPASS cube shown in Figure 3.4(a). This spectrum also contains a ‘spike’, this time 

seen to negative intensities. This spike is due to the same RFI as that seen in Figure 

3.4(a) and, consequently, is at the same frequency. Figure 3.5(b) shows the result of 

running a moving window Gamma Test over the spectrum in (a). Again, the gamma 

spectrum shows a very pronounced peak at the frequency of the RFI.  

 



 27

 

Figure 3.5. (a) 160 channel-wide (2100 km s-1)  section of a HIPASS spectrum with a 

‘spike’ to negative intensities due to local RFI; (b) The ‘gamma spectrum’ resulting 

from running an 11-channel wide (p=15) moving-window Gamma Test over the 

spectrum in (a). 

 

The peak fluxes of the ‘spikes’ seen in Figures 3.4(a) and 3.5(a) are only about a factor 

2.5 above the rms noise in the spectra. However, the peak � in the gamma spectra in 

Figures 3.4(b) and 3.5(b) are about a factor of 7 above the rms variation in the gamma 

spectra. Hence, it will be easier to detect RFI from the gamma spectra than the raw 

data, especially since the peak in the gamma spectrum is always to positive intensities.  

 

3.5 Using the Gamma Test to detect galaxies in HIPASS / HIJASS data 

The utility of the Gamma Test to detect discontinuities in the spectra was demonstrated 

in Section 3.3. The application of this to detecting galaxies in the data is considered in 

this section. 

 

Figure 3.6(a) shows part of a spectrum from a HIJASS cube. This spectrum includes 

the HI emission line from the galaxy UGC 05701. This galaxy has one of the smallest 

peak flux values (Spk = 56 mJy) and narrowest velocity-widths (W20 = 70 km s-1) in the 

HIJASS Catalogue (see Lang et al. 2003).  
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Figure 3.6. (a) 170-channel wide (2200 km s-1) section of a HIJASS spectrum showing 

the emission line from UGC05701; (b) The spectrum shown in (a) after smoothing by a 

Hanning function with FWHM = 2 channels; (c) The gamma spectrum derived from the 

Hanning smoothed spectrum in (b) (11-channel window, p=15). 

 

Figure 3.6(b) shows the spectrum which results from smoothing the spectrum in Figure 

3.6(a) by a Hanning function with a FWHM of 2 channels. The technique of “Hanning 

smoothing” (see e.g. Blackman and Tukey 1959) is commonly used on radio spectral 

line data in order to reduce the level of noise on the data. The Hanning function is given 

by A(x) = ½ [ 1 + cos( �x/a ) ] where a is the FWHM. The intensity value of a channel 

in a Hanning smoothed spectrum (with FWHM = 2 channels) is dependent on the value 

of that channel and of the 2 adjacent channels in the unsmoothed spectrum. In order to 

produce a smoothed spectrum in which the channels are still independent, it is usual to 

include in the output spectrum only every other channel from the original.   

 

If the noise is Poissonian in nature, then Hanning smoothing with FWHM = 2 channels 

should reduce the noise by a factor of 1.414. The smoothing process reduces the 

frequency resolution to twice the original channel width, i.e. to 26 km s-1 for HIPASS 

and HIJASS data. Hence, whilst Hanning smoothing may improve the detectability of a 

source (by reducing the noise) details in the original spectrum may be lost. It is also 
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possible that a very narrow velocity-width source may actually have its peak flux 

significantly reduced as it is averaged with surrounding pixels. However, most galaxies 

have intrinsic HI velocity-widths much larger than 26 km s-1 and there is usually little 

danger as far as detectability goes in applying a Hanning filter with FWHM of 2 

channels.  

 

Figure 3.6(c) shows the result of running a moving window Gamma Test over the 

Hanning smoothed spectrum shown in Figure 3.6(b). Exactly the same window size (11 

channels) and maximum number of nearest neighbours (p=15) were used as in Figures 

3.4 and 3.5. Note that both the Hanning smoothed spectrum and the gamma spectrum 

have only half the number of channels as the raw spectrum. However, all three have 

been plotted on the same cz scale to allow comparison.  

 

A very strong peak is seen in the gamma spectrum at the position of the HI emission 

line. Whilst the peak flux of the emission line on the raw spectrum is about a factor of 3 

above the rms noise level, the peak in the gamma spectrum is about a factor of 10 

above the rms variation in the gamma spectrum. A moving window Gamma Test is 

clearly a highly effective way of finding narrow velocity-width galaxies.  

 

Figure 3.7(a) shows a spectrum from a HIJASS cube showing the galaxy UGC 06552. 

This also has a small peak flux value (Spk = 62 mJy) but has a broader velocity-width 

(W20 = 273 km s-1) than UGC05701. Figure 3.7(b) shows the result of smoothing this 

spectrum with a Hanning function with FWHM = 2 channels. Figure 3.7(c) shows the 

resulting gamma spectrum from running a moving window Gamma Test over this 

Hanning smoothed spectrum. In this example, no significant peak is seen in the gamma 

spectrum to mark the position of the galaxy’s HI line.  

 

A moving window Gamma Test is far more effective at detecting a discontinuity in a 

spectrum if that discontinuity only occupies a small number of the channels in the 

window. In the Hanning-smoothed spectrum of Figure 3.7(b), UGC 06552 occupies 6 

of the 11 channels in the Gamma Test window. Whilst it has a similar peak flux to 

UGC 05701, this latter source occupied only 3 of the 11 channels in the Gamma Test 

window (Figure 3.6(b)). That the Gamma Test was far more effective at detecting UGC 

05701 is not surprising since the Gamma Test is effectively measuring an average of 
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the difference between the intensity values between neighbouring channels. If more of 

the pixels within the window are actually part of the galaxy then this average difference 

will be smaller. This implies that the Gamma Test is less effective at detecting broader 

velocity-width galaxies.  Fortunately, this problem can be overcome. 

 

Figure 3.7. (a) 290-channel (3800 km s-1) wide section of a HIJASS spectrum 

including the emission line from UGC 06552; (b) The spectrum shown in (a) after 

smoothing by a Hanning function with FWHM = 2 channels;  (c) The gamma spectrum 

derived from the Hanning smoothed spectrum shown in (b) (11-channel window, 

p=15); (d) The spectrum shown in (a) after smoothing by a Hanning function with 

FWHM = 4 channels; (e) The gamma spectrum derived from the Hanning smoothed 

spectrum shown in (d) (11-channel window, p=15). 

 

Figure 3.7(d) shows the result of smoothing the original spectrum by a Hanning 

Function with a FWHM of 4 channels. In such a smoothed spectrum, the value of every 

channel is dependent on the value of that channel and the 6 nearest channels in the 

original spectrum. Therefore, only every 4th channel is retained in the smoothed 

spectrum. Smoothing by FWHM = 4 channels will reduce the frequency resolution to 

52 km s-1, but should reduce the noise by a factor of 2. However, whereas the galaxy 

occupied 6 channels in the FWHM = 2 channel Hanning smoothed spectrum, it 

occupies only 3 channels in the FWHM = 4 channel Hanning smoothed spectrum. 

Figure 3.7(e) shows the result of running a moving-window Gamma Test over the 
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spectrum in Figure 3.7(d). The galaxy is now very clearly detected.  

 

 

Figure 3.8. (a) 320-channel (4200 km s-1) wide section of a HIJASS spectrum 

containing the emission line from the galaxy UGC6434; (b) The spectrum shown in (a) 

smoothed by a Hanning function with FWHM of 4 channels; (c) The gamma spectrum 

derived from the Hanning smoothed spectrum shown in (b) (11-channel window, 

p=15); (d) The spectrum shown in (a) smoothed by a Hanning function with FWHM 8 

channels; (e) The gamma spectrum derived from the Hanning smoothed spectrum 

shown in (d) (11-channel window, p=15).   

 

This technique can be extended further. Figure 3.8(a) shows the HIJASS spectrum of 

UGC 6434. This galaxy also has one of the lowest peak flux values (Spk = 61 mJy) in 

the HIJASS catalogue, but has one of broadest velocity-widths (W20=340 km s-1). 

Figure 3.8(b) shows the spectrum after being smoothing by a Hanning function with 

FWHM = 4 channels. Figure 3.8(c) shows the gamma spectrum derived from this 

spectrum. Only a very modest peak is seen in � at the position of the emission line. For 

such a broad velocity-width, even in the FWHM = 4 channels Hanning smoothed 

spectrum, the galaxy is occupying 6 channels. However, Fig 3.8(d) shows the result of 

Hanning smoothing the original spectrum with a FWHM = 8 channels. The value of a 

channel in the smoothed spectrum is dependent on the value of that channel and the 14 

nearest channels in the original spectrum. Hence, only every 8th channel is retained in 

the smoothed spectrum. The frequency resolution is reduced to 104 km s-1. However, 

the number of channels in which the galaxy is detected is only 3: it represents a 
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significant discontinuity in the smoothed spectrum. 

 

Figure 3.8(e) shows the gamma spectrum derived from Figure 3.8(d). The very broad 

velocity-width source creates a very high peak in �. The apparent broadness of the peak 

is slightly misleading. It should be remembered that this spectrum has only 1/8 of the 

pixels of a raw spectrum. Also, only about 38% part of the spectrum is being plotted. 

The rest of the spectrum contains sufficient data points to provide a baseline against 

which the peak can be detected.  

 

This section has presented a discussion of how the Gamma Test can be used to detect 3 

galaxies. These galaxies were chosen from those with the lowest Spk values in the 

HIJASS catalogue, but represent the full range of velocity-widths of galaxies in the 

catalogue. By Hanning smoothing the data by an appropriate FWHM, all three could be 

easily detected by running a moving-window Gamma Test over the smoothed 

spectrum. The use of three smoothing FWHMs (2, 4 and 8) enables a search to be made 

for galaxies over a velocity-width range from about 50 km s-1 to  400 km s-1, more or 

less the range measured for known galaxies.  

 

3.6 Procedures for analysing  HIPASS / HIJASS datacube  

As explained in Sections 3.3, 3.4 and 3.5, there are three main types of analysis of a 

HIPASS / HIJASS datacube for which the Gamma Test can be utilized: measuring the 

variance of the noise, finding z-channels affected by RFI and finding possible sources.  

In this section three procedures are presented to undertake each of these types of 

analysis.   

 

The findNoise procedure estimates the average noise in a datacube. The procedure 

runs a moving-window Gamma Test (11-channel window, p=15) over the z-channel 

spectrum at every spatial position in the datacube. It then finds the average variance of 

the noise in the datacube by taking the median value of all the returned � values. 

Choosing the median value means that a ‘typical’ value of variance will be returned, 

i.e. not one derived from a channel affected by RFI , an emission line or residue 

Galactic emission. The average (rms) noise is derived by taking the square root of the 

variance.  
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The findBadZChans procedure finds those z-channels affected by RFI in a 

datacube. For each z-channel, a median value is found of the � resulting from running a 

Gamma Test centred at every (i,j) position in that channel (window size of 11, p=15). If 

the z-channel suffers from RFI then this value will be significantly larger than if the 

channel does not suffer from RFI. The median � for each z-channel is copied to the 

array medGamInChan. The median value from within this array, medGam, is then 

found. Finally, the value of  medGamInChan for each channel is compared with 

medGam. If the former is less or equal to a factor of 1.5 times the latter, than the 

channel is considered to be free of RFI and the appropriate value of the Boolean array 

zChanQual is set to true (else it is set to false). 

Procedure findNoise( cube(xpix,ypix,zpix) ) 
 
for i= 1 to xpix do 
   for j = 1 to ypix do 
      for k = 1 to zpix do  
       
      gamStat(i,j,k) �  from cube(i, j, k–5 � k+5), p =15  
                         
     end for     
   end for 
end for 
 
averageVariance � median [ gamStat(i, j, k) ] 
 
averageNoise = sqrt( averageVariance ) 
 
return averageNoise  
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The  findGals procedure finds possible sources in a datacube. This has three main 

stages.  

 

Firstly, three Hanning smoothed spectra are derived from the spectrum at each (i,j) 

position, using FWHMs of 2, 4 and 8 channels respectively.   

 

Secondly, at each (i,j) position, a moving window Gamma Test (11-channels, p=15) is 

run on each of these 3 smoothed spectra, resulting in 3 ‘gamma spectra’. 

Procedure findBadZChans( cube(xpix,ypix,zpix) ) 
 
zChanQual(zpix) � Boolean array to note which z-Channels are  
                  affected by RFI. All values set to ‘false’ 
 
for k = 1 to zpix do  
l � 0 
   for i= 1 to xpix do 
      for j = 1 to ypix do  
       
      gamStat(l) �  from cube(i, j, k–5 � k+5), p=15  
      l++  
 
     end for     
   end for 
 
   medGamInChan(k) � median( gamStat ) 
 
end for 
 
medGam � median( medGamInChan ) 
 
 
for k = 1 to zpix do 
 
   if medGamInChan(k) <= medGam * 1.5 
      zChanQual(k) = true     
 
end for      
  
return zChanQual 
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Procedure findGals( cube(xpix,ypix,zpix) ) 
 
gamThres � a number used to determine if a peak in a gamma  
            spectrum is significant or not 
 
for i= 1 to xpix do 
   for j = 1 to ypix do 
 
      h2Spec(i,j) � spectrum at cube(i,j) smoothed by  
                     Hanning function with FWHM = 2 channels 
 
      h4Spec(i,j) � spectrum at cube(i,j) smoothed by  
                     Hanning function with FWHM = 4 channels 
  
      h8Spec(i,j) � spectrum at cube(i,j) smoothed by  
                     Hanning function with FWHM = 8 channels 
   end for 
end for 
 
for i= 1 to xpix do 
   for j = 1 to ypix do 
 
      g2Spec(i,j) � ‘gamma spectrum’ from 11-ch, p=15 moving-    
                      window Gamma Test on h2Spec(i,j) 
 
      g4Spec(i,j) � ‘gamma spectrum’ from 11-ch, p-15 moving- 
                     window Gamma Test on h4Spec(i,j) 
 
      g8Spec(i,j) � ‘gamma spectrum’ from 11-ch, p=15 moving- 
                     window Gamma Test on h8Spec(i,j) 
   end for 
end for 
 
for i = 1 to xpix do 
   for j = 1 to ypix do 
      for k = 1 to zpix do 
 
         if ( g2Spec(i,j,k) > gamThres*median( g2Spec(i,j) ) 
             && g2Spec(i,j,k) is a peak )  ) 
            Output i, j, k, g2Spec(i,j,k)  
 
         if ( g4Spec(i,j,k) > gamThres*median( g4Spec(i,j) ) 
             && g4Spec(i,j,k) is a peak )  ) 
            Output i, j, k, g4Spec(i,j,k)  
 
         if ( g8Spec(i,j,k) > gamThres*median( g8Spec(i,j) ) 
             && g8Spec(i,j,k) is a peak )  ) 
            Output i, j, k, g8Spec(i,j,k) 
 
      end for 
   end for 
end for    
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Thirdly, the gamma spectra are searched for positions where � has a value larger than a 

factor ‘gamThres’ times the median value for � in that gamma spectrum. If one of 

these positions is also at a peak in the distribution of � values (in all 3 dimensions) then 

the position and the value of � at that position are output as a possible sources. This 

procedure is run on all 3 sets of gamma spectra (since these are sensitive to galaxies of 

different velocity-widths). 

 

Throughout the rest of this dissertation, we refer to the ratio of � at a particular (i,j,k) 

position to the median value for � in the equivalent gamma spectrum, at (i, j), as the 

‘Gamma S/N’ (by analogy to the signal-to-noise ratio used to express the significance 

of flux detections - see Section 2.4.2). This ratio measures how far above a ‘typical’ � 

for that gamma spectrum the particular � value is.  To be considered a possible source, 

a voxel must have a Gamma S/N µ gamThres. Hence, the factor ‘gamThres’ can 

be thought of as representing the limiting Gamma S/N at which a peak in the � values 

is considered significant. It is important that the median value of � in a gamma 

spectrum is used in this calculation. This prevents the reference used to test significance 

being biased by emission lines or RFI. 

 

3.7 Concluding remarks 

This Chapter has described how the Gamma Test can be a useful analytical technique 

when applied to HIPASS / HIJASS datacubes. Three procedures have been described 

which use the Gamma Test to (a) determine the average noise in a datacube; (b) find z-

channels affected by RFI in a datacube; (c) find potential sources in a datacube. The 

next two chapters describe the design and implementation of a Java application 

(GammaFinder) which implements these procedures.  
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4. Specification and Design of GammaFinder 

 

4.1 Introduction 

Section 3.5 presented three procedures which utilise the Gamma Test to undertake an 

aspect of the analysis of HIPASS / HIJASS datacube: findNoise estimates the 

average noise in a datacube; findBadZChans finds those z-channels in a datacube 

affected by RFI; and findGals find possible sources in a datacube. This chapter 

presents the specification and design of a software application, GammaFinder, which 

puts these procedures into operation. The specification of the application is described in 

Section 4.2. Some general design issues are discussed in Section 4.3. Section 4.4 

contains a description of the Java classes of the application. In Section 4.5 a description 

of the sequence of operation of a typical GammaFinder session  is given.  

 

4.2 Requirements specification 

 

4.2.1 Functional requirements 

Figure 4.1 is a top level UML Use Case Diagram which represents the main 

functionality that the application was designed to provide.  

 

Use Case 1. Determine the average noise in a datacube 

using the findNoise procedure. 

 

Use Case 2. Determine the bad z-channels in a datacube using the findBadZChans 
procedure. 

 

Use Case 3. Find possible sources in a datacube using the findGals procedure. 

 
 



 38

 
 
 
 GammaFinder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Astronomer 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. A top level UML Use Case Diagram representing the main functionality 

that GammaFinder was designed to provide. 

 
Use Case 4. Examine the spectra associated with each 

spatial position in a datacube.  

The user can study each of the 3 types of spectra created by the findGals procedure. 

This is represented in the expanded Use Case Diagram in Figure 4.2. 

 

Determine bad  z- 
channels in a datacube.

Examine results. 

Save results to a file.  

Examine spectra. 

Find possible  sources
in a datacube.   

Determine average 
noise in a datacube. 
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                          <<include>>                                                   <<include> 
  
  
                                                                <<include>> 
 
 
                                                               <<include>> 
 
 
 
Figure 4.2.  Expanded Use Case Diagram for Use Case 4.  
 
 
Use Case 5. Examine results.  

An astronomer is able to examine the results from each of Use Cases 1-3. There are 

three aspects to this use case, each of which is represented by the expanded Use Case 

Diagram in Figure 4.3.  

 

 

 
 
 <<include>>                                       <<include> 
                                                 <<include>> 
 
 
 
 
 
Figure 4.3. Expanded Use Case Diagram For Use Case 5.  
 
 
Use Case 6. Save Results to a file.   
 

4.2.2 Non-functional requirements 

GammaFinder has been designed to meet the following non-functional requirements.  

 

Examine spectra.  

Examine raw 
spectra. 

Examine hanning 
smoothed spectra. 

Examine gamma  
spectra. 

Examine results 

View results 
Edit results 

Annotate results  
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1. Portability. The intention is that GammaFinder will be used by astronomers 

throughout the world.  

