
GammaFinder: a Java application to find galaxies in
astronomical spectral line datacubes.

Peter James Boyce

Project Supervisor: Professor Antonia J. Jones

MSc in Computing

School of Computer Science, Cardiff University

16th September 2003

 ii

DECLARATION

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed ………………………………….. (candidate)

Date ……………………………………..

STATEMENT 1

This dissertation is being submitted in partial fulfilment of the requirements for the
degree of MSc.

Signed ………………………………….. (candidate)

Date ……………………………………..

STATEMENT 2

This dissertation is the result of my own independent work / investigation, except
where otherwise stated. Other sources are acknowledged by footnotes giving explicit
references. A bibliography is appended.

Signed ………………………………….. (candidate)

Date ……………………………………..

STATEMENT 3

I hereby give consent for my dissertation, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed ………………………………….. (candidate)

Date ……………………………………..

 iii

Abstract

This dissertation describes GammaFinder, a Java application which automatically
searches for galaxies in the 3-dimensional datacubes produced by two major
astronomical surveys: the HI Parkes All Sky Survey (HIPASS) and the HI Jodrell All
Sky Survey (HIJASS). These surveys are mapping the entire sky, searching for galaxies
by their emission in the 21-cm spectral line of neutral atomic hydrogen (HI). The core
functionality of GammaFinder is based upon the Gamma Test, a near-neighbour data
analysis routine that estimates the variance of the noise in continuous data. The Gamma
Test is shown to also be a highly effective way of detecting discontinuities in otherwise
continuous functions (in the presence of noise). This makes it an excellent way of
selecting possible galaxies from HI spectra since a galaxy’s HI emission line forms a
discontinuity in an otherwise smoothly varying, but noisy, spectrum. GammaFinder
searches for discontinuities in the 21-cm spectra of which a HIJASS/HIPASS datacube
is comprised. It returns a list of possible sources along with a measurement of the
strength of the discontinuity. GammaFinder is a GUI-based application, utilising Java
Swing components. The results of the search are displayed on the GUI where they can
be edited, annotated and saved to a text file. The spectra can also be examined on the
GUI. The requirements specification, design and implementation of GammaFinder are
described. In a preliminary evaluation, GammaFinder found at least an extra 50% more
galaxies over those currently included in the published HIJASS catalogue.
GammaFinder can select galaxies with significantly lower HI flux values than can
previously used galaxy detection techniques. Hence, the use of GammaFinder could
lead to a large increase in the number of galaxies which can be found in HIPASS and
HIJASS data and significantly boost the scientific exploitation of these two major
surveys.

 iv

Acknowledgments

I would like to thank my supervisor Professor Antonia J. Jones for suggesting applying
the Gamma test to astronomy data and for her help and advice during the project.

Particular thanks are also due to Dr. Dafydd Evans of the School of Computing for his
help and advice with the Gamma test and to Dr. Robert Minchin of the School of
Physics and Astronomy who made many useful comments on the astronomy aspects of
the project.

It has been a privilege and a pleasure to be involved in the HI Jodrell All Sky Survey
and the HI Parkes All Sky Survey. I would like to thank my colleagues in both survey
teams. Particular thanks are due to Virginia Kilborn, Christine Jordan, Mike Disney,
Robert Minchin (again), Robert Lang, Diego Garcia and Marco Grossi, without whose
superhuman efforts HIJASS would never had got off the ground.

I would also like to thank all my fellow students on the MSc computing course for
sharing what has been an engaging, if exhausting, year.

Special thanks are due to my wife, Sarah, and our children, James and Caroline, for
putting up with a largely absent husband / father over the summer holidays.

I gratefully acknowledge the financial support of Newport & Gwent Enterprise
throughout the duration of the MSc course.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is
operated by the Jet Propulsion Laboratory, Caltech, under agreement with the National
Aeronautics and Space Administration.

This research has also made use of the Digitised Sky Survey, produced by the Space
Telescope Science Institute under US Government Grant NAG W-2166.

This research makes extensive use of data from the HI Jodrell All Sky Survey
(HIJASS) and the HI Parkes All Sky Survey (HIPASS). HIJASS is funded by the
Particle Physics and Astronomy Research Council. HIPASS was funded by the
Australia Telescope National Facility and the Australian Research Council.

Some aspects of the analysis presented in Chapter 3 of this report made use of the
winGamma application, a ‘non-linear analysis workbench’ developed in the
Department of Computer Science, Cardiff University (Durant 2001).

To open and read ‘FITS’ format data, the GammaFinder application makes use of the
org.eso.fits Java package written by Preben Grosbol of the European Southern
Observatory (available under the GNU General Public Licence).

 v

Table of Contents

1. Introduction

1.1 GammaFinder
1.2 HIPASS and HIJASS
1.3 The Gamma Test
1.4 Structure of the dissertation

2. Background

2.1 Introduction
2.2 The purpose of HI surveys
2.3 The 21-cm spectral line of neutral atomic hydrogen

2.3.1 The axes on the spectrum
2.3.2 The detected HI emission line
2.3.3 The noise on the spectrum

2.4 Information in an HI spectrum
2.4.1 The distance to the galaxy
2.4.2 Derived parameters from an HI profile
2.4.3 The mass of HI in a galaxy
2.4.4 The internal dynamics of the gas in the galaxy

2.5 HIPASS and HIJASS
2.6 Characteristics of a HIPASS/HIJASS datacube
2.7 Detecting galaxies in HIPASS/HIJASS datacubes
2.8 Concluding remarks

3. Applying the Gamma Test to HIPASS and HIJASS Data

3.1 Introduction
3.2 The Gamma Test
3.3 Applying the Gamma Test to HIPASS/HIJASS spectra
3.4 Using the Gamma Test to detect RFI in HIPASS/HIJASS data
3.5 Using the Gamma Test to detect galaxies in HIPASS/HIJASS data
3.6 Procedures for analysing HIPASS/HIJASS datacubes
3.7 Concluding remarks

4. Specification and Design of GammaFinder

4.1 Introduction
4.2 Requirements specification

4.2.1 Functional requirements
4.2.2 Non-functional requirements

4.3 General design issues
4.4 Explanation of the Java classes in GammaFinder

4.4.1 public class Voxel
4.4.2 public class HiCube
4.4.3 public class GuiFrame
4.4.4 public class DisplayPanel
4.4.5 class JTextArea

1

1
1
1
2

3

3
3
5
5
5
6
7
7
8
9
9

11
12
15
18

19

19
19
21
25
27
32
36

37

37
37
37
39
40
40
40
42
45
46
47

 vi

4.4.6 class FitsFile
4.4.7 public class Stats
4.4.8 public class DisplayFormat

4.5 The sequence of operation of GammaFinder
4.6 Concluding remarks

5. Implementation

5.1 Introduction
5.2 The Graphical User Interface
5.3 The readFile() method
5.4 The setGVals() method
5.5 The setZChanQual() method
5.6 The setH2H4H8Vals() method
5.7 The setG2G4G8Vals() method
5.8 the setNoise() method
5.9 The findSources() method
5.10 Viewing spectra
5.11 Editing and saving results
5.12 Concluding remarks

6. Results and Evaluation

6.1 Introduction
6.2 The development and testing process
6.3 Performance measurement and optimisation
6.4 Evaluating GammaFinder’s performance on real data

6.4.1 The HIJASS catalogue
6.4.2 Can GammaFinder detect those galaxies in the HIJASS catalogue ?
6.4.3 The number of sources found by GammaFinder as a function of
Gamma S/N
6.4.4 Can GammaFinder detect galaxies not included in the HIJASS
catalogue ?
6.4.5 Detection limits of GammaFinder

6.5 Concluding remarks

7. Conclusions and Future Work

7.1 Introduction
7.2 Future work

7.2.1 Full evaluation of GammaFinder
7.2.2 Running GammaFinder on HIPASS/HIJASS data
7.2.3 Further development of GammaFinder

7.3 Conclusions

Appendix. Source Code of GammaFinder

References

Bibliography

47
47
47
47
50

51

51
51
53
55
58
58
59
59
60
62
63
63

64

64
64
66
69
70
72
73

74

90
93

94

94
94
94
95
95
96

97

125

127

 vii

Table of Figures

Figure 2.1. The main stages of observing a 21-cm spectrum.

Figure 2.2. An HI spectrum resulting from the observing process shown in
Figure 2.1.

Figure 2.3. An HI spectrum of UGC 02855, annotated to show the parameters
measured from an HI spectrum.

Figure 2.4. Images from the Digital Sky Survey of three galaxies along with
their HI spectra (from HIJASS).

Figure 2.5. The Parkes Radio Telescope and the 13-beam multibeam receiver
(pictures courtesy of CSIRO).

Figure 2.6. The 76m Lovell telescope at Jodrell Bank.

Figure 2.7. A ‘slice’ though a HIJASS datacube showing Declination against
Velocity (cz) for a single Right Ascension plane.

Figure 2.8. Spectra from different (x,y) positions of the same HIJASS datacube
showing the differing effects of narrow-line RFI emission at cz = 2640 km s-1.

Figure 2.9. A HIJASS spectrum which suffers from ‘baseline ripple’.

Figure 3.1. The Gamma Test regression plot.

Figure 3.2(a) an artificial spectrum with an rms noise per channel of 15 mJy;
(b) as in (a) but with a baseline ripple with period = 150 channels and peak to
peak intensity !30 mJy. (c) as in (b) but containing a narrow emission line with
W20 = 60 km s-1 and Spk = 100 mJy.

Figure 3.3. Result of running a ‘moving-window’ Gamma Test (window
size=11 channels, p=10), using winGamma, on the spectrum shown in Figure
3.2(c).

Figure 3.4. (a) 160 channel-wide (2100 km s-1) section of a HIPASS spectrum
with a ‘spike’ to positive intensities due to local RFI; (b) The ‘gamma spectrum’
resulting from running a moving-window Gamma Test (window size = 11
channels, p=15) over the spectrum in (a).

Figure 3.5. (a) 160 channel-wide (2100 km s-1) section of a HIPASS spectrum
with a ‘spike’ to negative intensities due to local RFI; (b) The ‘gamma
spectrum’ resulting of running an 11-channel wide (p=15) moving-window
Gamma Test over the spectrum in (a).

Figure 3.6. (a) 170-channel wide (2200 km s-1) section of a HIJASS spectrum
showing the emission line from UGC05701; (b) The spectrum shown in (a) after
smoothing by a Hanning function with FWHM = 2 channels; (c) The gamma

4

5

8

10

11

12

13

14

 15

21

23

24

26

27

28

 viii

spectrum derived from the Hanning smoothed spectrum in (b) (11-channel
window, p=15).

Figure 3.7. (a) 290-channel (3800 km s-1) wide section of a HIJASS spectrum
including the emission line from UGC 06552; (b) The spectrum shown in (a)
after smoothing by a Hanning function with FWHM = 2 channels; (c) The
gamma spectrum derived from the Hanning smoothed spectrum shown in (b)
(11-channel window, p=15); (d) The spectrum shown in (a) after smoothing by a
Hanning function with FWHM = 4 channels; (e) The gamma spectrum derived
from the Hanning smoothed spectrum shown in (d) (11-channel window, p=15).

Figure 3.8. (a) 320-channel (4200 km s-1) wide section of a HIJASS spectrum
containing the emission line from the galaxy UGC6434; (b) The spectrum
shown in (a) smoothed by a Hanning function with FWHM of 4 channels; (c)
The gamma spectrum derived from the Hanning smoothed spectrum shown in
(b) (11-channel window, p=15); (d) The spectrum shown in (a) smoothed by a
Hanning function with FWHM 8 channels; (e) The gamma spectrum derived
from the Hanning smoothed spectrum shown in (d) (11-channel window, p=15).

Figure 4.1. A top level UML Use Case Diagram representing the main
functionality that GammaFinder was designed to provide.

Figure 4.2. Expanded Use Case Diagram for Use Case 4.

Figure 4.3. Expanded Use Case Diagram For Use Case 5.

Figure 4.4. UML Class Diagram for GammaFinder.

Figure 5.1. The GammaFinder GUI as it appears when the application is started.

Figure 5.2. The GUI showing the ‘File’ menu activated.

Figure 5.3. The GUI with the “Display Panel” visible.

Figure 5.4. A user selecting a FITS file.

Figure 5.5. A JOptionPane informing the user that the file could not be opened.

Figure 5.6. The GUI after the completion of the setNoise() method.

Figure 5.7. The GUI showing the JOptionPane displayed if the user-supplied X
and/or Y Coord is outside the dimension of the current HiCube object.

Figure 6.1. Digital Sky Survey images and HIJASS spectra for the 10 new ‘ID’
sources found by GammaFinder in p74cube4.

Figure 6.2. DSS images of the three ‘ASS’ galaxies which appear likely to be
the optical counterparts of a GammaFinder possible source, along with the
HIJASS spectra of the GammaFinder possible source.

30

31

38

39

39

42

 51

52

53

54

55

60

62

79

83

 ix

Figure 6.3. DSS image of the (previously uncatalogued) probable optical
counterpart to GF31, along with the HIJASS spectrum of the GF31.

Figure 6.4. HIJASS spectra of those 17 possible sources with no optical
counterpart.

Figure 6.5. Plot of log(Sint) against W20 for galaxies from p74cube4.

84

85

91

 1

 1. Introduction

1.1 GammaFinder

This dissertation describes a new Java application, GammaFinder, which automatically

searches for galaxies in the 3-dimensional datacubes produced by two major

astronomical surveys: the HI Parkes All Sky Survey (HIPASS) and the HI Jodrell All

Sky Survey (HIJASS). The core functionality of GammaFinder is based upon the

Gamma Test (Jones et al. 2002a).

1.2 HIPASS and HIJASS

The author is a member of the teams undertaking these two surveys which, between

them, will map the entire sky, searching for galaxies by their emission in the 21-cm line

of neutral atomic hydrogen (HI).

HIPASS and HIJASS have created a huge dataset of 3-dimensional ‘datacubes’. A

datacube can be considered to be a collection of spectra. Each (x, y) pair represents a

spatial position on the sky. The ‘z’-axis represents the 21-cm spectrum at that position.

Thus far, two methods have been employed to find galaxies within this data. Firstly, the

datacubes have been visually inspected by astronomers. Secondly, automatic finding

algorithms have been run over the datacubes. The automatic finding algorithms have

proved to be no more effective than visual inspection. If an automatic finder could be

devised which could find fainter galaxies (in HI flux) than visual inspection, this would

have a big impact on the scientific exploitation of the two surveys, effectively making

the surveys more sensitive. This was the main impetus for developing GammaFinder.

1.3 The Gamma Test

The Gamma Test (Stefansson et al. 1997) is a near-neighbour data analysis routine that

estimates the variance of the noise in continuous data. Though developed as a tool to

assist in the construction of data-derived models, it has also been applied to problems in

control theory (Koncar 1997), feature selection (Chuzhanova et al. 1998; Durrant

2001), secure communications (de Oliveira 1999) and controlling chaotic systems (Tsui

et al. 2002; Jones et al. 2002b).

 2

The original aim in applying the Gamma test to HIPASS and HIJASS datacubes was to

obtain an accurate estimate of the variance of the noise on the data. However, as

described in this dissertation, the Gamma Test has also proved a highly effective way

of detecting discontinuities in otherwise continuous functions. This makes it an

excellent basis for an automatic finding algorithm.

1.4 Structure of the dissertation

Some background information about the nature and purpose of HIJASS and HIPASS is

presented in Chapter 2, along with an explanation of the currently used techniques for

detecting galaxies in HIJASS/HIPASS datacubes.

Chapter 3 contains a description of the Gamma Test and a discussion of the way in

which the Gamma Test can be utilised to analyse spectral line data. This chapter

concludes with three procedures which utilise the Gamma Test to analyse properties of

a HIJASS / HIPASS datacube. These (a) measure the average noise in the datacube; (b)

identify frequencies in the spectra which are affected by local interference; (c) select

potential sources from the datacube. GammaFinder implements these three procedures.

The requirements specification and design of GammaFinder are described in Chapter 4.

A description of the implementation of the application is given in Chapter 5.

Chapter 6 contains the results of an evaluation of GammaFinder, both in terms of its

ability to detect real galaxies in HIJASS/HIPASS data and in terms of its computational

efficiency.

Chapter 7 contains a summary of the main results and some suggestions for further

work.

 3

2. Background

2.1 Introduction

This chapter presents some introductory information about HI spectral line astronomy.

The purpose of HI surveys is discussed in Section 2.2. Section 2.3 contains an overview

of the techniques of spectral line observing and a description of the main features of an

HI spectrum. The information about a galaxy obtainable from its HI emission line is

described in Section 2.4. The HIPASS and HIJASS surveys are described in Section

2.5, whilst in Section 2.6 the characteristics of the datacubes produced by these surveys

are discussed. The techniques and problems of detecting galaxies in HIPASS / HIJASS

data are described in Section 2.7. Section 2.8 presents some concluding remarks.

2.2 The purpose of HI surveys

We require a complete and bias-free census of the local Universe to fully understand a

range of astrophysical problems (e.g. galaxy formation and evolution, the mass density

of the Universe). However, our knowledge of the contents of the Universe is primarily

based on surveys made at optical wavelengths. Such surveys identify galaxies from the

light emitted by the stars they contain. Hence, the catalogues of galaxies compiled from

these surveys will preferentially contain those morphological types of galaxies that are

optically bright. There are known to be classes of extragalactic objects (e.g. dwarf

galaxies, low surface brightness galaxies) that are relatively faint in optical light. These

types of object will tend to be under-represented or missed altogether from optically-

selected catalogues.

Besides their stellar content, many galaxies also contain large amounts of neutral

atomic hydrogen (HI). This provides an alternative way of searching for galaxies since

neutral atomic hydrogen has a spectral emission line (at a wavelength of 21-cm) that

can be detected by radio telescopes. Searches for galaxies based on their HI content

may provide a very different perspective on galaxy populations compared to optical

surveys since there is no reason to assume that a galaxy’s HI content will be directly

correlated with its optical brightness.

HIPASS and HIJASS are the first HI surveys to search for galaxies over a large area of

sky. These surveys will be described in Section 2.5.

 4

2.3 The 21-cm spectral line of neutral atomic hydrogen

The 21-cm spectral line of HI results from a magnetic dipole transition between the two

levels that characterise the ground state of the hydrogen atom. Depending on whether

the electronic and nuclear spin vectors are parallel or anti-parallel, a slightly higher

(triplet) or lower (singlet) hyperfine level is obtained. Spontaneous transitions from the

triplet to the singlet level occur with a transition probability of 2.868 x 10-15 s-1 (see e.g.

Rohlfs 1986). The vast reservoirs of hydrogen in many galaxies means that sufficient

numbers of transitions are happening per second for the HI line to be detectable.

Figure 2.1. The main stages of observing a 21-cm spectrum.

Figure 2.1 shows a simplified schematic diagram of the process of observing a 21-cm

emission line from a galaxy. A radio telescope antenna collects the electromagnetic

radiation arriving from the sky in the direction to which it is pointed. The receiver is

tuned (by filters) to select radiation from a relatively narrow frequency ‘bandpass’

around the rest frequency of the HI line. The radiation within this bandpass, collected

by the antenna, is converted into an AC signal by the receiver. This signal is then

passed to the spectrometer. The spectrometer samples the received signal at a number

of discrete, equally spaced frequencies within the bandpass. The output from a

spectrometer is a ‘spectrum’, i.e. the detected power of the received electromagnetic

radiation at a set of discrete frequencies (known as ‘channels’) within the bandpass.

An example of the resulting HI spectrum for a galaxy is shown in Figure 2.2. The main

features of this spectrum are described below.

 5

Figure 2.2. A HI spectrum resulting from the observing process shown in Figure 2.1.

2.3.1 The axes on the spectrum

A spectrum is a plot of the intensity of observed radiation (y-axis) against the frequency

of that radiation (x-axis). Note that this is really a plot of discrete (x,y) pairs since the

output from the spectrometer measures the intensity in a set of discrete frequency

‘channels’. It is conventional to connect each adjacent (x,y) pair (i.e. adjacent in x)

together to aid the interpretation of the data.

The y-axis is labelled in a unit called the ‘Janksy’ (‘Jy’). The units W m-2 Hz-1 describe

the power arriving per square metre of the antenna surface per unit frequency width.

However, such small amounts of radiation are received from astronomical sources that

the Jy is a more convenient unit. By definition 1 Jy = 10-26 W m-2 Hz-1 .

The ‘Ra’ and ‘Dec’ labels refer to the ‘Right Ascension’ and ‘Declination’ of the

position on the sky to which the telescope was pointing. Right Ascension and

Declination describe the angular coordinates of a position on the sky. They are

analogous to the longitude and latitude coordinate system on the Earth (see e.g. Duffet-

Smith 1988).

2.3.2. The detected HI emission line

The prominent peak in the spectrum in Figure 2.2 is due to HI emission from a galaxy.

The galaxy is emitting over a range of frequencies and, hence, has been detected in

 6

several frequency channels. If all the gas in the galaxy were stationary relative to the

centre of that galaxy, then we would expect a very narrow emission line. However, in

many galaxies, the gas is undergoing some kind of rotation about the centre of the

galaxy. Some gas is moving towards us and some away from us (relative to the general

motion of the galaxy). Due to the Doppler Effect (see Section 2.4.1), the HI emission

from the gas moving towards us has its frequency shifted to higher frequencies and the

gas away from us to lower frequencies. Hence, the observed HI profile is broadened by

the rotation. This issue is discussed further in Section 2.4.4.

2.3.3 The noise on the spectrum

Outside the frequency range occupied by the galaxy, we expect zero radiation to be

detected. However, the measured spectrum clearly deviates above and below the zero

intensity level. This deviation from the expected function is known as ‘noise’.

During an observation of an HI spectral line, the radiation associated with the emission

line is generally a tiny fraction of the total power received by the antenna. At each

frequency channel within the band, a large amount of thermal radiation is also detected.

This comes mostly from the antenna and receiving system. During the data reduction

process an attempt is made to remove this thermal radiation from the spectrum, leaving

just the residual radiation from the galaxy. However, this cannot be done perfectly

since the noise associated with the thermal radiation cannot be removed. This noise

results from the fundamental uncertainty in the number of photons emitted by a thermal

source in a given period of time. The probability function of the number of photons

emitted in a given time interval forms a Poisson distribution about the mean number of

photons emitted in that time.

The following equation describes the root-mean-squared (rms) noise per channel on a

HI spectrum:

 σnoise =
tBW

Tsys

*
 (2.1)

where Tsys is the ‘system temperature’ (a measure of the total power in the bandpass),

BW is the width in frequency of a single channel and t is the integration (observing)

 7

time (see e.g. Rohlfs 1986). The Poissonian nature of the noise means that the noise on

the final spectrum only decreases as t . This places a strong constraint on the

sensitivity which can be obtained by increasing integration time: to reduce the noise on

a spectrum by a factor of 2, we have to increase the integration time by a factor of 4.

2.4 Information in an HI Spectrum

An HI spectrum can provide a great deal of information about the galaxy detected. This

information is summarised in this section.

2.4.1 The distance to the galaxy.

All external galaxies with measured HI emission lines are found to have central

frequencies of the 21-cm line shifted from the rest frequency of the line. The standard

interpretation is that this is due to the Doppler effect, i.e. it occurs because the galaxy is

moving either towards us (in a few cases) or (in most cases) away from us. The

‘redshift’, z, of a galaxy is defined as

z =
rest

restobs

λ
λλ −

 (2.2)

where �obs is the observed wavelength of the 21-cm line and �rest is the rest

wavelength of the line. We can calculate the recession velocity, v, causing this Doppler

effect via the equation

v = cz (2.3)

where c is the velocity of light (see e.g. Burke & Graham-Smith 2002).

The Universe is believed to be expanding such that, on a large scale, all points within it

are expanding away from all other points. The speed of this expansion is proportional

to the distance between the two points. Hence, the further away from each other two

galaxies are, the faster they are receding from each other. This is the generally held

explanation for the fact that nearly all galaxies have redshifts that imply they are

receding from our own.

 8

It is standard practice to label the frequency axis of HI spectra in units of cz (km s-1)

rather than frequency (MHz). This gives a useful indicator of the distance to a galaxy.

According to Hubble’s law, the velocity of recession of a galaxy, v, is related to its

distant, d (in Mpc), via the equation

v = cz = Ho d (2.4)

where Ho is Hubble’s constant. Current measurements of Ho place it in the region 60 –

80 km s-1 Mpc-1 (see e.g. Branch 1998). It is standard practice to assume a value of

Ho=75 km s-1 Mpc-1. For example, if we have a galaxy with a cz = 6000 km s-1, then we

can estimate its distance to be about 80 Mpc.

