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Abstract

This work is based on developments in non-linear modelling which allow the possibility of quickly
examining input-output data and quantifying the extent to which this data can be modelled by
a differentiable functionf : R? — R with bounded derivatives. This algorithm, the Gamma
test, which quantifies the noise variance associated with the unknown smooth mapping, was first
described in [Aalbjorn Stensson et al., 1997].

After a brief introduction to non-parametric, non-linear modelling, with special reference to feed-

forward neural networks, we describe the Gamma test and demonstrate a humber of example
analyses. These experiments are designed to illustrate the underlying rationale of the Gamma
test and also to demonstrate feature selection, which is a natural extension. Where possible we
also give comparisons between the Gamma test analyses and more conventional feature extraction

algorithms.

A new extension of the Gamma test is then discussed that allows the possibility of not merely
guantifying the noise variance but, under certain circumstances, actually re-constructing the noise

distributiondirectly from the data.

We then go on to describe at some length the construction and function of the non-linear analy-
sis workbenctwinGammaa user-friendly Microsoft Windows application developed around the

Gamma test.

Finally, these techniques are applied to the problem of modelling level and flow in the River
Thames to produce accurate short term predictions for downstream values of level and flow, which
can be used for the purposes of river management and flood prediction. This application represents

a completely novel adaptive modelling approach to river level and flow prediction.
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CHAPTER 1

Introduction

The construction of non-linear models from sampled data is very much a subjective process. This
in part stems from the enormous diversity of possible modelling techniques and the difficulty
of assessing the quality of the data. For example, for data describing discrete input attributes
with continuous or discrete outputs one might consider a rule based system of modelling such as
a decision-tree approach [Quinlan, 1986]. At the other extreme, input and output variables are
continuous and, if the unknown process being described by the data is suspected to be non-linear,
one might consider a modelling technique based on neural networks (see [Bishop, 1996] for an
excellent up-to-date account). The validation of the chosen modelling technique is frequently
purely empirical — the best possible non-linear model is built using the selected technique. If
these attempts are successful then the original choice is deemed to be vindicated, otherwise an

alternative technique is tried or the failure simply ascribed to ‘bad data’.

A dispassionate observer might be forgiven for concluding that the above state of affairs is some-

what unsatisfactory, perhaps lacking in good scientific methodology.

No single thesis can address all of the above problems — the extraction of good models from data of
diverse types and diverse quality is a very broad problem. However, some aspects of these issues
can be addressed in a more systematic fashion. In this thesis the focusrnsothmodels of
continuousvariables. We do not consider the case of discrete input or output variables, although
some of the techniques developed here might be applicable. We begin with a brief study of non-

linear modelling techniques in Chapter 2. We consider the current state of non-linear modelling
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and introduce the modelling technigues that are used throughout this thesis. One consequence of

this decision is that we sidestep the question of ‘what type of model should be constructed’.

It transpires that if we are prepared to assume that the underlying unknown pfasessooth,

of the form
y:f(xlv"'axd)+r (ll)

where the noise may be due to real noise or a lack of functional determinationmand . , z; are
input variables ang is an output, then many of the methodological problems of model building

can be rectified. These include being able to answer such questions as:

e To what extent do the inputs determine the output by a smooth model?

Given an input vectax how accurately can the outpytbe predicted?

How many data points are required to make a prediction with the best possible accuracy?

Which inputs are relevant in making the prediction and which are irrelevant?

This thesis addresses some important aspects of non-linear data analysis and modelling. In par-
ticular it is possible to estimate the variance of the nois¢ryaextract relevant input variables,

and determine how much data is required to build a model to a pre-specified accuracy. Moreover,
this information can often be directly computed from the raw data using efficient, scalable algo-
rithms. These ideas originated with the Gamma te@ialBjorn Stefinsson et al., 1997] and the

work of Koncar [Kortar, 1997] and are discussed in Chapter 3. An empirical justification for the
Gamma test is provided using several examples, including a chaotic system. A detailed theoretical

discussion is given in [Evans, 2001].

Chapter 4 describes the extensions to the Gamma test for data analysis. Techniques for feature
selection, estimating the model complexity, embedding dimension search, and irregular embedding
dimension search are all discussed. The experiments used within the chapter illustrate how each

techniques can be applied to real-world problems.