2. Straightforward to use. The prime functions of GammaFinder should be easily 

accessed and performed.  

3. Make efficient use of memory and CPU time.  

4. Work with the standard astronomical data format, ‘FITS’. 

 

4.3 General Design Issues 

It was decided to build GammaFinder as a GUI-based application using Java Swing. 

The use of Java will ensure that the requirement of portability is met. The use of a GUI 

assists the requirement that the application be straightforward to use. Results and 

spectra can be easily examined and edited on a GUI. In the interests of the efficient use 

of memory and CPU time, the ‘float’ data type was chosen to represent all real numbers 

used within the application. No significant loss of accuracy results from using this data 

type as opposed to ‘double’. 

 

4.4 Explanation of the Java classes in GammaFinder 

Figure 4.4 presents a UML Class Diagram of GammaFinder. An understanding of the 

data structures and methodology of GammaFinder can be obtained by a consideration 

of each of these classes and their relation to each other.  These are discussed below.  

 

4.4.1 public class Voxel 

This class was designed to represent a single voxel in an HI datacube. Whilst a voxel in 

the original datacube has only an (x, y, z) position and an intensity value associated 

with it, the Voxel object also has associated with it the values derived by running the 

Hanning smoothing functions (with FWHM=2, 4 and 8 channels) over the spectrum 

defined by the z-channels at the (x, y) position of the Voxel object. Also associated 

with the Voxel object are the Gamma Statistic, �, values derived by running a moving 

window Gamma Test (window size 11 channels, p=15) over the raw spectrum defined 

by the z-channels at the (x, y) position of the Voxel object and the � values derived 

from the equivalent 3 Hanning smoothed spectra. Hence, the instance variables of a 

Voxel object represent the 8 pieces of information which need to be associated with a 

voxel in order to implement the three procedures described in Section 3.6. This data 
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structure was chosen since it is conceptually easy to understand and models the real 

world situation well.  
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The instance variables of the class are: 

voxVal: the intensity of a voxel. 

h2Val, h4Val, h8Val: the intensities of a voxel after its z-channel spectrum 

has been smoothed by Hanning functions with FWHMs = 2, 4 and 8 channels 

respectively. 

gVal: � value of a voxel derived from a moving window Gamma Test over the raw 

z-channel spectrum.  

g2Val, g4Val, g8Val: � values of a voxel derived from a moving window 

Gamma Test over the 3 Hanning smoothed z-channel spectra of that voxel.   

 

The constructor for the class creates a Voxel object by setting the value of its 

voxVal instance variable. All other instance variables can be set by specific methods 

within the class. Methods are also defined for returning the value of the each of the 

instance variables of the class. These are utilised by methods in the HiCube and 

GuiFrame classes.  

 

4.4.2 public class HiCube 

This class represents those aspects of an HI datacube of relevance to the analysis 

undertaken by GammaFinder. The instance variables of the HiCube class are: 

xpix, ypix, zpix: integers representing the number of voxels in the Right 

Ascension, Declination and cz dimensions respectively.  

voxArray: a three dimensional array of Voxel objects. Each Voxel object in 

this array represents the properties of a particular voxel in the HI datacube.  

noise: a ‘float’ representing the average noise in the datacube.  

zChanQual: a Boolean array of dimension zpix. Any ‘bad’ z-channels (i.e. 

seriously affected by RFI) in the datacube are represented by a value of “false” in this 

array. Good z-channels are represented by a value of “true”.  

 

There is a single constructor for this class. A 3-dimensional float array is passed to the 

constructor, representing the raw pixel values of the datacube. Using this array, the 

values of xpix, ypix and zpix are determined. A 3-dimensional array of Voxel 
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objects is created of the same dimensions as the input float array. The voxVal 

instance variable of each Voxel in the array is set to be equal to the value of the 

equivalent voxel in the input float array.  

 

The following methods set the values of the instance variables of a HiCube object: 

setGVals(): This method runs a moving window Gamma Test (window size 11-

channels, p = 15) over each z-channel spectrum in the HiCube object. The result of 

this at each ( i, j, k ) position is stored as the gVal instance variable in the Voxel 

object at the relevant voxArray position.  

setH2H4H8Vals():  This method runs three Hanning smoothing functions over 

each z-channel spectrum in the datacube. These functions have FWHMs of 2, 4 and 8 

voxels respectively. The resultant intensity at each (i, j, k) position is stored as the 

h2Val, h4Val and h8Val instance variables in the Voxel object at the relevant 

voxArray position. Since the smoothed spectra have less channels that the raw 

spectra (see Section 3.5), these instance variables are left ‘null’ where that channel is 

excluded from the Hanning smoothed spectrum. This method implements the first part 

of the findGals procedure. 

setG2G4G8Vals(): This method runs a moving window Gamma Test (window 

size = 11 channels, p = 15) over each Hanning smoothed spectrum in the datacube 

(i.e. the relevant set of h2Val, h4Val and h8Val instance variables at each ( i, j ) 

position). The resultant � at each (i, j, k) position is stored as the g2Val,g4Val and 

g8Val instance variables in the Voxel object at the relevant voxArray position. 

These values are left as ‘null’ where those of the equivalent Hanning smoothed 

spectrum are null. This method implements the second part of the findGals 

procedure. 

setNoise(): This method implements the findNoise procedure to find the 

average noise in the datacube and sets the value of the noise instance variable.  

setzChanQual(): This method implements the findBadZChans procedure to 

find those z-channels in the cube which suffer from significant RFI. It sets the values 

of the zChanQual instance variable to be “false” for these channels and “true” for 

all other channels.  
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The following methods return the values of instance variables of a HiCube object:  

getZChanQual(): returns the Boolean array zChanQual. 

getNoise(): returns the value of the noise instance variable.  

getVoxel( int i, int j, int j ): return the Voxel object at position 

(i,j,k) in the voxArray instance variable. 

getVoxArray(): return the VoxArray instance variable. 

 

4.4.3 public class GuiFrame 

This class defines the properties of the GUI (the design of the GUI is discussed in 

Chapter 5). This class also runs the application, utilising the other classes to derive 

and present the required results.   

 

The class has many instance variables relating to element of the GUI. It also has the 

following instance variables: 

gamThres: a float representing the ‘Gamma S/N’ limit (see Section 3.6).   

textPanel: an object of JTextPanel class. All results are written to this object. 

dispPanel: an object of class DisplayPanel, used for displaying spectra.  

hiCube: an object of  HiCube class. This represents the current datacube being 

analysed.  

xpix,ypix,zpix: integers representing the dimension of the current HiCube 

object.  

xcoord, ycoord: integers representing the position of the spectrum to be 

displayed on dispPanel.  

specType: a String representing the type of spectrum to be displayed on 

dispPanel.  

fileFlag: Boolean used to indicate if the file has been read in correctly.  

displayFlag: Boolean used to indicate if xcoord and ycoord are set to 

permissible values. 

 

The following methods are defined within the class.  
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readFile( ): This method opens a FITS datacube (selected by the user using the 

JFileChooser class) and creates a new HiCube object (hiCube) by passing the 

3-D float array to the constructor of the HiCube class. To open and read the FITS 

data, it makes use of the org.eso.fits Java package written by Preben Grosbol of the 

European Southern Observatory. 

setGamThres(): This method reads the user supplied value of the gamThres 

instance variable from the GUI.  

findSources(): This method searches the HiCube object, hiCube, for possible 

detections and returns the results of this search as a list of possible sources, along with 

the ‘Gamma S/N’ onto textPanel. Hence, it implements the third part of the 

findGals procedure.  

updateDispPars(): This method reads the user supplied values for xcoord, 

ycoord and specType from the relevant input fields of the GUI.  

saveResults(): This method saves the current contents of  textPanel to an 

ascii text file (selected by the user using the JFileChooser class).  

 

4.4.4 public class DisplayPanel 

This class extends the JFrame class to provide a panel for displaying spectra 

requested by the user. An instance of this class, dispPanel is displayed on the GUI. 

The class has the following instance variables. 

voxVals: the 3-dimensional array of Voxel objects from which spectra to be 

displayed are selected.  

xc, yc: Integers defining the ( i, j ) position of the spectrum to be displayed. 

spectrumType: an integer flag noting the type of spectrum to be displayed. 

sf: an integer representing an appropriate scaling factor to be applied to the spectrum 

to be displayed.  

 

The following methods are defined: 
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updateSPanel( int xc, int yc, Voxel[][][]voxVals, String 

specType ): The method sets the instance variables to suitable values for the 

spectrum requested and then calls the repaint() method.  

paintComponent( Graphics2D graf ): this method redraws the display.  

 

4.4.5 class JTextArea 

This class is a component of the Swing package used for displaying and editing text. 

The GuiFrame object creates a single instance of this class, textPanel, to which 

it writes all the results of its other activities. The following methods are used:  

copy(), cut(), paste():  standard text editing methods.  

append( String aString ): appends a string to the JTextArea object. 

getText(): copies text on the JTextArea object to a string.  

 

4.4.6 public class FitsFile 

This class represents a FITS format image. The methods and classes used by the 

GuiFrame class to open and read data from a FitsFile object are provided by the 

org.eso.fits package. 

 

4.4.7 public class Stats 

This contains a static method, modMean(), called by the findSources() 

method of GuiFrame class to calculate a modal value in a g8Val gamma spectra 

(described in Section 5.9).  

 

4.4.8 class DisplayFormat 

This contains four static methods, called by the findSources() method of the 

GuiFrame class, and used to format the displayed results.  

 

4.5  The sequence of operation of GammaFinder 

Figure 4.5 is a UML Sequence Diagram which illustrates the standard sequence of 

operation of GammaFinder. This sequence is described below with reference to the 

diagram.  
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1. The application is started by an astronomer. An object of the GuiFrame class is 

created (guiFrame). The GUI is displayed.  

 

2. The astronomer chooses to open a file. This leads to a sequence of operations 

which open a FITS file and create a HiCube object based upon its contents.  

2.1 guiFrame calls the readFile() method. The astronomer chooses the 

FitsFile object to be opened using the JFileChooser class. The method opens 

the chosen file and returns a 3-dimensional float array of its contents.   

2.2 The readFile() method then creates a new HiCube object (hiCube) passing 

dataArray  to the constructor of the HiCube class.   

2.3 guiFrame applies the setGVals() method of HiCube to hiCube. This 

performs the moving window Gamma Test on every spectrum in hiCube and copies 

the results into the gVal instance variable of each Voxel object in the voxArray 

instance variable of hiCube.  

2.4 guiFrame applies the setZChanQual() method of HiCube to hiCube. 

This determines which z channels in hiCube suffer from RFI and sets the values of 

the zChanQual instance variable of hiCube to reflect this. These values are then 

excluded from the subsequent reduction and analysis process.  

2.5 guiFrame applies the setH2H4H8Vals() method of HiCube to hiCube. 

This performs three Hanning smoothing operations on every spectrum in hiCube 

and copies the results into the h2Val, h4Val and h8Val instance variables of each 

Voxel object in the voxArray instance variable of hiCube.  

2.6 guiFrame applies the setG2G4G8Vals() method of HiCube to hiCube. 

This performs a moving window Gamma Test on each channel of each of the Hanning  

smoothed (of FWHM = 2, 4 and 8 channels) spectra in hiCube and copies the 

resulting � values into the g2Val, g4Val and g8Val instance variables of each 

Voxel object in the voxArray instance variable of hiCube.  
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2.7 guiFrame applies the setNoise() method of HiCube to hiCube. This 

calculates the average noise in the datacube and copies the result to the instance 

variable noise.  

2.8 guiFrame applies the getNoise() method of HiCube to hiCube. This 

return the value of the noise instance variable to GuiFrame.  

2.9 guiFrame applies the getZChanQual() method of HiCube to hiCube. 

This returns the Boolean array zChanQual to guiFrame.  

2.10 guiFrame applies the append() method of JTextArea to copy the value of 

noise and a list of the z-channels affected by RFI to textPanel.  

 

3. The astronomer selects the ‘Find’ option from the GUI.  

3.1 guiFrame calls its findSources() method. This actually makes many calls 

to the various values stored in the array of Voxel objects in hiCube, utilising the 

getVoxel( i, j, k) method of HiCube and the various ‘get’ methods of the 

Voxel class.  

3.2 guiFrame applies the append() method to copy the results from the finding 

process to textPanel.  

 

4. The astronomer selects an ( i, j ) position and a spectrum type and selects the 

‘Display Spectrum’ JButton on the GUI.  

4.1 guiFrame applies its setDispPars() method which reads the user input. 

4.2 guiFrame calls the updateSPanel() method of the DisplayPanel class 

and supplies the user-selected xcoord, ycoord, specType values, along with the 

voxVals array.  

4.2.1 dispPanel calls its paintComponent() method and the panel is re-drawn 

with the requested spectrum.  

 

5. The astronomer directly edits the results on textPanel.  

 

6. The astronomer selects the ‘Save’ option on the GUI.  
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6.1 guiFrame calls its saveResults() method. Firstly, this enables the user to 

select a name for an output text file (using the JFileChooser class).  

6.2 The saveResults() method then applies the getText() method to 

textPanel. This method returns the current contents of textPanel as a String.  

6.3 The saveResults() method then copies the returned results to the output file.  

 

 7. The astronomer selects the ‘Exit’ option on the GUI and GammaFinder is 

closed.  

 

 4.6 Concluding remarks 

This chapter has presented a description of the main functional and non-functional 

requirements for GammaFinder and discussed the top level design of the application. 

The next chapter will give a more detailed description of the implementation of the 

design.  
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5. Implementation 

 

5.1 Introduction 

The specification and design of GammaFinder were described in Chapter 4. In this 

Chapter the implementation details of the most important aspects of the application 

are described. In Section 5.2 the main features of the GUI are discussed. Subsequent 

sections then describe the implementation of the main methods. These are described 

in the order in which they would be called during a typical sequence of operation (see 

Figure 4.5). Section 5.12 presents some concluding remarks.  

 

5.2 The Graphical User Interface 

The properties of the GUI are defined by the GuiFrame class. The GUI was 

designed using components of the Java Swing package since these give greater 

flexibility and sophistication that the standard Java awt package. Figure 5.1 shows the 

GUI as it appears when the application is started.  

 

 

Figure 5.1. The GammaFinder GUI as it appears when the application is started.  

 

The GuiFrame class extends the JFrame class. A ‘cross-platform’ look and feel is 

specified to help meet the requirement for portability.  
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Most of the functionality of the application can be accessed from the menu bar. The 

menu bar consists of a JMenuBar object which has added to it three JMenu objects, 

corresponding to the three menu headings ‘File’, ‘Edit’ and ‘Help’. Each of the 

JMenu objects has added to it several JMenuItem objects, corresponding to the 

actual items on the menu. A keyboard shortcut is specified for each JMenu and 

JMenuItem object using the setMnemonic() method. An event listener is added 

to each JMenu and JMenuItem object using the addActionListener() 

method. Figure 5.2 shows the GUI with the ‘File’ menu activated.  

 

 

Figure 5.2. The GUI showing the ‘File’ menu activated.  

 

Most of the functionality of the application can also be accessed from the tool bar. 

This consists of a JPanel object on which are placed 6 JButton objects, each of 

which corresponds to one of the main tasks of the application. A keyboard shortcut 

and an event listener are added to each JButton. The user is able to select the 

gamThres instance variable via a JComboBox object.  

 

The lower part of the GUI consists of a JTabbedPane object to which are added 2 

JPanel objects. The first of these contains a JTextArea object (textPanel) set 

in a JScrollPane. This forms the “Results panel” to which results are written. The 
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second contains a DisplayPanel object (dispPanel) on which spectra can be 

displayed. It also contains a JComboBox object from which the type of spectrum 

(specType) to be displayed can be selected and 2 JTextField objects, via which 

the user can specify the xcoord and ycoord values of the spectrum to be 

displayed. A JButton object is selected to display the spectrum.  Figure 5.3 shows 

the GUI with the “Display Panel” selected. 

 

 

Figure 5.3. The GUI with the “Display Panel” visible.  

 

An ‘actionPerformed’ inner class within the GuiFrame class specifies the 

actions to be performed when one of the interactive elements of the GUI is selected. 

The following code extract shows what happens when the ‘Save’ button or the ‘Save 

Results’ menu item is selected.  

 
   else if( e.getSource() == j2 || e.getSource() == button2 ) 
   { 
      saveResults();    
   } 
 
 

5.3 The readFile() method 

When the user selects the ‘Open’ button or the ‘Open File’ option on the ‘File’ menu, 

a sequence of operations is activated. Firstly, the readFile() method of the 
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GuiFrame class uses the JFileChooser class to enable the user to select a file 

with a ‘.fits’ extension (see Figure 5.4).  

 

 

Figure 5.4. A user selecting a FITS file.  

 

If the file selected is not a FITS file or cannot be read then the relevant exception is 

caught and the user is notified via a JOptionPane object (Figure 5.5).  

 

Provided that the selected file can be opened, the readFile() method uses several 

methods from the org.eso.java package to (a) determine that the FITS file contains a 

3-D datacube; (b) find the dimensions (xpix,ypix,zpix)  of that cube; (c) read 

the intensity values at each (xpix,ypix,zpix) and copy them to a 3-D float array, 

inFileData. Any exceptions thrown during this process are caught and the user 

informed via a JOptionPane. 

 

Finally, the readFile() method creates a new object of the HiCube class: 

 

       hiCube = new HiCube( inFileData ); 
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Figure 5.5. A JOptionPane informing the user that the file could not be opened.  

 

The user is then informed of the successful completion of these activities via a 

JOptionPane. 

 

5.4 The setGVals() method 

Once a HiCube object (hiCube) has been successfully created, the GuiFrame 

object calls the setGVals() method to set the gVal instance variable of all the 

Voxel objects in the voxArray of hiCube.  

 

This method is based within a triple nested loop in x, y and z voxels (using i, j and k 

as indices). Within this loop, the gVal instance variable is calculated for the Voxel 

object at the (i,j,k) position of the voxArray instance variable of hiCube. The 

following code fragment illustrates this. 

 

for( int i = 0; i < xpix; i++) 
   for( int j =0; j < ypix; j++ ) 
      for( int k = 0; k < zpix; l++) 
         //code to set the gVal in voxArray[i][j][k] 
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The gVal at a given (i,j,k) position is, of course, the Gamma Statistic resulting from 

running a Gamma Test on the z-channel spectrum at that (i,j) position, using an 11 

channel-wide window (centred at the k-position) and having a maximum number of 

nearest neighbours p = 15. The code to calculate this comprises two stages.  

 

In the first stage, the values of M(q) and� M(q) are calculated for 1 � q � 15. The 

following code fragment accomplishes this process.  

 
for( int q = 1; q <= 15; q++ ) 
{ 
   deltaSum = 0; 
   gammaSum = 0; 
          
   for( int l = k - 5; l <= k + 5; l++)  
   { 
      if( q % 2 == 1 ) 
      { 
         deltaSum += ( (float) ( ( q + 1 ) * ( q + 1 ) / 4 );    

         posq = l + (q+1)/2; 
         posl = l; 
      } 
      else 
 { 
         deltaSum += (q * q / 4); 
         posk = l + q/2; 
         posl = l; 
      } 
 
      if( posq < 0 ) 
         posq += zpix; 
      if( posq >= zpix ) 
         posq -= zpix; 
      if( posl < 0 ) 
    posl += zpix ; 
      if( posl >= zpix ) 
    posl -=  zpix; 
 
      gammaSum += (float)( (voxArray[i][j][posq].getVoxVal()  
                            - voxArray[i][j][posl].getVoxVal() ) *  
                         ( (voxArray[i][j][posq].getVoxVal()  
                            - voxArray[i][j][posl].getVoxVal() ) );             
   }   
   deltaQ[q] = deltaSum / 11; 
   gammaQ[q] = gammaSum / 22; 
} 
 
 

The outer loop is run 15 times, once for each nearest neighbour distance (1 � q � 15). 