2.4.2 Derived parameters from an HI profile

Figure 2.3 shows a spectrum from the spiral galaxy UGC 02855. Note that the

frequency axis is now labelled in units of Velocity (i.e. cz). This spectrum has been

annotated to illustrate several parameters which can be derived from a spectrum.

Figure 2.3. An HI spectrum of UGC 02855, annotated to show the parameters

measured from an HI spectrum.

 9

The Peak Flux, Spk, (measured in Jy) is the largest measured flux value in any of the

channels in which the galaxy is detected.

The Integrated Flux, Sint, (measured in Jy km s-1) is the sum of the fluxes in all the

channels in which the galaxy is detected.

The Signal-To-Noise Ratio of a detection refers to the flux value of the detection

compared to the rms noise in the data. If an emission line has a Spk = 60 mJy and the

rms noise per channel in the spectrum is 15 mJy, then this detection has a ‘signal-to-

noise ratio’ of 4.

The velocity-width of a profile is the frequency range over which the line is observed,

expressed in cz units. This is commonly expressed as the velocity-width at half the Spk

value (W50) or at 20% of the Spk value (W20).

2.4.3 The mass of HI in a galaxy.

This can be found using the equation

MHI = 2.356 x 105 d2 Sint (2.5)

where MHI is measured in Mo (1 Mo = 2 x 1030 kg), d is measured in Mpc and Sint in Jy

km s-1 (see e.g. Rohlfs 1986).

2.4.4 The internal dynamics of the gas in the galaxy

The velocity-width and profile shape of the HI emission line from a galaxy depend on

both the intrinsic gas motions within the galaxy and the galaxy’s inclination to the line

of sight. This is illustrated in Figure 2.4 which shows images of 3 galaxies along with

their HI emission line profiles. The images were taken from the Digital Sky Survey

(DSS). The DSS is a set of digitised photographic survey plates covering the whole sky.

The DSS data from any position in the sky can be downloaded from

http://archive.stsci.edu/cgi-bin/dss_form. This forms an invaluable resource to the

community and will be utilised further in Chapter 6.

 10

Figure 2.4. Images from the Digital Sky Survey of three galaxies along with their HI

spectra (from HIJASS).

UGC 02855 (top panel) is a spiral galaxy, which is significantly inclined to the line of

sight. This has a broad, double-peaked emission line profile with W20 ⊄ 450 km s-1.

This ‘double-peaked’ profile is typical of that observed from spiral galaxies which are

inclined to the line of sight. The HI in a spiral galaxy is usually rotating about the

centre of the galaxy. However, it is only that component of this motion along the line of

sight which will cause a Doppler shift in the frequency of the observed radiation. If a

 11

galaxy is inclined to the line of sight then that component of the HI moving towards us

will be blueshifted (relative to the general redshift of the whole galaxy) and that

component moving away from us will be redshifted. Hence, we see two peaks in the

emission, each displaced from the canonical redshift of the galaxy.

NGC 4393 (middle panel) is also a spiral galaxy. However, its spectrum has W20 ⊄

130 km s-1, much narrower than that of UGC 02855, although we still a double-peaked

profile. As the image makes clear, NGC 4393 is much more face-on than UGC 02855.

This makes the profile of NGC 4393 much narrower since the gas is moving at much

smaller projected velocities along the line of sight (relative to the recession velocity of

the galaxy).

Holmberg I (bottom panel) is a dwarf galaxy in the nearby M81 Group. This has no

disk or spiral structure and only turbulent motions in its internal gas. Hence, compared

to the spiral galaxies, it has a very narrow velocity-width (W20 ⊄ 60 km s-1).

2.5 HIPASS and HIJASS

HIPASS was commenced in February 1997 and concluded in March 2002. HIPASS

surveyed the entire southern sky, as well as the northern sky up to Declination = +25o.

A cz range of –1280< cz < 12700 km s-1 was surveyed. This survey was made feasible

by the fitting of a 13-beam ‘multibeam’ receiving system to the Parkes Radio

Telescope in New South Wales (see Figure 2.5). This enables the telescope to observe

13 closely-spaced positions on the sky simultaneously. A full explanation of the survey

technique and data reduction process can be found in Barnes et al. (2001).

Figure 2.5. The Parkes Radio Telescope and the 13-beam multibeam receiver (pictures

courtesy of CSIRO).

 12

HIJASS is surveying the northern sky above Declination = +22o, to similar sensitivity

to HIPASS, using the Multibeam 4-beam receiver mounted on the 76-m Lovell

Telescope at the Jodrell Bank Observatory, Cheshire (see Figure 2.6). HIJASS was

begun in 2000.

Figure 2.6. The 76m Lovell telescope at Jodrell Bank.

As expected, HIPASS and HIJASS have added significantly to the census of the local

extragalactic population. Highlights from HIPASS include the discovery of 10 new

members to the nearby Cen A group of galaxies (Banks et al. 1999) and the most

sensitive determination of the HI mass function yet published (Zwaan et al. 2003a).

HIJASS highlights include the discovery of a new member of the nearby M81 group of

galaxies (Boyce et al. 2001). A catalogue of confirmed sources from the HIPASS

survey, ‘HICAT’, has been submitted for publication (Meyer et al. 2003, Zwaan et al.

2003b). Lang et al. (2003) have published a catalogue of confirmed sources from the

first part of the HIJASS survey.

2.6 Characteristics of a HIPASS/HIJASS datacube.

The final result of the survey and data reduction process with both HIPASS and

HIJASS (see Barnes et al. 2001) is a 3-dimensional ‘datacube’. The characteristics of

these datacubes are described in this section.

The datacube can be considered to be a collection of spectra. Each (x,y) coordinate pair

represents a spatial position on the sky (measured in Right Ascension and Declination).

 13

The ‘z’ axes represents the measured 21-cm spectrum at that position. HIJASS/HIPASS

datacubes are stored as 3-dimensional ‘FITS’ (Flexible Image Transfer System)

images. FITS is an image format designed to enable the transfer of astronomical images

between different software packages.

Pixels in multi-dimensional astronomical images are generally referred to as ‘voxels’.

Each voxel along the x and y axes of a datacube represents 4 arcmin on the sky. A

typical datacube has 150 voxels in the Right Ascension (x) dimension and 150 in the

Declination (y) dimension (equivalent to about 8o x 8o area of sky). The z axis has 1024

voxels corresponding to the 1024 channels of the spectra produced by the multibeam

spectrometers. The frequency width of each z-channel is 13.4 km s-1.

Figure 2.7. A ‘slice’ though a HIJASS datacube showing Declination against Velocity

(cz) for a single Right Ascension plane.

Reducing the data into datacube format makes the process of analysing the data easier

than if the final dataset simply consisted of a set of spectra. One can still view the

spectrum at any (x,y) position but, in addition, the data can be viewed as a set of 2-

 14

dimension ‘slices’ through the datacube. Figure 2.7 is a plot of Declination against cz

for a single Right Ascension (‘x’) plane. The source HIJASS J1335+6615 can be seen

at Declination=66.25o, cz = 3050 km s-1. This has been identified as the spiral galaxy

UGC08604. There is also a large signal close to 0 km/s at all Declinations. This is due

to HI emission from our own Galaxy (around cz = 0 km s-1). The standard data

reduction process does not fully remove this radiation from the final spectra and its

residue is seen on the plot.

Figure 2.8. Spectra from different (x,y) positions of the same HIJASS datacube

showing the differing effects of narrow-line RFI emission at cz = 2640 km s-1.

There are two main problems which beset HIPASS and HIJASS data. Firstly, several z-

channels in a HIPASS / HIJASS datacube can be affected by locally-based radio

frequency interference (RFI). Figure 2.8 shows two spectra from different (x,y)

positions in the same HIJASS datacube. This datacube suffers from RFI at cz = 2640

 15

km s-1. In the top panel the RFI is producing a peak in the spectrum which could easily

be mistaken for a narrow velocity-width galaxy. In the bottom panel, however, the RFI

is producing a negative peak in the spectrum. The intensity of the peaks and troughs

produced by the interference vary throughout the datacube.

The second problem, known as “baseline ripple” is illustrated in Figure 2.9. Instead of a

flat spectrum (with noise), this spectrum has a baseline with a periodic rise and fall.

This results when standing waves are formed between the focus box and dish of the

telescope. Figure 2.9 represents one of the worst examples of baseline ripple. Many

cubes are hardly affected.

Figure 2.9. A HIJASS spectrum which suffers from ‘baseline ripple’.

2.7 Detecting galaxies in HIPASS / HIJASS datacubes

The process of finding galaxies in HIPASS / HIJASS datacubes is outlined in this

section. This includes a discussion of the contribution which automatic finding

algorithms can make to this process.

The basic process of finding galaxies in a HIPASS / HIJASS datacube involves an

astronomer undertaking a ‘visual inspection’ of the datacube by examining each

Declination-Velocity slice (see Figure 2.7) and also the set of Declination-Right

Ascension slices for each cz channel. The astronomer is essentially looking for places

where the signal is significantly above the noise level in several contiguous z-channels.

 16

Figures 2.8 and 2.9 illustrate 2 problems which the astronomer has to overcome.

Firstly, local RFI can easily be confused with a weak narrow velocity-width galaxy.

Secondly, the effects of baseline ripple can act so as to mask real galaxies in the data,

but extenuate random fluctuations in the noise and make them appear like real galaxies.

One advantage an astronomer has is that a real galaxy will be detected in several

adjacent (x, y) positions. This is because the beam widths of the telescope (14 arcmin

for Parkes and 10 arcmin for the Lovell) are broader than the spatial (i.e. Right

Ascension and Declination) voxels (4 arcmin) so even a source not resolved by the

telescope (i.e. having a smaller projected size on the sky than the telescope beam)

occupies around 3 x 3 spatial voxels. Nearly all sources are actually unresolved by the

beam.

The end result of such a visual inspection is a list of identified sources. These are

graded either as ‘definite’ (i.e. those which the astronomer considers undoubtedly real)

or ‘possible’ detections (generally sources with lower peak or integrated flux values or

which the astronomer suspects may be the result of RFI or baseline ripple). The

‘possible’ sources have to re-observed in order to determine if they are real or not. This

is done by pointing a radio telescope directly at each source, using a smaller bandpass

(to improve velocity resolution) but longer integration time (to improve signal-to-noise)

than in the survey data. This process, known as ‘narrow-band follow-up’ is an essential

part of creating a catalogue of confirmed sources from HIPASS / HIJASS data.

Obviously, the astronomer wants to find the faintest sources possible within the data.

However, the fainter an astronomer tries to delve into the data, the more likely it is that

random configurations of the noise will be misidentified as galaxies. The human eye

tends to select galaxies on the basis of their peak flux, Spk. Hence, the sample produced

by a visual search will be “peak-flux limited”, i.e. all galaxies with Spk above some

peak flux limit will be included in the sample. This peak flux limit (the ‘completeness

limit’) is usually expressed in terms of the rms noise per channel in the data, �noise. For

example, if the rms noise in the data is 15 mJy per channel and the selection process

finds all galaxies with Spk > 75 mJy, then we can say that the sample has a

‘completeness limit’ of 5�noise. Some galaxies will still be found with Spk below the

 17

completeness limit, but at Spk values below this limit, the human eye is not finding all

the galaxies in the data. Below some Spk value no galaxies at all are detected. This is

known as the ‘detection limit’.

The sample of galaxies selected by visual inspection is not complete above any

integrated-flux limit. For example, 2 galaxies may the same integrated flux, Sint, but

one of them have a much broader velocity-width and hence lower Spk. One of these

galaxies may be included in a visually selected sample and the other not. Ideally, we

would like to create a sample that included all galaxies above a given HI mass (at a

given distance). A galaxy’s HI mass is related to its integrated flux (Equation 2.5).

Hence, we would require an integrated flux limited sample (i.e. where all galaxies

above a given Sint are included) rather than a peak flux limited sample.

Whilst an astronomer must have overall control of the process of finding galaxies in a

HIPASS / HIJASS datacube, there is significant scope for an automatic finding

algorithm to assist in this process. To be of value an automatic finding algorithm must

be capable of fulfilling one or both of two functions:

1. Find galaxies that are missed by a visual inspection. If an algorithm could detect

sources which are not easily seen in a visual inspection, then it would be highly

valuable.

2. Save an astronomer the task of visual inspection at all. To be useful in such a

context, the algorithm must be capable of finding all those sources that would

have been found in a visual inspection.

Three automatic finding algorithms have thus far been written. MultiFind (Kilborn

2001) and PolyFind (Minchin 2001) are both based around the idea of searching each

spectrum in a datacube for peaks in the emission which are greater than a specified

peak flux density, expressed in terms of an estimated value for the rms noise in the

spectrum. MultiFind (Meyer et al. 2003) cross-correlates spectra with top-hat profiles

of various scales: a feature is detected if it rises above a threshold value (determined by

the variance of the noise) in the convolved spectrum.

The published HIJASS catalogue (Lang et al. 2003) was created by astronomers

visually searching the datacubes and then subjecting ‘possible’ sources to narrow-band

 18

follow-up to confirm or reject them as galaxies. The PolyFind algorithm was also run

over every datacube. PolyFind actually missed a significant fraction of the sources

found by a visual search, but did identify a small number of sources not found by the

visual search. However, PolyFind also returned large numbers of spurious sources.

The HIPASS catalogue (HICAT: Meyer et al. 2003) made use of MultiFind and

TopHat. A main candidate list was created by running each of these finders over all the

datacubes. All the candidates were then examined visually by astronomers. Both

finders returned a large number of spurious candidates which had to be rejected at this

stage. Those candidates graded as ‘possible’ by the astromomers were subjected to

narrow-band follow-up to confirm or reject them as galaxies.

The resulting HIJASS and HIPASS catalogues are both peak flux limited. The HIJASS

catalogue has a completeness limit at Spk ⊄5�noise and has a detection limit at Spk

⊄3�noise (Lang et al. 2003). HICAT has similar completeness and detection limits

(Zwaan et al. 2003b), suggesting that MultiFind and TopHat do not find galaxies to

significantly fainter flux limits than does a visual search.

Clearly, an automatic finding algorithm which could find galaxies to significantly lower

limiting HI flux values than can a visual search would be extremely valuable. None of

the present finders is able to.

2.8 Concluding remarks

This chapter has provided some background information necessary to understand the

need for, and the role of, an application which can automatically detect possible sources

from HIPASS / HIJASS data. In Chapter 3, the application of the Gamma Test to this

problem is investigated.

 19

3. Applying the Gamma Test to HIPASS and HIJASS Data

3.1 Introduction

The possible applications of the Gamma Test to the analysis of HIPASS / HIJASS

datacubes are discussed in this chapter. The Gamma Test itself is described in Section

3.2. Its utility for measuring the noise in HI spectra and for detecting discontinuities in

the spectra is considered in Section 3.3. The ability of the Gamma Test to find z-

channels suffering from RFI is considered in Section 3.4. The ability of the Gamma

Test to select possible galaxies from HIPASS / HIJASS data is described in Section 3.5.

Three procedures which utilize the Gamma Test to analyse properties of HIPASS /

HIJASS datacubes are presented in Section 3.6. These (a) measure the average noise;

(b) find z-channels affected by RFI; (c) select potential sources. Some concluding

remarks are made in Section 3.7.

3.2 The Gamma Test

A full description of the Gamma Test can be found in Jones et al. (2002a) and a proof

in Evans and Jones (2002). A brief description is given in this section.

Suppose we are given a set of input-output data of the form { (xi, yi) | 1 � i � M } where

we can think of the vector x � �m as the input (confined to some closed bounded set C

� �m) and the corresponding scalar y � �� as the output, i.e. we assume that, in some

sense, y is determined by x. Suppose that the underlying relationship is of the form

y = f(x) + r (3.1)

where f is a smooth function representing the system and r is a random variable

representing noise. The expected value of the noise variable r may be assumed to be

zero, since any constant bias can be absorbed into the unknown function f. Despite the

fact that f is unknown, subject to the condition that f has bounded first and second

partial derivatives over the input space C, the Gamma Test provides an estimate for the

noise variance, Var(r). This estimate is known as the Gamma Statistic, denoted by �.

Let x and x’ be any two points of the input space C. The corresponding outputs will be

 20

 y = f(x) + r (3.2)

and

y’ = f(x’) + r� (3.3)

Hence:

½(y’ - y)2 = ½((r’ - r) + (f(x’) – f(x)))2 (3.4)

The continuity of f implies that:

| f(x’) - f(x) | � 0 as | x’ - x | � 0 (3.5)

Therefore

½(y’ - y)2 � ½(r’ - r) 2 as | x’ - x | � 0 (3.6)

Taking the expectation of both sides of Equation 3.6

 (½ (y’ - y)2) � Var(r) as | x’ - x | � 0 (3.7)

However, given any finite data set we cannot evaluate this limit directly. Instead the

Gamma Test computes an estimate of Var(r) by comparing the relationship between

pairs of nearest neighbour input values and the corresponding output values.

For any ordered sets of points T= {x1,..., xM}, the q-th nearest neighbour of any point xi

is uniquely defined as follows. The first nearest neighbour of xi is that point xj1 � T

\{xi} having minimal distance from xi and minimal index j1. The second nearest

neighbour of xi is that point xj2 � T \{xi , xj1} having minimal distance from xi and

minimal index j2. In general, the q-th nearest neighbour of xi is that point xjq � T \{xi ,

xj1, …, xjq-1} having minimal distance from xi and minimal index jq. Ordering equidistant

points (e.g. the channels in a spectrum) by their indices in this way means that every

point xi has a uniquely defined q-th nearest neighbour.

Let xN[i,q] denote the q-th nearest neighbour of the point xi in the set {x1,..., xM} and let

yN[i,q] denote the associated output value. We can compute a sequence of estimates for

(½ (y’ - y)2) by the sample means:

 21

M(q) =
M2

1
 ∑
=

M

i 1

| yN[i,q] – yi|
2 (3.14)

where |.| denotes the Euclidean distance. In each case, we can obtain an indication of

the “error” by computing the mean squared distance between the q-th nearest

neighbours, defined by:

M(q) =
M

1
 ∑
=

M

i 1

| xN[i,q] – xi|
2 (3.15)

It can be shown (Evans and Jones 2002) that there exists some constant A such that

M(q) �����������	� M(q) ��
� M(q)) a�������� M(q) � 0 (3.16)

The Gamma Test is, therefore, conducted by computing the pairs (M���
 M(q)) for 1 ��

q ��p and performing linear regression on these points. This process is illustrated in

Figure 3.1. The Gamma Statistic � is the constant term of this regression line.

������ M(q)

 (M���
 M(p))

 .

 � (M���
 M(1))

 M(q)

 Figure 3.1. The Gamma Test regression plot.

3.3 Applying the Gamma Test to HIPASS / HIJASS spectra

The initial impetus for applying the Gamma Test to HI spectra was to test whether it

provided an accurate way of determining the variance of the noise on the spectra. This

section describes the results of tests of its utility for this purpose. However, as also

illustrated in this section, it was found that the Gamma Test is also an effective way of

detecting discontinuities in a spectrum.

 22

A HI spectrum, at a given (RA, Dec) position, in a HIJASS / HIPASS datacube consists

of a set of z-channels (each representing a particular cz). Each z-channel has a

corresponding intensity value (in mJy). We can regard the z-channel numbers as the

input data (x) and the intensity values as the output values (y). In this case, each input x

vector consists of only one component, the z-channel number. Assuming that the output

is related to the input via an underlying relationship of the form

y = f(x) + r (3.18)

where f is a smooth function and r is a stochastic variable which represents noise, then

we should be able to apply the Gamma Test to the data and, hence, be able to estimate

the variance of the noise on the spectrum. The conventional way to express the noise

level in an HI spectrum is as the rms noise per channel. Hence, the input values (x)

must be expressed in units of z-channel number (not in MHz or km s-1) and the output

values (y) in units of Jy.

Figure 3.2(a) shows an artificial spectrum generated using the Mathematica software

package. The spectrum was generated with a noise variance of 0.000225 Jy, equivalent

to an rms noise of 15 mJy per channel (typical of HIPASS / HIJASS spectra). The

spectrum has 300 channels. A Gamma Test was run on this spectrum using the

winGamma application (Durant 2001). A returned value of � = 0.000233 was obtained

when running the Gamma Test on all 300 channels (using the default maximum

number of nearest neighbours, p=10). The rms noise obtained by taking the square root

of this is 15.3 mJy, very close to the actual value.

 23

Figure 3.2(a) an artificial spectrum with an rms noise per channel of 15 mJy; (b) as in

(a) but with a baseline ripple with period = 150 channels and peak to peak intensity !30

mJy. (c) as in (b) but containing a narrow emission line with W20 = 60 km s-1 and Spk =

100 mJy.

Figure 3.2(b) shows an artificial spectrum with the same rms noise as in Figure 3.2(a).

However, in this example a simulated baseline ripple with a period of 150 channels has

been added, typical of that seen in HIPASS / HIJASS datacubes. The peak to peak

intensity variation of this ripple is !30 mJy, among the worse values found in real

HIPASS / HIJASS data. The Gamma Test was also run on this spectrum. A returned

value of � = 0.000248 was obtained, equivalent to an rms noise of 15.7 mJy per

channel. Because the baseline ripple can be described by a smooth function, the

Gamma Test still returns a reasonably accurate estimate of the noise.

Figure 3.2(c) shows the same spectrum as in Figure 3.2(b) except that a simulated HI

emission line has been added with W20=60 km s-1 and Spk=100 mJy. The presence of

the emission line on a spectrum may cause the assumption of a smoothly varying

function to be broken and the Gamma Test to fail to return an accurate estimate of the

noise. Running the Gamma Test over all channels on this spectrum returns a � =

0.000310, leading to an estimate of the rms noise of 17.6 mJy. This invalidates the

 24

utility of the Gamma Test (used in this way) to measure the noise on the spectrum.

However, it does suggest that the Gamma Test could be used to detect the presence of a

discontinuity in a spectrum, since the � value from a section of the spectrum containing

the discontinuity may be much higher than the � from any section not containing the

discontinuity.

Figure 3.3. Result of running a ‘moving-window’ Gamma Test (window size=11

channels, p=10), using winGamma, on the spectrum shown in Figure 3.2(c).

This effect is illustrated in Figure 3.3 which shows the result of running a ‘moving-

window’ Gamma Test on the spectrum in Figure 3.2(c). The ‘moving-window’ Gamma

Test undertakes a Gamma Test centered on each channel in the input spectrum. Each

Gamma Test is conducted inside a ‘window’ of a fixed number of channels. In Figure

3.3, a window size of 11 channels was used and a maximum number of nearest

neighbours, p=10. Figure 3.3 shows the resulting � returned for each channel of the

input spectrum.

There is a sharp peak in � (0.002272) at the position of the spectral line. Elsewhere, the

returned � values are distributed around the input variance of 0.000225. In fact, the

window size of 11 was chosen because this window size was found to produce the

largest peak in � at the position of the spectral line compared to the returned � values

for the rest of the spectrum. A comparison of Figures 3.2(c) and 3.3 illustrates that

using a moving-window Gamma Test can be a highly effective way of detecting

discontinuities in a spectrum.

 25

Central to the operation of the Gamma Test is the comparison of the output (y) values

from neighbouring input (x) points. Since the Gamma Test assumes a smooth

underlying function, if the y values between neighbouring x positions are widely

divergent, this is considered to be due to noise. The sharp peak in Figures 3.2(c) is due

to an emission line, not noise. However, the Gamma Test in effect is still trying to

calculate the variance of the noise, but the whole of the signal caused by the

discontinuity is being treated as an instance of noise. A very high � is returned since 3

of the channels in the window have widely divergent output (y) values compared to

those of the other channels.

A moving-window Gamma Test can also be used to return a reasonably accurate

estimate of the variance of the noise, despite the presence of a spectral line. Each

Gamma Test is estimating the noise within its 11-channel window. Clearly those

Gamma Tests which have the spectral line within their window will give very

inaccurate measures of the noise. Nonetheless, by taking the median of the returned �

values, a typical value of � for the spectrum can be derived. The median value of � in

the ‘gamma-spectrum’ of Figure 3.3 is 0.000251, equivalent to an rms noise of 15.8

mJy. This is very similar to the returned � from running a Gamma Test using all 300

channels on spectrum in Figure 3.2(b) (i.e. without the spectral line).

3.4 Using the Gamma Test to detect RFI in HIPASS / HIJASS data

The utility of the Gamma Test to detect discontinuities in the spectra was demonstrated

in Section 3.3. The application of this to detecting RFI in spectra is considered in this

section.