Until recently the Gamma test had been used to measure the variance of the noise, i.e. the second
moment of the noise distribution. It became clear that a simple extension of the Gamma test
could be made to calculate the higher moments of the noise distribution and, to some extent, these
measurements allow the noise distribution to be reconstructed. This novel process is discussed in
Chapter 5.
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In one sense this thesis is about the constructiowinGamma, a commercial package which

acts as a ‘smooth data modelling’ test bench. We have integrated the techniques developed around
the Gamma test into a user-friendly, reliable, and comprehensive toolkit for the analysis of smooth
non-linear systems and then added the best available non-linear model construction algorithms.

The design, implementation, and usendfiGammeais discussed in Chapter 6.

However, the construction offinGammais really just the first step. Once the tool became

available it became possible to accomplish as routine many tasks, of interest in their own right,
which hitherto would have required considerable time and effort. Examples include the analy-
sis and modelling (and hence the control) of modestly high dimensional chaotic systems, fea-
ture extraction from genome strings for the classification of species [Chuzhanova et al., 1998],
the analysis of solar array data, and more effective commercial property price prediction

[James and Connellan, 2000].

Finally we apply the tools developed to the interesting question of flood prediction. Once precip-
itation has occurred the process of rainfall leading to flowing rivers is arguably a smooth, albeit
complex, dynamical system which should be amenable to analysis using the Gamma test and

smooth non-linear modelling techniques.

We can state the simplified problem as follows: Can we determine the river flow from historic
measurements of the river catchment area such as flow rates and levels and current environmental
factors such as rainfall? In Chapter 7 we initially approach this question in a purely theoretical
way by building a reasonably accurate ‘river simulator’ data generator and then by analysing the
data files produced. We then use this preliminary study of the simulator to analyse actual river and

environmental data from the UK Environment Agency to build a reliable flood prediction system.

lwinGammais available under licence for commercial and research use from the University of Wales.
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CHAPTER 2

An Introduction to Non-linear Modelling

The classical statistical approach to building models involves linear regression: a process of fitting
a straight line through some sampled data. This approach has been sufficient for many years
to describe those systems that behave linearly or approximately linearly, or can be appropriately

transformed to create a linear relationship.

However, there is a greater set of non-linear problems that cannot be approached non-parametrically
using these linear techniques. The realisation that linear regression could not accommodate the
analysis of these more complex problems led to the study of non-linear systems and the develop-

ment of modelling techniques to describe those systems.

2.1 Non-linear modelling techniques

The modern statistical approach to non-linear model building has led to techniques such as local-
linear regression, polynomial regression, kernel discriminant analysis, k-means cluster analysis

and principal component analysis, to mention but a few.

Recent inspiration for non-linear modelling has also come from the study of biological and evo-
lutionary systems, most notably producing the artificial neural network. This introduced a set of
techniques for non-parametric non-linear regression which include feedforward artificial neural

networks, radial basis function networks, and general regression neural networks. Training algo-
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2.2 Artificial neural networks

rithms for neural networks have developed to include the standard backpropagation and algorithms
based on Levenberg-Marquardt and conjugate gradient optimisation techniques. These algorithms
have provided the ability to train a neural network (using example data) to create successful non-

linear models.

We introduce two of these techniques for non-linear model building which will be used exclusively

in this thesisartificial neural networksandlocal-linear regression

2.2 Artificial neural networks

McCulloch and Pitts developed the first computational representation of a neuron, a device that
took a weighted sum as the input and generated an outgubof depending whether the sum

was above a given threshold [McCulloch and Pitts, 1943]. They showed that such circuits could
implement any given logic function, but did not provide a training mechanism to produce such a

circuit — in fact this remains a very difficult unsolved problem.

Rosenblatt developegerceptrons[Rosenblatt, 1962], single layer feedforward networks of
McCulloch-Pitts neurons, and focussed on the problem of how to find appropriate weights for
a particular computational task. At about the same tdalines(which were similar to percep-
trons) were developed by Widrow and Hoff [Widrow and Hoff, 1960]. The training algorithms
developed were only applicable to single layer networks, i.e. one layer of inputs connected to an

output layer.

The weaknesses of the single layer perceptrons were highlighted by Minsky and Papert. They
demonstrated that perceptrons could only solve linearly separable problems, that many classes of
interesting problems wermtlinearly separable, and conjectured that a suitable training algorithm

for multi-layer perceptrons would be difficult to develop [Minsky and Papert, 1969]. The conclu-
sions of their inquiry largely destroyed the scientific interest in artificial neural networks for 15

years.