At the end of each loop the calculated M(q) and� M(q) values are copied to the q-th 

elements of the deltaQ and gammaQ arrays. The inner loop is run 11 times, once for 
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each channel in the 11-channel wide window. The purpose of the inner loop is to 

calculate the 

     
 ∑
=

M

i 1

| xN[i,q] – xi|
2       and          ∑

=

M

i 1

| yN[i,q] – yi|
2       

values within the 11-channel window.    The first of these is stored in the variable 

‘deltaSum’, the second in the variable ‘gammaSum’. There are two complicating 

factors in this summation: 

1. By definition (see Section 3.2), | xN[i,q] – xi| has value 1, 1, 2, 2, 3, 3, 4, 4 etc, 

with increasing q value since the 1st nearest neighbour channel and the second  

actually lie at  the same distance (on either side of the input  channel).  Hence,   

| xN[i,q] – xi| has to be determined using a different equation for odd and even q 

values. 

2. If the centre channel in the current window is closer than 6 channels from 

either end of the spectrum, or if the current input position within the window 

is within 7 channels of either end of the spectrum then there are not enough 

channels to compute the Gamma Test within the whole window and/or to do 

the whole of the nearest neighbour calculation. The solution adopted is to 

‘wrap around’ to the other end of the spectrum. The two indexes ‘posl’ and 

‘posq’ implement this.  

    
In the second stage, a linear regression is performed on the ( M����� M(q)) pairs as 

stored in the float arrays deltaQ and gammaQ. The result of this regression is the 

Gamma Statistic. This is copied into the gVal instance variable of the Voxel object 

at the (i, j, k) position of the voxArray instance variable of hiCube. The following 

code extract performs these operations.  

 
for ( int q = 1; q <= 15; q++) 
{ 
   sumX += deltaK[q]; 
   sumX2 += ( deltaK[q] * deltaK[q] ); 
   sumY += gammaK[q]; 
   sumXY += ( deltaK[q] * gammaK[q] ); 
} 
       
float gradient = (sumXY - (sumX * sumY / 15) ) / ( (sumX2) - ( sumX *    
                                                     sumX / 15 )   );      
                
float intercept = ( sumY - ( gradient * sumX ) ) / 15; 
 
voxArray[i][j][k].setGVal( intercept );  
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The winGamma application uses a k-d tree data structure (Friedman et al. 1979) to 

implement the Gamma Test. This requires a single computation of O(MlogM) to 

compute the ( M����� M(q)) pairs. The method used to calculate these pairs in 

setGalVals() has O(M2). However, since we are using a small value of M (11) and the 

input data only has a dimensionality of 1, a satisfactory performance is still obtained 

(see Section 6.3).  

 
 

5.5 The setZChanQual() method 

Once the setGVals() method has been run, the GuiFrame object calls the 

setZChanQual() method to set the zChanQual Boolean array instance variable 

of hiCube. This method is a straightforward Java implementation of the 

findBadZChans prodecure (Section 3.6).  

 

5.6 The setH2H4H8Vals() method 

Once the setZChanQual() method has been run, the GuiFrame object calls the 

setH2H4H8Vals() method to set the h2Val, h4Val and h8Val instance 

variables of all the Voxel objects in the voxArray of hiCube.  

 

The method is based within a double nested loop in x and y voxels. Within this loop, 

the h2Val, h4Val and h8Val instance variables are calculated for all the Voxel 

objects at the (i,j) specified by the loop. The following code fragment illustrates this.  

  

for i = 0 to i < xpix; i++) 
{ 
   for( int j = 0; j < ypix; j++ ) 
   { 
      //code to set the h2Vals at this (i,j) position 
      //code to set the h4Vals at this (i,j) position 
      //code to set the h8Vals at this (i,j) position   
   } 
} 

 

For example, the code within this double loop which calculates the h2Val instance 

variables is: 

 

for(int k = 1; k < (zpix - 1) ; k = k + 2 ) 

{ 
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   temp = (0.5 * voxArray[i][j][k].getVoxVal() ) +  
          ( 0.25 * ( voxArray[i][j][k-1].getVoxVal() +   
                               voxArray[i][j][k+1].getVoxVal() )  ); 
   voxArray[i][j][k].setH2Val( (float) temp ); 
} 
 

  

5.7 The setG2G4G8Vals() method 

Once the setH2H4H8Vals() method has been run, the GuiFrame object calls 

the setG2G4G8Vals() method to set the g2Val, g4Val and g8Val instance 

variables of all the Voxel objects in the voxArray instance variable of hiCube.  

 

The method is based within a double nested loop in x and y voxels. Within this loop, 

the g2Val, g4Val and g8Val instance variables are calculated for all the Voxel 

objects at the (x,y) specified by the loop. Each of these is calculated in a similar way 

to that used by the setGVals() method, except that the relevant h2Val, h4Val 

and h8Val instances variables are used as appropriate.  

 

5.8 The setNoise() method 

Once the setG2G4G8Vals() method has been run, the GuiFrame object calls 

the setNoise() method to set the noise instance variable of  hiCube. This 

method is a straightforward Java implementation of the findNoise procedure 

(Section 3.6).  

 

Following the completion of this method, a JoptionPane informs the user that the 

HiCube object has been successfully created (Figure 5.6). 

 

Once this modal dialog window is dismissed, the dimensions of hiCube, the rms 

noise and the channels numbers of the bad-channels are written to textPanel. This 

process makes use of the getNoise and getZChanQual() methods. This 

completes the sequence of operations activated by the user selected the ‘Open’ button 

or the ‘Open File’ menu item. 
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Figure 5.6. The GUI after the completion of the setNoise() method.  

 

5.9 The findSources() method        

When the user selects the ‘Find’ button or the ‘Run Finder’ menu item, the 

findSources() method of the GuiFrame class is called. The method firstly 

calculates a ‘worsevar’ value defined to a factor of 5 greater than the square of the 

‘noise’ instance variable of hiCube.  

 

The heart of this method is based within a double nested loop in the x and y voxels 

(using indices i and j). Within this loop, the z-channel gamma spectra (represented by 

the g2Val, g4Val and g8Val instance variables of the Voxel objects in the 

voxArray of hiCube) defined by the current (i, j) pair are searched for significant 

peaks in the � values.  

 

Firstly, the noise variance in the spectrum at the current (i, j) is evaluated by finding 

the median of the gVal instance variable at this (i, j). This is done by copying the set 

of gVal values into a float array, sorting this into ascending order (using the 

sort() method of the Arrays class) and choosing the middle value. The returned 

value is then compared to the worsevar value. Only if the median variance is less 
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than worsevar is a search conducted for sources at this (i, j) position. This test is 

done to exclude very noisy spectra from the galaxy finding process.  

 

If the above test is met then a median value is found for each of the g2Val, g4Val 

and g8Val sets of values for this (i, j) position. These median values, denoted 

medianG2, medianG4 and medianG8 represent ‘typical’ � values in each type of 

gamma spectrum and, hence, should be relatively unaffected by RFI, emission lines, 

etc. in the data.  

 

A search is then made along each of the 3 types of gamma spectra at this (i, j) 

position. The following code extract illustrates this search along the gamma spectrum 

of g2Val values.  

for( int k = 3; k < (zpix - 3) ; k = k + 2 ) 
{ 
    
if( ( hiCube.getVoxel(i,j,k).getG2Val() > (gamThres * medianG2) ) && 
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j,k+2).getG2Val()) && 
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j,k-2).getG2Val()) && 
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i+1,j,k).getG2Val()) &&  
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i-1,j,k).getG2Val()) && 
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j+1,k).getG2Val()) && 
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j-1,k).getG2Val()) && 
(hiCube.getVoxel( i, j, k ).getH2Val() > 0) ) 
 
 

The g2Val at each k position (with a g2Val value) is examined. To be selected as 

the location of a possible source three criteria must be met. Firstly the g2Val must be 

a factor gamThres greater than the medianG2 value (i.e. have Gamma S/N �  

gamThres). Secondly, the g2Val in this position must represent a peak in the 

g2Val distribution in all three dimensions (i, j, and k). Thirdly, the corresponding 

h2Val for this pixel must have a value > 0. This last condition eradicates the 

possibility of returning as a potential source a peak in the g2Val distribution which 

results from local RFI with negative intensity.  

 

A similar process is used to find potential sources in the g4Val and g8Val data. A 

3-dimensional Boolean array is used to note sources found in each of the sets of data 

such that sources found in the g2Val data will not also be returned from the g4Val 

data. Similarly, sources found in the g4Val data will not also be returned in the 

g8Val data.  
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Due to the smaller number of channels with a g8Val there is a correspondingly 

greater chance of the median value in a gamma spectrum being biased by a source in 

the data.  A modal value (modmeanG8) is also derived from this data, using the 

ModMean static method of the Stats class. This ensures that a more reliable 

‘typical’ g8Val is returned if a source is included in the data. To be selected as a 

possible source a g8Val value can be more than a factor of gamThres above the 

medianG8 or the modmeanG8 value. 

 

All potential sources are written to textPanel along with the type of hanning 

spectrum in which the possible source was detected and the ‘Gamma S/N’.  

 

5.10 Viewing spectra 

If the user selects the “Display Spectrum” button on the “Display Panel” then, firstly, 

the updateDispPars() method of the GUIFrame class is called. This method 

reads the values in the JTextField objects on dispPanel and copies these 

values to the xcoord and ycoord instance variables. If either or both of the input 

values are not in integer format or are outside the dimensions of the HiCube object, 

the user is informed via a modal dialog window and the displayFlag instance 

variable is set to ‘false’.  

  

Figure 5.7. The GUI showing the JOptionPane displayed if the user-supplied X 

and/or Y Coord is outside the dimension of the current HiCube object.  
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This is illustrated in Figure 5.7. If these values are valid, then the method reads the 

user-selected spectrum type and updates the specType instance variable 

accordingly. 

 

The updateSPanel() of the DisplayPanel class is then run on dispPanel. 

The current voxArray, xcoord, ycoord and specType values are supplied as 

parameters. This method displays the requested spectrum with an appropriate scaling 

on dispPanel. 

 

5.11 Editing and saving results 

The “Results Panel” comprises a JTextArea object (textPanel) on a 

JScrollPane. The contents of this can be edited, with the assistance of cut(), 

paste() and copy() methods which are implemented via buttons on the toolbar 

and items in the ‘Edit’ menu. If the user selects the ‘Save’ button or the ‘Save 

Results’ menu item then the SaveResults() method is called. This makes use of 

the JFileChooser class to save the current contents of textPanel to a text file. 

The contents of textPanel are written to a String using the getText() method 

and written to the selected output file using the FileWriter class. All exceptions 

generated by this process are caught and the user is informed via a JOptionPane.  

 

5.12 Concluding remarks 

The most important aspects of the implementation of the GammaFinder application 

have been described in this chapter. Appendix A presents a full listing of the code.  
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6. Results and Evaluation 
 
6.1 Introduction 

In this chapter the results are presented of an evaluation of GammaFinder. The 

developmental and testing process is reviewed in Section 6.2. Section 6.3 contains a 

discussion of the time and space complexity of the application. In Section 6.4, 

GammaFinder is evaluated in terms of its ability to detect real sources in HIJASS 

data.  

 

6.2 The development and testing process 

This section contains an overview of the development and testing process.  

 

Firstly, a prototype application, GF.java, was created. This could read in a single 

spectrum (from a text file) and perform a moving window Gamma Test on it. It could 

also create Hanning smoothed spectra and run a moving window Gamma Test on 

these. Any of the resulting spectra could be examined on a JFrame. This prototype 

was used to test the algorithms later included in the setGVals(), 

setH2H4H8Vals() and setG2G4G8Vals() methods of the HiCube class. The 

algorithms were tested by comparing the returned results with those expected for the 

test input spectrum (calculated using winGamma and the equation for Hanning 

smoothing). When conducting a moving window Gamma Test with GF.java it is 

possible to set the maximum number of nearest neighbours, p, to be larger than the 

window width, something not possible with winGamma. Experiment showed this to 

be useful in providing an optimum peak in a gamma spectrum at the position of a 

discontinuity in the raw spectrum (see Section 3.4). GF.java was used to perform 

much of the analysis presented in Chapter 3 and to produce Figures 3.4 to 3.8.  

 

The development process for GammaFinder itself essentially consisted of creating and 

testing Java code to implement the classes and methods described in Chapter 4. 

 

The Voxel class was created first. This was tested by the use of a VoxelTest 

class. This creates a Voxel object and then sets the values of the other instance 

variables (i.e. testing the setH2Val() etc. methods). The test class also tests the 

‘get’ methods (i.e. getGVal etc.).   
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The HiCube class was then created. This was tested with a HiCubeTest class. 

This creates a HiCube object, passing a 3-dimensional float array to the HiCube 

constructor, and then calling each of the ‘set’ methods of the class (i.e. setGVals, 

setH2H4H8Vals etc.) to set the instance variables of each Voxel object in the 

voxArray instance variable as well as the noise and zChanQual instance 

variables. Each of the ‘get’ methods (i.e. getVoxArray() etc.) is also tested.  

 

Next, the GuiFrame class was created. The basic GUI was created first with each of 

the options in the ActionPerformed inner class (i.e. relating to a menu item or 

tool bar item) initially being set to  “//do nothing”. These options were then 

filled in and tested one by one.  

 

The response to the ‘Open File’ menu item was the first to be coded. This involved 

coding the readFile() method. The techniques of handing and reporting 

exceptions relating to problems with opening and reading the FITS file (Section 5.3) 

were tested using a combination of valid and invalid input files.  

 

Next, the response to the ‘Display Spectrum’ button was coded. This included 

creating the DisplayPanel class and the setGamThres() and 

updateDispPars() methods. The whole process was tested using real HIJASS 

datacubes. The methods of handling exceptions caused by the user supplying 

ineligible xcoord, ycoord or gamThres values (Section 5.10) were tested by 

deliberately choosing incorrect values.  

 

Next, a JTextArea object was added to the JTabbedPane on the GUI and the 

cut(), paste() etc. methods added to the relevant sections of the ActionPerformed 

inner class. The saveResults() method was then coded. These were all tested by 

writing, editing, and annotating text onto the JTextArea object and saving that text 

to a file.  

 

Finally, the findSources() method was coded. The results of running this on a 

real datacube are described in Section 6.4.  
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6.3 Performance measurement and optimisation 

Following the coding and testing described in Section 6.2, measurements were made 

of the time complexity and space complexity of the application. This analysis was 

undertaken on a PC with a 512 Mbytes RAM running Red Hat Linux. 

 

The time complexity of the application was investigated by measuring the difference 

between the start time and finish time of the main methods, utilising the 

System.currentTimeMillis() method. Table 6.1 shows the time in 

milliseconds taken for the main methods to execute for a variety of different datacube 

sizes.  

                        Cube Size  

               10x10x1024   20x20x1024   40x40x1024  

readFile()             72          255          788   

setH2H4H8Vals()        24           38          105 

setGVals()           5413        19234        79479 

setNoise()             54          119          409 

setZChanQual()         49          139          640 

setG2G4G8Vals()      3745        14826        60789 

findGals()             75          356          845 

Table 6.1. The run time (in milliseconds) for the main methods of GammaFinder for 

datacubes of various sizes.  

 

Clearly setGVals() and setG2G4G8Vals() account for the vast majority of the 

run time of the application. These both run in O(n) time (where n is the total number 

of voxels in the datacube). This is expected since they both involve a triple nested 

loop running through every voxel in the datacube (see Sections 5.4 and 5.7). It was, 

therefore, decided to optimise these two methods in a bid to reduce run time.    

 

The optimisation analysis identified several possible ways of improving the efficiency 

of the code, including the use of the autoincrement operator and the elimination of 

common subexpressions. The static method Math.pow() was being called twice 
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within the innermost loop in both methods. A fragment of the original code of 

setGVals() follows: 

 

         deltaSum += ( (float) Math.pow( ( ( q + 1 ) / 2 ), 2) );    

This meant that, for example, for a 40x40x1024 datacube, the Math.pow() method 

was being called more than 3 million times. It was decided to code this without 

calling the static method, e.g. as: 

 

         deltaSum += ( (float) ( ( q + 1 ) * ( q + 1 ) / 4 );    

 

This had the effect of reducing the run time of the two methods by more than a factor 

of 4. Table 6.2 shows the time for the main methods of the application to execute in a 

30x30x1024 datacube before and after the code optimisation.  

 

                     before          after 

               optimisation   optimisation 

setGVals()            45115          10545 

setG2G4G8Vals()       34389           8122 

Table 6.2. The run time (in milliseconds) for setGVals() and 

setG2G4G8Vals() on a 30x30x1024 datacube before and after code optimisation. 

 

Following code optimisation, measurements were made of the amount of memory 

GammaFinder needs to run to completion. Java’s garbage collection system allocates 

a fixed amount of memory when the JVM is started. This can be set of startup, e.g. the 

following command will set the maximum amount of memory to 200 megabytes:       

java –Xmx200m GammaFinder 

 

When this amount of memory is used up, an ‘Out Of Memory’ error occurs.  

 

The memory requirements of GammaFinder as a function of cube size are presented 

in Table 6.3. Column 2 contains an estimation of the memory required to store the 

voxArray instance variable for the datacube sizes of Column 1 (this is the major 

data storage requirement).  Column 3 lists the minimum amount of memory required 
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to run a datacube through GammaFinder without an ‘Out Of Memory’ error 

occurring.  

 

Cube Size      voxArray Size  Minimum Memory 

                 (Mbytes)         (Mbytes) 

10x10x1024             3                7 

20x20x1024            13               21 

30x30x1024            28               47 

40x40x1024            50               83 

50x50x1024            78              129 

90x90x1024           253              413 

Table 6.3. The memory requirements of GammaFinder for different datacube sizes.  

 

Table 6.3 implies that the minimum memory requirement for a datacube can be 

estimated by multiplying the voxArray size  by a factor of 1.64. This implies that 

the largest cube size which could be run on a PC with 512 Mbytes RAM would be 

around 100x100x1024. Larger cubes would have to make extensive use of virtual 

memory (swapping). A typical full HIJASS cube has dimensions 150x150x1024. 

Such a cube would have to be split into 2 or 3 cubes to be analysed by GammaFinder 

on a PC with 512 Mbytes RAM. PCs are now becoming available with up to 1.2 

Gbytes of memory. It seems likely that, in the near future, machines will be 

commonly available with sufficient memory to process whole HIPASS / HIJASS 

cubes in one go.  