Figure 3.4(a) shows a section of a HIPASS spectrum. The narrow ‘spike’ seen to

positive intensities is due to local RFI and could potentially be confused with a narrow

velocity-width galaxy. Figure 3.4(b) shows the result of running a ‘moving window’

Gamma Test over this spectrum using a window size of 11 channels. The maximum

number of nearest neighbours used is p=15 (as opposed to winGamma’s default value

of 10) since this was found to give the optimum peak in the returned � value at the

position of the RFI ‘spike’. (Note that Figure 3.4 and subsequent ones were produced

using a prototype of GammaFinder, since winGamma does not permit a p value larger

 26

than the window size – see Section 6.2.) The spectrum in the lower panel of Figure

3.4(b) shows the resulting � from each test (henceforth referred to as the ‘gamma

spectrum’). There is a sharp peak in the gamma spectrum at the position of the RFI

‘spike’.

Figure 3.4. (a) 160 channel-wide (2100 km s-1) section of a HIPASS spectrum with a

‘spike’ to positive intensities due to local RFI; (b) The ‘gamma spectrum’ resulting

from running a moving-window Gamma Test (window size = 11 channels, p=15) over

the spectrum in (a).

Figure 3.5(a) shows part of another spectrum from a different (x,y) position of the same

HIPASS cube shown in Figure 3.4(a). This spectrum also contains a ‘spike’, this time

seen to negative intensities. This spike is due to the same RFI as that seen in Figure

3.4(a) and, consequently, is at the same frequency. Figure 3.5(b) shows the result of

running a moving window Gamma Test over the spectrum in (a). Again, the gamma

spectrum shows a very pronounced peak at the frequency of the RFI.

 27

Figure 3.5. (a) 160 channel-wide (2100 km s-1) section of a HIPASS spectrum with a

‘spike’ to negative intensities due to local RFI; (b) The ‘gamma spectrum’ resulting

from running an 11-channel wide (p=15) moving-window Gamma Test over the

spectrum in (a).

The peak fluxes of the ‘spikes’ seen in Figures 3.4(a) and 3.5(a) are only about a factor

2.5 above the rms noise in the spectra. However, the peak � in the gamma spectra in

Figures 3.4(b) and 3.5(b) are about a factor of 7 above the rms variation in the gamma

spectra. Hence, it will be easier to detect RFI from the gamma spectra than the raw

data, especially since the peak in the gamma spectrum is always to positive intensities.

3.5 Using the Gamma Test to detect galaxies in HIPASS / HIJASS data

The utility of the Gamma Test to detect discontinuities in the spectra was demonstrated

in Section 3.3. The application of this to detecting galaxies in the data is considered in

this section.

Figure 3.6(a) shows part of a spectrum from a HIJASS cube. This spectrum includes

the HI emission line from the galaxy UGC 05701. This galaxy has one of the smallest

peak flux values (Spk = 56 mJy) and narrowest velocity-widths (W20 = 70 km s-1) in the

HIJASS Catalogue (see Lang et al. 2003).

 28

Figure 3.6. (a) 170-channel wide (2200 km s-1) section of a HIJASS spectrum showing

the emission line from UGC05701; (b) The spectrum shown in (a) after smoothing by a

Hanning function with FWHM = 2 channels; (c) The gamma spectrum derived from the

Hanning smoothed spectrum in (b) (11-channel window, p=15).

Figure 3.6(b) shows the spectrum which results from smoothing the spectrum in Figure

3.6(a) by a Hanning function with a FWHM of 2 channels. The technique of “Hanning

smoothing” (see e.g. Blackman and Tukey 1959) is commonly used on radio spectral

line data in order to reduce the level of noise on the data. The Hanning function is given

by A(x) = ½ [1 + cos(�x/a)] where a is the FWHM. The intensity value of a channel

in a Hanning smoothed spectrum (with FWHM = 2 channels) is dependent on the value

of that channel and of the 2 adjacent channels in the unsmoothed spectrum. In order to

produce a smoothed spectrum in which the channels are still independent, it is usual to

include in the output spectrum only every other channel from the original.

If the noise is Poissonian in nature, then Hanning smoothing with FWHM = 2 channels

should reduce the noise by a factor of 1.414. The smoothing process reduces the

frequency resolution to twice the original channel width, i.e. to 26 km s-1 for HIPASS

and HIJASS data. Hence, whilst Hanning smoothing may improve the detectability of a

source (by reducing the noise) details in the original spectrum may be lost. It is also

 29

possible that a very narrow velocity-width source may actually have its peak flux

significantly reduced as it is averaged with surrounding pixels. However, most galaxies

have intrinsic HI velocity-widths much larger than 26 km s-1 and there is usually little

danger as far as detectability goes in applying a Hanning filter with FWHM of 2

channels.

Figure 3.6(c) shows the result of running a moving window Gamma Test over the

Hanning smoothed spectrum shown in Figure 3.6(b). Exactly the same window size (11

channels) and maximum number of nearest neighbours (p=15) were used as in Figures

3.4 and 3.5. Note that both the Hanning smoothed spectrum and the gamma spectrum

have only half the number of channels as the raw spectrum. However, all three have

been plotted on the same cz scale to allow comparison.

A very strong peak is seen in the gamma spectrum at the position of the HI emission

line. Whilst the peak flux of the emission line on the raw spectrum is about a factor of 3

above the rms noise level, the peak in the gamma spectrum is about a factor of 10

above the rms variation in the gamma spectrum. A moving window Gamma Test is

clearly a highly effective way of finding narrow velocity-width galaxies.

Figure 3.7(a) shows a spectrum from a HIJASS cube showing the galaxy UGC 06552.

This also has a small peak flux value (Spk = 62 mJy) but has a broader velocity-width

(W20 = 273 km s-1) than UGC05701. Figure 3.7(b) shows the result of smoothing this

spectrum with a Hanning function with FWHM = 2 channels. Figure 3.7(c) shows the

resulting gamma spectrum from running a moving window Gamma Test over this

Hanning smoothed spectrum. In this example, no significant peak is seen in the gamma

spectrum to mark the position of the galaxy’s HI line.

A moving window Gamma Test is far more effective at detecting a discontinuity in a

spectrum if that discontinuity only occupies a small number of the channels in the

window. In the Hanning-smoothed spectrum of Figure 3.7(b), UGC 06552 occupies 6

of the 11 channels in the Gamma Test window. Whilst it has a similar peak flux to

UGC 05701, this latter source occupied only 3 of the 11 channels in the Gamma Test

window (Figure 3.6(b)). That the Gamma Test was far more effective at detecting UGC

05701 is not surprising since the Gamma Test is effectively measuring an average of

 30

the difference between the intensity values between neighbouring channels. If more of

the pixels within the window are actually part of the galaxy then this average difference

will be smaller. This implies that the Gamma Test is less effective at detecting broader

velocity-width galaxies. Fortunately, this problem can be overcome.

Figure 3.7. (a) 290-channel (3800 km s-1) wide section of a HIJASS spectrum

including the emission line from UGC 06552; (b) The spectrum shown in (a) after

smoothing by a Hanning function with FWHM = 2 channels; (c) The gamma spectrum

derived from the Hanning smoothed spectrum shown in (b) (11-channel window,

p=15); (d) The spectrum shown in (a) after smoothing by a Hanning function with

FWHM = 4 channels; (e) The gamma spectrum derived from the Hanning smoothed

spectrum shown in (d) (11-channel window, p=15).

Figure 3.7(d) shows the result of smoothing the original spectrum by a Hanning

Function with a FWHM of 4 channels. In such a smoothed spectrum, the value of every

channel is dependent on the value of that channel and the 6 nearest channels in the

original spectrum. Therefore, only every 4th channel is retained in the smoothed

spectrum. Smoothing by FWHM = 4 channels will reduce the frequency resolution to

52 km s-1, but should reduce the noise by a factor of 2. However, whereas the galaxy

occupied 6 channels in the FWHM = 2 channel Hanning smoothed spectrum, it

occupies only 3 channels in the FWHM = 4 channel Hanning smoothed spectrum.

Figure 3.7(e) shows the result of running a moving-window Gamma Test over the

 31

spectrum in Figure 3.7(d). The galaxy is now very clearly detected.

Figure 3.8. (a) 320-channel (4200 km s-1) wide section of a HIJASS spectrum

containing the emission line from the galaxy UGC6434; (b) The spectrum shown in (a)

smoothed by a Hanning function with FWHM of 4 channels; (c) The gamma spectrum

derived from the Hanning smoothed spectrum shown in (b) (11-channel window,

p=15); (d) The spectrum shown in (a) smoothed by a Hanning function with FWHM 8

channels; (e) The gamma spectrum derived from the Hanning smoothed spectrum

shown in (d) (11-channel window, p=15).

This technique can be extended further. Figure 3.8(a) shows the HIJASS spectrum of

UGC 6434. This galaxy also has one of the lowest peak flux values (Spk = 61 mJy) in

the HIJASS catalogue, but has one of broadest velocity-widths (W20=340 km s-1).

Figure 3.8(b) shows the spectrum after being smoothing by a Hanning function with

FWHM = 4 channels. Figure 3.8(c) shows the gamma spectrum derived from this

spectrum. Only a very modest peak is seen in � at the position of the emission line. For

such a broad velocity-width, even in the FWHM = 4 channels Hanning smoothed

spectrum, the galaxy is occupying 6 channels. However, Fig 3.8(d) shows the result of

Hanning smoothing the original spectrum with a FWHM = 8 channels. The value of a

channel in the smoothed spectrum is dependent on the value of that channel and the 14

nearest channels in the original spectrum. Hence, only every 8th channel is retained in

the smoothed spectrum. The frequency resolution is reduced to 104 km s-1. However,

the number of channels in which the galaxy is detected is only 3: it represents a

 32

significant discontinuity in the smoothed spectrum.

Figure 3.8(e) shows the gamma spectrum derived from Figure 3.8(d). The very broad

velocity-width source creates a very high peak in �. The apparent broadness of the peak

is slightly misleading. It should be remembered that this spectrum has only 1/8 of the

pixels of a raw spectrum. Also, only about 38% part of the spectrum is being plotted.

The rest of the spectrum contains sufficient data points to provide a baseline against

which the peak can be detected.

This section has presented a discussion of how the Gamma Test can be used to detect 3

galaxies. These galaxies were chosen from those with the lowest Spk values in the

HIJASS catalogue, but represent the full range of velocity-widths of galaxies in the

catalogue. By Hanning smoothing the data by an appropriate FWHM, all three could be

easily detected by running a moving-window Gamma Test over the smoothed

spectrum. The use of three smoothing FWHMs (2, 4 and 8) enables a search to be made

for galaxies over a velocity-width range from about 50 km s-1 to 400 km s-1, more or

less the range measured for known galaxies.

3.6 Procedures for analysing HIPASS / HIJASS datacube

As explained in Sections 3.3, 3.4 and 3.5, there are three main types of analysis of a

HIPASS / HIJASS datacube for which the Gamma Test can be utilized: measuring the

variance of the noise, finding z-channels affected by RFI and finding possible sources.

In this section three procedures are presented to undertake each of these types of

analysis.

The findNoise procedure estimates the average noise in a datacube. The procedure

runs a moving-window Gamma Test (11-channel window, p=15) over the z-channel

spectrum at every spatial position in the datacube. It then finds the average variance of

the noise in the datacube by taking the median value of all the returned � values.

Choosing the median value means that a ‘typical’ value of variance will be returned,

i.e. not one derived from a channel affected by RFI , an emission line or residue

Galactic emission. The average (rms) noise is derived by taking the square root of the

variance.

 33

The findBadZChans procedure finds those z-channels affected by RFI in a

datacube. For each z-channel, a median value is found of the � resulting from running a

Gamma Test centred at every (i,j) position in that channel (window size of 11, p=15). If

the z-channel suffers from RFI then this value will be significantly larger than if the

channel does not suffer from RFI. The median � for each z-channel is copied to the

array medGamInChan. The median value from within this array, medGam, is then

found. Finally, the value of medGamInChan for each channel is compared with

medGam. If the former is less or equal to a factor of 1.5 times the latter, than the

channel is considered to be free of RFI and the appropriate value of the Boolean array

zChanQual is set to true (else it is set to false).

Procedure findNoise(cube(xpix,ypix,zpix))

for i= 1 to xpix do
 for j = 1 to ypix do
 for k = 1 to zpix do

 gamStat(i,j,k) � from cube(i, j, k–5 � k+5), p =15

 end for
 end for
end for

averageVariance � median [gamStat(i, j, k)]

averageNoise = sqrt(averageVariance)

return averageNoise

 34

The findGals procedure finds possible sources in a datacube. This has three main

stages.

Firstly, three Hanning smoothed spectra are derived from the spectrum at each (i,j)

position, using FWHMs of 2, 4 and 8 channels respectively.

Secondly, at each (i,j) position, a moving window Gamma Test (11-channels, p=15) is

run on each of these 3 smoothed spectra, resulting in 3 ‘gamma spectra’.

Procedure findBadZChans(cube(xpix,ypix,zpix))

zChanQual(zpix) � Boolean array to note which z-Channels are
 affected by RFI. All values set to ‘false’

for k = 1 to zpix do
l � 0
 for i= 1 to xpix do
 for j = 1 to ypix do

 gamStat(l) � from cube(i, j, k–5 � k+5), p=15
 l++

 end for
 end for

 medGamInChan(k) � median(gamStat)

end for

medGam � median(medGamInChan)

for k = 1 to zpix do

 if medGamInChan(k) <= medGam * 1.5
 zChanQual(k) = true

end for

return zChanQual

 35

Procedure findGals(cube(xpix,ypix,zpix))

gamThres � a number used to determine if a peak in a gamma
 spectrum is significant or not

for i= 1 to xpix do
 for j = 1 to ypix do

 h2Spec(i,j) � spectrum at cube(i,j) smoothed by
 Hanning function with FWHM = 2 channels

 h4Spec(i,j) � spectrum at cube(i,j) smoothed by
 Hanning function with FWHM = 4 channels

 h8Spec(i,j) � spectrum at cube(i,j) smoothed by
 Hanning function with FWHM = 8 channels
 end for
end for

for i= 1 to xpix do
 for j = 1 to ypix do

 g2Spec(i,j) � ‘gamma spectrum’ from 11-ch, p=15 moving-
 window Gamma Test on h2Spec(i,j)

 g4Spec(i,j) � ‘gamma spectrum’ from 11-ch, p-15 moving-
 window Gamma Test on h4Spec(i,j)

 g8Spec(i,j) � ‘gamma spectrum’ from 11-ch, p=15 moving-
 window Gamma Test on h8Spec(i,j)
 end for
end for

for i = 1 to xpix do
 for j = 1 to ypix do
 for k = 1 to zpix do

 if (g2Spec(i,j,k) > gamThres*median(g2Spec(i,j))
 && g2Spec(i,j,k) is a peak))
 Output i, j, k, g2Spec(i,j,k)

 if (g4Spec(i,j,k) > gamThres*median(g4Spec(i,j))
 && g4Spec(i,j,k) is a peak))
 Output i, j, k, g4Spec(i,j,k)

 if (g8Spec(i,j,k) > gamThres*median(g8Spec(i,j))
 && g8Spec(i,j,k) is a peak))
 Output i, j, k, g8Spec(i,j,k)

 end for
 end for
end for

 36

Thirdly, the gamma spectra are searched for positions where � has a value larger than a

factor ‘gamThres’ times the median value for � in that gamma spectrum. If one of

these positions is also at a peak in the distribution of � values (in all 3 dimensions) then

the position and the value of � at that position are output as a possible sources. This

procedure is run on all 3 sets of gamma spectra (since these are sensitive to galaxies of

different velocity-widths).

Throughout the rest of this dissertation, we refer to the ratio of � at a particular (i,j,k)

position to the median value for � in the equivalent gamma spectrum, at (i, j), as the

‘Gamma S/N’ (by analogy to the signal-to-noise ratio used to express the significance

of flux detections - see Section 2.4.2). This ratio measures how far above a ‘typical’ �

for that gamma spectrum the particular � value is. To be considered a possible source,

a voxel must have a Gamma S/N µ gamThres. Hence, the factor ‘gamThres’ can

be thought of as representing the limiting Gamma S/N at which a peak in the � values

is considered significant. It is important that the median value of � in a gamma

spectrum is used in this calculation. This prevents the reference used to test significance

being biased by emission lines or RFI.

3.7 Concluding remarks

This Chapter has described how the Gamma Test can be a useful analytical technique

when applied to HIPASS / HIJASS datacubes. Three procedures have been described

which use the Gamma Test to (a) determine the average noise in a datacube; (b) find z-

channels affected by RFI in a datacube; (c) find potential sources in a datacube. The

next two chapters describe the design and implementation of a Java application

(GammaFinder) which implements these procedures.

 37

4. Specification and Design of GammaFinder

4.1 Introduction

Section 3.5 presented three procedures which utilise the Gamma Test to undertake an

aspect of the analysis of HIPASS / HIJASS datacube: findNoise estimates the

average noise in a datacube; findBadZChans finds those z-channels in a datacube

affected by RFI; and findGals find possible sources in a datacube. This chapter

presents the specification and design of a software application, GammaFinder, which

puts these procedures into operation. The specification of the application is described in

Section 4.2. Some general design issues are discussed in Section 4.3. Section 4.4

contains a description of the Java classes of the application. In Section 4.5 a description

of the sequence of operation of a typical GammaFinder session is given.

4.2 Requirements specification

4.2.1 Functional requirements

Figure 4.1 is a top level UML Use Case Diagram which represents the main

functionality that the application was designed to provide.

Use Case 1. Determine the average noise in a datacube

using the findNoise procedure.

Use Case 2. Determine the bad z-channels in a datacube using the findBadZChans
procedure.

Use Case 3. Find possible sources in a datacube using the findGals procedure.

 38

 GammaFinder

 Astronomer

Figure 4.1. A top level UML Use Case Diagram representing the main functionality

that GammaFinder was designed to provide.

Use Case 4. Examine the spectra associated with each

spatial position in a datacube.

The user can study each of the 3 types of spectra created by the findGals procedure.

This is represented in the expanded Use Case Diagram in Figure 4.2.

Determine bad z-
channels in a datacube.

Examine results.

Save results to a file.

Examine spectra.

Find possible sources
in a datacube.

Determine average
noise in a datacube.

 39

 <<include>> <<include>

 <<include>>

 <<include>>

Figure 4.2. Expanded Use Case Diagram for Use Case 4.

Use Case 5. Examine results.

An astronomer is able to examine the results from each of Use Cases 1-3. There are

three aspects to this use case, each of which is represented by the expanded Use Case

Diagram in Figure 4.3.

 <<include>> <<include>
 <<include>>

Figure 4.3. Expanded Use Case Diagram For Use Case 5.

Use Case 6. Save Results to a file.

4.2.2 Non-functional requirements

GammaFinder has been designed to meet the following non-functional requirements.

Examine spectra.

Examine raw
spectra.

Examine hanning
smoothed spectra.

Examine gamma
spectra.

Examine results

View results
Edit results

Annotate results

 40

1. Portability. The intention is that GammaFinder will be used by astronomers

throughout the world.

2. Straightforward to use. The prime functions of GammaFinder should be easily

accessed and performed.

3. Make efficient use of memory and CPU time.

4. Work with the standard astronomical data format, ‘FITS’.

4.3 General Design Issues

It was decided to build GammaFinder as a GUI-based application using Java Swing.

The use of Java will ensure that the requirement of portability is met. The use of a GUI

assists the requirement that the application be straightforward to use. Results and

spectra can be easily examined and edited on a GUI. In the interests of the efficient use

of memory and CPU time, the ‘float’ data type was chosen to represent all real numbers

used within the application. No significant loss of accuracy results from using this data

type as opposed to ‘double’.

4.4 Explanation of the Java classes in GammaFinder

Figure 4.4 presents a UML Class Diagram of GammaFinder. An understanding of the

data structures and methodology of GammaFinder can be obtained by a consideration

of each of these classes and their relation to each other. These are discussed below.

4.4.1 public class Voxel

This class was designed to represent a single voxel in an HI datacube. Whilst a voxel in

the original datacube has only an (x, y, z) position and an intensity value associated

with it, the Voxel object also has associated with it the values derived by running the

Hanning smoothing functions (with FWHM=2, 4 and 8 channels) over the spectrum

defined by the z-channels at the (x, y) position of the Voxel object. Also associated

with the Voxel object are the Gamma Statistic, �, values derived by running a moving

window Gamma Test (window size 11 channels, p=15) over the raw spectrum defined

by the z-channels at the (x, y) position of the Voxel object and the � values derived

from the equivalent 3 Hanning smoothed spectra. Hence, the instance variables of a

Voxel object represent the 8 pieces of information which need to be associated with a

voxel in order to implement the three procedures described in Section 3.6. This data

 41

structure was chosen since it is conceptually easy to understand and models the real

world situation well.

42

1

re
ad

_d
at

a_
fr

om
 ±

 1

°

w

ri
te

s_
re

su
lt

s_
to

↓

 1

 1

 c

re
at

es

1

 1

 1

1

*

co
ns

is
ts

_o
f

°

 1

se

ar
ch

es

 1

 d

is
pl

ay
s_

sp
ec

_o
n

↓

1

1
1

1

 s
av

es
_r

es
ul

ts
_t

o
→

*

F
ig

ur
e

4.
4.

 U
M

L
 C

la
ss

 D
ia

gr
am

 f
or

 G
am

m
aF

in
de

r

G
ui

F
ra

m
e

 ga
m

T
hr

es
: f

lo
at

xc

oo
rd

: i
nt

eg
er

yc

oo
rd

: i
nt

eg
er

sp

ec
T

yp
e:

 S
tr

in
g

hi
C

ub
e:

 H
iC

ub
e

di
sp

Pa
ne

l:
D

is
pl

ay
Pa

ne
l

te
xt

Pa
ne

l:
JT

ex
tA

re
a

xp
ix

: I
nt

eg
er

yp

ix
: I

nt
eg

er

zp
ix

: I
nt

eg
er

fi

le
Fl

ag
: B

oo
le

an

di
sp

la
yF

la
g:

 B
oo

le
an

 re

ad
Fi

le
()

fi

nd
So

ur
ce

s(
)

sa
ve

R
es

ul
ts

()

se
tG

am
T

hr
es

()

up
da

te
D

is
pP

ar
s(

)

H
iC

ub
e

 xp
ix

: I
nt

eg
er

yp

ix
: I

nt
eg

er

zp
ix

: I
nt

eg
er

vo

xA
rr

ay
: V

ox
el

[]
[]

[]

zC
ha

nQ
ua

l:
B

oo
le

an
[]

no
is

e:
 f

lo
at

 se

tH
2H

4H
8V

al
s(

)
se

tG
V

al
s(

)
se

tG
2G

4G
8V

al
s(

)
se

tN
oi

se
()

se

tZ
C

ha
nQ

ua
l(

)
ge

tV
ox

A
rr

ay
()

ge
tN

oi
se

()

ge
tZ

C
ha

nQ
ua

l(
)

ge
tV

ox
el

(
in

t i
, i

nt
 j,

V
ox

el

 vo
xV

al
: f

lo
at

h2

V
al

: f
lo

at

h4
V

al
: f

lo
at

h8

V
al

: f
lo

at

gV
al

: f
lo

at

g2
V

al
: f

lo
at

g4

V
al

: f
lo

at

g8
V

al
: f

lo
at

 ge

tV
ox

V
al

()

ge
tH

2V
al

()

ge
tH

4V
al

()

ge
tH

8V
al

()

ge
tG

V
al

()

ge
tG

2V
al

()

ge
tG

4V
al

()

ge
tG

8V
al

()

se
tV

ox
V

al
(f

lo
at

 a
)

se
tH

2V
al

(
fl

oa
t b

)

se
tH

4V
al

(
fl

oa
t c

)
se

tH
8V

al
(

fl
oa

t d
)

se
tG

V
al

(
fl

oa
t e

)
se

tG
2V

al
(

fl
oa

t f
)

se
tG

4V
al

(
fl

oa
t g

)
se

tG
8V

al
(

fl
oa

t h
)

F
it

sF
ile

T
ex

t
F

ile

JT
ex

tA
re

a
 cu

t(
)

pa
st

e(
)

co
py

()

ap
pe

nd
(

St
ri

ng
 a

)

ge
tT

ex
t(

)

D
is

pl
ay

P
an

el

 xc
: i

nt
eg

er

yc
: i

nt
eg

er

sp
ec

tr
um

T
yp

e:
 in

te
ge

r
sf

:
in

te
ge

r
vo

xV
al

s:
 V

ox
el

[]
[]

[]

 pa
in

tC
om

po
ne

nt
(

G
ra

ph
ic

s
gr

af
)

up
da

te
SP

an
el

(,
 i

nt
 x

,
in

t

 43

The instance variables of the class are:

voxVal: the intensity of a voxel.

h2Val, h4Val, h8Val: the intensities of a voxel after its z-channel spectrum

has been smoothed by Hanning functions with FWHMs = 2, 4 and 8 channels

respectively.

gVal: � value of a voxel derived from a moving window Gamma Test over the raw

z-channel spectrum.

g2Val, g4Val, g8Val: � values of a voxel derived from a moving window

Gamma Test over the 3 Hanning smoothed z-channel spectra of that voxel.