The situation changed in the mid 1980s with the advent of two quite separate developraekis:
propagation actually developed earlier but whose significance was not immediately appreciated,

and Hopfield networks, which are largely outside the domain of this thesis.

Backpropagationoriginally developed in the context of adaptive control theory, was certainly the

most influential development in the field of artificial neural networks applied to non-linear mod-
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2.2 Artificial neural networks

elling. It regenerated the interest in neural networks which was lost after Minsky and Papert pub-
lished their work on perceptrons. Backpropagation was first discovered by Werbos [Werbos, 1974],
and re-discovered by Rummelhart, Hinton, and Williams [Rumelhart et al., 1986], [Le Cun, 1986],

and Parker [Parker, 1985]. Backpropagation was a technique of training multi-layer perceptrons

by adjusting the connecting weights in successive layers.

The theoretical basis for feedforward neural network approximation stems from the fact that stan-
dard feedforward neural networks, with as few as one hidden layer, using (fixed) arbitrary sig-
moidal functions, can approximate to any desired degree of accuracy any continuous function
f: R™ — R™ over a compact subset Bf*, provided sufficiently many hidden units are available

[Hornik et al., 1989] and [Cybenko, 1989]. This is, of course, an existence theorem and gives no
guarantee that any particular training method will converge to the required approximation, nor any
indication of the number of hidden units required. However, it is an important result analogous to

the approximation of continuous functions by polynomials (Weierstrass's theorem).

In practice a second hidden layer can often be used to reduce the number of hidden units in a single

hidden layer network, so leading to a more efficient representation.

Multi-layer perceptrons trained using backpropagation must have differentiable output functions,
so the threshold unit proposed by McCulloch and Pitts had to be replaced. The typical choice of

output function is a sigmoid (see Figure 2.2).

2.2.1 How a feedforward neural network works

An input is passed into the network in a feedforward process to produce an output. The input to
each node is calculated for the first layer using (2.1), the processing at each node is performed,
and the output is fed forward to the next layer. This process continues through the network until

the outputs are produced from the network.

A representation of a neural network is shown in Figure 2.1. This particular networlkPh#&s
architecturé. The nodes in the input layer and the bias nodes do not perform any processing (the
role of bias nodes will be discussed again in connection with the network activation function). The
remaining nodes in the network perform processing, and are indicated with a sigmoid in Figure
2.1.

The bias nodes, shaded in grey in Figure 2.1 do not perform any processing and are in effect hidden from the user.
It is the connection weights from the bias nodes to the rest of the network that are significant.
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2.2 Artificial neural networks

t

(O node
Q© bias node

t,

ts

Input Layer Hidden Layers Output Layer
Figure 2.1 : An artificial neural network with a 2-3-3-3 architecture.

Input layer nodes

The input layer nodes do not perform any processiag the output of the input layer nodes is the

input to the network.

Activation function

The input to the*” node is processed as a sum of the outputs of the nodes in the previous layer

multiplied by their connection weights to th& node, defined as
neti(yl, . ,ym) = Z wijyj — 91 (21)
j=1

wherem is the number of nodes in the previous layey; is the weight from thgi’" node to the

it" node,d; is the threshold for th¢" node, andy; is the output of thei node (in the previous

layer). In practice the thresholds are implemented by adding a ‘bias node’ to each layer, which is
always on (indicated as shaded node in Figure 2.1), and is connected only to the nodes in the next
layer. These connection weights can then be adjusted during learning without special treatment in

the implementation to create the threshold.

We shall call (2.1) theactivation function(the literature is rather confused with regard to this

terminology).

Output function

Given the activatiomet; the output function determines the response of a node. The chosen func-

tion is typically differentiable, non-linear and monotonic to provide a smooth mapping between

2In practice we often pre-process the data using standard scaling and other routines.
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2.2 Artificial neural networks

continuous variables as shown in Figure 2.2.

1

-6 -4 -2 0 2 4 6
Activation

Figure 2.2 : Sigmoidal output function. This example is the logistic sigmoid function (2.2) using
the activation function (2.1) with 6; = 0.