 

The total run time of GammaFinder as a function of datacube size was estimated by 

using the unix ’time’command. The results are presented in Table 6.4. Column 1 

lists various datacube dimensions. Column 2 lists the fraction of a whole datacube 

(considered to be one with dimensions 150x150x1024) each of these represents. 

Column 3 lists the estimated memory requirements (see above). Column 4 lists the 

measured run time.  
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Cube Size    % of whole         Memory   run time   

                   cube   Requirements      (sec) 

47x47x1024          10%      144Mbytes       78sec 

75x75x1024          20%      190Mbytes      160sec 

94x94x1024          40%      456Mbytes      336sec 

Table 6.4. The total run time of GammaFinder as a function of cube size.  

 

The total run time scales as O(n) for cube sizes up to 94x94x1024. This is expected 

since  the slowest methods scale as  O(n). The need to use swap space resulted in such 

a  

huge degradation in run time that it did not prove feasible to run GammaFinder on 

datacubes much larger than 94x94x1024 on the test PC. It is far more efficient to split 

larger cubes into several smaller cubes and process each separately.  

 

The run times from Table 6.4 are acceptable for processing HIJASS / HIPASS 

datacubes. If split into several smaller cubes, a whole datacube cube could be 

processed in around 15 minutes. Compared to the time taken to observe HIJASS / 

HIPASS data and to reduce the data into datacube form (Barnes et al. 2001), 15 

minutes per datacube represents a very small extra amount of data processing time.  

 

6.4 Evaluating GammaFinder’s performance on real data 

This section contains an evaluation of GammaFinder in terms of its ability to detect 

real sources in HIJASS / HIPASS data. This is done by comparing the results of 

running GammaFinder on a HIJASS datacube with the contents of the published 

HIJASS catalogue (Lang et al. 2003) from the same datacube.  The HIJASS cube 

centred at Right Ascension=04h 32m  and  Declination=74o was chosen for the 

evaluation. Within HIJASS naming nomenclature, this cube is denoted ‘p74cube4’. 

 

A brief review of the selection techniques used to compile the HIJASS catalogue and 

a discussion of the contents of the catalogue from p74cube4  is given in Section 6.4.1.  
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A key question to be asked is what fraction of real sources identified by visual 

inspection of a datacube or by the use of an existing automatic finder are also selected 

by GammaFinder? This is considered in Section 6.4.2.  

 

Another important question concerns how the number of real sources compared to 

spurious sources changes with Gamma S/N. This is considered in Section 6.4.3. 

 

The other major question is whether GammaFinder can identify real sources not 

identified by previously used methods. This is considered in Section 6.4.4. 

 

In Section 6.4.5, the detection limits of GammaFinder are explored.  

 

6.4.1  The HIJASS catalogue  

The published HIJASS catalogue (Lang et al. 2003) was created by a combination of 

visual inspection of the datacubes and using the PolyFind automatic finding algorithm 

(see Section 2.7). Any ‘possible’ sources were subjected to ‘narrow-band follow-up’. 

Only those confirmed were included in the catalogue. Hence, this catalogue forms an 

ideal basis against which to test the effectiveness of GammaFinder.  

 

The 19 galaxies found in cube p74cube4 by Lang et al. and included in the HIJASS 

catalogue are listed in Table 6.5. The values for Sint, Spk, Vo and W20 were derived 

using tasks from the MIRIAD software package (Sault et al. 1995).  
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HIJASS      R.A.      DEC.       Sint        Spk      Vo    W20  CLASS COUNTERPART 

NAME                           Jy kms-1    Jy    kms-1   kms-1 

J0545+73 05:45:19.9 73:36:41   4.7�0.5   68   1053   127   ID   KUG 0539+735  

J0545+72 05:45:26.1 72:22:07  10.2�0.5   78   1080   199   ID   UGC 03343  

J0556+75 05:56:28.7 75:18:40  23.7�0.9  228    811   146   ID   UGC 03371 

J0602+73 06:02:25.1 73:04:46  18.3�0.6  224   1095   119   ID   UGC 03384 

J0610+71 06:10:23.0 71:23:17  16.0�0.7   87   1270   268   ID   UGC 03403 

J0615+71 06:15:24.5 71:06:29   8.9�0.3   56   3981   325   ID   UGC 03422 

J0619+75 06:19:15.8 75:01:14   1.7�0.4   41   1324    85   ASS  J06201+7458 

J0619+78 06:19:20.7 78:14:56  38.3�1.4  368    838   209   ID   NGC 2146  

J0711+71 07:11:32.4 71:49:40  21.5�0.8   99   3144   321   ID   UGC 03697 

J0713+73 07:13:28.8 73:29:30  10.5�0.6  105   2702   183   ID   UGC 03730 

J0716+75 07:16:10.9 75:43:42   9.7�0.5  138   1118    96   ID   UGC 03739 

J0721+74 07:21:20.9 74:18:45   1.5�0.5   61    966    77   PUG 

J0722+77 07:22:12.5 77:49:01   7.1�0.6   67   2643   172   ID   UGC 03794  

J0730+72 07:30:35.1 72:29:29  12.3�0.9  108   2620   223   ID   UGC 03864 

J0736+74 07:36:12.5 74:25:10   6.6�0.6   70   3776   221   ID   UGC 03906  

J0736+73 07:36:39.4 73:41:59  13.5�0.6  111    943   188   ID   UGC 03909 

J0744+72 07:44:58.4 72:47:54  10.1�0.6  201   2476    83   ID   UGC 03975 

J0750+74 07:50:14.4 74:19:57  14.6�0.9   84   3943   298   ID   UGC 04028  

J0751+72 07:51:46.1 72:59:37  10.6�1.1  119   3470   156   ID   NGC2441 

Table 6.5. The parameters of sources within the HIJASS catalogue from p74cube4.  

 

The ‘CLASS’ column in Table 6.5 denotes whether the HI emission line is associated 

with a previously catalogued galaxy or not. This was determined by reference to the 

NASA Extragalatic Database (NED – http://nedwww.ipac.caltech.edu). NED is the 

standard master list of identified extragalactic objects, including accurate positions 

and redshifts of all published sources. If there is an object within NED which matches 

the HIJASS source in both position (defined as being within 6 arcmin, i.e. 2.5  of 

the positional accuracy of HIJASS) and cz (defined as being within 100 km s-1) then 

this is listed as ‘ID’ (i.e. Identification). We may be relatively certain that these 

HIJASS sources are HI detections of the galaxy included in NED. Although these 

galaxies have been detected and catalogued before, the HIJASS data represents the 

first time many of these sources have been detected in HI. 

 

If there is an object within NED which is spatially coincident with the HIJASS source 

(i.e.within 6 arcmin) but for which no redshift (and, hence, no cz) is listed in NED, 

then this is listed as ‘ASS’ (i.e. Association). Such a HIJASS source may be 



 72

associated with the catalogued galaxy. However, since there is no redshift for the 

catalogued galaxy we cannot be certain that the HIJASS source is an HI detection of 

the catalogued galaxy. A program of obtaining optical redshifts for these ‘ASS’ 

galaxies is being undertaken in order to determine whether each is the optical 

counterpart of  the HIJASS source.  

 

Finally, if there is no object within NED which could be spatially coincident with the 

HIJASS source then the ‘CLASS’ column contains the classification ‘PUG’ (i.e. 

Previously Uncatalogued Galaxy). These HIJASS sources are definitely not 

associated with a previously catalogued galaxy. Often a study of the Digital Sky 

Survey shows a likely optical counterpart to the HIJASS source (within the positional 

uncertainty of the HIJASS detection). These are generally faint or low surface 

brightness galaxies and have, thus, escaped being catalogued before (i.e. exactly the 

sort of galaxies HIPASS and HIJASS were conceived to discover – see Section 2.2). 

However, several instances are known where no galaxy can be seen on the Digital 

Sky Survey, despite the HI detection being unambiguous. These ‘invisible’ galaxies 

are arguably the most fascinating discoveries of the HIPASS and HIJASS surveys. 

Details of three of these have been published (Kilborn et al. 2000, Ryder et al. 2001, 

Boyce et al. 2001).  

 

6.4.2 Can GammaFinder detect those galaxies in the HIJASS catalogue ? 

GammaFinder was run on p74cube4 with gamThres=2.0. Table 6.6 shows the 

results from GammaFinder for these 19 objects. GammaFinder selected all but one of 

the 19 sources with a Gamma S/N >6.0. One source, J0619+75, was detected with a 

significantly lower Gamma S/N than any other galaxy (2.46). This source actually has 

the lowest peak flux (41 mJy) and second to lowest integrated flux (1.75 Jy km s-1) of 

any source in the whole HIJASS catalogue. This source was selected from a visual 

inspection and confirmed by narrow-band follow-up. It was not selected by the 

PolyFind automatic finding algorithm. 
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HIJASS     Hann   Gamma S/N    

NAME       FWHM     

 

J0545+73    H2       6.57 

J0545+72    H4      13.95 

J0556+75    H2      82.17 

J0602+73    H2      97.94 

J0610+71    H4      12.53 

J0615+71    H8      14.36 

J0619+75    H2       2.46 

J0619+78    H2     166.87 

J0711+71    H4      19.59 

J0713+73    H2      12.72        

J0716+75    H2      31.47 

J0721+74    H8       8.08       

J0722+77    H4      11.46 

J0730+72    H8      18.89 

J0736+74    H4       7.98 

J0736+73    H8      29.49 

J0744+72    H2      33.57 

J0750+74    H4       9.57 

J0751+72    H2       6.16 

 

Table 6.6. GammaFinder results for the 19 galaxies within p74cube4 included in 

Lang et al.’s HIJASS catalogue.  

 

Table 6.6 suggests that GammaFinder will be able to find almost all sources currently 

included in the HIJASS catalogue provided a gamThres value of around 6.0 is used. 

Nonetheless, the human eye may still be able to find the odd source missed by 

GammaFinder and other finding algorithms. 

 

6.4.3 The number of possible sources found by GammaFinder as a function of 

Gamma S/N  

Table 6.7 lists the number of possible sources selected by GammaFinder from 

p74cube4, as a function of Gamma S/N.  
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The number of possible sources starts to increase significantly at Gamma S/N < 8.0 

and particularly sharply at a Gamma S/N < 6.0.  Ideally, we want to know what 

fraction of sources at each Gamma S/N are real and what fraction are spurious. This 

can only be accurately determined by undertaking narrow-band follow-up 

observations of all possible sources returned by GammaFinder in a representative set 

of data. If we could subject all 180 sources found with Gamma S/N > 5.0 to narrow-

band follow-up observations, then we could determine what fraction are real and what 

fraction are spurious down to Gamma S/N = 5.0. Such an investigation would require 

about 5 days of telescope time. 

 

Gamma S/N      No. of possible sources 

 4.0 �  5.0       369 

 5.0 �  6.0        93 

 6.0 �  7.0        36 

 7.0 �  8.0        23 

 8.0 �  9.0         6 

 9.0 � 10.0         3 

10.0 � 11.0         0 

11.0 � 12.0         4 

12.0 � 13.0         3 

> 13.0              12 

Table 6.7. The number of possible sources returned by GammaFinder (from 

p74cube4) as a function of Gamma S/N.  

 

6.4.4 Can GammaFinder detect galaxies not included in the HIJASS catalogue ? 

Table 6.6 suggests that most possible sources returned by GammaFinder with 

GammaS/N < 6.0 will be spurious.  Therefore, for this evaluation, GammaFinder was 

run over p74cube4 with gamThres = 6.0.  

 

Initially, besides the 18 sources with Gamma S/N > 6.0 already included in the 

HIJASS catalogue, GammaFinder returned a further 69 possible sources. A visual 

inspection of the spectra relating to these on the “Display Panel” of GammaFinder 

enabled 38 to be rejected as obviously false, primarily being due to negative RFI 

‘spikes’ in channels adjacent to the selected ‘source’ or places where double-peaked 
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sources were being returned twice. Hence, an additional 31 possible sources, which 

could not be obviously rejected as false, were selected by GammaFinder. Table 6.8 

lists the output results from GammaFinder for these 31 possible sources (labelled GF1 

to GF31).   

 

Table 6.9 presents derived parameters for the 31 possible sources. These were 

obtained in the same way as for those galaxies currently included in the HIJASS 

Catalogue.  As noted above, the only way to ascertain with certainty whether each of 

these possible sources is real is to undertake a narrow-band follow-up observation. 

Nonetheless, in lieu of this, it is still possible to estimate the likelihood of the possible 

sources being real by comparing their coordinates to the NASA Extragalactic 

Database (NED) and the Digital Sky Survey (DSS). 
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SOURCE  XPIX    YPIX   ZPIX    HANN    GAMMA 

                               TYPE     S/N  

GF1      12      16     455      H8    6.36 
GF2      26      32     567      H8    8.07    
GF3      34      95     455      H8    6.51  
GF4      45      21     559      H8    8.42   
GF5      45      34     543      H8    7.74   
GF6      47       9     551      H8    9.81  
GF7      48     124     455      H8    7.01  
GF8      49      21     559      H8    6.23  
GF9      53      11     695      H8    7.11  
GF10     54       9     703      H8   11.07  
GF11     54      15     559      H8    6.94  
GF12     59      41     539      H4    7.03  
GF13     65      23     519      H8   24.92   
GF14     65      35     527      H8    7.31   
GF15     69     110     471      H8    6.76  
GF16     78      17     471      H8    9.50          
GF17     81      11     511      H8    7.25  
GF18     93      18     663      H8    6.40  
GF19     96      34     495      H8    6.17   
GF20    104      31     471      H8   26.33   
GF21    111      55     679      H8    8.70   
GF22    113      64     511      H8    6.10    
GF23    123      20     559      H8    7.00   
GF24    124      19     567      H8    7.08  
GF25    131      13     471      H8    7.20  
GF26    133     112     423      H4    6.06  
GF27    136      14     551      H8    7.18  
GF28    138      19     711      H8    6.95  
GF29    139      13     543      H8    7.98  
GF30    139      44     575      H8    6.48  
GF31    142      13     543      H8    7.83  
 

Table 6.8. The results of running GammaFinder over p74cube4 with gamThres = 

6.0. 

 

The ‘COUNTERPART’ column of Table 6.9 shows the result of comparing each of 

the 31 sources with NED. 10 of the 31 possible sources are coincident with a 

previously catalogued galaxies in both position and velocity. These are listed as ‘ID’ 

in Table 6.9. These are undoubtedly real. Figure 6.1 shows DSS images of these 10 

galaxies, along with their HI spectra. Hence, even without further follow-up work, we 

can be certain that GammaFinder has added at least another 10 galaxies to the 19 in 

p74cube4 already in the HIJASS catalogue, i.e. at least another 50%. This in itself is a 

remarkable result.   
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Of the other 21 possible sources in Table 6.9, 14 have a galaxy spatially coincident 

(within the positional uncertainty of HIJASS) within NED but this galaxy currently 

has no measured redshift. Hence, these are classified as ‘ASS’. However, a study of 

the DSS suggests that, in most cases, the catalogued galaxy appears to be too distant 

to be the optical counterpart to the HIJASS source. Nonetheless, in 3 cases (GF2, GF3 

and GF14) the catalogued galaxy does look (in terms of morphology and distance) 

like a likely optical counterpart to the HIJASS source. Figure 6.2 shows the DSS 

images of these three galaxies, along with the HI JASS spectra of GF2, GF3 and 

GF14. 
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SOURCE   R.A.    DEC.      Sint        Spk    Vo    W20  COUNTERPART 

                          Jy kms-1  mJy  kms-1   kms-1             

 

GF1  07:46:31.0 69:59:27  1.7�0.9  54  4101   112  ID  UGC03984 
GF2  07:37:44.4 71:16:38  4.7�0.7  46  2532   249  ASS   
GF3  07:44:01.9 75:29:13  8.9�0.9  77  4023   333  ASS    
GF4  07:21:09.4 70:39:00  7.6�1.2  61  2541   394  ASS   
GF5  07:22:30.7 71:34:50 13.0�0.9  72  2861   311  ID  UGC 03804 
GF6  07:17:54.0 69:58:22 11.0�1.2  74  2691   309  NOF 

GF7  07:35:34.1 77:33:02  4.9�0.9  56  4016   345  NOF  
GF8  07:18:12.8 70:45:23  7.0�1.0  71  2700   312  ASS    

GF9  07:13:23.5 70:06:09  6.6�1.1  59   782   345  ASS   
GF10 07:12:34.0 70:00:55  6.7�1.3  69   722   358  ASS     
GF11 07:13:44.4 70:25:02  5.8�1.0  76  2597   429  ASS   
GF12 07:11:47.6 72:10:41  5.7�0.7  64  2884   149  ID  UGC 03701     
GF13 07:04:50.9 71:01:49 10.8�0.8  86  3226   238  ID  UGC 03644 
GF14 07:07:28.8 71:54:09  5.0�0.9  77  2980   238  ASS    

GF15 07:08:08.2 76:49:16  6.6�0.9  41  3876   310  ASS   
GF16 06:55:19.7 70:43:23  7.3�1.0  61  3858   351  ID  UGC03575      
GF17 06:52:11.3 70:15:56  4.3�0.7  59  3301   177  NOF 

GF18 06:42:34.3 70:43:36  3.3�0.6  44  1267   151  ASS   
GF19 06:39:41.6 71:47:17  2.3�0.6  73  3750   135  NOF    

GF20 06:32:48.5 71:31:44 16.3�0.6  85  3584   135  ID  UGC 03474 

GF21 06:24:52.2 73:09:00  8.3�0.5  87  1046   176  ID  UGC 03453 

GF22 06:22:29.9 73:44:14  4.4�0.6  49  3329   177  ID  UGC 03444   

GF23 06:18:16.5 70:42:37  3.1�0.7  45  2583   162  NOF 

GF24 06:17:34.5 70:38:08  3.6�0.9  55  2574   172  NOF 
GF25 06:12:32.4 70:11:48  5.0�0.7  83  3827   147  ID  UGC03415 
GF26 05:53:28.0 76:38:24  4.7�0.5  49  4390   205  ID  UGC03364    
GF27 06:08:41.6 70:11:15  6.6�0.8  52  2699   355  ASS   
GF28 06:06:08.2 70:27:33  4.2�0.9  87   581   198  ASS   
GF29 06:07:19.9 70:07:48  8.3�1.1  62  2701   419  ASS    
GF30 06:01:27.0 72:08:55  6.4�0.9  49  2542   348  ASS   
GF31 06:04:20.9 70:02:31  6.3�1.1  60  2624   363  NOF  
 

Table 6.9. Derived parameters for the 31 new possible sources found by 

GammaFinder in p74cube4. 
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Figure 6.1. Digital Sky Survey images and HIJASS spectra for the 10 new ‘ID’ 

sources found by GammaFinder in p74cube4. The DSS images are 4arcmin x 

4arcmin.  
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Figure 6.1. Continued. 
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Figure 6.1. Continued. 
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Figure 6.1. Concluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 83

 

 

 

Figure 6.2. DSS images of the three ‘ASS’ galaxies which appear likely to be the 

optical counterparts of a GammaFinder possible source, along with the HIJASS 

spectra of the GammaFinder possible source.   
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There are 7 possible sources in Table 6.9 which have no galaxy spatially coincident 

within NED. They are classed here as NOF (‘No Object Found’) since, without 

narrow-band follow-up observations, it would be wrong to imply that they are 

definitely galaxies. A study of the DSS at the positions of the NOFs does, however, 

show a galaxy spatially coincident with one of these, GF31. This galaxy (not 

previously catalogued) looks like a very plausible optical counterpart to the HIJASS 

possible source. Figure 6.3 shows the DSS image of this galaxy, along with the 

HIJASS spectrum of GF31. 