The constructor for the class creates a Voxel object by setting the value of its

voxVal instance variable. All other instance variables can be set by specific methods

within the class. Methods are also defined for returning the value of the each of the

instance variables of the class. These are utilised by methods in the HiCube and

GuiFrame classes.

4.4.2 public class HiCube

This class represents those aspects of an HI datacube of relevance to the analysis

undertaken by GammaFinder. The instance variables of the HiCube class are:

xpix, ypix, zpix: integers representing the number of voxels in the Right

Ascension, Declination and cz dimensions respectively.

voxArray: a three dimensional array of Voxel objects. Each Voxel object in

this array represents the properties of a particular voxel in the HI datacube.

noise: a ‘float’ representing the average noise in the datacube.

zChanQual: a Boolean array of dimension zpix. Any ‘bad’ z-channels (i.e.

seriously affected by RFI) in the datacube are represented by a value of “false” in this

array. Good z-channels are represented by a value of “true”.

There is a single constructor for this class. A 3-dimensional float array is passed to the

constructor, representing the raw pixel values of the datacube. Using this array, the

values of xpix, ypix and zpix are determined. A 3-dimensional array of Voxel

 44

objects is created of the same dimensions as the input float array. The voxVal

instance variable of each Voxel in the array is set to be equal to the value of the

equivalent voxel in the input float array.

The following methods set the values of the instance variables of a HiCube object:

setGVals(): This method runs a moving window Gamma Test (window size 11-

channels, p = 15) over each z-channel spectrum in the HiCube object. The result of

this at each (i, j, k) position is stored as the gVal instance variable in the Voxel

object at the relevant voxArray position.

setH2H4H8Vals(): This method runs three Hanning smoothing functions over

each z-channel spectrum in the datacube. These functions have FWHMs of 2, 4 and 8

voxels respectively. The resultant intensity at each (i, j, k) position is stored as the

h2Val, h4Val and h8Val instance variables in the Voxel object at the relevant

voxArray position. Since the smoothed spectra have less channels that the raw

spectra (see Section 3.5), these instance variables are left ‘null’ where that channel is

excluded from the Hanning smoothed spectrum. This method implements the first part

of the findGals procedure.

setG2G4G8Vals(): This method runs a moving window Gamma Test (window

size = 11 channels, p = 15) over each Hanning smoothed spectrum in the datacube

(i.e. the relevant set of h2Val, h4Val and h8Val instance variables at each (i, j)

position). The resultant � at each (i, j, k) position is stored as the g2Val,g4Val and

g8Val instance variables in the Voxel object at the relevant voxArray position.

These values are left as ‘null’ where those of the equivalent Hanning smoothed

spectrum are null. This method implements the second part of the findGals

procedure.

setNoise(): This method implements the findNoise procedure to find the

average noise in the datacube and sets the value of the noise instance variable.

setzChanQual(): This method implements the findBadZChans procedure to

find those z-channels in the cube which suffer from significant RFI. It sets the values

of the zChanQual instance variable to be “false” for these channels and “true” for

all other channels.

 45

The following methods return the values of instance variables of a HiCube object:

getZChanQual(): returns the Boolean array zChanQual.

getNoise(): returns the value of the noise instance variable.

getVoxel(int i, int j, int j): return the Voxel object at position

(i,j,k) in the voxArray instance variable.

getVoxArray(): return the VoxArray instance variable.

4.4.3 public class GuiFrame

This class defines the properties of the GUI (the design of the GUI is discussed in

Chapter 5). This class also runs the application, utilising the other classes to derive

and present the required results.

The class has many instance variables relating to element of the GUI. It also has the

following instance variables:

gamThres: a float representing the ‘Gamma S/N’ limit (see Section 3.6).

textPanel: an object of JTextPanel class. All results are written to this object.

dispPanel: an object of class DisplayPanel, used for displaying spectra.

hiCube: an object of HiCube class. This represents the current datacube being

analysed.

xpix,ypix,zpix: integers representing the dimension of the current HiCube

object.

xcoord, ycoord: integers representing the position of the spectrum to be

displayed on dispPanel.

specType: a String representing the type of spectrum to be displayed on

dispPanel.

fileFlag: Boolean used to indicate if the file has been read in correctly.

displayFlag: Boolean used to indicate if xcoord and ycoord are set to

permissible values.

The following methods are defined within the class.

 46

readFile(): This method opens a FITS datacube (selected by the user using the

JFileChooser class) and creates a new HiCube object (hiCube) by passing the

3-D float array to the constructor of the HiCube class. To open and read the FITS

data, it makes use of the org.eso.fits Java package written by Preben Grosbol of the

European Southern Observatory.

setGamThres(): This method reads the user supplied value of the gamThres

instance variable from the GUI.

findSources(): This method searches the HiCube object, hiCube, for possible

detections and returns the results of this search as a list of possible sources, along with

the ‘Gamma S/N’ onto textPanel. Hence, it implements the third part of the

findGals procedure.

updateDispPars(): This method reads the user supplied values for xcoord,

ycoord and specType from the relevant input fields of the GUI.

saveResults(): This method saves the current contents of textPanel to an

ascii text file (selected by the user using the JFileChooser class).

4.4.4 public class DisplayPanel

This class extends the JFrame class to provide a panel for displaying spectra

requested by the user. An instance of this class, dispPanel is displayed on the GUI.

The class has the following instance variables.

voxVals: the 3-dimensional array of Voxel objects from which spectra to be

displayed are selected.

xc, yc: Integers defining the (i, j) position of the spectrum to be displayed.

spectrumType: an integer flag noting the type of spectrum to be displayed.

sf: an integer representing an appropriate scaling factor to be applied to the spectrum

to be displayed.

The following methods are defined:

 47

updateSPanel(int xc, int yc, Voxel[][][]voxVals, String

specType): The method sets the instance variables to suitable values for the

spectrum requested and then calls the repaint() method.

paintComponent(Graphics2D graf): this method redraws the display.

4.4.5 class JTextArea

This class is a component of the Swing package used for displaying and editing text.

The GuiFrame object creates a single instance of this class, textPanel, to which

it writes all the results of its other activities. The following methods are used:

copy(), cut(), paste(): standard text editing methods.

append(String aString): appends a string to the JTextArea object.

getText(): copies text on the JTextArea object to a string.

4.4.6 public class FitsFile

This class represents a FITS format image. The methods and classes used by the

GuiFrame class to open and read data from a FitsFile object are provided by the

org.eso.fits package.

4.4.7 public class Stats

This contains a static method, modMean(), called by the findSources()

method of GuiFrame class to calculate a modal value in a g8Val gamma spectra

(described in Section 5.9).

4.4.8 class DisplayFormat

This contains four static methods, called by the findSources() method of the

GuiFrame class, and used to format the displayed results.

4.5 The sequence of operation of GammaFinder

Figure 4.5 is a UML Sequence Diagram which illustrates the standard sequence of

operation of GammaFinder. This sequence is described below with reference to the

diagram.

 48

1. The application is started by an astronomer. An object of the GuiFrame class is

created (guiFrame). The GUI is displayed.

2. The astronomer chooses to open a file. This leads to a sequence of operations

which open a FITS file and create a HiCube object based upon its contents.

2.1 guiFrame calls the readFile() method. The astronomer chooses the

FitsFile object to be opened using the JFileChooser class. The method opens

the chosen file and returns a 3-dimensional float array of its contents.

2.2 The readFile() method then creates a new HiCube object (hiCube) passing

dataArray to the constructor of the HiCube class.

2.3 guiFrame applies the setGVals() method of HiCube to hiCube. This

performs the moving window Gamma Test on every spectrum in hiCube and copies

the results into the gVal instance variable of each Voxel object in the voxArray

instance variable of hiCube.

2.4 guiFrame applies the setZChanQual() method of HiCube to hiCube.

This determines which z channels in hiCube suffer from RFI and sets the values of

the zChanQual instance variable of hiCube to reflect this. These values are then

excluded from the subsequent reduction and analysis process.

2.5 guiFrame applies the setH2H4H8Vals() method of HiCube to hiCube.

This performs three Hanning smoothing operations on every spectrum in hiCube

and copies the results into the h2Val, h4Val and h8Val instance variables of each

Voxel object in the voxArray instance variable of hiCube.

2.6 guiFrame applies the setG2G4G8Vals() method of HiCube to hiCube.

This performs a moving window Gamma Test on each channel of each of the Hanning

smoothed (of FWHM = 2, 4 and 8 channels) spectra in hiCube and copies the

resulting � values into the g2Val, g4Val and g8Val instance variables of each

Voxel object in the voxArray instance variable of hiCube.

 49

2.7 guiFrame applies the setNoise() method of HiCube to hiCube. This

calculates the average noise in the datacube and copies the result to the instance

variable noise.

2.8 guiFrame applies the getNoise() method of HiCube to hiCube. This

return the value of the noise instance variable to GuiFrame.

2.9 guiFrame applies the getZChanQual() method of HiCube to hiCube.

This returns the Boolean array zChanQual to guiFrame.

2.10 guiFrame applies the append() method of JTextArea to copy the value of

noise and a list of the z-channels affected by RFI to textPanel.

3. The astronomer selects the ‘Find’ option from the GUI.

3.1 guiFrame calls its findSources() method. This actually makes many calls

to the various values stored in the array of Voxel objects in hiCube, utilising the

getVoxel(i, j, k) method of HiCube and the various ‘get’ methods of the

Voxel class.

3.2 guiFrame applies the append() method to copy the results from the finding

process to textPanel.

4. The astronomer selects an (i, j) position and a spectrum type and selects the

‘Display Spectrum’ JButton on the GUI.

4.1 guiFrame applies its setDispPars() method which reads the user input.

4.2 guiFrame calls the updateSPanel() method of the DisplayPanel class

and supplies the user-selected xcoord, ycoord, specType values, along with the

voxVals array.

4.2.1 dispPanel calls its paintComponent() method and the panel is re-drawn

with the requested spectrum.

5. The astronomer directly edits the results on textPanel.

6. The astronomer selects the ‘Save’ option on the GUI.

 50

6.1 guiFrame calls its saveResults() method. Firstly, this enables the user to

select a name for an output text file (using the JFileChooser class).

6.2 The saveResults() method then applies the getText() method to

textPanel. This method returns the current contents of textPanel as a String.

6.3 The saveResults() method then copies the returned results to the output file.

 7. The astronomer selects the ‘Exit’ option on the GUI and GammaFinder is

closed.

 4.6 Concluding remarks

This chapter has presented a description of the main functional and non-functional

requirements for GammaFinder and discussed the top level design of the application.

The next chapter will give a more detailed description of the implementation of the

design.

 51

5. Implementation

5.1 Introduction

The specification and design of GammaFinder were described in Chapter 4. In this

Chapter the implementation details of the most important aspects of the application

are described. In Section 5.2 the main features of the GUI are discussed. Subsequent

sections then describe the implementation of the main methods. These are described

in the order in which they would be called during a typical sequence of operation (see

Figure 4.5). Section 5.12 presents some concluding remarks.

5.2 The Graphical User Interface

The properties of the GUI are defined by the GuiFrame class. The GUI was

designed using components of the Java Swing package since these give greater

flexibility and sophistication that the standard Java awt package. Figure 5.1 shows the

GUI as it appears when the application is started.

Figure 5.1. The GammaFinder GUI as it appears when the application is started.

The GuiFrame class extends the JFrame class. A ‘cross-platform’ look and feel is

specified to help meet the requirement for portability.

 52

Most of the functionality of the application can be accessed from the menu bar. The

menu bar consists of a JMenuBar object which has added to it three JMenu objects,

corresponding to the three menu headings ‘File’, ‘Edit’ and ‘Help’. Each of the

JMenu objects has added to it several JMenuItem objects, corresponding to the

actual items on the menu. A keyboard shortcut is specified for each JMenu and

JMenuItem object using the setMnemonic() method. An event listener is added

to each JMenu and JMenuItem object using the addActionListener()

method. Figure 5.2 shows the GUI with the ‘File’ menu activated.

Figure 5.2. The GUI showing the ‘File’ menu activated.

Most of the functionality of the application can also be accessed from the tool bar.

This consists of a JPanel object on which are placed 6 JButton objects, each of

which corresponds to one of the main tasks of the application. A keyboard shortcut

and an event listener are added to each JButton. The user is able to select the

gamThres instance variable via a JComboBox object.

The lower part of the GUI consists of a JTabbedPane object to which are added 2

JPanel objects. The first of these contains a JTextArea object (textPanel) set

in a JScrollPane. This forms the “Results panel” to which results are written. The

 53

second contains a DisplayPanel object (dispPanel) on which spectra can be

displayed. It also contains a JComboBox object from which the type of spectrum

(specType) to be displayed can be selected and 2 JTextField objects, via which

the user can specify the xcoord and ycoord values of the spectrum to be

displayed. A JButton object is selected to display the spectrum. Figure 5.3 shows

the GUI with the “Display Panel” selected.

Figure 5.3. The GUI with the “Display Panel” visible.

An ‘actionPerformed’ inner class within the GuiFrame class specifies the

actions to be performed when one of the interactive elements of the GUI is selected.

The following code extract shows what happens when the ‘Save’ button or the ‘Save

Results’ menu item is selected.

 else if(e.getSource() == j2 || e.getSource() == button2)
 {
 saveResults();
 }

5.3 The readFile() method

When the user selects the ‘Open’ button or the ‘Open File’ option on the ‘File’ menu,

a sequence of operations is activated. Firstly, the readFile() method of the

 54

GuiFrame class uses the JFileChooser class to enable the user to select a file

with a ‘.fits’ extension (see Figure 5.4).

Figure 5.4. A user selecting a FITS file.

If the file selected is not a FITS file or cannot be read then the relevant exception is

caught and the user is notified via a JOptionPane object (Figure 5.5).

Provided that the selected file can be opened, the readFile() method uses several

methods from the org.eso.java package to (a) determine that the FITS file contains a

3-D datacube; (b) find the dimensions (xpix,ypix,zpix) of that cube; (c) read

the intensity values at each (xpix,ypix,zpix) and copy them to a 3-D float array,

inFileData. Any exceptions thrown during this process are caught and the user

informed via a JOptionPane.

Finally, the readFile() method creates a new object of the HiCube class:

 hiCube = new HiCube(inFileData);

 55

Figure 5.5. A JOptionPane informing the user that the file could not be opened.

The user is then informed of the successful completion of these activities via a

JOptionPane.

5.4 The setGVals() method

Once a HiCube object (hiCube) has been successfully created, the GuiFrame

object calls the setGVals() method to set the gVal instance variable of all the

Voxel objects in the voxArray of hiCube.

This method is based within a triple nested loop in x, y and z voxels (using i, j and k

as indices). Within this loop, the gVal instance variable is calculated for the Voxel

object at the (i,j,k) position of the voxArray instance variable of hiCube. The

following code fragment illustrates this.

for(int i = 0; i < xpix; i++)
 for(int j =0; j < ypix; j++)
 for(int k = 0; k < zpix; l++)
 //code to set the gVal in voxArray[i][j][k]

 56

The gVal at a given (i,j,k) position is, of course, the Gamma Statistic resulting from

running a Gamma Test on the z-channel spectrum at that (i,j) position, using an 11

channel-wide window (centred at the k-position) and having a maximum number of

nearest neighbours p = 15. The code to calculate this comprises two stages.

In the first stage, the values of M(q) and� M(q) are calculated for 1 � q � 15. The

following code fragment accomplishes this process.

for(int q = 1; q <= 15; q++)
{
 deltaSum = 0;
 gammaSum = 0;

 for(int l = k - 5; l <= k + 5; l++)
 {
 if(q % 2 == 1)
 {
 deltaSum += ((float) ((q + 1) * (q + 1) / 4);

 posq = l + (q+1)/2;
 posl = l;
 }
 else
 {
 deltaSum += (q * q / 4);
 posk = l + q/2;
 posl = l;
 }

 if(posq < 0)
 posq += zpix;
 if(posq >= zpix)
 posq -= zpix;
 if(posl < 0)
 posl += zpix ;
 if(posl >= zpix)
 posl -= zpix;

 gammaSum += (float)((voxArray[i][j][posq].getVoxVal()
 - voxArray[i][j][posl].getVoxVal()) *
 ((voxArray[i][j][posq].getVoxVal()
 - voxArray[i][j][posl].getVoxVal()));
 }
 deltaQ[q] = deltaSum / 11;
 gammaQ[q] = gammaSum / 22;
}

The outer loop is run 15 times, once for each nearest neighbour distance (1 � q � 15).

At the end of each loop the calculated M(q) and� M(q) values are copied to the q-th

elements of the deltaQ and gammaQ arrays. The inner loop is run 11 times, once for

 57

each channel in the 11-channel wide window. The purpose of the inner loop is to

calculate the

 ∑
=

M

i 1

| xN[i,q] – xi|
2 and ∑

=

M

i 1

| yN[i,q] – yi|
2

values within the 11-channel window. The first of these is stored in the variable

‘deltaSum’, the second in the variable ‘gammaSum’. There are two complicating

factors in this summation:

1. By definition (see Section 3.2), | xN[i,q] – xi| has value 1, 1, 2, 2, 3, 3, 4, 4 etc,

with increasing q value since the 1st nearest neighbour channel and the second

actually lie at the same distance (on either side of the input channel). Hence,

| xN[i,q] – xi| has to be determined using a different equation for odd and even q

values.

2. If the centre channel in the current window is closer than 6 channels from

either end of the spectrum, or if the current input position within the window

is within 7 channels of either end of the spectrum then there are not enough

channels to compute the Gamma Test within the whole window and/or to do

the whole of the nearest neighbour calculation. The solution adopted is to

‘wrap around’ to the other end of the spectrum. The two indexes ‘posl’ and

‘posq’ implement this.

In the second stage, a linear regression is performed on the (M����� M(q)) pairs as

stored in the float arrays deltaQ and gammaQ. The result of this regression is the

Gamma Statistic. This is copied into the gVal instance variable of the Voxel object

at the (i, j, k) position of the voxArray instance variable of hiCube. The following

code extract performs these operations.

for (int q = 1; q <= 15; q++)
{
 sumX += deltaK[q];
 sumX2 += (deltaK[q] * deltaK[q]);
 sumY += gammaK[q];
 sumXY += (deltaK[q] * gammaK[q]);
}

float gradient = (sumXY - (sumX * sumY / 15)) / ((sumX2) - (sumX *
 sumX / 15));

float intercept = (sumY - (gradient * sumX)) / 15;

voxArray[i][j][k].setGVal(intercept);

 58

The winGamma application uses a k-d tree data structure (Friedman et al. 1979) to

implement the Gamma Test. This requires a single computation of O(MlogM) to

compute the (M����� M(q)) pairs. The method used to calculate these pairs in

setGalVals() has O(M2). However, since we are using a small value of M (11) and the

input data only has a dimensionality of 1, a satisfactory performance is still obtained

(see Section 6.3).

5.5 The setZChanQual() method

Once the setGVals() method has been run, the GuiFrame object calls the

setZChanQual() method to set the zChanQual Boolean array instance variable

of hiCube. This method is a straightforward Java implementation of the

findBadZChans prodecure (Section 3.6).

5.6 The setH2H4H8Vals() method

Once the setZChanQual() method has been run, the GuiFrame object calls the

setH2H4H8Vals() method to set the h2Val, h4Val and h8Val instance

variables of all the Voxel objects in the voxArray of hiCube.

The method is based within a double nested loop in x and y voxels. Within this loop,

the h2Val, h4Val and h8Val instance variables are calculated for all the Voxel

objects at the (i,j) specified by the loop. The following code fragment illustrates this.

for i = 0 to i < xpix; i++)
{
 for(int j = 0; j < ypix; j++)
 {
 //code to set the h2Vals at this (i,j) position
 //code to set the h4Vals at this (i,j) position
 //code to set the h8Vals at this (i,j) position
 }
}

For example, the code within this double loop which calculates the h2Val instance

variables is:

for(int k = 1; k < (zpix - 1) ; k = k + 2)

{

 59

 temp = (0.5 * voxArray[i][j][k].getVoxVal()) +
 (0.25 * (voxArray[i][j][k-1].getVoxVal() +
 voxArray[i][j][k+1].getVoxVal()));
 voxArray[i][j][k].setH2Val((float) temp);
}

5.7 The setG2G4G8Vals() method

Once the setH2H4H8Vals() method has been run, the GuiFrame object calls

the setG2G4G8Vals() method to set the g2Val, g4Val and g8Val instance

variables of all the Voxel objects in the voxArray instance variable of hiCube.

The method is based within a double nested loop in x and y voxels. Within this loop,

the g2Val, g4Val and g8Val instance variables are calculated for all the Voxel

objects at the (x,y) specified by the loop. Each of these is calculated in a similar way

to that used by the setGVals() method, except that the relevant h2Val, h4Val

and h8Val instances variables are used as appropriate.

5.8 The setNoise() method

Once the setG2G4G8Vals() method has been run, the GuiFrame object calls

the setNoise() method to set the noise instance variable of hiCube. This

method is a straightforward Java implementation of the findNoise procedure

(Section 3.6).

Following the completion of this method, a JoptionPane informs the user that the

HiCube object has been successfully created (Figure 5.6).

Once this modal dialog window is dismissed, the dimensions of hiCube, the rms

noise and the channels numbers of the bad-channels are written to textPanel. This

process makes use of the getNoise and getZChanQual() methods. This

completes the sequence of operations activated by the user selected the ‘Open’ button

or the ‘Open File’ menu item.

 60

Figure 5.6. The GUI after the completion of the setNoise() method.

5.9 The findSources() method

When the user selects the ‘Find’ button or the ‘Run Finder’ menu item, the

findSources() method of the GuiFrame class is called. The method firstly

calculates a ‘worsevar’ value defined to a factor of 5 greater than the square of the

‘noise’ instance variable of hiCube.

The heart of this method is based within a double nested loop in the x and y voxels

(using indices i and j). Within this loop, the z-channel gamma spectra (represented by

the g2Val, g4Val and g8Val instance variables of the Voxel objects in the

voxArray of hiCube) defined by the current (i, j) pair are searched for significant

peaks in the � values.

Firstly, the noise variance in the spectrum at the current (i, j) is evaluated by finding

the median of the gVal instance variable at this (i, j). This is done by copying the set

of gVal values into a float array, sorting this into ascending order (using the

sort() method of the Arrays class) and choosing the middle value. The returned

value is then compared to the worsevar value. Only if the median variance is less

 61

than worsevar is a search conducted for sources at this (i, j) position. This test is

done to exclude very noisy spectra from the galaxy finding process.

If the above test is met then a median value is found for each of the g2Val, g4Val

and g8Val sets of values for this (i, j) position. These median values, denoted

medianG2, medianG4 and medianG8 represent ‘typical’ � values in each type of

gamma spectrum and, hence, should be relatively unaffected by RFI, emission lines,

etc. in the data.

A search is then made along each of the 3 types of gamma spectra at this (i, j)

position. The following code extract illustrates this search along the gamma spectrum

of g2Val values.

for(int k = 3; k < (zpix - 3) ; k = k + 2)
{

if((hiCube.getVoxel(i,j,k).getG2Val() > (gamThres * medianG2)) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j,k+2).getG2Val()) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j,k-2).getG2Val()) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i+1,j,k).getG2Val()) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i-1,j,k).getG2Val()) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j+1,k).getG2Val()) &&
(hiCube.getVoxel(i,j,k).getG2Val() > hiCube.getVoxel(i,j-1,k).getG2Val()) &&
(hiCube.getVoxel(i, j, k).getH2Val() > 0))

The g2Val at each k position (with a g2Val value) is examined. To be selected as

the location of a possible source three criteria must be met. Firstly the g2Val must be

a factor gamThres greater than the medianG2 value (i.e. have Gamma S/N �

gamThres). Secondly, the g2Val in this position must represent a peak in the

g2Val distribution in all three dimensions (i, j, and k). Thirdly, the corresponding

h2Val for this pixel must have a value > 0. This last condition eradicates the

possibility of returning as a potential source a peak in the g2Val distribution which

results from local RFI with negative intensity.

A similar process is used to find potential sources in the g4Val and g8Val data. A

3-dimensional Boolean array is used to note sources found in each of the sets of data

such that sources found in the g2Val data will not also be returned from the g4Val

data. Similarly, sources found in the g4Val data will not also be returned in the

g8Val data.

 62

Due to the smaller number of channels with a g8Val there is a correspondingly

greater chance of the median value in a gamma spectrum being biased by a source in

the data. A modal value (modmeanG8) is also derived from this data, using the

ModMean static method of the Stats class. This ensures that a more reliable

‘typical’ g8Val is returned if a source is included in the data. To be selected as a

possible source a g8Val value can be more than a factor of gamThres above the

medianG8 or the modmeanG8 value.