The conventional output functions are either the logistic sigmoidal function

1
f(net;) = W 0<f<l (2.2)

or thetanh function

net; —net;

e — e
6neti + 6—neti

f(net;) = —-1< f<1 (2.3)

Bishop suggests that thanh function may offer a slight practical advantage over the logistic
sigmoid for the hidden layer nodes, although his evidence is purely empirical [Bishop, 1996]. In
fact the precise details of the sigmoidal output function are largely irrelevant to the overall scheme

of things, although some choices may offer implementational advantages.

2.2.2 An introduction to training algorithms

Neural networks for non-linear regression are trained by example using input-output data. The
purpose of training is to minimise some measure of error on the training data by adjusting the

model parameters.

If we define the error function to be a differentiable function of the outputs, e.g. sum-of-squares,
then the error becomes a differentiable function of the weights. In this way the minimisation of

the error becomes an optimisation in weight space.

Consider the standard sum-of-squares error function

B(w) = Bz,t) = 3 (2~ 1;)’ (2.4)
j=1

wherez is the network outputt is the target output, and is the number of nodes in the output
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2.2 Artificial neural networks

layer. If we differentiate we obtain the error at each output node

OF

aizj =2z - tj (25)

forl1 <j <n.

A simple algorithm for network training is described in Algorithm 1. The training data is peri-
odically shuffled to avoid repetitive cycles that may result in the algorithm getting stuck at local
minima. Each vector is then fed into the network and the error calculated between the expected
output and the actual output and the weights in the network are adjusted accordingly. The algo-

rithm tests to see if the stopping criteria has been reached after each iteration.

{initialisation }

establish stopping criteria
determine the network architecture
initialise the weights

{training loop }
while the stopping criteria has not been reached do
shuffle the data
for i=1to M do
feedforward  x(i) through the network to calculate the error
adjust the network weights to reduce error
end for

end while

Algorithm 1: A generalised algorithm for neural network training.

In Algorithm 1, the method of adjusting the weights to reduce the error is not discussed. Several

techniques for error minimisation are examined in the next section.

2.2.3 Error minimisation techniques for training algorithms

Training is a technique used to minimise the error of a network. The network weights are adjusted

until the error is at a minimum or a predefined limit has been reached.

In the neighbourhood of a minimum the error surfégigv) is approximately quadratic and some
training algorithms are optimised for this case. Consider the second order Taylor expansion of

E(w) around the minimum poing*

E(w) = E(w*) + (w — w")TVE(w") + %(W —wHTH(w — w") (2.6)

where H is the Hessian matrix. At the minimumv* the linear term is eliminated since

VE(w*) = 0and the quadratic error function can be expressed as
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2.2 Artificial neural networks

E(w)=E(w")+ %(w —w)TH(w — w"). (2.7)

We shall consider quadratic error surface minimisationsteepest descentonjugate gradient

descentandquasi-Newton methods compare the utility of each technique.

It is important to note that both conjugate gradient descent and quasi-Newton methods compute
the Hessian matrix to perform the minimisation, whereas gradient descent does not. It will be-
come apparent that gradient descent cannot match the optimisation performance of these other

techniques.

Steepest descent

Steepest descent is an iterative minimisation process that descends in the direction of the steepest

local gradient.

The rate of convergence to the minimum is dependent on the stepesidehe addition of other
factors, for example momentum. Consider the step size: too small and the algorithm takes a long

time to converge, too large and the algorithm fails to converge.

The concept of gradient descent is illustrated in Figure 2.3. The error function (shown as contours
in the figure) is minimised by repeatedly taking steps down the steepest gradient. In this example

the step size is decreased as the minimum is approached.

Figure 2.3 : Gradient descent.

In addition to having an adaptive step size, momentum can be applied to the algorithm to ensure

that advantageous directions are maintained, as shown in Figure 2.4.

3The step size corresponds to the learning rate in neural network terminology.
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2.2 Artificial neural networks

Figure 2.4 : Gradient descent with momentum.

Conjugate gradient descent

Conjugate gradient descent uses past gradient measures to improve the minimisation process. After

a minimisation has been performed in one direction, that direction is not considered for minimisa-

tion again.

The minimisation shown in Figure 2.5 for 2-dimensions requires only two steps to minimise the
function, whereas the steepest descent minimisation for the same function (shown in Figure 2.3)

requires many more.

Figure 2.5 : Conjugate gradient descent.