 

There are 17 possible sources in Table 6.9 for which a plausible counterpart cannot be 

found in NED or seen on the DSS. It is likely that most of these possible sources are 

not real. As noted above, there are several known examples of HIJASS/HIPASS 

sources which have no obvious optical counterpart. There may be further examples of 

these types of object within these 17 possible sources. They should certainly be 

subjected to narrow-band follow-up to ascertain if they are real or not. The HIJASS 

spectra of these 17 possible sources are presented in Figure 6.4. 

 

 

Figure 6.3. DSS image of the (previously uncatalogued) probable optical counterpart 

to GF31, along with the HIJASS spectrum of the GF31.  
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Figure 6.4. HIJASS spectra of those 17 possible sources with no optical counterpart. 
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Figure 6.4. Continued. 
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Figure 6.4. Continued. 
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Figure 6.4. Continued. 
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Figure 6.4. Continued. 
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Figure 6.4. Concluded. 

 

6.4.5 Detection limits of GammaFinder 

Since GammaFinder is finding significant numbers of sources not found by visual 

inspection or by existing automatic finders, it must be selecting galaxies with lower 

peak fluxes and/or lower integrated fluxes. This issue cannot be fully studied without 

a detailed narrow-band follow-up program to determine the reality of GammaFinder 

sources to some limiting Gamma S/N. A preliminary analysis is presented in this 

section. 

 

Figure 6.5 is a plot of  log ( Sint ) against W20, showing the galaxies from the Lang et 

al. HIJASS catalogue which lie within cube p74cube (open triangles) and also 
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showing the additional 31 possible sources found by GammaFinder within p74cube4. 

Those 14 of the new sources which are probably real (see Section 6.4.4) are plotted as 

filled squares. The other 17 possible sources are plotted as fixed hexagons. 

 

 

Figure 6.5. Plot of log( Sint ) against W20 for galaxies from p74cube4. The open 

triangles represent galaxies from the Lang et al. HIJASS catalogue. The filled squares 

represents those 14 of the possible sources found by GammaFinder which are either 

IDs (10) or otherwise have plausible optical counterparts. The fixed hexagons 

represent the other possible sources. 

 

As discussed in Section 2.7, the HIJASS catalogue is essentially peak flux limited 

with a completeness limit at about 5�noise and a detection limit at about 3�noise. Lang 

et al. showed that for galaxies in the HIJASS catalogue   
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Sint ⊄ k W20 Spk                                                                                                        (6.1) 

 

where k is a constant which depends on the emission line’s profile shape. For galaxies 

in the HIJASS catalogue k = 0.6!0.1. Hence, a peak flux limit translates to an 

integrated flux limit which is a function of W20. Plotted on Figure 6.5 are the loci of 

this relationship for the Spk values corresponding to the completeness and detections 

limits of the HIJASS survey (i.e 5�noise and 3�noise respectively). The lower of these 

can be seen to constrain the galaxies in Lang et al’s catalogue well, with only 2 

galaxies lying below this limit. These have relatively narrow velocity-widths: the 

assumed value of k=0.6 is probably not strictly applicable to these. 

 

There are several important points to note from Figure 6.5. 

1. GammaFinder is finding a significant number of extra sources in the area 

where the completeness of the HIJASS catalogue falls below 100%. 

GammaFinder finds 6 possible sources between the HIJASS catalogue’s 

detection limit of 3�noise and ‘completeness limit’ of 5�noise. At least 5 of 

these are real (since they are IDs). This compares to the 6 sources below the 

completeness limit in the HIJASS catalogue.  

2. GammaFinder finds 24 possible sources below the HIJASS catalogue’s 

‘detection limit’ of  3�noise.  At least 5 of these are real (since they are IDs) 

and another 4 are likely to be real (the ASSs and PUG of Figures 6.2 and 6.3).  

3. GammaFinder seems to be selecting galaxies on the basis of their peak flux 

but to a lower peak flux limit than that of the HIJASS catalogue. 

GammaFinder does not appear to be selecting galaxies on the basis of their 

integrated flux. The limiting Sint it can detect depends on W20 with a similar 

functional form to that seen for the galaxies in the HIJASS catalogue. The 

locus of a peak flux limit of 1.5�noise is also plotted on Figure 6.5. This seems 

to be a good fit to a ‘detection limit’ for GammaFinder on this datacube. 

 

The limited evaluation presented here suggests that GammaFinder essentially operates 

as a peak flux limited finder but that it can select galaxies to much fainter limits than 

existing finders. If the fall in the detection limit from around 3�noise to 1.5�noise is 
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confirmed by a more detailed evaluation then GammaFinder will be able to add very 

substantial numbers of new galaxies to those found in HIJASS and HIPASS data by 

existing methods.  

 

6.5 Concluding remarks 

The performance of GammaFinder both in terms of its ability to detect astronomical 

sources and its computational efficiency has been explored in this chapter. In Chapter 

7 some conclusions are drawn from the project and some suggestions made for future 

work.  
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7. Conclusions and Future Work 

7.1 Introduction 

Section 7.1 of this chapter contains some ideas for future work. In Section 7.2 some 

conclusions from the project are drawn.  

 

 7.2 Future Work 

Three areas in which future work might be undertaken are considered in this section.  

 

7.2.1 Full evaluation of GammaFinder 

The evaluation presented in Section 6.4 was, of necessity, rather limited in scope. A 

more detailed evaluation needs to be undertaken with the aim of investigating: 

1. How the ratio of real sources to spurious sources returned by GammaFinder 

varies with Gamma S/N. From this can be gained a clearer idea of the best 

limiting Gamma S/N (gamThres) value to use.  

2. How sensitive GammaFinder is to detecting galaxies as a function of peak 

and/or integrated flux. In Section 6.4.5 it was suggested that GammaFinder is 

operating as a peak flux limited finder, though to much better sensitivity than 

existing methods. Does this conclusion hold to fainter limiting Gamma S/N or 

with larger samples of sources? 

 

The steps in a fuller investigation should be: 

1. Run GammaFinder on several HIJASS / HIPASS datacubes. 

2. Create a list of all those returned possible sources (down to some faint Gamma 

S/N limit) which cannot be easily dismissed as unreal. 

3. Check this list against currently catalogued HIJASS and HIPASS sources.  

4. Cross-check the list with NED to see if any match with catalogued galaxies in 

both space and velocity (i.e. are ‘ID’s). 

5. All sources which are not already in the HIJASS / HIPASS catalogues or are 

not IDs need to be re-observed to test if they are real.  

 

Once these steps have been completed, the number of real sources compared to 

spurious sources as a function of Gamma S/N can be easily studied. Also Spk, Sint and 

W20 measurements can be made of all real sources down to faint Gamma S/N. Hence, 
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the sensitivity of GammaFinder as a function of  Spk, Sint and W20 and Gamma S/N 

can be investigated. The results of this analysis will enable the most efficient and 

effective use to be made of GammaFinder in applying it to existing databases of 

HIPASS and HIJASS data.  

  

7.2.2 Running GammaFinder on HIPASS / HIJASS data 

If the significantly improved sensitivity of GammaFinder is confirmed by the fuller 

evaluation proposed in Section 7.2.1, than an obvious use of GammaFinder would be 

to re-analyse the large dataset of completed HIPASS and HIJASS observations. This 

could result in a huge increase in the number of galaxies found within the survey data. 

For a peak flux limited survey of a homogenous distribution of galaxies we expect 

Nobj } Spk
–5/2. If the completeness limit of GammaFinder is 1.5�noise below that of the 

existing catalogues (as the detection limit appears to be), then GammaFinder could 

increase the number of sources above the completeness limit by more than a factor of 

2.  

 

7.2.3 Further development of GammaFinder 

The evaluation of Section 6.4.5 suggests that the core functionality of GammaFinder 

is highly effective. No changes should be made to this at least until after a full 

evaluation has been performed. Further improvements could be made to the 

functionality of the GUI but care needs to be taken not to obscure the main 

functionality of the application. Possible improvements might include the ability to re-

scale the spectra and/or to zoom in on particular channel ranges. It might also be 

useful to be able to display 2 spectra at the same time (for example, to compare the 

raw spectrum to the gamma spectrum).  

 

Following a full evaluation and prior to being released to the community, 

GammaFinder needs to have a detailed on-line User Guide written for it. A menu item 

to call such a guide has been coded into the application. A user guide written in 

HTML could be implemented via a JEditorPane.  

 

A possible way to further develop GammaFinder would be to make it part of a more 

general HIPASS/HIJASS image analysis package bringing together functions which 
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at present require the use of several different software packages. Such a package 

could include the ability to display 2-dimensional ‘slices’ through the datacube (as 

can currently be undertaken by KVIEW – Gooch 1995) and to undertake basic object 

parameter measurements (as can currently be undertaken using the tasks of MIRIAD). 

Having these functions and those of GammaFinder in a single application would make 

the investigation of HIPASS/HIJASS data a much more integrated process.  

 

7.3 Conclusions 

GammaFinder is an effective new application for finding sources in HIPASS or 

HIJASS datacubes. A preliminary evaluation suggests that it may be able to lower the 

detection limit on such data to only 1.5�noise, compared to a detection limit of around 

3�noise for current detection methods. This could lead to a large increase in the 

number of sources which can be found in HIPASS and HIJASS data and significantly 

boost the scientific exploitation of these two major surveys.  
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Appendix 
 
 

Source code for Voxel.java 
 
/* 
   Class to define a Voxel object  
   Part of GammaFinder appliciation.  
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
public class Voxel 
{ 
   //constructor 
   public Voxel( float voxelValue ) 
   { 
      voxVal = voxelValue; 
   } 
    
   //method to set the values of the instance varibles 
   public void setVoxVal( float a ) { voxVal = a; } 
   public void setH2Val( float b ) { h2Val = b; } 
   public void setH4Val( float c ) { h4Val = c; } 
   public void setH8Val( float d ) { h8Val = d; } 
   public void setGVal( float e ) { gVal = e; } 
   public void setG2Val( float f ) { g2Val = f; } 
   public void setG4Val( float g ) { g4Val = g; } 
   public void setG8Val( float h ) { g8Val = h; } 
 
   //methods to return the values of the instance variables 
   public float getVoxVal() { return voxVal; } 
   public float getH2Val() { return h2Val; } 
   public float getH4Val() { return h4Val; } 
   public float getH8Val() { return h8Val; } 
   public float getGVal() { return gVal; } 
   public float getG2Val() { return g2Val; } 
   public float getG4Val() { return g4Val; } 
   public float getG8Val() { return g8Val; } 
 
   //instance variables 
   private float voxVal, h2Val, h4Val, h8Val, gVal, g2Val, g4Val, g8Val;    
} 
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Source code for HiCube.java 
 
/* 
   Class to represent a 3-dimensional   
   HIJASS or HIPASS datacube. 
   Part of the GammaFinder application.   
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
import org.eso.fits.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.font.*; 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class HiCube 
{ 
   //constructor 
   public HiCube( float[][][] inDataArray ) 
   { 
      xpix = inDataArray.length; 
      ypix = inDataArray[0].length; 
      zpix = inDataArray[0][0].length;   
      voxArray = new Voxel[xpix][ypix][zpix]; 
      zChanQual = new boolean[zpix];      
     
      //create a Voxel object at each (i,j,k) in VoxArray 
      for( int i = 0; i < xpix; i++ ) 
         for( int j = 0; j < ypix; j++ ) 
            for( int k = 0; k < zpix; k++) 
              voxArray[i][j][k] = new Voxel( inDataArray[i][j][k] ); 
 
   } 
 
 
   /* 
   Method used set the h2Val, h4Val, h8Val instance variables  
   in every Voxel in voxArray.  
   */ 
   public void setH2H4H8Vals() 
   {  
      double temp; 
 
      for( int i = 0; i < xpix; i++) 
      { 
         for( int j = 0; j < ypix; j++ ) 
         { 
     //create Hanning smoothed spectrum FWHM = 2 channels 
     for(int k = 1; k < (zpix - 1) ; k = k + 2 ) 
            { 
        temp = (0.5 * voxArray[i][j][k].getVoxVal() ) +  
                      ( 0.25 * ( voxArray[i][j][k-1].getVoxVal() + 
voxArray[i][j][k+1].getVoxVal() )  ); 
               voxArray[i][j][k].setH2Val( (float) temp ); 
            } 
 
            //create Hanning smoothed spectra FWHM = 4 channels  
            for( int k = 3; k < ( zpix - 3 ) ; k = k + 4) 
            { 
               temp = ( voxArray[i][j][k].getVoxVal() + 0.854 * (voxArray[i][j][k-
1].getVoxVal() + voxArray[i][j][k+1].getVoxVal())  
                         + 0.5 * ( voxArray[i][j][k-2].getVoxVal() + 
voxArray[i][j][k+2].getVoxVal() )  
           + 0.146 * ( voxArray[i][j][k-3].getVoxVal() + 
voxArray[i][j][k+3].getVoxVal() )) / 4; 
        voxArray[i][j][k].setH4Val( (float) temp ); 
            } 
 
            //creat Hanning smoothed spectrum, FWHM = 8 channels 
            for( int k = 7; k < ( zpix - 7 ) ; k = k + 8) 
            { 
               temp = ( voxArray[i][j][k].getVoxVal()  
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                        + 0.962 * (voxArray[i][j][k-1].getVoxVal() + 
voxArray[i][j][k+1].getVoxVal())  
                        + 0.854 * ( voxArray[i][j][k-2].getVoxVal() + 
voxArray[i][j][k+2].getVoxVal() )  
          + 0.691 * ( voxArray[i][j][k-3].getVoxVal() + 
voxArray[i][j][k+3].getVoxVal() ) 
             + 0.500 * ( voxArray[i][j][k-3].getVoxVal() + 
voxArray[i][j][k+3].getVoxVal() ) 
             + 0.309 * ( voxArray[i][j][k-4].getVoxVal() + 
voxArray[i][j][k+4].getVoxVal() ) 
             + 0.146 * ( voxArray[i][j][k-5].getVoxVal() + 
voxArray[i][j][k+5].getVoxVal() ) 
                        + 0.038 * ( voxArray[i][j][k-6].getVoxVal() + 
voxArray[i][j][k+6].getVoxVal() )) / 8; 
        voxArray[i][j][k].setH8Val( (float) temp ); 
            } 
         } 
      } 
   } 
 
 
   /* 
   Method used set the gVal instance variables  
   in every Voxel in voxArray.  
   */ 
   public void setGVals() 
   { 
 
      float[] deltaK = new float[16]; 
      float[] gammaK = new float[16]; 
      int posq, posl; 
      float deltaSum, gammaSum, sumX, sumX2, sumXY, sumY, intercept, gradient; 
   
      for( int i = 0; i < xpix; i++) 
      { 
         for( int j =0; j < ypix; j++ ) 
         {      
            for( int k = 0; k < zpix; k++) 
            { 
 
               //calculate gammaK[q] and deltaK[q] for q = 1 to 15 at this (i,j,k).  
               for( int q = 1; q <= 15; q++ ) 
               { 
 
                  deltaSum = 0; 
                  gammaSum = 0; 
          
                  //window is 11 channels wide  
                  for( int l = k - 5; l <= k + 5; l++)  
                  { 
                    if( q % 2 == 1 ) 
       { 
                        deltaSum +=  (float)  (     ( ( q + 1 ) / 2 ) * ( ( q + 1 ) / 
2 )              );    
                        posq = l + ( q + 1 )/2; 
                        posl = l; 
                     } 
                     else 
             { 
                  deltaSum += (q * q / 4); 
                        posq = l + q / 2; 
                        posl = l; 
                     } 
 
                     if( posq < 0 ) 
            posq += zpix; 
                     if( posq >= zpix ) 
          posq -= zpix; 
                     if( posl < 0 ) 
          posl += zpix ; 
       if( posl >= zpix ) 
          posl -=  zpix; 
 
                     gammaSum += (float) ( ( voxArray[i][j][posq].getVoxVal() - 
voxArray[i][j][posl].getVoxVal() ) * 
                                           ( voxArray[i][j][posq].getVoxVal() - 
voxArray[i][j][posl].getVoxVal() ) );  
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                  }   
                  deltaK[q] = deltaSum / 11; 
                  gammaK[q] = gammaSum / 22; 
               } 
 
               //undertake linear regression to find gamma statistic at this (i,j,z) 
               sumX = 0; 
               sumX2 = 0; 
               sumY = 0;            
               sumXY = 0; 
 
               for ( int q = 1; q <= 15; q++) 
               { 
                  sumX += deltaK[q]; 
                  sumX2 += ( deltaK[q] * deltaK[q] ); 
                  sumY += gammaK[q]; 
                  sumXY += ( deltaK[q] * gammaK[q] ); 
               } 
       
               gradient = (sumXY - (sumX * sumY / 15) ) / ( (sumX2) - ( sumX * sumX / 
15 )   );      
               intercept = ( sumY - ( gradient * sumX ) ) / 15; 
 
               //copy value of gamma statistic to g2Val of relevant Voxel object 
               voxArray[i][j][k].setGVal( intercept );  
 
                    
            } 
         } 
      } 
   } 
 
 
     
   /* 
   Method used to set the noise instance variable  
   */ 
   public void setNoise() 
   { 
      int npix = xpix * ypix * zpix; 
      float[] noiseArray = new float[ npix ]; 
      int l = 0; 
      int count = 0; 
 
      for( int i = 0; i < xpix; i++ ) 
         for( int j = 0; j < ypix; j++ ) 
     for( int k = 0; k < zpix; k++ ) 
     { 
        noiseArray[l] = voxArray[i][j][k].getVoxVal();           
               l++; 
               if( voxArray[i][j][k].getVoxVal() == 0 ) 
     count++; 
            } 
 
 
      Arrays.sort( noiseArray ); 
 
      noise = (float) Math.sqrt( noiseArray[ ( ( l - count ) / 2 ) + count ]  );              
 
   } 
 
   /* 
   Method to set the values in the zChanQual array.  
   */ 
   public void setZChanQual() 
   { 
          
      float medallZ; 
      float[] IFPixMed = new float[zpix];  
      float[] IFPixMedRT = new float[(xpix * ypix)];   
      int l; 
 
      //find median gVal in each z-channel 
      for( int k = 0; k < zpix; k++ ) 
      { 
         l = 0; 
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         for( int i = 0; i < xpix; i++ ) 
         { 
            for ( int j = 0; j < ypix; j++ ) 
            { 
               IFPixMedRT[l] = voxArray[i][j][k].getGVal(); 
               l++;        
            } 
         } 
         Arrays.sort( IFPixMedRT ); 
 
         IFPixMed[k] = IFPixMedRT[l/2]; 
      } 
       
      //find median gVal from IFPixMed  
      float[] shadow = new float[zpix]; 
      for( int k = 0; k < zpix; k++) 
         shadow[k] = IFPixMed[k];  
      Arrays.sort( shadow ); 
      medallZ = shadow[ (zpix-1) / 2 ]; 
 