All potential sources are written to textPanel along with the type of hanning

spectrum in which the possible source was detected and the ‘Gamma S/N’.

5.10 Viewing spectra

If the user selects the “Display Spectrum” button on the “Display Panel” then, firstly,

the updateDispPars() method of the GUIFrame class is called. This method

reads the values in the JTextField objects on dispPanel and copies these

values to the xcoord and ycoord instance variables. If either or both of the input

values are not in integer format or are outside the dimensions of the HiCube object,

the user is informed via a modal dialog window and the displayFlag instance

variable is set to ‘false’.

Figure 5.7. The GUI showing the JOptionPane displayed if the user-supplied X

and/or Y Coord is outside the dimension of the current HiCube object.

 63

This is illustrated in Figure 5.7. If these values are valid, then the method reads the

user-selected spectrum type and updates the specType instance variable

accordingly.

The updateSPanel() of the DisplayPanel class is then run on dispPanel.

The current voxArray, xcoord, ycoord and specType values are supplied as

parameters. This method displays the requested spectrum with an appropriate scaling

on dispPanel.

5.11 Editing and saving results

The “Results Panel” comprises a JTextArea object (textPanel) on a

JScrollPane. The contents of this can be edited, with the assistance of cut(),

paste() and copy() methods which are implemented via buttons on the toolbar

and items in the ‘Edit’ menu. If the user selects the ‘Save’ button or the ‘Save

Results’ menu item then the SaveResults() method is called. This makes use of

the JFileChooser class to save the current contents of textPanel to a text file.

The contents of textPanel are written to a String using the getText() method

and written to the selected output file using the FileWriter class. All exceptions

generated by this process are caught and the user is informed via a JOptionPane.

5.12 Concluding remarks

The most important aspects of the implementation of the GammaFinder application

have been described in this chapter. Appendix A presents a full listing of the code.

 64

6. Results and Evaluation

6.1 Introduction

In this chapter the results are presented of an evaluation of GammaFinder. The

developmental and testing process is reviewed in Section 6.2. Section 6.3 contains a

discussion of the time and space complexity of the application. In Section 6.4,

GammaFinder is evaluated in terms of its ability to detect real sources in HIJASS

data.

6.2 The development and testing process

This section contains an overview of the development and testing process.

Firstly, a prototype application, GF.java, was created. This could read in a single

spectrum (from a text file) and perform a moving window Gamma Test on it. It could

also create Hanning smoothed spectra and run a moving window Gamma Test on

these. Any of the resulting spectra could be examined on a JFrame. This prototype

was used to test the algorithms later included in the setGVals(),

setH2H4H8Vals() and setG2G4G8Vals() methods of the HiCube class. The

algorithms were tested by comparing the returned results with those expected for the

test input spectrum (calculated using winGamma and the equation for Hanning

smoothing). When conducting a moving window Gamma Test with GF.java it is

possible to set the maximum number of nearest neighbours, p, to be larger than the

window width, something not possible with winGamma. Experiment showed this to

be useful in providing an optimum peak in a gamma spectrum at the position of a

discontinuity in the raw spectrum (see Section 3.4). GF.java was used to perform

much of the analysis presented in Chapter 3 and to produce Figures 3.4 to 3.8.

The development process for GammaFinder itself essentially consisted of creating and

testing Java code to implement the classes and methods described in Chapter 4.

The Voxel class was created first. This was tested by the use of a VoxelTest

class. This creates a Voxel object and then sets the values of the other instance

variables (i.e. testing the setH2Val() etc. methods). The test class also tests the

‘get’ methods (i.e. getGVal etc.).

 65

The HiCube class was then created. This was tested with a HiCubeTest class.

This creates a HiCube object, passing a 3-dimensional float array to the HiCube

constructor, and then calling each of the ‘set’ methods of the class (i.e. setGVals,

setH2H4H8Vals etc.) to set the instance variables of each Voxel object in the

voxArray instance variable as well as the noise and zChanQual instance

variables. Each of the ‘get’ methods (i.e. getVoxArray() etc.) is also tested.

Next, the GuiFrame class was created. The basic GUI was created first with each of

the options in the ActionPerformed inner class (i.e. relating to a menu item or

tool bar item) initially being set to “//do nothing”. These options were then

filled in and tested one by one.

The response to the ‘Open File’ menu item was the first to be coded. This involved

coding the readFile() method. The techniques of handing and reporting

exceptions relating to problems with opening and reading the FITS file (Section 5.3)

were tested using a combination of valid and invalid input files.

Next, the response to the ‘Display Spectrum’ button was coded. This included

creating the DisplayPanel class and the setGamThres() and

updateDispPars() methods. The whole process was tested using real HIJASS

datacubes. The methods of handling exceptions caused by the user supplying

ineligible xcoord, ycoord or gamThres values (Section 5.10) were tested by

deliberately choosing incorrect values.

Next, a JTextArea object was added to the JTabbedPane on the GUI and the

cut(), paste() etc. methods added to the relevant sections of the ActionPerformed

inner class. The saveResults() method was then coded. These were all tested by

writing, editing, and annotating text onto the JTextArea object and saving that text

to a file.

Finally, the findSources() method was coded. The results of running this on a

real datacube are described in Section 6.4.

 66

6.3 Performance measurement and optimisation

Following the coding and testing described in Section 6.2, measurements were made

of the time complexity and space complexity of the application. This analysis was

undertaken on a PC with a 512 Mbytes RAM running Red Hat Linux.

The time complexity of the application was investigated by measuring the difference

between the start time and finish time of the main methods, utilising the

System.currentTimeMillis() method. Table 6.1 shows the time in

milliseconds taken for the main methods to execute for a variety of different datacube

sizes.

 Cube Size

 10x10x1024 20x20x1024 40x40x1024

readFile() 72 255 788

setH2H4H8Vals() 24 38 105

setGVals() 5413 19234 79479

setNoise() 54 119 409

setZChanQual() 49 139 640

setG2G4G8Vals() 3745 14826 60789

findGals() 75 356 845

Table 6.1. The run time (in milliseconds) for the main methods of GammaFinder for

datacubes of various sizes.

Clearly setGVals() and setG2G4G8Vals() account for the vast majority of the

run time of the application. These both run in O(n) time (where n is the total number

of voxels in the datacube). This is expected since they both involve a triple nested

loop running through every voxel in the datacube (see Sections 5.4 and 5.7). It was,

therefore, decided to optimise these two methods in a bid to reduce run time.

The optimisation analysis identified several possible ways of improving the efficiency

of the code, including the use of the autoincrement operator and the elimination of

common subexpressions. The static method Math.pow() was being called twice

 67

within the innermost loop in both methods. A fragment of the original code of

setGVals() follows:

 deltaSum += ((float) Math.pow(((q + 1) / 2), 2));

This meant that, for example, for a 40x40x1024 datacube, the Math.pow() method

was being called more than 3 million times. It was decided to code this without

calling the static method, e.g. as:

 deltaSum += ((float) ((q + 1) * (q + 1) / 4);

This had the effect of reducing the run time of the two methods by more than a factor

of 4. Table 6.2 shows the time for the main methods of the application to execute in a

30x30x1024 datacube before and after the code optimisation.

 before after

 optimisation optimisation

setGVals() 45115 10545

setG2G4G8Vals() 34389 8122

Table 6.2. The run time (in milliseconds) for setGVals() and

setG2G4G8Vals() on a 30x30x1024 datacube before and after code optimisation.

Following code optimisation, measurements were made of the amount of memory

GammaFinder needs to run to completion. Java’s garbage collection system allocates

a fixed amount of memory when the JVM is started. This can be set of startup, e.g. the

following command will set the maximum amount of memory to 200 megabytes:

java –Xmx200m GammaFinder

When this amount of memory is used up, an ‘Out Of Memory’ error occurs.

The memory requirements of GammaFinder as a function of cube size are presented

in Table 6.3. Column 2 contains an estimation of the memory required to store the

voxArray instance variable for the datacube sizes of Column 1 (this is the major

data storage requirement). Column 3 lists the minimum amount of memory required

 68

to run a datacube through GammaFinder without an ‘Out Of Memory’ error

occurring.

Cube Size voxArray Size Minimum Memory

 (Mbytes) (Mbytes)

10x10x1024 3 7

20x20x1024 13 21

30x30x1024 28 47

40x40x1024 50 83

50x50x1024 78 129

90x90x1024 253 413

Table 6.3. The memory requirements of GammaFinder for different datacube sizes.

Table 6.3 implies that the minimum memory requirement for a datacube can be

estimated by multiplying the voxArray size by a factor of 1.64. This implies that

the largest cube size which could be run on a PC with 512 Mbytes RAM would be

around 100x100x1024. Larger cubes would have to make extensive use of virtual

memory (swapping). A typical full HIJASS cube has dimensions 150x150x1024.

Such a cube would have to be split into 2 or 3 cubes to be analysed by GammaFinder

on a PC with 512 Mbytes RAM. PCs are now becoming available with up to 1.2

Gbytes of memory. It seems likely that, in the near future, machines will be

commonly available with sufficient memory to process whole HIPASS / HIJASS

cubes in one go.

The total run time of GammaFinder as a function of datacube size was estimated by

using the unix ’time’command. The results are presented in Table 6.4. Column 1

lists various datacube dimensions. Column 2 lists the fraction of a whole datacube

(considered to be one with dimensions 150x150x1024) each of these represents.

Column 3 lists the estimated memory requirements (see above). Column 4 lists the

measured run time.

 69

Cube Size % of whole Memory run time

 cube Requirements (sec)

47x47x1024 10% 144Mbytes 78sec

75x75x1024 20% 190Mbytes 160sec

94x94x1024 40% 456Mbytes 336sec

Table 6.4. The total run time of GammaFinder as a function of cube size.

The total run time scales as O(n) for cube sizes up to 94x94x1024. This is expected

since the slowest methods scale as O(n). The need to use swap space resulted in such

a

huge degradation in run time that it did not prove feasible to run GammaFinder on

datacubes much larger than 94x94x1024 on the test PC. It is far more efficient to split

larger cubes into several smaller cubes and process each separately.

The run times from Table 6.4 are acceptable for processing HIJASS / HIPASS

datacubes. If split into several smaller cubes, a whole datacube cube could be

processed in around 15 minutes. Compared to the time taken to observe HIJASS /

HIPASS data and to reduce the data into datacube form (Barnes et al. 2001), 15

minutes per datacube represents a very small extra amount of data processing time.

6.4 Evaluating GammaFinder’s performance on real data

This section contains an evaluation of GammaFinder in terms of its ability to detect

real sources in HIJASS / HIPASS data. This is done by comparing the results of

running GammaFinder on a HIJASS datacube with the contents of the published

HIJASS catalogue (Lang et al. 2003) from the same datacube. The HIJASS cube

centred at Right Ascension=04h 32m and Declination=74o was chosen for the

evaluation. Within HIJASS naming nomenclature, this cube is denoted ‘p74cube4’.

A brief review of the selection techniques used to compile the HIJASS catalogue and

a discussion of the contents of the catalogue from p74cube4 is given in Section 6.4.1.

 70

A key question to be asked is what fraction of real sources identified by visual

inspection of a datacube or by the use of an existing automatic finder are also selected

by GammaFinder? This is considered in Section 6.4.2.

Another important question concerns how the number of real sources compared to

spurious sources changes with Gamma S/N. This is considered in Section 6.4.3.

The other major question is whether GammaFinder can identify real sources not

identified by previously used methods. This is considered in Section 6.4.4.

In Section 6.4.5, the detection limits of GammaFinder are explored.

6.4.1 The HIJASS catalogue

The published HIJASS catalogue (Lang et al. 2003) was created by a combination of

visual inspection of the datacubes and using the PolyFind automatic finding algorithm

(see Section 2.7). Any ‘possible’ sources were subjected to ‘narrow-band follow-up’.

Only those confirmed were included in the catalogue. Hence, this catalogue forms an

ideal basis against which to test the effectiveness of GammaFinder.

The 19 galaxies found in cube p74cube4 by Lang et al. and included in the HIJASS

catalogue are listed in Table 6.5. The values for Sint, Spk, Vo and W20 were derived

using tasks from the MIRIAD software package (Sault et al. 1995).

 71

HIJASS R.A. DEC. Sint Spk Vo W20 CLASS COUNTERPART

NAME Jy kms-1 Jy kms-1 kms-1

J0545+73 05:45:19.9 73:36:41 4.7�0.5 68 1053 127 ID KUG 0539+735

J0545+72 05:45:26.1 72:22:07 10.2�0.5 78 1080 199 ID UGC 03343

J0556+75 05:56:28.7 75:18:40 23.7�0.9 228 811 146 ID UGC 03371

J0602+73 06:02:25.1 73:04:46 18.3�0.6 224 1095 119 ID UGC 03384

J0610+71 06:10:23.0 71:23:17 16.0�0.7 87 1270 268 ID UGC 03403

J0615+71 06:15:24.5 71:06:29 8.9�0.3 56 3981 325 ID UGC 03422

J0619+75 06:19:15.8 75:01:14 1.7�0.4 41 1324 85 ASS J06201+7458

J0619+78 06:19:20.7 78:14:56 38.3�1.4 368 838 209 ID NGC 2146

J0711+71 07:11:32.4 71:49:40 21.5�0.8 99 3144 321 ID UGC 03697

J0713+73 07:13:28.8 73:29:30 10.5�0.6 105 2702 183 ID UGC 03730

J0716+75 07:16:10.9 75:43:42 9.7�0.5 138 1118 96 ID UGC 03739

J0721+74 07:21:20.9 74:18:45 1.5�0.5 61 966 77 PUG

J0722+77 07:22:12.5 77:49:01 7.1�0.6 67 2643 172 ID UGC 03794

J0730+72 07:30:35.1 72:29:29 12.3�0.9 108 2620 223 ID UGC 03864

J0736+74 07:36:12.5 74:25:10 6.6�0.6 70 3776 221 ID UGC 03906

J0736+73 07:36:39.4 73:41:59 13.5�0.6 111 943 188 ID UGC 03909

J0744+72 07:44:58.4 72:47:54 10.1�0.6 201 2476 83 ID UGC 03975

J0750+74 07:50:14.4 74:19:57 14.6�0.9 84 3943 298 ID UGC 04028

J0751+72 07:51:46.1 72:59:37 10.6�1.1 119 3470 156 ID NGC2441

Table 6.5. The parameters of sources within the HIJASS catalogue from p74cube4.

The ‘CLASS’ column in Table 6.5 denotes whether the HI emission line is associated

with a previously catalogued galaxy or not. This was determined by reference to the

NASA Extragalatic Database (NED – http://nedwww.ipac.caltech.edu). NED is the

standard master list of identified extragalactic objects, including accurate positions

and redshifts of all published sources. If there is an object within NED which matches

the HIJASS source in both position (defined as being within 6 arcmin, i.e. 2.5 of

the positional accuracy of HIJASS) and cz (defined as being within 100 km s-1) then

this is listed as ‘ID’ (i.e. Identification). We may be relatively certain that these

HIJASS sources are HI detections of the galaxy included in NED. Although these

galaxies have been detected and catalogued before, the HIJASS data represents the

first time many of these sources have been detected in HI.

If there is an object within NED which is spatially coincident with the HIJASS source

(i.e.within 6 arcmin) but for which no redshift (and, hence, no cz) is listed in NED,

then this is listed as ‘ASS’ (i.e. Association). Such a HIJASS source may be

 72

associated with the catalogued galaxy. However, since there is no redshift for the

catalogued galaxy we cannot be certain that the HIJASS source is an HI detection of

the catalogued galaxy. A program of obtaining optical redshifts for these ‘ASS’

galaxies is being undertaken in order to determine whether each is the optical

counterpart of the HIJASS source.

Finally, if there is no object within NED which could be spatially coincident with the

HIJASS source then the ‘CLASS’ column contains the classification ‘PUG’ (i.e.

Previously Uncatalogued Galaxy). These HIJASS sources are definitely not

associated with a previously catalogued galaxy. Often a study of the Digital Sky

Survey shows a likely optical counterpart to the HIJASS source (within the positional

uncertainty of the HIJASS detection). These are generally faint or low surface

brightness galaxies and have, thus, escaped being catalogued before (i.e. exactly the

sort of galaxies HIPASS and HIJASS were conceived to discover – see Section 2.2).

However, several instances are known where no galaxy can be seen on the Digital

Sky Survey, despite the HI detection being unambiguous. These ‘invisible’ galaxies

are arguably the most fascinating discoveries of the HIPASS and HIJASS surveys.

Details of three of these have been published (Kilborn et al. 2000, Ryder et al. 2001,

Boyce et al. 2001).

6.4.2 Can GammaFinder detect those galaxies in the HIJASS catalogue ?

GammaFinder was run on p74cube4 with gamThres=2.0. Table 6.6 shows the

results from GammaFinder for these 19 objects. GammaFinder selected all but one of

the 19 sources with a Gamma S/N >6.0. One source, J0619+75, was detected with a

significantly lower Gamma S/N than any other galaxy (2.46). This source actually has

the lowest peak flux (41 mJy) and second to lowest integrated flux (1.75 Jy km s-1) of

any source in the whole HIJASS catalogue. This source was selected from a visual

inspection and confirmed by narrow-band follow-up. It was not selected by the

PolyFind automatic finding algorithm.

 73

HIJASS Hann Gamma S/N

NAME FWHM

J0545+73 H2 6.57

J0545+72 H4 13.95

J0556+75 H2 82.17

J0602+73 H2 97.94

J0610+71 H4 12.53

J0615+71 H8 14.36

J0619+75 H2 2.46

J0619+78 H2 166.87

J0711+71 H4 19.59

J0713+73 H2 12.72

J0716+75 H2 31.47

J0721+74 H8 8.08

J0722+77 H4 11.46

J0730+72 H8 18.89

J0736+74 H4 7.98

J0736+73 H8 29.49

J0744+72 H2 33.57

J0750+74 H4 9.57

J0751+72 H2 6.16

Table 6.6. GammaFinder results for the 19 galaxies within p74cube4 included in

Lang et al.’s HIJASS catalogue.

Table 6.6 suggests that GammaFinder will be able to find almost all sources currently

included in the HIJASS catalogue provided a gamThres value of around 6.0 is used.

Nonetheless, the human eye may still be able to find the odd source missed by

GammaFinder and other finding algorithms.

6.4.3 The number of possible sources found by GammaFinder as a function of

Gamma S/N

Table 6.7 lists the number of possible sources selected by GammaFinder from

p74cube4, as a function of Gamma S/N.

 74

The number of possible sources starts to increase significantly at Gamma S/N < 8.0

and particularly sharply at a Gamma S/N < 6.0. Ideally, we want to know what

fraction of sources at each Gamma S/N are real and what fraction are spurious. This

can only be accurately determined by undertaking narrow-band follow-up

observations of all possible sources returned by GammaFinder in a representative set

of data. If we could subject all 180 sources found with Gamma S/N > 5.0 to narrow-

band follow-up observations, then we could determine what fraction are real and what

fraction are spurious down to Gamma S/N = 5.0. Such an investigation would require

about 5 days of telescope time.

Gamma S/N No. of possible sources

 4.0 � 5.0 369

 5.0 � 6.0 93

 6.0 � 7.0 36

 7.0 � 8.0 23

 8.0 � 9.0 6

 9.0 � 10.0 3

10.0 � 11.0 0

11.0 � 12.0 4

12.0 � 13.0 3

> 13.0 12

Table 6.7. The number of possible sources returned by GammaFinder (from

p74cube4) as a function of Gamma S/N.

6.4.4 Can GammaFinder detect galaxies not included in the HIJASS catalogue ?

Table 6.6 suggests that most possible sources returned by GammaFinder with

GammaS/N < 6.0 will be spurious. Therefore, for this evaluation, GammaFinder was

run over p74cube4 with gamThres = 6.0.

Initially, besides the 18 sources with Gamma S/N > 6.0 already included in the

HIJASS catalogue, GammaFinder returned a further 69 possible sources. A visual

inspection of the spectra relating to these on the “Display Panel” of GammaFinder

enabled 38 to be rejected as obviously false, primarily being due to negative RFI

‘spikes’ in channels adjacent to the selected ‘source’ or places where double-peaked

 75

sources were being returned twice. Hence, an additional 31 possible sources, which

could not be obviously rejected as false, were selected by GammaFinder. Table 6.8

lists the output results from GammaFinder for these 31 possible sources (labelled GF1

to GF31).

Table 6.9 presents derived parameters for the 31 possible sources. These were

obtained in the same way as for those galaxies currently included in the HIJASS

Catalogue. As noted above, the only way to ascertain with certainty whether each of

these possible sources is real is to undertake a narrow-band follow-up observation.

Nonetheless, in lieu of this, it is still possible to estimate the likelihood of the possible

sources being real by comparing their coordinates to the NASA Extragalactic

Database (NED) and the Digital Sky Survey (DSS).

 76

SOURCE XPIX YPIX ZPIX HANN GAMMA

 TYPE S/N

GF1 12 16 455 H8 6.36
GF2 26 32 567 H8 8.07
GF3 34 95 455 H8 6.51
GF4 45 21 559 H8 8.42
GF5 45 34 543 H8 7.74
GF6 47 9 551 H8 9.81
GF7 48 124 455 H8 7.01
GF8 49 21 559 H8 6.23
GF9 53 11 695 H8 7.11
GF10 54 9 703 H8 11.07
GF11 54 15 559 H8 6.94
GF12 59 41 539 H4 7.03
GF13 65 23 519 H8 24.92
GF14 65 35 527 H8 7.31
GF15 69 110 471 H8 6.76
GF16 78 17 471 H8 9.50
GF17 81 11 511 H8 7.25
GF18 93 18 663 H8 6.40
GF19 96 34 495 H8 6.17
GF20 104 31 471 H8 26.33
GF21 111 55 679 H8 8.70
GF22 113 64 511 H8 6.10
GF23 123 20 559 H8 7.00
GF24 124 19 567 H8 7.08
GF25 131 13 471 H8 7.20
GF26 133 112 423 H4 6.06
GF27 136 14 551 H8 7.18
GF28 138 19 711 H8 6.95
GF29 139 13 543 H8 7.98
GF30 139 44 575 H8 6.48
GF31 142 13 543 H8 7.83

Table 6.8. The results of running GammaFinder over p74cube4 with gamThres =

6.0.

The ‘COUNTERPART’ column of Table 6.9 shows the result of comparing each of

the 31 sources with NED. 10 of the 31 possible sources are coincident with a

previously catalogued galaxies in both position and velocity. These are listed as ‘ID’

in Table 6.9. These are undoubtedly real. Figure 6.1 shows DSS images of these 10

galaxies, along with their HI spectra. Hence, even without further follow-up work, we

can be certain that GammaFinder has added at least another 10 galaxies to the 19 in

p74cube4 already in the HIJASS catalogue, i.e. at least another 50%. This in itself is a

remarkable result.

 77

Of the other 21 possible sources in Table 6.9, 14 have a galaxy spatially coincident

(within the positional uncertainty of HIJASS) within NED but this galaxy currently

has no measured redshift. Hence, these are classified as ‘ASS’. However, a study of

the DSS suggests that, in most cases, the catalogued galaxy appears to be too distant

to be the optical counterpart to the HIJASS source. Nonetheless, in 3 cases (GF2, GF3

and GF14) the catalogued galaxy does look (in terms of morphology and distance)

like a likely optical counterpart to the HIJASS source. Figure 6.2 shows the DSS

images of these three galaxies, along with the HI JASS spectra of GF2, GF3 and

GF14.