      //set zChanQual to true if median gVal in channel < 1.5medallZ 
      for(int k = 0; k < zpix; k++ ) 
      { 
         if( IFPixMed[k] <= (medallZ * 1.5) ) 
  { 
      zChanQual[k] = true; 
         } 
      } 
   } 
 
   /* 
   Method used set the g2Val, g4Val, g8Val instance variables  
   in every Voxel in voxArray.  
   */ 
   public void setG2G4G8Vals() 
   {      
 
      float gammaSum, deltaSum, ncount, gradient, intercept, sumX, sumX2, sumY, sumXY; 
      int posq, posl; 
      float[] deltah2K = new float[16]; 
      float[] gammah2K = new float[16]; 
      float[] deltah4K = new float[16]; 
      float[] gammah4K = new float[16]; 
      float[] deltah8K = new float[16]; 
      float[] gammah8K = new float[16]; 
 
      //perform moving window gamma test on h2Val, h4Val and h8val  spectra  
      // voxels with ’bad’ quality flags are exlcuded from the process.   
      for( int i = 0; i < xpix; i++) 
      { 
         for( int j =0; j < ypix; j++ ) 
  { 
 
            //conduct moving window gamma test on h2Val spectrum at (i,j) 
            for( int k = 1; k < ( zpix -1 ); k = k + 2) 
            { 
               for( int q = 1; q <= 15; q++ ) 
               { 
                  deltaSum = 0; 
                  gammaSum = 0; 
                  ncount = 0;          
 
                  for( int l = k - 10; l <= k + 10; l = l + 2)  
                  { 
              posl = l; 
 
                     if( posl < 0 ) 
                 posl +=  ( zpix -1 ) ; 
              if( posl >= zpix ) 
               posl -= ( zpix - 1 ); 
 
       if( zChanQual[posl] == true )  
       {     
                        ncount++; 
                 if( q % 2 == 1 ) 
          { 
      posq = l - ( q + 1 ); 
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                           if( posq < 0 ) 
                     posq +=  ( zpix - 1 ); 
                           if( posq >= zpix ) 
                posq -= ( zpix - 1); 
 
                if( zChanQual[posq] == true )                         
             { 
                              deltaSum +=  (float) ( ( ( q + 1 ) / 2 ) * ( ( q + 1 ) / 
2 ) );    
 
 
     
                              gammaSum += (float)( ( voxArray[i][j][ posq ].getH2Val() 
- voxArray[i][j][ posl ].getH2Val() ) *  
                                                   ( voxArray[i][j][ posq ].getH2Val() 
- voxArray[i][j][ posl ].getH2Val() ) ); 
                           } 
                           else 
      { 
                //do nothing 
                           } 
 
                        } 
                        else 
                 { 
      posq = l + q;                            
 
                           if( posq < 0 ) 
           posq += ( zpix - 1 ); 
                           if( posq >= zpix ) 
         posq -= ( zpix - 1 ); 
 
                           if( zChanQual[ posq ] == true )                         
         { 
                   deltaSum += (q * q / 4); 
                              gammaSum += (float) ( ( voxArray[i][j][posq].getH2Val()  
- voxArray[i][j][posl].getH2Val() ) * 
                                                    ( voxArray[i][j][posq].getH2Val()  
- voxArray[i][j][posl].getH2Val() ) ); 
                           } 
                           else 
      { 
         //do nothing 
                           } 
                        } 
                     } 
                     else 
       { 
          //do nothing 
                     } 
                  } 
                  deltah2K[q] = deltaSum / ncount; 
                  gammah2K[q] = gammaSum / ( 2 * ncount ); 
               } 
 
               sumX = 0; 
               sumX2 = 0; 
               sumY = 0; 
               sumXY = 0; 
  
               for ( int q = 1; q <= 15; q++) 
               { 
                  sumX += deltah2K[q]; 
                  sumX2 += ( deltah2K[q] * deltah2K[q] ); 
                  sumY += gammah2K[q];                    
                  sumXY += ( deltah2K[q] * gammah2K[q] ); 
               } 
       
               gradient = (sumXY - (sumX * sumY / 15) ) / ( (sumX2) - ( sumX * sumX / 
15 )   );      
               intercept = ( sumY - ( gradient * sumX ) ) / 15; 
               voxArray[i][j][k].setG2Val( intercept );  
            } 
 
 
            //conduct moving window gamma test on h4Val spectrum at (i,j) 
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            for( int k = 3; k < ( zpix - 3 ); k = k + 4) 
            { 
               for( int q = 1; q <= 15; q++ ) 
               { 
                  deltaSum = 0; 
                  gammaSum = 0; 
                  ncount = 0;          
 
                  for( int l = k - 20; l <= k + 20; l = l + 4)  
                  { 
              posl = l; 
 
                     if( posl < 0 ) 
                 posl +=  ( zpix - 3 ) ; 
              if( posl >= zpix ) 
                 posl -= ( zpix - 3 ); 
 
          if( zChanQual[posl] == true )  
       {     
                        ncount++; 
                        if( q % 2 == 1 ) 
          { 
             posq = l - ( ( 2 * q ) + 2 ); 
                        
                           if( posq < 0 ) 
                     posq += ( zpix - 3 ); 
                           if( posq >= zpix ) 
                posq -= ( zpix - 3 ); 
 
      if( zChanQual[posq] == true )                         
      { 
                              deltaSum += (float) ( ( q + 1 ) * ( q + 1 ) / 4 );      
 
   
                              gammaSum += (float) ( ( voxArray[i][j][posq].getH4Val() 
- voxArray[i][j][posl].getH4Val() ) * 
                                                    ( voxArray[i][j][posq].getH4Val() 
- voxArray[i][j][posl].getH4Val() ) ); 
                           } 
                           else 
                   { 
         //do nothing 
                           } 
                        } 
                        else 
                 { 
           posq = l + ( 2 * q );                            
 
                           if( posq < 0 ) 
           posq += ( zpix - 3 ); 
                           if( posq >= zpix ) 
         posq -= ( zpix - 3 ); 
 
                           if( zChanQual[ posq ] == true )                         
      { 
                   deltaSum += (float) ( q * q / 4 ); 
                              gammaSum += (float) ( ( voxArray[i][j][posq].getH4Val() 
- voxArray[i][j][posl].getH4Val() ) * 
                                                    ( voxArray[i][j][posq].getH4Val() 
- voxArray[i][j][posl].getH4Val() ) ); 
                           } 
                           else 
      { 
         //do nothing 
                           } 
                        } 
                     } 
                     else 
       { 
          //do nothing 
                     } 
                  } 
                  deltah4K[q] = deltaSum / ncount; 
                  gammah4K[q] = gammaSum / ( 2 * ncount ); 
               } 
 
               sumX = 0; 
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               sumX2 = 0; 
               sumY = 0; 
               sumXY = 0; 
 
               for ( int q = 1; q <= 15; q++) 
               { 
                  sumX += deltah4K[q]; 
                  sumX2 += ( deltah4K[q] * deltah4K[q] ); 
                  sumY += gammah4K[q]; 
                  sumXY += ( deltah4K[q] * gammah4K[q] ); 
               } 
       
               gradient = (sumXY - (sumX * sumY / 15) ) / ( (sumX2) - ( sumX * sumX / 
15 )   );      
               intercept = ( sumY - ( gradient * sumX ) ) / 15; 
               voxArray[i][j][k].setG4Val( intercept );  
            } 
 
 
            //conduct moving window gamma test on h2Val spectrum at (i,j) 
            for( int k = 7; k < ( zpix - 7 ); k = k + 8) 
            { 
            
               for( int q = 1; q <= 15; q++ ) 
               { 
                  deltaSum = 0; 
                  gammaSum = 0; 
                  ncount = 0;          
  
                  for( int l = k - 40; l <= k + 40; l = l + 8)  
                  { 
       posl = l; 
 
                     if( posl < 0 ) 
             posl += ( zpix - 7 ) ; 
       if( posl >= zpix ) 
      posl -= ( zpix - 7 ); 
 
       if( zChanQual[posl] == true )  
       {     
                        ncount++; 
                        if( q % 2 == 1 ) 
          { 
             posq = l - ( ( 4 * q ) + 4 ); 
                        
                           if( posq < 0 ) 
                     posq += ( zpix - 7 ); 
                           if( posq >= zpix ) 
                posq -= ( zpix - 7 ); 
 
 
             if( zChanQual[posq] == true )                         
             { 
                              deltaSum +=  (float) (  ( q + 1 ) * ( q + 1 ) / 4  );     
 
    
                              gammaSum += (float) ( ( voxArray[i][j][posq].getH8Val() 
- voxArray[i][j][posl].getH8Val() ) *  
                                                    ( voxArray[i][j][posq].getH8Val() 
- voxArray[i][j][posl].getH8Val() ) ); 
                           } 
                           else 
                  { 
         //do nothing 
                           } 
                        } 
                        else 
                 { 
         posq = l + ( 4 * q );                            
 
                           if( posq < 0 ) 
                  posq += ( zpix - 7 ); 
                           if( posq >= zpix ) 
                posq -= ( zpix - 7 ); 
 
                           if( zChanQual[ posq ] == true )                         
             { 
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                   deltaSum += ( q * q / 4 ); 
                              gammaSum += (float) ( ( voxArray[i][j][ posq 
].getH8Val()  - voxArray[i][j][ posl ].getH8Val() ) * 
                                                    ( voxArray[i][j][ posq 
].getH8Val()  - voxArray[i][j][ posl ].getH8Val() ) ); 
                           } 
                           else 
             { 
                //do nothing 
                           } 
                        } 
                     } 
                     else 
              { 
                 //do nothing 
                     } 
                  } 
                  deltah8K[q] = deltaSum / ncount; 
                  gammah8K[q] = gammaSum / ( 2 * ncount ); 
               } 
   
               sumX = 0; 
               sumX2 = 0; 
               sumY = 0; 
               sumXY = 0; 
 
               for ( int q = 1; q <= 15; q++) 
               { 
                  sumX += deltah8K[q]; 
                  sumX2 += ( deltah8K[q] * deltah8K[q] ); 
                  sumY += gammah8K[q]; 
                  sumXY += ( deltah8K[q] * gammah8K[q] ); 
               } 
       
               gradient = (sumXY - (sumX * sumY / 15) ) / ( (sumX2) - ( sumX * sumX / 
15 )   );      
               intercept = ( sumY - ( gradient * sumX ) ) / 15; 
               voxArray[i][j][k].setG8Val( intercept );  
            } 
         } 
      } 
   } 
 
 
   //method to return voxArray 
   public Voxel[][][] getVoxArray() 
   { 
      return voxArray; 
   } 
 
 
   //method to return a particular voxel  
   public Voxel getVoxel(int i, int j, int k) 
   { 
      return voxArray[i][j][k]; 
   } 
 
   //method to return the noise instance variable 
   public float getNoise() 
   { 
      return noise; 
   } 
 
   //method to return the zChanQual instance variable 
   public boolean[] getZChanQual() 
   { 
      return zChanQual; 
   } 
   
   //instance variables 
   private int xpix, ypix, zpix; 
   private Voxel[][][] voxArray; 
   private boolean[] zChanQual; 
   private float noise; 
 
} 
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Source code for GammaFinder.java 
 
 
/* 
   Class to create an application which finds possible sources  
   in HIJASS and DIPASS data.  
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
import org.eso.fits.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.font.*; 
import java.io.*; 
import java.util.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class GammaFinder 
{ 
   public static void main( String[] args ) 
   { 
      GuiFrame guiFrame = new GuiFrame(); 
      guiFrame.setTitle( "GammaFinder" ); 
      guiFrame.pack(); 
      guiFrame.show(); 
   } 
} 
  
class GuiFrame extends JFrame implements ActionListener 
{ 
   //GuiFrame constructor 
   public GuiFrame() 
   {      
       
      //set cross platform ’look and feel’ 
      try 
      { 
         UIManager.setLookAndFeel( UIManager.getCrossPlatformLookAndFeelClassName() ); 
      } 
      catch (Exception e ) 
      { 
         JOptionPane dialog = new JOptionPane(); 
         dialog.showMessageDialog( this, "There was a problem setting Look and Feel. 
Default will be used",  
                                      "Information", JOptionPane.PLAIN_MESSAGE); 
      } 
 
      setDefaultCloseOperation( EXIT_ON_CLOSE ); 
 
      Container contentPane = getContentPane(); 
      contentPane.setLayout( new BorderLayout( 1, 5 ) ); 
 
      //create a menu 
      mbar = new JMenuBar(); 
 
 
      //create a top level menu item  
      m1 = new JMenu( "File" ); 
      m1.setMnemonic( KeyEvent.VK_F ); 
 
      //create a list of menu items and add to m1 
      j1 = new JMenuItem( "Open File" ); 
      j1.addActionListener( this ); 
      j1.setMnemonic( KeyEvent.VK_O ); 
      j2 = new JMenuItem( "Save Results" ); 
      j2.addActionListener( this ); 
      j2.setMnemonic( KeyEvent.VK_S ); 
      j3 = new JMenuItem( "Run Finder" ); 
      j3.addActionListener( this ); 
      j3.setMnemonic( KeyEvent.VK_I ); 
      j4 = new JMenuItem( "Exit" ); 
      j4.addActionListener( this ); 
      j4.setMnemonic( KeyEvent.VK_X ); 
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      m1.add(j1); 
      m1.add(j2); 
      m1.addSeparator(); 
      m1.add(j3); 
      m1.addSeparator(); 
      m1.add(j4); 
 
      //create a top level menu item  
      m2 = new JMenu( "Edit" ); 
      m2.setMnemonic( KeyEvent.VK_E ); 
 
      //create a list of menu items and add to m2 
      j5 = new JMenuItem( "Cut" ); 
      j5.addActionListener( this ); 
      j5.setMnemonic( KeyEvent.VK_C ); 
      j6 = new JMenuItem( "Copy" ); 
      j6.addActionListener( this ); 
      j6.setMnemonic( KeyEvent.VK_Y ); 
      j7 = new JMenuItem( "Paste" ); 
      j7.addActionListener( this ); 
      j7.setMnemonic( KeyEvent.VK_P ); 
      m2.add( j5 ); 
      m2.add( j6 ); 
      m2.add( j7 ); 
 
 
      //create a top level menu item 
      m3 = new JMenu( "Help" ); 
      m3.setMnemonic( KeyEvent.VK_H ); 
 
      //create a list of menu items and add to m3 
      j8 = new JMenuItem( "Help Topics" ); 
      j8.addActionListener( this ); 
      j8.setMnemonic( KeyEvent.VK_T ); 
      j9 = new JMenuItem( "About GalFinder" ); 
      j9.addActionListener( this ); 
      j9.setMnemonic( KeyEvent.VK_A ); 
      m3.add( j8 ); 
      m3.add( j9 ); 
 
      //add top level menu items to menu bar 
      mbar.add( m1 ); 
      mbar.add( m2 ); 
      mbar.add( m3 ); 
 
      //show menu bar 
      setJMenuBar( mbar ); 
       
      //create ToolBar 
      panel1 = new JPanel(); 
      panel1.setLayout( new FlowLayout( FlowLayout.LEFT, 2, 3 ) ); 
      panel1.setBorder( new LineBorder (Color.black)  ); 
 
      //create buttons for ToolBar 
      image1 = new ImageIcon( "Open24.gif" ); 
      image2 = new ImageIcon( "Save24.gif" );       
      image3 = new ImageIcon( "Find24.gif" ); 
      image4 = new ImageIcon( "Cut24.gif" ); 
      image5 = new ImageIcon( "Copy24.gif" ); 
      image6 = new ImageIcon( "Paste24.gif" ); 
 
      button1 = new JButton( "  Open  ", image1 ); 
      button1.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button1.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button1.setMnemonic( KeyEvent.VK_O ); 
      button1.addActionListener( this ); 
      button1.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button1.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button1.setToolTipText("Open New File"); 
 
      button2 = new JButton( "  Save  ", image2 );      
      button2.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button2.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button2.setMnemonic( KeyEvent.VK_S ); 
      button2.addActionListener( this ); 
      button2.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button2.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
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      button2.setToolTipText("Save Results to a Text File"); 
 
      button3 = new JButton( "  Find  ", image3 ); 
      button3.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button3.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button3.setMnemonic( KeyEvent.VK_I ); 
      button3.addActionListener( this ); 
      button3.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button3.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button3.setToolTipText("Search for galaxies in the cube"); 
 
      button4 = new JButton( "  Cut   ", image4 ); 
      button4.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button4.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button4.setMnemonic( KeyEvent.VK_C ); 
      button4.addActionListener( this ); 
      button4.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button4.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button4.setToolTipText("Cut selected text from Results Panel to clipboard"); 
 
      button5 = new JButton( "  Copy  ", image5 ); 
      button5.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button5.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button5.setMnemonic( KeyEvent.VK_Y ); 
      button5.addActionListener( this ); 
      button5.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button5.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button5.setToolTipText("Copy selected text from Results Panel to clipboard"); 
 
      button6 = new JButton( " Paste  ", image6 ); 
      button6.setVerticalTextPosition( AbstractButton.BOTTOM ); 
      button6.setHorizontalTextPosition( AbstractButton.CENTER ); 
      button6.setMnemonic( KeyEvent.VK_P ); 
      button6.addActionListener( this ); 
      button6.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button6.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button6.setToolTipText("Paste text into Results Panel from clipboard"); 
 
 
      jspace = new JLabel( "           " ); 
 
      gLab = new JLabel( " Gamma S/N Threshold " ); 
      gLab.setHorizontalAlignment(JLabel.CENTER); 
      gLab.setForeground( Color.black ); 
      gLab.setFont( new Font( "Courier", Font.BOLD, 12 ) ); 
      gLab.setLabelFor( gammaThres ); 
 
      //create JCombo box for selecting Gamma S/N threshold 
      gammaThres = new JComboBox(); 
      gammaThres.addItem("2.0"); 
      gammaThres.addItem("2.5"); 
      gammaThres.addItem("3.0"); 
      gammaThres.addItem("3.5"); 
      gammaThres.addItem("4.0"); 
      gammaThres.addItem("4.5"); 
      gammaThres.addItem("5.0"); 
      gammaThres.addItem("5.5"); 
      gammaThres.addItem("6.0"); 
      gammaThres.addItem("6.5"); 
      gammaThres.addItem("7.0"); 
      gammaThres.addItem("7.5"); 
      gammaThres.addItem("8.0"); 
      gammaThres.addItem("8.5"); 
      gammaThres.addItem("9.0"); 
      gammaThres.addItem("9.5"); 
      gammaThres.addItem("10.0"); 
      gammaThres.setSelectedItem("5.0"); 
      gammaThres.setEditable( true ); 
      gammaThres.addActionListener( this ); 
  
      //add components to ToolBar 
      panel1.add( button1 ); 
      panel1.add( button2 ); 
      panel1.add( button3 ); 
      panel1.add( button4 ); 
      panel1.add( button5 ); 
      panel1.add( button6 ); 
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      panel1.add( jspace ); 
      panel1.add( gLab ); 
      panel1.add( gammaThres ); 
 
      //add ToolBar to contentPane 
      contentPane.add( "North", panel1 ); 
    
 
      //create a JTabbedPanel and add to contentPane 
      tabbedPanel = new JTabbedPane(); 
      contentPane.add( "Center", tabbedPanel ); 
 
 
      //create panel with a text area and scroll bar, add to page 1 of tabbedPanel 
      panel2 = new JPanel(); 
      textPanel = new JTextArea( 24, 100 );   
      textPanel.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      textPanel.setLineWrap( true ); 
      textPanel.setWrapStyleWord( true ); 
      scroll = new JScrollPane( textPanel, 
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,  
                      ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER ); 
      panel2.add( scroll ); 
      tabbedPanel.addTab( "Results Panel", panel2 ); 
 
      //create panel for displaying spectra  
      panel3 = new JPanel(); 
      panel3.setLayout( new BorderLayout() ); 
 
      //create panel for selecting spectrum to display 
      panel3n = new JPanel() ; 
      panel3n.setLayout( new FlowLayout( FlowLayout.LEFT, 2, 4 ) ); 
    
      selSpec = new JLabel( "  Select Type of Spectrum " ); 
      selSpec.setHorizontalAlignment(JLabel.CENTER); 
      selSpec.setForeground( Color.black ); 
      selSpec.setFont( new Font( "Courier", Font.BOLD, 12 ) ); 
      selSpec.setLabelFor( typeOfSpec1 ); 
      panel3n.add( selSpec );  
 
      //create JCombo box for selecting type of spectrum to display 
      typeOfSpec1 = new JComboBox(); 
      typeOfSpec1.addItem("Raw Spectrum"); 
      typeOfSpec1.addItem("Gamma Spectrum"); 
      typeOfSpec1.addItem("Hann2"); 
      typeOfSpec1.addItem("Hann4"); 
      typeOfSpec1.addItem("Hann8"); 
      typeOfSpec1.addItem("Gam2"); 
      typeOfSpec1.addItem("Gam4"); 
      typeOfSpec1.addItem("Gam8"); 
      typeOfSpec1.setSelectedItem("Raw Spectrum"); 
      typeOfSpec1.addActionListener( this ); 
      panel3n.add( typeOfSpec1 ); 
 
      space1 = new JLabel( "       " ); 
      panel3n.add( space1 ); 
 
      x1 = new JLabel( "X Coord" ); 
      x1.setHorizontalAlignment(JLabel.CENTER); 
      x1.setForeground( Color.black ); 
      x1.setFont( new Font( "Courier", Font.BOLD, 12 ) ); 
      x1.setLabelFor( x1Text ); 
      panel3n.add( x1 );  
 
      //add JTextfields to read coords of spectrum to be displayed 
      x1Text = new JTextField( 4 ); 
      x1Text.setText("1"); 
      panel3n.add( x1Text ); 
  
      jspace2 = new JLabel( "    " ); 
      panel3n.add( jspace2 ); 
 
      y1 = new JLabel( "Y Coord" ); 
      y1.setHorizontalAlignment(JLabel.CENTER); 
      y1.setForeground( Color.black ); 
      y1.setFont( new Font( "Courier", Font.BOLD, 12 ) ); 
      y1.setLabelFor( y1Text ); 
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      panel3n.add( y1 );  
 
      y1Text = new JTextField( 4 ); 
      y1Text.setText("1"); 
      panel3n.add( y1Text );  
 
      space3 = new JLabel( "        " ); 
      panel3n.add( space3 ); 
 
      //ad button to display requested spectrum 
      button7 = new JButton( "  Display Spectrum  " ); 
      button7.setMnemonic( KeyEvent.VK_D ); 
      button7.addActionListener( this ); 
      button7.setBorder( BorderFactory.createRaisedBevelBorder() ); 
      button7.setFont( new Font( "Courier", Font.PLAIN, 12 ) ); 
      button7.setToolTipText("Displays the selected spectrum"); 
      panel3n.add( button7); 
 
      panel3.add( "North", panel3n ); 
 
      //create dispPanel for displaying spectra on, add to JTabbedPane 
      dispPanel = new DisplayPanel( ); 
      panel3.add( "Center", dispPanel ); 
      tabbedPanel.addTab( "Display Panel", panel3 ); 
 
 
      //set the default Gamma S/N threshold 
      gamThres = (float) 5.0; 
 
 
   } 
    
    //inner class to speicfy action to be perfomed when interactive element  
    //of the GUI is selected 
   public void actionPerformed( ActionEvent e ) 
   { 
 
      //action if ’Open’ or ’Open File’ is selected 
      if( e.getSource() == j1 || e.getSource() == button1 ) 
      { 
 
         //open and read FITS datacube, create HICube object, hiCube 
  fileFlag = true; 
 
  readFile(); 
 
         if( fileFlag == true ) 
  { 
            JOptionPane dialog = new JOptionPane(); 
            dialog.showMessageDialog( this, "File read in successfully, will now 
create a HiCube", "Information", JOptionPane.PLAIN_MESSAGE ); 
         } 
         else 
      return; 
 
         //set the h2Val, h4Val and h8Val instance variables of the Voxels in hiCube 
  hiCube.setH2H4H8Vals(); 
 
         //set the gVal instance variables of the Voxels in hiCube 
         hiCube.setGVals(); 
 
         //set the noise instance variable of hiCube 
         hiCube.setNoise(); 
 
         //set the ZChanQual instance variable of hiCube 
         hiCube.setZChanQual(); 
 
         //set the g2Val, g4Val and g8Val instance variables of the Voxels in hiCube 
         hiCube.setG2G4G8Vals(); 
 
 
         //inform user that hiCube has been successfully created 
         JOptionPane dialog1 = new JOptionPane(); 
         dialog1.showMessageDialog( this, "HiCube succesffully created. Image Stats 
are on Results Panel",  
                                   "Information", JOptionPane.PLAIN_MESSAGE ); 
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         //display of textPanel image dimension, noise and bad z-channels 
         textPanel.append( "The image has been succesffully read in and a HiCube 
created"); 
         textPanel.append( "\n" ); 
         textPanel.append( "Image Size = ( " + xpix + ", " + ypix + ", " + zpix + ")  
\n"  ); 
         textPanel.append( "Average noise in image is " + hiCube.getNoise() + "Jy \n" 
); 
         textPanel.append( "The following z channels were found to suffer from 
significant RFI and were cleaned \n"); 
         
         boolean[] qualArray = hiCube.getZChanQual();         
 
         for( int j = 0; j < zpix; j++) 
     if( qualArray[j] == false )  
               textPanel.append( j + "\n" ); 
         
      } 
 
      //action if ’Save’ or ’Save Results’ is selected 
      else if( e.getSource() == j2 || e.getSource() == button2 ) 
      { 
   //save results on textPanel to a text file 
         saveResults(); 
      } 
 
      //action if ’Find’ of ’Run Finder’ is selected 
      else if( e.getSource() == j3 || e.getSource() == button3 ) 
      { 
   //find possible galaxies in the datacube 
         findSources(); 
      } 
 
      //action if ’Exit’ is selected 
      else if ( e.getSource() == j4 ) 
      { 
   System.exit( 0 ); 
      } 
 
      //action if ’Cut’ is selected 
      else if ( e.getSource() == j5 || e.getSource() == button4) 
      { 
   textPanel.cut(); 
      }      
 
      //action if ’copy’ is selected 
      else if ( e.getSource() == j6 || e.getSource() == button5 ) 
      { 
   textPanel.copy(); 
      }   
 
      //action if ’Paste’ is selected 
      else if ( e.getSource() == j7 || e.getSource() == button6 ) 
      { 
   textPanel.paste(); 
      } 
 
      //action if ’Help’ is selected 
      else if ( e.getSource() == j8 ) 
      {         
          //call up Help dialog 
      } 
 
      //action if ’About’ is selected 
      else if ( e.getSource() == j9 ) 
      {         
   JOptionPane dialog = new JOptionPane(); 
   dialog.showMessageDialog( this, "GalFinder was developed by Peter J. Boyce", 
"Information", JOptionPane.PLAIN_MESSAGE ); 
      } 
 
      //action if value of gamThres is altered 
      else if ( e.getSource() == gammaThres ) 
      { 
         gamThres = setGamThres(); 
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      } 
 
      //action if "Display Spectrum" is selected 
      else if ( e.getSource() == button7 ) 
      {  
  displayFlag = true; 
         updateDispPars();  
         if( displayFlag == true )  
  { 
            dispPanel.updateSPanel( hiCube.getVoxArray(), xcoord, ycoord, specType);          
            dispPanel.setVisible( true );   
         } 
      } 
 
   } 
 
 
   /* 
   Method used to open a FITS datacube, read the data and create a  
   new Hicube object, hiCube 
   */ 
   private void readFile() 
   { 
 
 
      //enable user to choose input file with JFileChooser 
      float[][][] inFileData = null; 
      JFileChooser fc = null; 
 
      if( fc == null ); 
      { 
         fc = new JFileChooser(); 
         fc.addChoosableFileFilter(new FitsFilter()); 
         fc.setAcceptAllFileFilterUsed(false); 
      } 
 
      int returnVal = fc.showOpenDialog( GuiFrame.this ); 
 
      if( returnVal == JFileChooser.APPROVE_OPTION) 
      { 
  FitsFile infile;          
 
         try  
         { 
            infile = new FitsFile( fc.getSelectedFile() ); 
         }  
         catch (FitsException ee)  
         { 
            JOptionPane dialog = new JOptionPane(); 
            dialog.showMessageDialog( this, "Error opening fits file", "Error", 
JOptionPane.ERROR_MESSAGE ); 
            fileFlag = false; 
     return; 
         }  
         catch (IOException ioe)  
         { 
            JOptionPane dialog = new JOptionPane(); 
            dialog.showMessageDialog( this, "Error opening fits file", "Error", 
JOptionPane.ERROR_MESSAGE ); 
            fileFlag = false; 
     return; 
         } 
 
  
         //read data from file selected 
         int noHDU = infile.getNoHDUnits(); 
  
         for (int i=0; i<noHDU; i++)  
         { 
            FitsHDUnit hdu = infile.getHDUnit(i); 
            FitsHeader hdr = hdu.getHeader(); 
            int noKw = hdr.getNoKeywords(); 
            int type = hdr.getType(); 
            int size = (int) hdr.getDataSize(); 
        
     if (type == Fits.IMAGE)  
            { 
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        FitsMatrix dm = (FitsMatrix) hdu.getData(); 
        int naxis[] = dm.getNaxis(); 
               int nv, off, npix; 
               int nval = dm.getNoValues(); 
 
           if ( nval > 0 )  
               { 
           int ncol = naxis[0]; 
                  xpix = naxis[0]; 
                  ypix = naxis[1]; 
                  zpix = naxis[2]; 
                  inFileData = new float[xpix][ypix][zpix]; 
                  int nrow = nval/ncol; 
                  float data[] = new float[ncol]; 
 
           float val; 
 
                  int ic = 0; 
                  int jc = 0; 
                  int kc = 0; 
                  off = nv = 0 ; 
           for (int nr=0; nr<nrow; nr++)  
                  { 
              try  
                     { 
          dm.getFloatValues(off, ncol, data); 
                for (int n = 0; n<ncol; n++)  
                        { 
             val = data[n]; 
             inFileData[ic][jc][kc] = val ;                
 
                           if( ic == ( xpix - 1 )  && jc == ( ypix - 1 ) ) 
              { 
         ic = 0; 
         jc = 0; 
                              kc++; 
                           } 
                           else if ( ic == ( xpix - 1 )  && jc != ( ypix - 1 ) ) 
                 { 
         ic = 0; 
                              jc++; 
                           } 
                           else  
         ic++; 
                             
                        } 
                     }  
                     catch (FitsException ee)  
                     { 
                        JOptionPane dialog = new JOptionPane(); 
                        dialog.showMessageDialog( this, "Error reading fits file", 
"Error", JOptionPane.ERROR_MESSAGE ); 
                        return; 
                   } 
    
       off += ncol; 
           } 
    
           } 
     }  
            else if (type==Fits.BTABLE || type==Fits.ATABLE)  
     {    
               JOptionPane dialog = new JOptionPane(); 
               dialog.showMessageDialog( this, "Data is not in fits format", "Error", 
JOptionPane.ERROR_MESSAGE ); 
               return; 
            } 
         } 
      } 
      else 
      { 
         fileFlag = false; 
         return; 
      } 
 
      //create a new HiCube object with datra read from file 
      hiCube = new HiCube( inFileData ); 
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   } 
 
 
 
 
   /* 
   Method used to copy cointents of textPanel to file selected by user 
   */ 
   private void saveResults() 
   { 
 
      //enable user to choose output file with JFileChooser 
      JFileChooser fc = null; 
 
      if( fc == null ); 
      { 
         fc = new JFileChooser(); 
 
         //add custom file filter and disable the deafult file filter 
         fc.addChoosableFileFilter(new TxtFilter()); 
         fc.setAcceptAllFileFilterUsed(false);  
      } 
 
      int returnVal = fc.showSaveDialog( GuiFrame.this ); 
 
 
      //copy contents of textPanel to selected text file 
      if( returnVal == JFileChooser.APPROVE_OPTION) 
      { 
 
         String fileText = textPanel.getText(); 
         int fTLen = fileText.length(); 
          
         FileWriter outputFile; 
 
         try 
         { 
            outputFile = new FileWriter( fc.getSelectedFile()  );  
            outputFile.write( fileText, 0, (fTLen -1) ); 
            outputFile.close(); 
         } 
         catch( IOException ioe) 
         { 
            JOptionPane dialog = new JOptionPane(); 
            dialog.showMessageDialog( this, "Error writing File", "Error", 
JOptionPane.ERROR_MESSAGE ); 
            return; 
         } 
      } 
      else 
         return; 
   } 
 
 
   /* 
   Method to read user supplied value of gamThres  
   @param return  returns value of gamThres 
   */ 
   private float setGamThres()     
   { 
      float retVal; 
      String selected = (String) gammaThres.getSelectedItem(); 
      try 
      { 
         retVal = Float.parseFloat( selected ); 
      } 
      catch( NumberFormatException nfe ) 
      { 
         JOptionPane dialog = new JOptionPane(); 
         dialog.showMessageDialog( this, "Input value has to be in float format", 
"Error", JOptionPane.ERROR_MESSAGE ); 
         gammaThres.setSelectedItem( Float.toString( gamThres ) ); 
         return gamThres; 
      } 
      if( retVal < 0 ) 
      { 
         JOptionPane dialog = new JOptionPane(); 
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         dialog.showMessageDialog( this, "Input value has to be > 0", "Error", 
JOptionPane.ERROR_MESSAGE ); 
         gammaThres.setSelectedItem( Float.toString( gamThres ) ); 
         return gamThres; 
      } 
      return retVal; 
   }    
 
 
   /* 
   Method to read user supplied values for xcoord, ycoord snd specType from GUI 
   */ 
   private void updateDispPars() 
   { 
      try 
      {  
         xcoord = Integer.parseInt( x1Text.getText() ); 
         ycoord = Integer.parseInt( y1Text.getText() ); 
      }  
      catch( NumberFormatException nfe ) 
      { 
         JOptionPane dialog = new JOptionPane(); 
         dialog.showMessageDialog( this, "Coord data have to be in integer format", 
"Error", JOptionPane.ERROR_MESSAGE ); 
         displayFlag = false; 
         return; 
      } 
          
      if( xcoord >= xpix || xcoord < 0 || ycoord >= ypix || ycoord < 0 ) 
      { 
         JOptionPane dialog = new JOptionPane(); 
         String message = "Pix coords have to be between ( 0, 0 ) and ( " + xpix + ", 
" + ypix + " )";  
         dialog.showMessageDialog( this, message, "Error", JOptionPane.ERROR_MESSAGE 
); 
         displayFlag = false; 
         return; 
      } 
 
      specType = (String) typeOfSpec1.getSelectedItem(); 
    
   } 
     
 
   /* 
   Method to seach hiCube for possible galaxies and return result to textPanel 
   */ 
   public void findSources() 
   { 
 
      boolean[][][] found = new boolean[xpix][ypix][zpix]; 
      float medianG2, medianG4, medianG8, modmeanG2, modmeanG4, modmeanG8, variance; 
      float[] kvalues = new float[zpix]; 
      float[] valuesG2 = new float[ (zpix - 1) / 2 ]; 
      float[] valuesG4 = new float[ (zpix - 3) / 4 ]; 
      float[] valuesG8 = new float[ (zpix - 7) / 8 ]; 
      int medposG2 = ( zpix - 1 ) / 4; 
      int medposG4 = ( zpix - 3 ) / 8; 
      int medposG8 = ( zpix - 7 ) / 16; 
 
      //calculate noise variance  value above which spectra will be excluded from 
search 
      float worstvar = 10 * hiCube.getNoise() * hiCube.getNoise(); 
 
      textPanel.append( "\n" ); 
      textPanel.append( "RESULTS OF RUNNING FINDER WIth GAMMA S/N = " + gamThres + 
"\n" ); 
      textPanel.append( "\n"); 
      textPanel.append( "    xpix    ypix    zpix    Hann   Gamma S/N     \n"  );  
      textPanel.append( "                            Type                 \n"  ); 
 
 
      //search gamma spectra at each (x,y) position in hiCube 
      for( int i = 1; i < xpix - 1; i++ ) 
      { 
         for( int j = 1; j < ypix - 1; j++ ) 
         { 
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     //calculate average variance in spectrum 
     for(int k=0; k < zpix; k++) 
        kvalues[k] = hiCube.getVoxel( i, j, k ).getGVal();   
            Arrays.sort( kvalues ); 
            variance = kvalues[(zpix-1)/2]; 
 
            //proceed if spectrum is not too noisy  
            if( variance > 0  &&  variance < worstvar )  
     {  
               
        //calculate median gamma statistic in g2Val gamma Spectrum 
               for ( int l4 = 0; l4 < (zpix - 1)/2; l4++) 
           valuesG2[l4] = hiCube.getVoxel( i, j, ((2*l4) + 1) ).getG2Val(); 
                Arrays.sort( valuesG2 ); 
               medianG2 = valuesG2[ medposG2 ];  
 
 
            //calculate median gamma statistic in g4Val gamma Spectrum 
               for ( int l5 = 0; l5 < (zpix - 3)/4; l5++) 
           valuesG4[l5] = hiCube.getVoxel( i, j, ((4*l5) + 3) ).getG4Val(); 
               Arrays.sort( valuesG4 ); 
               medianG4 = valuesG4[ medposG4 ];   
 
 
        //calculate median gamma statistic in g8Val gamma Spectrum 
               for ( int l6 = 0; l6 < (zpix - 7)/8; l6++) 
           valuesG8[l6] = hiCube.getVoxel( i, j, ((8*l6) + 7) ).getG8Val(); 
               Arrays.sort( valuesG8 ); 
               medianG8 = valuesG8[ medposG8 ]; 
               modmeanG8 = Stats.ModMean( valuesG8 ); 
                        