 78

SOURCE R.A. DEC. Sint Spk Vo W20 COUNTERPART

 Jy kms-1 mJy kms-1 kms-1

GF1 07:46:31.0 69:59:27 1.7�0.9 54 4101 112 ID UGC03984
GF2 07:37:44.4 71:16:38 4.7�0.7 46 2532 249 ASS
GF3 07:44:01.9 75:29:13 8.9�0.9 77 4023 333 ASS
GF4 07:21:09.4 70:39:00 7.6�1.2 61 2541 394 ASS
GF5 07:22:30.7 71:34:50 13.0�0.9 72 2861 311 ID UGC 03804
GF6 07:17:54.0 69:58:22 11.0�1.2 74 2691 309 NOF

GF7 07:35:34.1 77:33:02 4.9�0.9 56 4016 345 NOF
GF8 07:18:12.8 70:45:23 7.0�1.0 71 2700 312 ASS

GF9 07:13:23.5 70:06:09 6.6�1.1 59 782 345 ASS
GF10 07:12:34.0 70:00:55 6.7�1.3 69 722 358 ASS
GF11 07:13:44.4 70:25:02 5.8�1.0 76 2597 429 ASS
GF12 07:11:47.6 72:10:41 5.7�0.7 64 2884 149 ID UGC 03701
GF13 07:04:50.9 71:01:49 10.8�0.8 86 3226 238 ID UGC 03644
GF14 07:07:28.8 71:54:09 5.0�0.9 77 2980 238 ASS

GF15 07:08:08.2 76:49:16 6.6�0.9 41 3876 310 ASS
GF16 06:55:19.7 70:43:23 7.3�1.0 61 3858 351 ID UGC03575
GF17 06:52:11.3 70:15:56 4.3�0.7 59 3301 177 NOF

GF18 06:42:34.3 70:43:36 3.3�0.6 44 1267 151 ASS
GF19 06:39:41.6 71:47:17 2.3�0.6 73 3750 135 NOF

GF20 06:32:48.5 71:31:44 16.3�0.6 85 3584 135 ID UGC 03474

GF21 06:24:52.2 73:09:00 8.3�0.5 87 1046 176 ID UGC 03453

GF22 06:22:29.9 73:44:14 4.4�0.6 49 3329 177 ID UGC 03444

GF23 06:18:16.5 70:42:37 3.1�0.7 45 2583 162 NOF

GF24 06:17:34.5 70:38:08 3.6�0.9 55 2574 172 NOF
GF25 06:12:32.4 70:11:48 5.0�0.7 83 3827 147 ID UGC03415
GF26 05:53:28.0 76:38:24 4.7�0.5 49 4390 205 ID UGC03364
GF27 06:08:41.6 70:11:15 6.6�0.8 52 2699 355 ASS
GF28 06:06:08.2 70:27:33 4.2�0.9 87 581 198 ASS
GF29 06:07:19.9 70:07:48 8.3�1.1 62 2701 419 ASS
GF30 06:01:27.0 72:08:55 6.4�0.9 49 2542 348 ASS
GF31 06:04:20.9 70:02:31 6.3�1.1 60 2624 363 NOF

Table 6.9. Derived parameters for the 31 new possible sources found by

GammaFinder in p74cube4.

 79

Figure 6.1. Digital Sky Survey images and HIJASS spectra for the 10 new ‘ID’

sources found by GammaFinder in p74cube4. The DSS images are 4arcmin x

4arcmin.

 80

Figure 6.1. Continued.

 81

Figure 6.1. Continued.

 82

Figure 6.1. Concluded.

 83

Figure 6.2. DSS images of the three ‘ASS’ galaxies which appear likely to be the

optical counterparts of a GammaFinder possible source, along with the HIJASS

spectra of the GammaFinder possible source.

 84

There are 7 possible sources in Table 6.9 which have no galaxy spatially coincident

within NED. They are classed here as NOF (‘No Object Found’) since, without

narrow-band follow-up observations, it would be wrong to imply that they are

definitely galaxies. A study of the DSS at the positions of the NOFs does, however,

show a galaxy spatially coincident with one of these, GF31. This galaxy (not

previously catalogued) looks like a very plausible optical counterpart to the HIJASS

possible source. Figure 6.3 shows the DSS image of this galaxy, along with the

HIJASS spectrum of GF31.

There are 17 possible sources in Table 6.9 for which a plausible counterpart cannot be

found in NED or seen on the DSS. It is likely that most of these possible sources are

not real. As noted above, there are several known examples of HIJASS/HIPASS

sources which have no obvious optical counterpart. There may be further examples of

these types of object within these 17 possible sources. They should certainly be

subjected to narrow-band follow-up to ascertain if they are real or not. The HIJASS

spectra of these 17 possible sources are presented in Figure 6.4.

Figure 6.3. DSS image of the (previously uncatalogued) probable optical counterpart

to GF31, along with the HIJASS spectrum of the GF31.

 85

Figure 6.4. HIJASS spectra of those 17 possible sources with no optical counterpart.

 86

Figure 6.4. Continued.

 87

Figure 6.4. Continued.

 88

Figure 6.4. Continued.

 89

Figure 6.4. Continued.

 90

Figure 6.4. Concluded.

6.4.5 Detection limits of GammaFinder

Since GammaFinder is finding significant numbers of sources not found by visual

inspection or by existing automatic finders, it must be selecting galaxies with lower

peak fluxes and/or lower integrated fluxes. This issue cannot be fully studied without

a detailed narrow-band follow-up program to determine the reality of GammaFinder

sources to some limiting Gamma S/N. A preliminary analysis is presented in this

section.

Figure 6.5 is a plot of log (Sint) against W20, showing the galaxies from the Lang et

al. HIJASS catalogue which lie within cube p74cube (open triangles) and also

 91

showing the additional 31 possible sources found by GammaFinder within p74cube4.

Those 14 of the new sources which are probably real (see Section 6.4.4) are plotted as

filled squares. The other 17 possible sources are plotted as fixed hexagons.

Figure 6.5. Plot of log(Sint) against W20 for galaxies from p74cube4. The open

triangles represent galaxies from the Lang et al. HIJASS catalogue. The filled squares

represents those 14 of the possible sources found by GammaFinder which are either

IDs (10) or otherwise have plausible optical counterparts. The fixed hexagons

represent the other possible sources.

As discussed in Section 2.7, the HIJASS catalogue is essentially peak flux limited

with a completeness limit at about 5�noise and a detection limit at about 3�noise. Lang

et al. showed that for galaxies in the HIJASS catalogue

 92

Sint ⊄ k W20 Spk (6.1)

where k is a constant which depends on the emission line’s profile shape. For galaxies

in the HIJASS catalogue k = 0.6!0.1. Hence, a peak flux limit translates to an

integrated flux limit which is a function of W20. Plotted on Figure 6.5 are the loci of

this relationship for the Spk values corresponding to the completeness and detections

limits of the HIJASS survey (i.e 5�noise and 3�noise respectively). The lower of these

can be seen to constrain the galaxies in Lang et al’s catalogue well, with only 2

galaxies lying below this limit. These have relatively narrow velocity-widths: the

assumed value of k=0.6 is probably not strictly applicable to these.

There are several important points to note from Figure 6.5.

1. GammaFinder is finding a significant number of extra sources in the area

where the completeness of the HIJASS catalogue falls below 100%.

GammaFinder finds 6 possible sources between the HIJASS catalogue’s

detection limit of 3�noise and ‘completeness limit’ of 5�noise. At least 5 of

these are real (since they are IDs). This compares to the 6 sources below the

completeness limit in the HIJASS catalogue.

2. GammaFinder finds 24 possible sources below the HIJASS catalogue’s

‘detection limit’ of 3�noise. At least 5 of these are real (since they are IDs)

and another 4 are likely to be real (the ASSs and PUG of Figures 6.2 and 6.3).

3. GammaFinder seems to be selecting galaxies on the basis of their peak flux

but to a lower peak flux limit than that of the HIJASS catalogue.

GammaFinder does not appear to be selecting galaxies on the basis of their

integrated flux. The limiting Sint it can detect depends on W20 with a similar

functional form to that seen for the galaxies in the HIJASS catalogue. The

locus of a peak flux limit of 1.5�noise is also plotted on Figure 6.5. This seems

to be a good fit to a ‘detection limit’ for GammaFinder on this datacube.

The limited evaluation presented here suggests that GammaFinder essentially operates

as a peak flux limited finder but that it can select galaxies to much fainter limits than

existing finders. If the fall in the detection limit from around 3�noise to 1.5�noise is

 93

confirmed by a more detailed evaluation then GammaFinder will be able to add very

substantial numbers of new galaxies to those found in HIJASS and HIPASS data by

existing methods.

6.5 Concluding remarks

The performance of GammaFinder both in terms of its ability to detect astronomical

sources and its computational efficiency has been explored in this chapter. In Chapter

7 some conclusions are drawn from the project and some suggestions made for future

work.

 94

7. Conclusions and Future Work

7.1 Introduction

Section 7.1 of this chapter contains some ideas for future work. In Section 7.2 some

conclusions from the project are drawn.

 7.2 Future Work

Three areas in which future work might be undertaken are considered in this section.

7.2.1 Full evaluation of GammaFinder

The evaluation presented in Section 6.4 was, of necessity, rather limited in scope. A

more detailed evaluation needs to be undertaken with the aim of investigating:

1. How the ratio of real sources to spurious sources returned by GammaFinder

varies with Gamma S/N. From this can be gained a clearer idea of the best

limiting Gamma S/N (gamThres) value to use.

2. How sensitive GammaFinder is to detecting galaxies as a function of peak

and/or integrated flux. In Section 6.4.5 it was suggested that GammaFinder is

operating as a peak flux limited finder, though to much better sensitivity than

existing methods. Does this conclusion hold to fainter limiting Gamma S/N or

with larger samples of sources?

The steps in a fuller investigation should be:

1. Run GammaFinder on several HIJASS / HIPASS datacubes.

2. Create a list of all those returned possible sources (down to some faint Gamma

S/N limit) which cannot be easily dismissed as unreal.

3. Check this list against currently catalogued HIJASS and HIPASS sources.

4. Cross-check the list with NED to see if any match with catalogued galaxies in

both space and velocity (i.e. are ‘ID’s).

5. All sources which are not already in the HIJASS / HIPASS catalogues or are

not IDs need to be re-observed to test if they are real.

Once these steps have been completed, the number of real sources compared to

spurious sources as a function of Gamma S/N can be easily studied. Also Spk, Sint and

W20 measurements can be made of all real sources down to faint Gamma S/N. Hence,

 95

the sensitivity of GammaFinder as a function of Spk, Sint and W20 and Gamma S/N

can be investigated. The results of this analysis will enable the most efficient and

effective use to be made of GammaFinder in applying it to existing databases of

HIPASS and HIJASS data.

7.2.2 Running GammaFinder on HIPASS / HIJASS data

If the significantly improved sensitivity of GammaFinder is confirmed by the fuller

evaluation proposed in Section 7.2.1, than an obvious use of GammaFinder would be

to re-analyse the large dataset of completed HIPASS and HIJASS observations. This

could result in a huge increase in the number of galaxies found within the survey data.

For a peak flux limited survey of a homogenous distribution of galaxies we expect

Nobj } Spk
–5/2. If the completeness limit of GammaFinder is 1.5�noise below that of the

existing catalogues (as the detection limit appears to be), then GammaFinder could

increase the number of sources above the completeness limit by more than a factor of

2.

7.2.3 Further development of GammaFinder

The evaluation of Section 6.4.5 suggests that the core functionality of GammaFinder

is highly effective. No changes should be made to this at least until after a full

evaluation has been performed. Further improvements could be made to the

functionality of the GUI but care needs to be taken not to obscure the main

functionality of the application. Possible improvements might include the ability to re-

scale the spectra and/or to zoom in on particular channel ranges. It might also be

useful to be able to display 2 spectra at the same time (for example, to compare the

raw spectrum to the gamma spectrum).

Following a full evaluation and prior to being released to the community,

GammaFinder needs to have a detailed on-line User Guide written for it. A menu item

to call such a guide has been coded into the application. A user guide written in

HTML could be implemented via a JEditorPane.

A possible way to further develop GammaFinder would be to make it part of a more

general HIPASS/HIJASS image analysis package bringing together functions which

 96

at present require the use of several different software packages. Such a package

could include the ability to display 2-dimensional ‘slices’ through the datacube (as

can currently be undertaken by KVIEW – Gooch 1995) and to undertake basic object

parameter measurements (as can currently be undertaken using the tasks of MIRIAD).

Having these functions and those of GammaFinder in a single application would make

the investigation of HIPASS/HIJASS data a much more integrated process.

7.3 Conclusions

GammaFinder is an effective new application for finding sources in HIPASS or

HIJASS datacubes. A preliminary evaluation suggests that it may be able to lower the

detection limit on such data to only 1.5�noise, compared to a detection limit of around

3�noise for current detection methods. This could lead to a large increase in the

number of sources which can be found in HIPASS and HIJASS data and significantly

boost the scientific exploitation of these two major surveys.

 97

Appendix

Source code for Voxel.java

/*
 Class to define a Voxel object
 Part of GammaFinder appliciation.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
public class Voxel
{
 //constructor
 public Voxel(float voxelValue)
 {
 voxVal = voxelValue;
 }

 //method to set the values of the instance varibles
 public void setVoxVal(float a) { voxVal = a; }
 public void setH2Val(float b) { h2Val = b; }
 public void setH4Val(float c) { h4Val = c; }
 public void setH8Val(float d) { h8Val = d; }
 public void setGVal(float e) { gVal = e; }
 public void setG2Val(float f) { g2Val = f; }
 public void setG4Val(float g) { g4Val = g; }
 public void setG8Val(float h) { g8Val = h; }

 //methods to return the values of the instance variables
 public float getVoxVal() { return voxVal; }
 public float getH2Val() { return h2Val; }
 public float getH4Val() { return h4Val; }
 public float getH8Val() { return h8Val; }
 public float getGVal() { return gVal; }
 public float getG2Val() { return g2Val; }
 public float getG4Val() { return g4Val; }
 public float getG8Val() { return g8Val; }

 //instance variables
 private float voxVal, h2Val, h4Val, h8Val, gVal, g2Val, g4Val, g8Val;
}

 98

Source code for HiCube.java

/*
 Class to represent a 3-dimensional
 HIJASS or HIPASS datacube.
 Part of the GammaFinder application.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
import org.eso.fits.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.font.*;
import java.io.*;
import java.util.*;
import javax.swing.*;
import javax.swing.border.*;

public class HiCube
{
 //constructor
 public HiCube(float[][][] inDataArray)
 {
 xpix = inDataArray.length;
 ypix = inDataArray[0].length;
 zpix = inDataArray[0][0].length;
 voxArray = new Voxel[xpix][ypix][zpix];
 zChanQual = new boolean[zpix];

 //create a Voxel object at each (i,j,k) in VoxArray
 for(int i = 0; i < xpix; i++)
 for(int j = 0; j < ypix; j++)
 for(int k = 0; k < zpix; k++)
 voxArray[i][j][k] = new Voxel(inDataArray[i][j][k]);

 }

 /*
 Method used set the h2Val, h4Val, h8Val instance variables
 in every Voxel in voxArray.
 */
 public void setH2H4H8Vals()
 {
 double temp;

 for(int i = 0; i < xpix; i++)
 {
 for(int j = 0; j < ypix; j++)
 {
 //create Hanning smoothed spectrum FWHM = 2 channels
 for(int k = 1; k < (zpix - 1) ; k = k + 2)
 {
 temp = (0.5 * voxArray[i][j][k].getVoxVal()) +
 (0.25 * (voxArray[i][j][k-1].getVoxVal() +
voxArray[i][j][k+1].getVoxVal()));
 voxArray[i][j][k].setH2Val((float) temp);
 }

 //create Hanning smoothed spectra FWHM = 4 channels
 for(int k = 3; k < (zpix - 3) ; k = k + 4)
 {
 temp = (voxArray[i][j][k].getVoxVal() + 0.854 * (voxArray[i][j][k-
1].getVoxVal() + voxArray[i][j][k+1].getVoxVal())
 + 0.5 * (voxArray[i][j][k-2].getVoxVal() +
voxArray[i][j][k+2].getVoxVal())
 + 0.146 * (voxArray[i][j][k-3].getVoxVal() +
voxArray[i][j][k+3].getVoxVal())) / 4;
 voxArray[i][j][k].setH4Val((float) temp);
 }

 //creat Hanning smoothed spectrum, FWHM = 8 channels
 for(int k = 7; k < (zpix - 7) ; k = k + 8)
 {
 temp = (voxArray[i][j][k].getVoxVal()

 99

 + 0.962 * (voxArray[i][j][k-1].getVoxVal() +
voxArray[i][j][k+1].getVoxVal())
 + 0.854 * (voxArray[i][j][k-2].getVoxVal() +
voxArray[i][j][k+2].getVoxVal())
 + 0.691 * (voxArray[i][j][k-3].getVoxVal() +
voxArray[i][j][k+3].getVoxVal())
 + 0.500 * (voxArray[i][j][k-3].getVoxVal() +
voxArray[i][j][k+3].getVoxVal())
 + 0.309 * (voxArray[i][j][k-4].getVoxVal() +
voxArray[i][j][k+4].getVoxVal())
 + 0.146 * (voxArray[i][j][k-5].getVoxVal() +
voxArray[i][j][k+5].getVoxVal())
 + 0.038 * (voxArray[i][j][k-6].getVoxVal() +
voxArray[i][j][k+6].getVoxVal())) / 8;
 voxArray[i][j][k].setH8Val((float) temp);
 }
 }
 }
 }

 /*
 Method used set the gVal instance variables
 in every Voxel in voxArray.
 */
 public void setGVals()
 {

 float[] deltaK = new float[16];
 float[] gammaK = new float[16];
 int posq, posl;
 float deltaSum, gammaSum, sumX, sumX2, sumXY, sumY, intercept, gradient;

 for(int i = 0; i < xpix; i++)
 {
 for(int j =0; j < ypix; j++)
 {
 for(int k = 0; k < zpix; k++)
 {

 //calculate gammaK[q] and deltaK[q] for q = 1 to 15 at this (i,j,k).
 for(int q = 1; q <= 15; q++)
 {

 deltaSum = 0;
 gammaSum = 0;

 //window is 11 channels wide
 for(int l = k - 5; l <= k + 5; l++)
 {
 if(q % 2 == 1)
 {
 deltaSum += (float) (((q + 1) / 2) * ((q + 1) /
2));
 posq = l + (q + 1)/2;
 posl = l;
 }
 else
 {
 deltaSum += (q * q / 4);
 posq = l + q / 2;
 posl = l;
 }

 if(posq < 0)
 posq += zpix;
 if(posq >= zpix)
 posq -= zpix;
 if(posl < 0)
 posl += zpix ;
 if(posl >= zpix)
 posl -= zpix;

 gammaSum += (float) ((voxArray[i][j][posq].getVoxVal() -
voxArray[i][j][posl].getVoxVal()) *
 (voxArray[i][j][posq].getVoxVal() -
voxArray[i][j][posl].getVoxVal()));

 100

 }
 deltaK[q] = deltaSum / 11;
 gammaK[q] = gammaSum / 22;
 }

 //undertake linear regression to find gamma statistic at this (i,j,z)
 sumX = 0;
 sumX2 = 0;
 sumY = 0;
 sumXY = 0;

 for (int q = 1; q <= 15; q++)
 {
 sumX += deltaK[q];
 sumX2 += (deltaK[q] * deltaK[q]);
 sumY += gammaK[q];
 sumXY += (deltaK[q] * gammaK[q]);
 }

 gradient = (sumXY - (sumX * sumY / 15)) / ((sumX2) - (sumX * sumX /
15));
 intercept = (sumY - (gradient * sumX)) / 15;

 //copy value of gamma statistic to g2Val of relevant Voxel object
 voxArray[i][j][k].setGVal(intercept);

 }
 }
 }
 }

 /*
 Method used to set the noise instance variable
 */
 public void setNoise()
 {
 int npix = xpix * ypix * zpix;
 float[] noiseArray = new float[npix];
 int l = 0;
 int count = 0;

 for(int i = 0; i < xpix; i++)
 for(int j = 0; j < ypix; j++)
 for(int k = 0; k < zpix; k++)
 {
 noiseArray[l] = voxArray[i][j][k].getVoxVal();
 l++;
 if(voxArray[i][j][k].getVoxVal() == 0)
 count++;
 }

 Arrays.sort(noiseArray);

 noise = (float) Math.sqrt(noiseArray[((l - count) / 2) + count]);

 }

 /*
 Method to set the values in the zChanQual array.
 */
 public void setZChanQual()
 {

 float medallZ;
 float[] IFPixMed = new float[zpix];
 float[] IFPixMedRT = new float[(xpix * ypix)];
 int l;

 //find median gVal in each z-channel
 for(int k = 0; k < zpix; k++)
 {
 l = 0;

 101

 for(int i = 0; i < xpix; i++)
 {
 for (int j = 0; j < ypix; j++)
 {
 IFPixMedRT[l] = voxArray[i][j][k].getGVal();
 l++;
 }
 }
 Arrays.sort(IFPixMedRT);

 IFPixMed[k] = IFPixMedRT[l/2];
 }

 //find median gVal from IFPixMed
 float[] shadow = new float[zpix];
 for(int k = 0; k < zpix; k++)
 shadow[k] = IFPixMed[k];
 Arrays.sort(shadow);
 medallZ = shadow[(zpix-1) / 2];

 //set zChanQual to true if median gVal in channel < 1.5medallZ
 for(int k = 0; k < zpix; k++)
 {
 if(IFPixMed[k] <= (medallZ * 1.5))
 {
 zChanQual[k] = true;
 }
 }
 }

 /*
 Method used set the g2Val, g4Val, g8Val instance variables
 in every Voxel in voxArray.
 */
 public void setG2G4G8Vals()
 {

 float gammaSum, deltaSum, ncount, gradient, intercept, sumX, sumX2, sumY, sumXY;
 int posq, posl;
 float[] deltah2K = new float[16];
 float[] gammah2K = new float[16];
 float[] deltah4K = new float[16];
 float[] gammah4K = new float[16];
 float[] deltah8K = new float[16];
 float[] gammah8K = new float[16];

 //perform moving window gamma test on h2Val, h4Val and h8val spectra
 // voxels with ’bad’ quality flags are exlcuded from the process.
 for(int i = 0; i < xpix; i++)
 {
 for(int j =0; j < ypix; j++)
 {

 //conduct moving window gamma test on h2Val spectrum at (i,j)
 for(int k = 1; k < (zpix -1); k = k + 2)
 {
 for(int q = 1; q <= 15; q++)
 {
 deltaSum = 0;
 gammaSum = 0;
 ncount = 0;

 for(int l = k - 10; l <= k + 10; l = l + 2)
 {
 posl = l;

 if(posl < 0)
 posl += (zpix -1) ;
 if(posl >= zpix)
 posl -= (zpix - 1);

 if(zChanQual[posl] == true)
 {
 ncount++;
 if(q % 2 == 1)
 {
 posq = l - (q + 1);

 102

 if(posq < 0)
 posq += (zpix - 1);
 if(posq >= zpix)
 posq -= (zpix - 1);

 if(zChanQual[posq] == true)
 {
 deltaSum += (float) (((q + 1) / 2) * ((q + 1) /
2));

 gammaSum += (float)((voxArray[i][j][posq].getH2Val()
- voxArray[i][j][posl].getH2Val()) *
 (voxArray[i][j][posq].getH2Val()
- voxArray[i][j][posl].getH2Val()));
 }
 else
 {
 //do nothing
 }

 }
 else
 {
 posq = l + q;

 if(posq < 0)
 posq += (zpix - 1);
 if(posq >= zpix)
 posq -= (zpix - 1);

 if(zChanQual[posq] == true)
 {
 deltaSum += (q * q / 4);
 gammaSum += (float) ((voxArray[i][j][posq].getH2Val()
- voxArray[i][j][posl].getH2Val()) *
 (voxArray[i][j][posq].getH2Val()
- voxArray[i][j][posl].getH2Val()));
 }
 else
 {
 //do nothing
 }
 }
 }
 else
 {
 //do nothing
 }
 }
 deltah2K[q] = deltaSum / ncount;
 gammah2K[q] = gammaSum / (2 * ncount);
 }

 sumX = 0;
 sumX2 = 0;
 sumY = 0;
 sumXY = 0;

 for (int q = 1; q <= 15; q++)
 {
 sumX += deltah2K[q];
 sumX2 += (deltah2K[q] * deltah2K[q]);
 sumY += gammah2K[q];
 sumXY += (deltah2K[q] * gammah2K[q]);
 }

 gradient = (sumXY - (sumX * sumY / 15)) / ((sumX2) - (sumX * sumX /
15));
 intercept = (sumY - (gradient * sumX)) / 15;
 voxArray[i][j][k].setG2Val(intercept);
 }

 //conduct moving window gamma test on h4Val spectrum at (i,j)

 103

 for(int k = 3; k < (zpix - 3); k = k + 4)
 {
 for(int q = 1; q <= 15; q++)
 {
 deltaSum = 0;
 gammaSum = 0;
 ncount = 0;

 for(int l = k - 20; l <= k + 20; l = l + 4)
 {
 posl = l;

 if(posl < 0)
 posl += (zpix - 3) ;
 if(posl >= zpix)
 posl -= (zpix - 3);

 if(zChanQual[posl] == true)
 {
 ncount++;
 if(q % 2 == 1)
 {
 posq = l - ((2 * q) + 2);

 if(posq < 0)
 posq += (zpix - 3);
 if(posq >= zpix)
 posq -= (zpix - 3);

 if(zChanQual[posq] == true)
 {
 deltaSum += (float) ((q + 1) * (q + 1) / 4);

 gammaSum += (float) ((voxArray[i][j][posq].getH4Val()
- voxArray[i][j][posl].getH4Val()) *
 (voxArray[i][j][posq].getH4Val()
- voxArray[i][j][posl].getH4Val()));
 }
 else
 {
 //do nothing
 }
 }
 else
 {
 posq = l + (2 * q);

 if(posq < 0)
 posq += (zpix - 3);
 if(posq >= zpix)
 posq -= (zpix - 3);

 if(zChanQual[posq] == true)
 {
 deltaSum += (float) (q * q / 4);
 gammaSum += (float) ((voxArray[i][j][posq].getH4Val()
- voxArray[i][j][posl].getH4Val()) *
 (voxArray[i][j][posq].getH4Val()
- voxArray[i][j][posl].getH4Val()));
 }
 else
 {
 //do nothing
 }
 }
 }
 else
 {
 //do nothing
 }
 }
 deltah4K[q] = deltaSum / ncount;
 gammah4K[q] = gammaSum / (2 * ncount);
 }

 sumX = 0;