 
               //search for significant peaks  in g2Val gamma spectra 
               for( int k = 3; k < (zpix - 3) ; k = k + 2 ) 
        { 
 
 
                  if( ( hiCube.getVoxel( i, j, k ).getG2Val()  > (gamThres * medianG2) 
)  && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, j, 
k+2 ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, j, 
k-2 ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i+1, 
j, k ).getG2Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i-1, 
j, k ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, 
j+1, k ).getG2Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, j-
1, k ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i+1, 
j, k+2 ).getG2Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i-1, 
j, k+2 ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, 
j+1, k+2 ).getG2Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, j-
1, k+2 ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i+1, 
j, k-2 ).getG2Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i-1, 
j, k-2 ).getG2Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, 
j+1, k-2 ).getG2Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG2Val() > hiCube.getVoxel( i, j-
1, k-2 ).getG2Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getH2Val() > 0  ) ) 
    { 
       textPanel.append( FormatToString.displayInt( i, 8)  +   
                   FormatToString.displayInt( j, 8 ) +  
                   FormatToString.displayInt( k, 8 ) +  
                   FormatToString.displayString( "H2", 8) +  
                   FormatToString.displayFloat( ( hiCube.getVoxel( 
i, j, k ).getG2Val()/medianG2), 12) + "\n"); 
                     found[i][j][k] = true;                   
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                  } 
               } 
                   
               //search for significant peaks in g4val gamma spectra 
               for( int k = 7; k < (zpix - 7) ; k = k + 4 ) 
        { 
                  if( (  hiCube.getVoxel( i , j, k ).getG4Val() > (gamThres * 
medianG4) ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, j, 
k+4 ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, j, 
k-4 ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i+1, 
j, k ).getG4Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i-1, 
j, k ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, 
j+1, k ).getG4Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, j-
1, k ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i+1, 
j, k+4 ).getG4Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i-1, 
j, k+4 ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, 
j+1, k+4 ).getG4Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, j-
1, k+4 ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i+1, 
j, k-4 ).getG4Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i-1, 
j, k-4 ).getG4Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, 
j+1, k-4 ).getG4Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG4Val() > hiCube.getVoxel( i, j-
1, k-4 ).getG4Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getH4Val() > 0 )  && 
                      ( found[i][j][k] == false ) && ( found[i][j][k+2] == false ) &&  
        ( found[i][j][k-2] ==false  ) && ( found[i][j][k+4] == false ) &&  
        ( found[i][j][k-4] ==false  ) && ( found[i+1][j][k] == false ) &&  
        ( found[i-1][j][k] ==false  ) && ( found[i][j+1][k] == false ) &&  
        ( found[i][j-1][k] ==false  ) && ( found[i+1][j+1][k] == false ) 
&&  
        ( found[i-1][j+1][k] ==false  ) && ( found[i+1][j-1][k] == false 
) &&  
        ( found[i-1][j-1][k] ==false  ) && ( found[i+1][j+1][k+2] == 
false ) &&  
        ( found[i-1][j+1][k+2] ==false  ) && ( found[i+1][j-1][k+2] == 
false ) &&  
        ( found[i-1][j-1][k+2] ==false  ) && ( found[i+1][j+1][k-2] == 
false ) &&  
        ( found[i-1][j+1][k-2] ==false  ) && ( found[i+1][j-1][k-2] == 
false ) &&  
        ( found[i-1][j-1][k-2] ==false  ) && ( found[i+1][j][k+2] == 
false ) &&  
        ( found[i-1][j][k+2] ==false  ) && ( found[i][j+1][k+2] == false 
) &&  
        ( found[i][j-1][k+2] ==false  )  && ( found[i+1][j][k-2] == false 
) &&  
        ( found[i-1][j][k-2] ==false  ) && ( found[i][j+1][k-2] == false 
) &&  
        ( found[i][j-1][k-2] ==false  )  ) 
 
    { 
       textPanel.append( FormatToString.displayInt( i, 8)  +   
                  FormatToString.displayInt( j, 8 ) +   
                  FormatToString.displayInt( k, 8 ) +  
                  FormatToString.displayString( "H4", 8) +  
                  FormatToString.displayFloat( ( hiCube.getVoxel( 
i, j, k ).getG4Val()/medianG4), 12) + "\n"); 
 
       found[i][j][k] = true; 
                  } 
               } 
                  
               //search for significant peaks in g8Val gamma spectra 
               for( int k = 15; k < (zpix - 15) ; k = k + 8 ) 
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        { 
                if(   ( ( hiCube.getVoxel( i, j, k ).getG8Val() > (gamThres * 
medianG8)  ) ||  
        ( hiCube.getVoxel( i, j, k ).getG8Val() > (gamThres * modmeanG8)  
) ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, j, 
k+8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, j, 
k-8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i+1, 
j, k ).getG8Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i-1, 
j, k ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, 
j+1, k ).getG8Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, j-
1, k ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i+1, 
j, k+8 ).getG8Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i-1, 
j, k+8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, 
j+1, k+8 ).getG8Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, j-
1, k+8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i+1, 
j, k-8 ).getG8Val() ) &&  
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i-1, 
j, k-8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, 
j+1, k-8 ).getG8Val() ) && 
        ( hiCube.getVoxel( i, j, k ).getG8Val() > hiCube.getVoxel( i, j-
1, k-8 ).getG8Val() ) && 
                      ( hiCube.getVoxel( i, j, k ).getH8Val() > 0 ) && 
                      ( found[i][j][k] == false ) && ( found[i][j][k+2] == false ) && 
                      ( found[i][j][k-2] == false ) && ( found[i][j][k+4] == false ) 
&& 
                      ( found[i][j][k-4] == false ) && ( found[i][j][k+6] == false ) 
&& 
                      ( found[i][j][k-6] == false ) && ( found[i][j][k+8] == false ) 
&& 
                      ( found[i][j][k-8] == false ) && ( found[i+1][j][k] == false ) 
&&  
        ( found[i-1][j][k] ==false  ) && ( found[i][j+1][k] == false ) &&  
        ( found[i][j-1][k] == false ) && ( found[i+1][j][k+2] == false ) 
&&  
        ( found[i-1][j][k+2] ==false  ) && ( found[i][j+1][k+2] == false 
) &&  
        ( found[i][j-1][k+2] == false ) && ( found[i+1][j+1][k+2] == 
false ) &&  
        ( found[i-1][j+1][k+2] ==false  ) && ( found[i+1][j-1][k+2] == 
false ) &&  
        ( found[i-1][j-1][k+2] == false ) && ( found[i+1][j+1][k-2] == 
false ) &&  
        ( found[i-1][j+1][k-2] ==false  ) && ( found[i+1][j-1][k-2] == 
false ) &&  
        ( found[i-1][j-1][k-2] == false ) && ( found[i+1][j+1][k+4] == 
false ) &&  
        ( found[i-1][j+1][k+4] ==false  ) && ( found[i+1][j-1][k+4] == 
false ) &&  
        ( found[i-1][j-1][k+4] == false ) && ( found[i+1][j+1][k-4] == 
false ) &&  
        ( found[i-1][j+1][k-4] ==false  ) && ( found[i+1][j-1][k-4] == 
false ) &&  
        ( found[i-1][j-1][k-4] == false ) && ( found[i+1][j][k-2] == 
false ) &&  
        ( found[i-1][j][k-2] ==false  ) && ( found[i][j+1][k-2] == false 
) &&  
         ( found[i][j-1][k-2] == false ) && ( found[i+1][j][k+4] == false 
) &&  
        ( found[i-1][j][k+4] ==false  ) && ( found[i][j+1][k+4] == false 
) &&  
        ( found[i][j-1][k+4] == false ) && ( found[i+1][j][k-4] == false 
) &&  
        ( found[i-1][j][k-4] ==false  ) && ( found[i][j+1][k-4] == false 
) &&  
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        ( found[i][j-1][k-4] == false ) && ( found[i+1][j][k+8] == false 
) &&  
        ( found[i-1][j][k+8] ==false  ) && ( found[i][j+1][k+8] == false 
) &&  
        ( found[i][j-1][k+8] == false ) && ( found[i+1][j][k-8] == false 
) &&  
        ( found[i-1][j][k-8] ==false  ) && ( found[i][j+1][k-8] == false 
) &&  
        ( found[i][j-1][k-8] == false )   ) 
 
 
    {  
       
 
                      if( modmeanG8 < medianG8 ) 
                         textPanel.append( FormatToString.displayInt( i, 8 )  +   
                  FormatToString.displayInt( j, 8 ) +  
                  FormatToString.displayInt( k, 8 ) +  
                  FormatToString.displayString( "H8", 8) +   
                  FormatToString.displayFloat( (hiCube.getVoxel( i, 
j, k ).getG8Val()/modmeanG8), 12 ) + "\n" ); 
                      else 
                         textPanel.append( FormatToString.displayInt( i, 8 )  +   
                  FormatToString.displayInt( j, 8 ) +  
                  FormatToString.displayInt( k, 8 ) +  
                  FormatToString.displayString( "H8", 8) +  
                  FormatToString.displayFloat( (hiCube.getVoxel( i, 
j, k ).getG8Val()/medianG8), 12 ) +   "\n" ); 
 
                     found[i][j][k] = true; 
                  }  
               } 
            } 
         } 
      } 
 
      JOptionPane dialog = new JOptionPane(); 
      dialog.showMessageDialog( this, "Finding completed. Results are on Display 
Panel.",   
                                    "Information", JOptionPane.PLAIN_MESSAGE ); 
   } 
    
 
   //GUI related instance variables 
   private JScrollPane scroll; 
   private JMenuItem j1, j2, j3, j4, j5, j6, j7, j8, j9; 
   private JMenu m1, m2, m3; 
   private JMenuBar mbar; 
   private JButton button1, button2, button3, button4, button5, button6, button7, x1B, 
x1F; 
   private ImageIcon image1, image2, image3, image4, image5, image6; 
   private JLabel x1, y1, jspace, jspace1, jspace2; 
   private JTextField x1Text, y1Text; 
   private JPanel panel1, panel2, panel3, panel3n; 
   private JComboBox typeOfSpec1, gammaThres; 
   private JLabel label1, selSpec, space1, space2, space3, gLab; 
   private JTabbedPane tabbedPanel; 
   private boolean fileFlag, displayFlag; 
 
   //non-GUI instance variables  
   private HiCube hiCube; 
   private String specType; 
   private JTextArea textPanel; 
   private DisplayPanel dispPanel; 
   private int xpix, ypix, zpix, xcoord, ycoord; 
   private float gamThres; 
 
} 
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Source code for DisplayPanel.java 
 
/* 
   Class to define a DisplayPanel object  
   Part of GammaFinder appliciation.  
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
import java.awt.event.*; 
import java.awt.*; 
import java.awt.geom.*; 
import javax.swing.*; 
import javax.swing.border.*; 
import java.lang.Math; 
 
 
public class DisplayPanel extends JPanel 
{ 
   //instance variables 
   private Voxel[][][] voxVals; 
   private int xc, yc, nzpix, sf, specType; 
 
   //constructor 
   public DisplayPanel() 
   { 
       super(); 
       setOpaque(false); 
       setPreferredSize( new Dimension( 760, 320 ) );  
   }  
 
 
   //method to update spectrum displayed 
   public void updateSPanel(Voxel[][][] voxelValues, int x, int y, String inSpecType ) 
   { 
      voxVals = voxelValues; 
      xc = x; 
      yc = y; 
      nzpix = voxVals[0][0].length; 
      String spectrumType = inSpecType; 
 
      if( spectrumType.compareTo( "Raw Spectrum" ) == 0 ) 
      { 
         sf = -1000; 
         specType = 1; 
      } 
      else if ( spectrumType.compareTo( "Hann2" ) == 0 ) 
      {    
         sf = -1000; 
         specType = 2; 
      } 
      else if ( spectrumType.compareTo( "Hann4" ) == 0 ) 
      {    
   sf = -1000; 
         specType = 3; 
      } 
      else if ( spectrumType.compareTo( "Hann8" ) == 0 ) 
      {    
         sf = -1000; 
         specType = 4; 
      } 
      else if ( spectrumType.compareTo( "Gam2" ) == 0 ) 
      {     
         sf = -200000; 
         specType = 5; 
      } 
      else if ( spectrumType.compareTo( "Gam4" ) == 0 ) 
      {    
  sf = -600000; 
         specType = 6; 
      } 
      else if ( spectrumType.compareTo( "Gam8" ) == 0 ) 
      {    
  sf = -1000000; 
         specType = 7; 
      } 
      else if ( spectrumType.compareTo( "Gamma Spectrum" ) == 0 ) 
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      {    
  sf = -100000; 
         specType = 8; 
      } 
 
      repaint(); 
   } 
     
 
   public void paintComponent(Graphics graf) 
   { 
      Graphics2D g2 = (Graphics2D) graf; 
      g2.draw( new Line2D.Double(5, 200, 750, 200 )); 
      g2.setBackground( Color.white ); 
 
      GeneralPath polyline = new GeneralPath(GeneralPath.WIND_EVEN_ODD,1024); 
 
      if( specType == 1 ) 
      { 
         polyline.moveTo( 5*2, 200 + (int) (voxVals[xc][yc][0].getVoxVal() * sf) );  
       
         for ( int j = 1; j < nzpix; j++) 
         { 
            polyline.lineTo( (j+5)*700/nzpix, 200 + (int) ( 
voxVals[xc][yc][j].getVoxVal() * sf ) ); 
         } 
      } 
      else if ( specType == 2 ) 
      { 
         polyline.moveTo( 6*2, 200 + (int) (voxVals[xc][yc][1].getH2Val() * sf) );  
       
  for(int j = 3; j < (nzpix - 1) ; j = j + 2 ) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getH2Val() * sf ) ); 
         } 
      } 
      else if ( specType == 3 ) 
      { 
         polyline.moveTo( 8*2, 200 + (int) (voxVals[xc][yc][3].getH4Val() * sf) );  
       
         for( int j = 7; j < ( nzpix - 3 ) ; j = j + 4) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getH4Val() * sf ) ); 
         } 
      } 
      else if ( specType == 4 ) 
      { 
         polyline.moveTo( 12*2, 200 + (int) (voxVals[xc][yc][7].getH8Val() * sf) );  
       
         for( int j = 15; j < ( nzpix - 7 ) ; j = j + 8) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getH8Val() * sf ) ); 
         } 
      } 
      else if ( specType == 5 ) 
      { 
         polyline.moveTo( 6*2, 200 + (int) (voxVals[xc][yc][1].getG2Val() * sf) );  
       
 
  for(int j = 3; j < (nzpix - 1) ; j = j + 2 ) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getG2Val() * sf ) ); 
         } 
      } 
      
      else if ( specType == 6 ) 
      { 
         polyline.moveTo( 8*2, 200 + (int) (voxVals[xc][yc][3].getG4Val() * sf) );  
       
 
  for(int j = 7; j < (nzpix - 3) ; j = j + 4 ) 
         { 
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            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getG4Val() * sf ) ); 
         } 
      } 
       else if ( specType == 7 ) 
      { 
         polyline.moveTo( 12*2, 200 + (int) (voxVals[xc][yc][7].getG8Val() * sf) );  
       
 
  for(int j = 15; j < (nzpix - 7) ; j = j + 8 ) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getG8Val() * sf ) ); 
         } 
      } 
     
      else if ( specType == 8 ) 
      { 
         polyline.moveTo( 5*2, 200 + (int) (voxVals[xc][yc][0].getGVal() * sf) );  
       
 
  for(int j = 1; j < nzpix; j++ ) 
         { 
            polyline.lineTo( (j+5)*700/nzpix , 200 + (int) ( 
voxVals[xc][yc][j].getGVal() * sf ) ); 
         } 
      } 
     
      g2.draw( polyline ); 
    
   } 
    
} 
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Source code for FormatDisplay.java 
 
/* 
   Class containg static method toformat displayed output 
   Part of the GammaFinder application.   
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
import java.lang.Integer; 
import java.lang.Double; 
public class FormatDisplay 
{ 
   
   /* 
   method to convert  integer to string of desired length 
   @param number  integer to be converted to string 
   @param width   desired length of string 
   @param return  returns String of desired length 
   */ 
   public static String displayInt(int number, int width) 
   { 
      String outputString; 
      int itemLength, count; 
      outputString = Integer.toString( number ); 
      itemLength = outputString.length(); 
      if ( itemLength < width ) 
      for ( count = itemLength + 1; count <= width; count = count + 1 ) 
         outputString = " " + outputString; 
      return outputString; 
   } 
 
 
   /* 
   method to convert float to string of desired length 
   @param number  float to be converted to string 
   @param width   desired length of string 
   @param return  returns String of desired length 
   */   public static String displayFloat( float number, int width) 
   { 
      String outputString; 
      int itemLength, count; 
      outputString = Float.toString( number ); 
      itemLength = outputString.length(); 
      if ( itemLength < width ) 
      for ( count = itemLength + 1; count <= width; count = count + 1 ) 
         outputString = " " + outputString; 
      return outputString; 
   } 
 
   /* 
   method to convert String to another String of desired length 
   @param inputLine  String to be converted 
   @param width      desired length of string 
   @param return     returns String of desired length 
   */ 
   public static String displayString( String inputLine, int width) 
   { 
      String outputString = inputLine; 
      int itemLength = outputString.length(); 
      if ( itemLength < width ) 
      { 
      for ( int count = itemLength + 1; count <= width; count = count + 1 ) 
         outputString = " " + outputString; 
      } 
      else  
  outputString = outputString.substring(0, width); 
 
 
      return outputString; 
   } 
 
}       
 
 
 
 



 124

Source code for Stats.java 
 
 
/* 
   Class containg static method to find modal value of a float array 
   Part of the GammaFinder application.   
   @author Peter J. Boyce 
   @version 1.0 2003/09/15 
*/ 
import java.util.*; 
public class Stats 
{ 
 
   /* 
   Method to find the modal value of a float array 
   @param inArray  the float array within which the odal value is to be found 
   @param return   returns the modal value 
   */ 
   public static float ModMean( float[] inArray) 
   { 
      float medmod; 
      int length = inArray.length; 
      int[] count = new int[20];     
 
      for( int i = 0; i < length; i++) 
      { 
         for( int j = 0; j < 20; j++ ) 
         { 
            if( ( inArray[i] >= (j * 0.00001) + 0.00001 ) &&  
                ( inArray[i] < ( ( j + 1 ) * 0.00001) + 0.00001 ) )        
               count[j]++; 
         } 
      } 
       
 
      int temp = count[0]; 
      int jmode = 0; 
      for ( int j = 1; j < 20; j++ ) 
      { 
         if ( count[j] > temp ) 
         { 
            temp = count[j]; 
            jmode = j; 
         }  
      } 
 
 
      int nlength = count[jmode]; 
      float jlower = (float) ( ( jmode * 0.00001 ) + 0.00001 ); 
      float jupper = (float) ( ( ( jmode + 1 ) * 0.00001 ) + 0.00001 ); 
   
 
      float[] newArray = new float[nlength]; 
 
 
      int z = 0; 
      for( int i = 0; i < length; i++ ) 
      { 
         if( inArray[i] >= jlower && inArray[i] < jupper )   
         { 
             newArray[z] = inArray[i]; 
   z++; 
         }       
      } 
 
 
      if( nlength == 0 ) 
   medmod = 20; 
      else if( nlength % 2 == 0 ) 
         medmod = newArray[ ( nlength / 2 ) - 1]; 
      else 
   medmod = newArray[ ( nlength - 1 ) / 2 ]; 
      
      return medmod; 
   } 
} 
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