 104

 sumX2 = 0;
 sumY = 0;
 sumXY = 0;

 for (int q = 1; q <= 15; q++)
 {
 sumX += deltah4K[q];
 sumX2 += (deltah4K[q] * deltah4K[q]);
 sumY += gammah4K[q];
 sumXY += (deltah4K[q] * gammah4K[q]);
 }

 gradient = (sumXY - (sumX * sumY / 15)) / ((sumX2) - (sumX * sumX /
15));
 intercept = (sumY - (gradient * sumX)) / 15;
 voxArray[i][j][k].setG4Val(intercept);
 }

 //conduct moving window gamma test on h2Val spectrum at (i,j)
 for(int k = 7; k < (zpix - 7); k = k + 8)
 {

 for(int q = 1; q <= 15; q++)
 {
 deltaSum = 0;
 gammaSum = 0;
 ncount = 0;

 for(int l = k - 40; l <= k + 40; l = l + 8)
 {
 posl = l;

 if(posl < 0)
 posl += (zpix - 7) ;
 if(posl >= zpix)
 posl -= (zpix - 7);

 if(zChanQual[posl] == true)
 {
 ncount++;
 if(q % 2 == 1)
 {
 posq = l - ((4 * q) + 4);

 if(posq < 0)
 posq += (zpix - 7);
 if(posq >= zpix)
 posq -= (zpix - 7);

 if(zChanQual[posq] == true)
 {
 deltaSum += (float) ((q + 1) * (q + 1) / 4);

 gammaSum += (float) ((voxArray[i][j][posq].getH8Val()
- voxArray[i][j][posl].getH8Val()) *
 (voxArray[i][j][posq].getH8Val()
- voxArray[i][j][posl].getH8Val()));
 }
 else
 {
 //do nothing
 }
 }
 else
 {
 posq = l + (4 * q);

 if(posq < 0)
 posq += (zpix - 7);
 if(posq >= zpix)
 posq -= (zpix - 7);

 if(zChanQual[posq] == true)
 {

 105

 deltaSum += (q * q / 4);
 gammaSum += (float) ((voxArray[i][j][posq
].getH8Val() - voxArray[i][j][posl].getH8Val()) *
 (voxArray[i][j][posq
].getH8Val() - voxArray[i][j][posl].getH8Val()));
 }
 else
 {
 //do nothing
 }
 }
 }
 else
 {
 //do nothing
 }
 }
 deltah8K[q] = deltaSum / ncount;
 gammah8K[q] = gammaSum / (2 * ncount);
 }

 sumX = 0;
 sumX2 = 0;
 sumY = 0;
 sumXY = 0;

 for (int q = 1; q <= 15; q++)
 {
 sumX += deltah8K[q];
 sumX2 += (deltah8K[q] * deltah8K[q]);
 sumY += gammah8K[q];
 sumXY += (deltah8K[q] * gammah8K[q]);
 }

 gradient = (sumXY - (sumX * sumY / 15)) / ((sumX2) - (sumX * sumX /
15));
 intercept = (sumY - (gradient * sumX)) / 15;
 voxArray[i][j][k].setG8Val(intercept);
 }
 }
 }
 }

 //method to return voxArray
 public Voxel[][][] getVoxArray()
 {
 return voxArray;
 }

 //method to return a particular voxel
 public Voxel getVoxel(int i, int j, int k)
 {
 return voxArray[i][j][k];
 }

 //method to return the noise instance variable
 public float getNoise()
 {
 return noise;
 }

 //method to return the zChanQual instance variable
 public boolean[] getZChanQual()
 {
 return zChanQual;
 }

 //instance variables
 private int xpix, ypix, zpix;
 private Voxel[][][] voxArray;
 private boolean[] zChanQual;
 private float noise;

}

 106

Source code for GammaFinder.java

/*
 Class to create an application which finds possible sources
 in HIJASS and DIPASS data.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
import org.eso.fits.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.font.*;
import java.io.*;
import java.util.*;
import javax.swing.*;
import javax.swing.border.*;

public class GammaFinder
{
 public static void main(String[] args)
 {
 GuiFrame guiFrame = new GuiFrame();
 guiFrame.setTitle("GammaFinder");
 guiFrame.pack();
 guiFrame.show();
 }
}

class GuiFrame extends JFrame implements ActionListener
{
 //GuiFrame constructor
 public GuiFrame()
 {

 //set cross platform ’look and feel’
 try
 {
 UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassName());
 }
 catch (Exception e)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "There was a problem setting Look and Feel.
Default will be used",
 "Information", JOptionPane.PLAIN_MESSAGE);
 }

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 Container contentPane = getContentPane();
 contentPane.setLayout(new BorderLayout(1, 5));

 //create a menu
 mbar = new JMenuBar();

 //create a top level menu item
 m1 = new JMenu("File");
 m1.setMnemonic(KeyEvent.VK_F);

 //create a list of menu items and add to m1
 j1 = new JMenuItem("Open File");
 j1.addActionListener(this);
 j1.setMnemonic(KeyEvent.VK_O);
 j2 = new JMenuItem("Save Results");
 j2.addActionListener(this);
 j2.setMnemonic(KeyEvent.VK_S);
 j3 = new JMenuItem("Run Finder");
 j3.addActionListener(this);
 j3.setMnemonic(KeyEvent.VK_I);
 j4 = new JMenuItem("Exit");
 j4.addActionListener(this);
 j4.setMnemonic(KeyEvent.VK_X);

 107

 m1.add(j1);
 m1.add(j2);
 m1.addSeparator();
 m1.add(j3);
 m1.addSeparator();
 m1.add(j4);

 //create a top level menu item
 m2 = new JMenu("Edit");
 m2.setMnemonic(KeyEvent.VK_E);

 //create a list of menu items and add to m2
 j5 = new JMenuItem("Cut");
 j5.addActionListener(this);
 j5.setMnemonic(KeyEvent.VK_C);
 j6 = new JMenuItem("Copy");
 j6.addActionListener(this);
 j6.setMnemonic(KeyEvent.VK_Y);
 j7 = new JMenuItem("Paste");
 j7.addActionListener(this);
 j7.setMnemonic(KeyEvent.VK_P);
 m2.add(j5);
 m2.add(j6);
 m2.add(j7);

 //create a top level menu item
 m3 = new JMenu("Help");
 m3.setMnemonic(KeyEvent.VK_H);

 //create a list of menu items and add to m3
 j8 = new JMenuItem("Help Topics");
 j8.addActionListener(this);
 j8.setMnemonic(KeyEvent.VK_T);
 j9 = new JMenuItem("About GalFinder");
 j9.addActionListener(this);
 j9.setMnemonic(KeyEvent.VK_A);
 m3.add(j8);
 m3.add(j9);

 //add top level menu items to menu bar
 mbar.add(m1);
 mbar.add(m2);
 mbar.add(m3);

 //show menu bar
 setJMenuBar(mbar);

 //create ToolBar
 panel1 = new JPanel();
 panel1.setLayout(new FlowLayout(FlowLayout.LEFT, 2, 3));
 panel1.setBorder(new LineBorder (Color.black));

 //create buttons for ToolBar
 image1 = new ImageIcon("Open24.gif");
 image2 = new ImageIcon("Save24.gif");
 image3 = new ImageIcon("Find24.gif");
 image4 = new ImageIcon("Cut24.gif");
 image5 = new ImageIcon("Copy24.gif");
 image6 = new ImageIcon("Paste24.gif");

 button1 = new JButton(" Open ", image1);
 button1.setVerticalTextPosition(AbstractButton.BOTTOM);
 button1.setHorizontalTextPosition(AbstractButton.CENTER);
 button1.setMnemonic(KeyEvent.VK_O);
 button1.addActionListener(this);
 button1.setBorder(BorderFactory.createRaisedBevelBorder());
 button1.setFont(new Font("Courier", Font.PLAIN, 12));
 button1.setToolTipText("Open New File");

 button2 = new JButton(" Save ", image2);
 button2.setVerticalTextPosition(AbstractButton.BOTTOM);
 button2.setHorizontalTextPosition(AbstractButton.CENTER);
 button2.setMnemonic(KeyEvent.VK_S);
 button2.addActionListener(this);
 button2.setBorder(BorderFactory.createRaisedBevelBorder());
 button2.setFont(new Font("Courier", Font.PLAIN, 12));

 108

 button2.setToolTipText("Save Results to a Text File");

 button3 = new JButton(" Find ", image3);
 button3.setVerticalTextPosition(AbstractButton.BOTTOM);
 button3.setHorizontalTextPosition(AbstractButton.CENTER);
 button3.setMnemonic(KeyEvent.VK_I);
 button3.addActionListener(this);
 button3.setBorder(BorderFactory.createRaisedBevelBorder());
 button3.setFont(new Font("Courier", Font.PLAIN, 12));
 button3.setToolTipText("Search for galaxies in the cube");

 button4 = new JButton(" Cut ", image4);
 button4.setVerticalTextPosition(AbstractButton.BOTTOM);
 button4.setHorizontalTextPosition(AbstractButton.CENTER);
 button4.setMnemonic(KeyEvent.VK_C);
 button4.addActionListener(this);
 button4.setBorder(BorderFactory.createRaisedBevelBorder());
 button4.setFont(new Font("Courier", Font.PLAIN, 12));
 button4.setToolTipText("Cut selected text from Results Panel to clipboard");

 button5 = new JButton(" Copy ", image5);
 button5.setVerticalTextPosition(AbstractButton.BOTTOM);
 button5.setHorizontalTextPosition(AbstractButton.CENTER);
 button5.setMnemonic(KeyEvent.VK_Y);
 button5.addActionListener(this);
 button5.setBorder(BorderFactory.createRaisedBevelBorder());
 button5.setFont(new Font("Courier", Font.PLAIN, 12));
 button5.setToolTipText("Copy selected text from Results Panel to clipboard");

 button6 = new JButton(" Paste ", image6);
 button6.setVerticalTextPosition(AbstractButton.BOTTOM);
 button6.setHorizontalTextPosition(AbstractButton.CENTER);
 button6.setMnemonic(KeyEvent.VK_P);
 button6.addActionListener(this);
 button6.setBorder(BorderFactory.createRaisedBevelBorder());
 button6.setFont(new Font("Courier", Font.PLAIN, 12));
 button6.setToolTipText("Paste text into Results Panel from clipboard");

 jspace = new JLabel(" ");

 gLab = new JLabel(" Gamma S/N Threshold ");
 gLab.setHorizontalAlignment(JLabel.CENTER);
 gLab.setForeground(Color.black);
 gLab.setFont(new Font("Courier", Font.BOLD, 12));
 gLab.setLabelFor(gammaThres);

 //create JCombo box for selecting Gamma S/N threshold
 gammaThres = new JComboBox();
 gammaThres.addItem("2.0");
 gammaThres.addItem("2.5");
 gammaThres.addItem("3.0");
 gammaThres.addItem("3.5");
 gammaThres.addItem("4.0");
 gammaThres.addItem("4.5");
 gammaThres.addItem("5.0");
 gammaThres.addItem("5.5");
 gammaThres.addItem("6.0");
 gammaThres.addItem("6.5");
 gammaThres.addItem("7.0");
 gammaThres.addItem("7.5");
 gammaThres.addItem("8.0");
 gammaThres.addItem("8.5");
 gammaThres.addItem("9.0");
 gammaThres.addItem("9.5");
 gammaThres.addItem("10.0");
 gammaThres.setSelectedItem("5.0");
 gammaThres.setEditable(true);
 gammaThres.addActionListener(this);

 //add components to ToolBar
 panel1.add(button1);
 panel1.add(button2);
 panel1.add(button3);
 panel1.add(button4);
 panel1.add(button5);
 panel1.add(button6);

 109

 panel1.add(jspace);
 panel1.add(gLab);
 panel1.add(gammaThres);

 //add ToolBar to contentPane
 contentPane.add("North", panel1);

 //create a JTabbedPanel and add to contentPane
 tabbedPanel = new JTabbedPane();
 contentPane.add("Center", tabbedPanel);

 //create panel with a text area and scroll bar, add to page 1 of tabbedPanel
 panel2 = new JPanel();
 textPanel = new JTextArea(24, 100);
 textPanel.setFont(new Font("Courier", Font.PLAIN, 12));
 textPanel.setLineWrap(true);
 textPanel.setWrapStyleWord(true);
 scroll = new JScrollPane(textPanel,
ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 panel2.add(scroll);
 tabbedPanel.addTab("Results Panel", panel2);

 //create panel for displaying spectra
 panel3 = new JPanel();
 panel3.setLayout(new BorderLayout());

 //create panel for selecting spectrum to display
 panel3n = new JPanel() ;
 panel3n.setLayout(new FlowLayout(FlowLayout.LEFT, 2, 4));

 selSpec = new JLabel(" Select Type of Spectrum ");
 selSpec.setHorizontalAlignment(JLabel.CENTER);
 selSpec.setForeground(Color.black);
 selSpec.setFont(new Font("Courier", Font.BOLD, 12));
 selSpec.setLabelFor(typeOfSpec1);
 panel3n.add(selSpec);

 //create JCombo box for selecting type of spectrum to display
 typeOfSpec1 = new JComboBox();
 typeOfSpec1.addItem("Raw Spectrum");
 typeOfSpec1.addItem("Gamma Spectrum");
 typeOfSpec1.addItem("Hann2");
 typeOfSpec1.addItem("Hann4");
 typeOfSpec1.addItem("Hann8");
 typeOfSpec1.addItem("Gam2");
 typeOfSpec1.addItem("Gam4");
 typeOfSpec1.addItem("Gam8");
 typeOfSpec1.setSelectedItem("Raw Spectrum");
 typeOfSpec1.addActionListener(this);
 panel3n.add(typeOfSpec1);

 space1 = new JLabel(" ");
 panel3n.add(space1);

 x1 = new JLabel("X Coord");
 x1.setHorizontalAlignment(JLabel.CENTER);
 x1.setForeground(Color.black);
 x1.setFont(new Font("Courier", Font.BOLD, 12));
 x1.setLabelFor(x1Text);
 panel3n.add(x1);

 //add JTextfields to read coords of spectrum to be displayed
 x1Text = new JTextField(4);
 x1Text.setText("1");
 panel3n.add(x1Text);

 jspace2 = new JLabel(" ");
 panel3n.add(jspace2);

 y1 = new JLabel("Y Coord");
 y1.setHorizontalAlignment(JLabel.CENTER);
 y1.setForeground(Color.black);
 y1.setFont(new Font("Courier", Font.BOLD, 12));
 y1.setLabelFor(y1Text);

 110

 panel3n.add(y1);

 y1Text = new JTextField(4);
 y1Text.setText("1");
 panel3n.add(y1Text);

 space3 = new JLabel(" ");
 panel3n.add(space3);

 //ad button to display requested spectrum
 button7 = new JButton(" Display Spectrum ");
 button7.setMnemonic(KeyEvent.VK_D);
 button7.addActionListener(this);
 button7.setBorder(BorderFactory.createRaisedBevelBorder());
 button7.setFont(new Font("Courier", Font.PLAIN, 12));
 button7.setToolTipText("Displays the selected spectrum");
 panel3n.add(button7);

 panel3.add("North", panel3n);

 //create dispPanel for displaying spectra on, add to JTabbedPane
 dispPanel = new DisplayPanel();
 panel3.add("Center", dispPanel);
 tabbedPanel.addTab("Display Panel", panel3);

 //set the default Gamma S/N threshold
 gamThres = (float) 5.0;

 }

 //inner class to speicfy action to be perfomed when interactive element
 //of the GUI is selected
 public void actionPerformed(ActionEvent e)
 {

 //action if ’Open’ or ’Open File’ is selected
 if(e.getSource() == j1 || e.getSource() == button1)
 {

 //open and read FITS datacube, create HICube object, hiCube
 fileFlag = true;

 readFile();

 if(fileFlag == true)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "File read in successfully, will now
create a HiCube", "Information", JOptionPane.PLAIN_MESSAGE);
 }
 else
 return;

 //set the h2Val, h4Val and h8Val instance variables of the Voxels in hiCube
 hiCube.setH2H4H8Vals();

 //set the gVal instance variables of the Voxels in hiCube
 hiCube.setGVals();

 //set the noise instance variable of hiCube
 hiCube.setNoise();

 //set the ZChanQual instance variable of hiCube
 hiCube.setZChanQual();

 //set the g2Val, g4Val and g8Val instance variables of the Voxels in hiCube
 hiCube.setG2G4G8Vals();

 //inform user that hiCube has been successfully created
 JOptionPane dialog1 = new JOptionPane();
 dialog1.showMessageDialog(this, "HiCube succesffully created. Image Stats
are on Results Panel",
 "Information", JOptionPane.PLAIN_MESSAGE);

 111

 //display of textPanel image dimension, noise and bad z-channels
 textPanel.append("The image has been succesffully read in and a HiCube
created");
 textPanel.append("\n");
 textPanel.append("Image Size = (" + xpix + ", " + ypix + ", " + zpix + ")
\n");
 textPanel.append("Average noise in image is " + hiCube.getNoise() + "Jy \n"
);
 textPanel.append("The following z channels were found to suffer from
significant RFI and were cleaned \n");

 boolean[] qualArray = hiCube.getZChanQual();

 for(int j = 0; j < zpix; j++)
 if(qualArray[j] == false)
 textPanel.append(j + "\n");

 }

 //action if ’Save’ or ’Save Results’ is selected
 else if(e.getSource() == j2 || e.getSource() == button2)
 {
 //save results on textPanel to a text file
 saveResults();
 }

 //action if ’Find’ of ’Run Finder’ is selected
 else if(e.getSource() == j3 || e.getSource() == button3)
 {
 //find possible galaxies in the datacube
 findSources();
 }

 //action if ’Exit’ is selected
 else if (e.getSource() == j4)
 {
 System.exit(0);
 }

 //action if ’Cut’ is selected
 else if (e.getSource() == j5 || e.getSource() == button4)
 {
 textPanel.cut();
 }

 //action if ’copy’ is selected
 else if (e.getSource() == j6 || e.getSource() == button5)
 {
 textPanel.copy();
 }

 //action if ’Paste’ is selected
 else if (e.getSource() == j7 || e.getSource() == button6)
 {
 textPanel.paste();
 }

 //action if ’Help’ is selected
 else if (e.getSource() == j8)
 {
 //call up Help dialog
 }

 //action if ’About’ is selected
 else if (e.getSource() == j9)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "GalFinder was developed by Peter J. Boyce",
"Information", JOptionPane.PLAIN_MESSAGE);
 }

 //action if value of gamThres is altered
 else if (e.getSource() == gammaThres)
 {
 gamThres = setGamThres();

 112

 }

 //action if "Display Spectrum" is selected
 else if (e.getSource() == button7)
 {
 displayFlag = true;
 updateDispPars();
 if(displayFlag == true)
 {
 dispPanel.updateSPanel(hiCube.getVoxArray(), xcoord, ycoord, specType);
 dispPanel.setVisible(true);
 }
 }

 }

 /*
 Method used to open a FITS datacube, read the data and create a
 new Hicube object, hiCube
 */
 private void readFile()
 {

 //enable user to choose input file with JFileChooser
 float[][][] inFileData = null;
 JFileChooser fc = null;

 if(fc == null);
 {
 fc = new JFileChooser();
 fc.addChoosableFileFilter(new FitsFilter());
 fc.setAcceptAllFileFilterUsed(false);
 }

 int returnVal = fc.showOpenDialog(GuiFrame.this);

 if(returnVal == JFileChooser.APPROVE_OPTION)
 {
 FitsFile infile;

 try
 {
 infile = new FitsFile(fc.getSelectedFile());
 }
 catch (FitsException ee)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Error opening fits file", "Error",
JOptionPane.ERROR_MESSAGE);
 fileFlag = false;
 return;
 }
 catch (IOException ioe)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Error opening fits file", "Error",
JOptionPane.ERROR_MESSAGE);
 fileFlag = false;
 return;
 }

 //read data from file selected
 int noHDU = infile.getNoHDUnits();

 for (int i=0; i<noHDU; i++)
 {
 FitsHDUnit hdu = infile.getHDUnit(i);
 FitsHeader hdr = hdu.getHeader();
 int noKw = hdr.getNoKeywords();
 int type = hdr.getType();
 int size = (int) hdr.getDataSize();

 if (type == Fits.IMAGE)
 {

 113

 FitsMatrix dm = (FitsMatrix) hdu.getData();
 int naxis[] = dm.getNaxis();
 int nv, off, npix;
 int nval = dm.getNoValues();

 if (nval > 0)
 {
 int ncol = naxis[0];
 xpix = naxis[0];
 ypix = naxis[1];
 zpix = naxis[2];
 inFileData = new float[xpix][ypix][zpix];
 int nrow = nval/ncol;
 float data[] = new float[ncol];

 float val;

 int ic = 0;
 int jc = 0;
 int kc = 0;
 off = nv = 0 ;
 for (int nr=0; nr<nrow; nr++)
 {
 try
 {
 dm.getFloatValues(off, ncol, data);
 for (int n = 0; n<ncol; n++)
 {
 val = data[n];
 inFileData[ic][jc][kc] = val ;

 if(ic == (xpix - 1) && jc == (ypix - 1))
 {
 ic = 0;
 jc = 0;
 kc++;
 }
 else if (ic == (xpix - 1) && jc != (ypix - 1))
 {
 ic = 0;
 jc++;
 }
 else
 ic++;

 }
 }
 catch (FitsException ee)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Error reading fits file",
"Error", JOptionPane.ERROR_MESSAGE);
 return;
 }

 off += ncol;
 }

 }
 }
 else if (type==Fits.BTABLE || type==Fits.ATABLE)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Data is not in fits format", "Error",
JOptionPane.ERROR_MESSAGE);
 return;
 }
 }
 }
 else
 {
 fileFlag = false;
 return;
 }

 //create a new HiCube object with datra read from file
 hiCube = new HiCube(inFileData);

 114

 }

 /*
 Method used to copy cointents of textPanel to file selected by user
 */
 private void saveResults()
 {

 //enable user to choose output file with JFileChooser
 JFileChooser fc = null;

 if(fc == null);
 {
 fc = new JFileChooser();

 //add custom file filter and disable the deafult file filter
 fc.addChoosableFileFilter(new TxtFilter());
 fc.setAcceptAllFileFilterUsed(false);
 }

 int returnVal = fc.showSaveDialog(GuiFrame.this);

 //copy contents of textPanel to selected text file
 if(returnVal == JFileChooser.APPROVE_OPTION)
 {

 String fileText = textPanel.getText();
 int fTLen = fileText.length();

 FileWriter outputFile;

 try
 {
 outputFile = new FileWriter(fc.getSelectedFile());
 outputFile.write(fileText, 0, (fTLen -1));
 outputFile.close();
 }
 catch(IOException ioe)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Error writing File", "Error",
JOptionPane.ERROR_MESSAGE);
 return;
 }
 }
 else
 return;
 }

 /*
 Method to read user supplied value of gamThres
 @param return returns value of gamThres
 */
 private float setGamThres()
 {
 float retVal;
 String selected = (String) gammaThres.getSelectedItem();
 try
 {
 retVal = Float.parseFloat(selected);
 }
 catch(NumberFormatException nfe)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Input value has to be in float format",
"Error", JOptionPane.ERROR_MESSAGE);
 gammaThres.setSelectedItem(Float.toString(gamThres));
 return gamThres;
 }
 if(retVal < 0)
 {
 JOptionPane dialog = new JOptionPane();

 115

 dialog.showMessageDialog(this, "Input value has to be > 0", "Error",
JOptionPane.ERROR_MESSAGE);
 gammaThres.setSelectedItem(Float.toString(gamThres));
 return gamThres;
 }
 return retVal;
 }

 /*
 Method to read user supplied values for xcoord, ycoord snd specType from GUI
 */
 private void updateDispPars()
 {
 try
 {
 xcoord = Integer.parseInt(x1Text.getText());
 ycoord = Integer.parseInt(y1Text.getText());
 }
 catch(NumberFormatException nfe)
 {
 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Coord data have to be in integer format",
"Error", JOptionPane.ERROR_MESSAGE);
 displayFlag = false;
 return;
 }

 if(xcoord >= xpix || xcoord < 0 || ycoord >= ypix || ycoord < 0)
 {
 JOptionPane dialog = new JOptionPane();
 String message = "Pix coords have to be between (0, 0) and (" + xpix + ",
" + ypix + ")";
 dialog.showMessageDialog(this, message, "Error", JOptionPane.ERROR_MESSAGE
);
 displayFlag = false;
 return;
 }

 specType = (String) typeOfSpec1.getSelectedItem();

 }

 /*
 Method to seach hiCube for possible galaxies and return result to textPanel
 */
 public void findSources()
 {

 boolean[][][] found = new boolean[xpix][ypix][zpix];
 float medianG2, medianG4, medianG8, modmeanG2, modmeanG4, modmeanG8, variance;
 float[] kvalues = new float[zpix];
 float[] valuesG2 = new float[(zpix - 1) / 2];
 float[] valuesG4 = new float[(zpix - 3) / 4];
 float[] valuesG8 = new float[(zpix - 7) / 8];
 int medposG2 = (zpix - 1) / 4;
 int medposG4 = (zpix - 3) / 8;
 int medposG8 = (zpix - 7) / 16;

 //calculate noise variance value above which spectra will be excluded from
search
 float worstvar = 10 * hiCube.getNoise() * hiCube.getNoise();

 textPanel.append("\n");
 textPanel.append("RESULTS OF RUNNING FINDER WIth GAMMA S/N = " + gamThres +
"\n");
 textPanel.append("\n");
 textPanel.append(" xpix ypix zpix Hann Gamma S/N \n");
 textPanel.append(" Type \n");

 //search gamma spectra at each (x,y) position in hiCube
 for(int i = 1; i < xpix - 1; i++)
 {
 for(int j = 1; j < ypix - 1; j++)
 {

 116

 //calculate average variance in spectrum
 for(int k=0; k < zpix; k++)
 kvalues[k] = hiCube.getVoxel(i, j, k).getGVal();
 Arrays.sort(kvalues);
 variance = kvalues[(zpix-1)/2];

 //proceed if spectrum is not too noisy
 if(variance > 0 && variance < worstvar)
 {

 //calculate median gamma statistic in g2Val gamma Spectrum
 for (int l4 = 0; l4 < (zpix - 1)/2; l4++)
 valuesG2[l4] = hiCube.getVoxel(i, j, ((2*l4) + 1)).getG2Val();
 Arrays.sort(valuesG2);
 medianG2 = valuesG2[medposG2];

 //calculate median gamma statistic in g4Val gamma Spectrum
 for (int l5 = 0; l5 < (zpix - 3)/4; l5++)
 valuesG4[l5] = hiCube.getVoxel(i, j, ((4*l5) + 3)).getG4Val();
 Arrays.sort(valuesG4);
 medianG4 = valuesG4[medposG4];

 //calculate median gamma statistic in g8Val gamma Spectrum
 for (int l6 = 0; l6 < (zpix - 7)/8; l6++)
 valuesG8[l6] = hiCube.getVoxel(i, j, ((8*l6) + 7)).getG8Val();
 Arrays.sort(valuesG8);
 medianG8 = valuesG8[medposG8];
 modmeanG8 = Stats.ModMean(valuesG8);

 //search for significant peaks in g2Val gamma spectra
 for(int k = 3; k < (zpix - 3) ; k = k + 2)
 {

 if((hiCube.getVoxel(i, j, k).getG2Val() > (gamThres * medianG2)
) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i, j,
k+2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i, j,
k-2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i+1,
j, k).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i-1,
j, k).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i,
j+1, k).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i, j-
1, k).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i+1,
j, k+2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i-1,
j, k+2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i,
j+1, k+2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i, j-
1, k+2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i+1,
j, k-2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i-1,
j, k-2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i,
j+1, k-2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getG2Val() > hiCube.getVoxel(i, j-
1, k-2).getG2Val()) &&
 (hiCube.getVoxel(i, j, k).getH2Val() > 0))
 {
 textPanel.append(FormatToString.displayInt(i, 8) +
 FormatToString.displayInt(j, 8) +
 FormatToString.displayInt(k, 8) +
 FormatToString.displayString("H2", 8) +
 FormatToString.displayFloat((hiCube.getVoxel(
i, j, k).getG2Val()/medianG2), 12) + "\n");
 found[i][j][k] = true;

 117

 }
 }

 //search for significant peaks in g4val gamma spectra
 for(int k = 7; k < (zpix - 7) ; k = k + 4)
 {
 if((hiCube.getVoxel(i , j, k).getG4Val() > (gamThres *
medianG4)) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i, j,
k+4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i, j,
k-4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i+1,
j, k).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i-1,
j, k).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i,
j+1, k).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i, j-
1, k).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i+1,
j, k+4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i-1,
j, k+4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i,
j+1, k+4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i, j-
1, k+4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i+1,
j, k-4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i-1,
j, k-4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i,
j+1, k-4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getG4Val() > hiCube.getVoxel(i, j-
1, k-4).getG4Val()) &&
 (hiCube.getVoxel(i, j, k).getH4Val() > 0) &&
 (found[i][j][k] == false) && (found[i][j][k+2] == false) &&
 (found[i][j][k-2] ==false) && (found[i][j][k+4] == false) &&
 (found[i][j][k-4] ==false) && (found[i+1][j][k] == false) &&
 (found[i-1][j][k] ==false) && (found[i][j+1][k] == false) &&
 (found[i][j-1][k] ==false) && (found[i+1][j+1][k] == false)
&&
 (found[i-1][j+1][k] ==false) && (found[i+1][j-1][k] == false
) &&
 (found[i-1][j-1][k] ==false) && (found[i+1][j+1][k+2] ==
false) &&
 (found[i-1][j+1][k+2] ==false) && (found[i+1][j-1][k+2] ==
false) &&
 (found[i-1][j-1][k+2] ==false) && (found[i+1][j+1][k-2] ==
false) &&
 (found[i-1][j+1][k-2] ==false) && (found[i+1][j-1][k-2] ==
false) &&
 (found[i-1][j-1][k-2] ==false) && (found[i+1][j][k+2] ==
false) &&
 (found[i-1][j][k+2] ==false) && (found[i][j+1][k+2] == false
) &&
 (found[i][j-1][k+2] ==false) && (found[i+1][j][k-2] == false
) &&
 (found[i-1][j][k-2] ==false) && (found[i][j+1][k-2] == false
) &&
 (found[i][j-1][k-2] ==false))

 {
 textPanel.append(FormatToString.displayInt(i, 8) +
 FormatToString.displayInt(j, 8) +
 FormatToString.displayInt(k, 8) +
 FormatToString.displayString("H4", 8) +
 FormatToString.displayFloat((hiCube.getVoxel(
i, j, k).getG4Val()/medianG4), 12) + "\n");

 found[i][j][k] = true;
 }
 }

 //search for significant peaks in g8Val gamma spectra
 for(int k = 15; k < (zpix - 15) ; k = k + 8)

 118

 {
 if(((hiCube.getVoxel(i, j, k).getG8Val() > (gamThres *
medianG8)) ||
 (hiCube.getVoxel(i, j, k).getG8Val() > (gamThres * modmeanG8)
)) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i, j,
k+8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i, j,
k-8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i+1,
j, k).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i-1,
j, k).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i,
j+1, k).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i, j-
1, k).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i+1,
j, k+8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i-1,
j, k+8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i,
j+1, k+8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i, j-
1, k+8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i+1,
j, k-8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i-1,
j, k-8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i,
j+1, k-8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getG8Val() > hiCube.getVoxel(i, j-
1, k-8).getG8Val()) &&
 (hiCube.getVoxel(i, j, k).getH8Val() > 0) &&
 (found[i][j][k] == false) && (found[i][j][k+2] == false) &&
 (found[i][j][k-2] == false) && (found[i][j][k+4] == false)
&&
 (found[i][j][k-4] == false) && (found[i][j][k+6] == false)
&&
 (found[i][j][k-6] == false) && (found[i][j][k+8] == false)
&&
 (found[i][j][k-8] == false) && (found[i+1][j][k] == false)
&&
 (found[i-1][j][k] ==false) && (found[i][j+1][k] == false) &&
 (found[i][j-1][k] == false) && (found[i+1][j][k+2] == false)
&&
 (found[i-1][j][k+2] ==false) && (found[i][j+1][k+2] == false
) &&
 (found[i][j-1][k+2] == false) && (found[i+1][j+1][k+2] ==
false) &&
 (found[i-1][j+1][k+2] ==false) && (found[i+1][j-1][k+2] ==
false) &&
 (found[i-1][j-1][k+2] == false) && (found[i+1][j+1][k-2] ==
false) &&
 (found[i-1][j+1][k-2] ==false) && (found[i+1][j-1][k-2] ==
false) &&
 (found[i-1][j-1][k-2] == false) && (found[i+1][j+1][k+4] ==
false) &&
 (found[i-1][j+1][k+4] ==false) && (found[i+1][j-1][k+4] ==
false) &&
 (found[i-1][j-1][k+4] == false) && (found[i+1][j+1][k-4] ==
false) &&
 (found[i-1][j+1][k-4] ==false) && (found[i+1][j-1][k-4] ==
false) &&
 (found[i-1][j-1][k-4] == false) && (found[i+1][j][k-2] ==
false) &&
 (found[i-1][j][k-2] ==false) && (found[i][j+1][k-2] == false
) &&
 (found[i][j-1][k-2] == false) && (found[i+1][j][k+4] == false
) &&
 (found[i-1][j][k+4] ==false) && (found[i][j+1][k+4] == false
) &&
 (found[i][j-1][k+4] == false) && (found[i+1][j][k-4] == false
) &&
 (found[i-1][j][k-4] ==false) && (found[i][j+1][k-4] == false
) &&

 119

 (found[i][j-1][k-4] == false) && (found[i+1][j][k+8] == false
) &&
 (found[i-1][j][k+8] ==false) && (found[i][j+1][k+8] == false
) &&
 (found[i][j-1][k+8] == false) && (found[i+1][j][k-8] == false
) &&
 (found[i-1][j][k-8] ==false) && (found[i][j+1][k-8] == false
) &&
 (found[i][j-1][k-8] == false))

 {

 if(modmeanG8 < medianG8)
 textPanel.append(FormatToString.displayInt(i, 8) +
 FormatToString.displayInt(j, 8) +
 FormatToString.displayInt(k, 8) +
 FormatToString.displayString("H8", 8) +
 FormatToString.displayFloat((hiCube.getVoxel(i,
j, k).getG8Val()/modmeanG8), 12) + "\n");
 else
 textPanel.append(FormatToString.displayInt(i, 8) +
 FormatToString.displayInt(j, 8) +
 FormatToString.displayInt(k, 8) +
 FormatToString.displayString("H8", 8) +
 FormatToString.displayFloat((hiCube.getVoxel(i,
j, k).getG8Val()/medianG8), 12) + "\n");

 found[i][j][k] = true;
 }
 }
 }
 }
 }

 JOptionPane dialog = new JOptionPane();
 dialog.showMessageDialog(this, "Finding completed. Results are on Display
Panel.",
 "Information", JOptionPane.PLAIN_MESSAGE);
 }

 //GUI related instance variables
 private JScrollPane scroll;
 private JMenuItem j1, j2, j3, j4, j5, j6, j7, j8, j9;
 private JMenu m1, m2, m3;
 private JMenuBar mbar;
 private JButton button1, button2, button3, button4, button5, button6, button7, x1B,
x1F;
 private ImageIcon image1, image2, image3, image4, image5, image6;
 private JLabel x1, y1, jspace, jspace1, jspace2;
 private JTextField x1Text, y1Text;
 private JPanel panel1, panel2, panel3, panel3n;
 private JComboBox typeOfSpec1, gammaThres;
 private JLabel label1, selSpec, space1, space2, space3, gLab;
 private JTabbedPane tabbedPanel;
 private boolean fileFlag, displayFlag;

 //non-GUI instance variables
 private HiCube hiCube;
 private String specType;
 private JTextArea textPanel;
 private DisplayPanel dispPanel;
 private int xpix, ypix, zpix, xcoord, ycoord;
 private float gamThres;

}

 120

Source code for DisplayPanel.java

/*
 Class to define a DisplayPanel object
 Part of GammaFinder appliciation.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
import java.awt.event.*;
import java.awt.*;
import java.awt.geom.*;
import javax.swing.*;
import javax.swing.border.*;
import java.lang.Math;

public class DisplayPanel extends JPanel
{
 //instance variables
 private Voxel[][][] voxVals;
 private int xc, yc, nzpix, sf, specType;

 //constructor
 public DisplayPanel()
 {
 super();
 setOpaque(false);
 setPreferredSize(new Dimension(760, 320));
 }

 //method to update spectrum displayed
 public void updateSPanel(Voxel[][][] voxelValues, int x, int y, String inSpecType)
 {
 voxVals = voxelValues;
 xc = x;
 yc = y;
 nzpix = voxVals[0][0].length;
 String spectrumType = inSpecType;

 if(spectrumType.compareTo("Raw Spectrum") == 0)
 {
 sf = -1000;
 specType = 1;
 }
 else if (spectrumType.compareTo("Hann2") == 0)
 {
 sf = -1000;
 specType = 2;
 }
 else if (spectrumType.compareTo("Hann4") == 0)
 {
 sf = -1000;
 specType = 3;
 }
 else if (spectrumType.compareTo("Hann8") == 0)
 {
 sf = -1000;
 specType = 4;
 }
 else if (spectrumType.compareTo("Gam2") == 0)
 {
 sf = -200000;
 specType = 5;
 }
 else if (spectrumType.compareTo("Gam4") == 0)
 {
 sf = -600000;
 specType = 6;
 }
 else if (spectrumType.compareTo("Gam8") == 0)
 {
 sf = -1000000;
 specType = 7;
 }
 else if (spectrumType.compareTo("Gamma Spectrum") == 0)

 121

 {
 sf = -100000;
 specType = 8;
 }

 repaint();
 }

 public void paintComponent(Graphics graf)
 {
 Graphics2D g2 = (Graphics2D) graf;
 g2.draw(new Line2D.Double(5, 200, 750, 200));
 g2.setBackground(Color.white);

 GeneralPath polyline = new GeneralPath(GeneralPath.WIND_EVEN_ODD,1024);

 if(specType == 1)
 {
 polyline.moveTo(5*2, 200 + (int) (voxVals[xc][yc][0].getVoxVal() * sf));

 for (int j = 1; j < nzpix; j++)
 {
 polyline.lineTo((j+5)*700/nzpix, 200 + (int) (
voxVals[xc][yc][j].getVoxVal() * sf));
 }
 }
 else if (specType == 2)
 {
 polyline.moveTo(6*2, 200 + (int) (voxVals[xc][yc][1].getH2Val() * sf));

 for(int j = 3; j < (nzpix - 1) ; j = j + 2)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getH2Val() * sf));
 }
 }
 else if (specType == 3)
 {
 polyline.moveTo(8*2, 200 + (int) (voxVals[xc][yc][3].getH4Val() * sf));

 for(int j = 7; j < (nzpix - 3) ; j = j + 4)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getH4Val() * sf));
 }
 }
 else if (specType == 4)
 {
 polyline.moveTo(12*2, 200 + (int) (voxVals[xc][yc][7].getH8Val() * sf));

 for(int j = 15; j < (nzpix - 7) ; j = j + 8)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getH8Val() * sf));
 }
 }
 else if (specType == 5)
 {
 polyline.moveTo(6*2, 200 + (int) (voxVals[xc][yc][1].getG2Val() * sf));

 for(int j = 3; j < (nzpix - 1) ; j = j + 2)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getG2Val() * sf));
 }
 }

 else if (specType == 6)
 {
 polyline.moveTo(8*2, 200 + (int) (voxVals[xc][yc][3].getG4Val() * sf));

 for(int j = 7; j < (nzpix - 3) ; j = j + 4)
 {

 122

 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getG4Val() * sf));
 }
 }
 else if (specType == 7)
 {
 polyline.moveTo(12*2, 200 + (int) (voxVals[xc][yc][7].getG8Val() * sf));

 for(int j = 15; j < (nzpix - 7) ; j = j + 8)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getG8Val() * sf));
 }
 }

 else if (specType == 8)
 {
 polyline.moveTo(5*2, 200 + (int) (voxVals[xc][yc][0].getGVal() * sf));

 for(int j = 1; j < nzpix; j++)
 {
 polyline.lineTo((j+5)*700/nzpix , 200 + (int) (
voxVals[xc][yc][j].getGVal() * sf));
 }
 }

 g2.draw(polyline);

 }

}

 123

Source code for FormatDisplay.java

/*
 Class containg static method toformat displayed output
 Part of the GammaFinder application.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
import java.lang.Integer;
import java.lang.Double;
public class FormatDisplay
{

 /*
 method to convert integer to string of desired length
 @param number integer to be converted to string
 @param width desired length of string
 @param return returns String of desired length
 */
 public static String displayInt(int number, int width)
 {
 String outputString;
 int itemLength, count;
 outputString = Integer.toString(number);
 itemLength = outputString.length();
 if (itemLength < width)
 for (count = itemLength + 1; count <= width; count = count + 1)
 outputString = " " + outputString;
 return outputString;
 }

 /*
 method to convert float to string of desired length
 @param number float to be converted to string
 @param width desired length of string
 @param return returns String of desired length
 */ public static String displayFloat(float number, int width)
 {
 String outputString;
 int itemLength, count;
 outputString = Float.toString(number);
 itemLength = outputString.length();
 if (itemLength < width)
 for (count = itemLength + 1; count <= width; count = count + 1)
 outputString = " " + outputString;
 return outputString;
 }

 /*
 method to convert String to another String of desired length
 @param inputLine String to be converted
 @param width desired length of string
 @param return returns String of desired length
 */
 public static String displayString(String inputLine, int width)
 {
 String outputString = inputLine;
 int itemLength = outputString.length();
 if (itemLength < width)
 {
 for (int count = itemLength + 1; count <= width; count = count + 1)
 outputString = " " + outputString;
 }
 else
 outputString = outputString.substring(0, width);

 return outputString;
 }

}

 124

Source code for Stats.java

/*
 Class containg static method to find modal value of a float array
 Part of the GammaFinder application.
 @author Peter J. Boyce
 @version 1.0 2003/09/15
*/
import java.util.*;
public class Stats
{

 /*
 Method to find the modal value of a float array
 @param inArray the float array within which the odal value is to be found
 @param return returns the modal value
 */
 public static float ModMean(float[] inArray)
 {
 float medmod;
 int length = inArray.length;
 int[] count = new int[20];

 for(int i = 0; i < length; i++)
 {
 for(int j = 0; j < 20; j++)
 {
 if((inArray[i] >= (j * 0.00001) + 0.00001) &&
 (inArray[i] < ((j + 1) * 0.00001) + 0.00001))
 count[j]++;
 }
 }

 int temp = count[0];
 int jmode = 0;
 for (int j = 1; j < 20; j++)
 {
 if (count[j] > temp)
 {
 temp = count[j];
 jmode = j;
 }
 }

 int nlength = count[jmode];
 float jlower = (float) ((jmode * 0.00001) + 0.00001);
 float jupper = (float) (((jmode + 1) * 0.00001) + 0.00001);

 float[] newArray = new float[nlength];

 int z = 0;
 for(int i = 0; i < length; i++)
 {
 if(inArray[i] >= jlower && inArray[i] < jupper)
 {
 newArray[z] = inArray[i];
 z++;
 }
 }

 if(nlength == 0)
 medmod = 20;
 else if(nlength % 2 == 0)
 medmod = newArray[(nlength / 2) - 1];
 else
 medmod = newArray[(nlength - 1) / 2];

 return medmod;
 }
}

 125

References

Banks, G.D. et al. 1999. New galaxies discovered in the first blind HI survey of the
Centaurus A group. Astrophysical Journal, 524, 612.

Barnes, D.G. et al. 2001. The HI Parkes All Sky Survey: southern observations,
calibration and robust imaging. Monthly Notices of the Royal Astronomical Society,
322, 486.

Blackman, R.B. and Tukey, J.W. 1959. Particular Pairs of windows. In: The
measurement of power spectra, from the point of view of communications
engineering. New York: Dover. p.98.

Boyce, P.J. et al. 2001. A blind HI survey of the M81 group. Astrophysical Journal,
560, L127.

Branch, D. 1998. Type IA supernovae and the Hubble constant. Annual Review of
Astronomy and Astrophysics, 36, 17

Burke, B.F and Graham-Smith, F. 2002. An introduction to radio astronomy.
Cambridge: Cambridge University Press.

Chuzhanova, N.A., Jones, A.J. and Margetts, S. 1998. Feature selection for genetic
sequence classification. Bioinformatics, 14(2), 139.

Duffet-Smith, P., 1988. Practical astronomy with your calculator. Cambridge:
Cambridge University Press.

Durrant, P.J. 2001. winGammaTM: A non-linear data analysis and modelling tool with
applications to flood prediction. PhD Thesis, Cardiff University.

Evans, D. 2002. Data derived estimates of noise for unknown smooth models using
near neighbour asymptotics, PhD Thesis, Cardiff University.

Evans, D. and Jones, A.J. 2002. A proof of the Gamma test. Proceedings of the Royal
Society Series A, 458, 2759.

Freidman, J.H., Bentley, J.L., Finkel, R.A. 1979. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3), 209.

Gooch, R. 1995. In: Shaw, R.A., Payne, H.E. & Haynes, J.E. eds. ASP Conf Series 77,
Astronomical Data Analysis Software and Systems IV. San Francisco: ASP. p.144.

Jones, A.J., Evans, D., Margetts, S. and Durrant, P.J., 2002a. The Gamma test. In:
Sarker, R et al. eds. Heuristic and Optimization for Knowledge Discovery. Hershey:
Idea Group Publishing.

 126

Jones, A.J., Tsui, A.P.M. and de Oliveira, A.G. 2002b. Neural models of arbitrary
chaotic systems: construction and the role of time delayed feedback in control and
synchronization. Complexity International, 9, paperID: tsui01.

Kilborn, V.A. et al. 2000. An extragalactic HI cloud with no optical counterpart.
Astronomical Journal, 120, 1342.

Kilborn, V.A. 2001, A catalogue of HI-selected galaxies from the south celestial cap
region of sky. PhD Thesis, University of Melbourne.

Koncar, N. 1997. Optimisation methodologies for direct inverse neurocontrol. PhD
Thesis, Imperial College, London.

Lang, R.H. et al. 2003. First results from the HI Jodrell All Sky Survey: inclination-
dependent selection effects in a 21-cm blind survey. Monthly Notices of the Royal
Astronomical Society, 342, 738.

Meyer, M.J. et al. 2003. The HIPASS Catalogue: I – Data Presentation. Monthly
Notices of the Royal Astronomical Society, submitted.

Minchin, R.F. 2001. Properties of galaxies found in a deep blind neutral hydrogen
survey. PhD Thesis, University of Wales, Cardiff.

de Oliveira, A.G 1999. Synchronization of chaos and applications to secure
communications, PhD Thesis, Imperial College, London.

Rohlfs, K. 1996. Tools of Radio Astronomy. New York: Springer-Verlag.

Ryder, S.D. et al. 2001. HIPASS detection of an intergalactic gas cloud in the NGC
2442 group. Astrophysical Journal, 555, 232.

Sault, R.J., Teuben, P.J. and Wright, M.C.H., 1995, A retrospective view of MIRIAD.
In: Shaw, R.A., Payne, H.E. & Haynes, J.E. eds. ASP Conf Series 77, Astronomical
Data Analysis Software and Systems IV, ASP, San Francisco, p.433.

Stefansson, A., Koncar, N. and Jones, A.J. 1997. A note on the Gamma test. Neural
Computing and Applications, 5, 131.

Tsui, A.P.M., Jones, A.J. and de Oliveira, A.G. 2002. The construction of smooth
models using irregular embeddings determined by a Gamma test analysis. Neural
Computing and Applications, 10(4), 18.

Zwaan, M.A. et al. 2003a. The 1000 brightest HIPASS galaxies: the HI mass function
and �HI. Astronomical Journal, 125, 2842.

Zwaan, M.A. et al. 2003b. The HIPASS catalogue: II – completeness, reliability and
parameter accuracy. Monthly Notices of the Royal Astronomical Society, submitted.

 127

Bibliography

Sahni, S. 2000. Data structures, algorithms, and applications in Java. Singapore:
McGraw-Hill.

Gutz, S. 2000. Up to speed with swing. Greenwich: Manning.

Goodrich, M.T. and Tamassia, R. 2000. Data structures and algorithms in Java. New
York: JohnWiley.

Davies, J.I., Impey, C., Phillipps, S. (eds)., 1999. The low surface brightness
Universe. San Francisco: ASP.

Stevens, P. and Pooley, R. 200. Using UML, software engineering with objects and
components. New York: Addison-Wesley.