Quasi-Newton methods

Quasi-Newton methods attempt to obtain the location of the minimum of the quadratic surface

from the Newton direction, obtained using the inverse Hessian.

Figure 2.6 : The Newton direction used in Quasi-Newton methods.
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2.3 Backpropagation

In reality it is computationally expensit¢o compute the Hessian directly, so an approximation is
achieved iteratively. Initially the algorithm performs gradient descent, but as the approximation of

the Hessian improves, the convergence to the minimum can be rapid.

2.3 Backpropagation

The backpropagation learning algorithm [Rumelhart et al., 1986] is the original multi-layer local

gradient descent minimisation technique.

2.3.1 Weight adjustment to the output layer

The change in connection weights between the output layer and the preceding layer is defined as

_OE
n@wjz
wherej is the output layer node index K j < n), z is the preceding layer node indek € z <

Awj, = (2.8)

t), andn > 0 is the learning rate.

Expressing (2.8) for known terms we obtain

OF Onet; onet
Aw;, = — L —ns. J 2.
Wi nanetj owj, 1 owj, (2.9)
where
OF OF 0z; , oFE
L= = — — = — ;) — 2.1
% Onet; 0zj Onet; F(net;) 0z (2.10)

If we now use the logistic sigmoid output function (2.2), sum-of-squares error function (2.4) and
(2.5), we obtain
Aw;, =16y (2.11)

wherey is the output from the previous layer and
d; = —f(net;)(1 — f(net;))(z — t;) (2.12)

and now (2.11) expresses the weight adjustment in terms of known quantities.

“Evaluation of the Hessian has time complex@y N7/ ?) and computation of the inverse @(1W?3) (where N is
the number of data samples, and W is the number of weights).
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2.3 Backpropagation

2.3.2 Weight adjustment to the hidden layers

We adjust the parameters in the hidden layers to minimise the error using

OF Onet; aneti

Awi, = —— — T
Wiz naneti Ow;, 0 ow;,

(2.13)

wherei is the hidden layer node index,is the preceding layer node index, and write, using the

chain rule,

_8E __8E 8yl o AaiE__/ A n '8n€tj
aneti o 8yz 8716757; - f (netz> ayz - f (net1> Z(SJ 8 - (214)

=1 ’

i

wheren is the number of nodes in the succeeding layer (i.e. the output layer if we are considering

the final hidden layer), ang is the output of node.

Using the logistic sigmoid output function (2.2), the sum-of-squares error function (2.4), and (2.5),
then
Aw;, = nd;x, (2.15)

wherez is the output from the previous layer and

51' = —f(neti)(l — f(netz)) f: 5jwﬂ (216)

J=1

which again expresses the weight adjustment in terms of quantities known at this stage.

The algorithm then proceeds by recursing these steps backwards through the layers until the last
set of weights are adjusted. Threshold adjustment is effected without special provision using the

bias nodes.

Thus the implementation of backpropagation involves a forward pass through the layers to esti-
mate the error, and then a backward pass modifying the weights to decrease the error. Practical
implementations are not difficult, but without modification it is still rather slow, especially for sys-
tems with many layers. Still, it is at present the most popular learning algorithm for multi-layer

networks.

Backpropagation, being based on local gradient descent, can in principle fail and become stuck in
a local minimum in weight space. In this case it is customary to re-initialise the weights, perhaps
adding more hidden nodes, and re-start training. However, it is interesting to note that, provided
sufficient hidden nodes are present, such failure rarely occurs in practice. This appears to be be-
cause ‘good solutions’ are quite prevalent in weight space. Were it not for this rather fortuitous

fact, the backpropagation algorithm would not be nearly so useful and Minsky and Papert’s doubts
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2.4 Conjugate gradient descent

about the existence or practicality of locally computed multi-layer learning algorithms for feedfor-

ward networks might have proved correct.

2.3.3 Learning rate

To achieve convergence with a local minimum we musgsifficiently small so that the errds

will decrease at each successive step to satisfy the condition

=0 Vw; 2.17
(5wij wj ( )

Thenw in (2.17) will hopefully correspond to the global minimum (or at least a local minimum
sufficiently close to the global minimum). We would expect a steady reduction in error for a
sufficiently smally because the average direction in weight space should be approximate to the
negative of the local gradient. We need to be aware that the optimum valuevitiftypically

change during the minimisation process.

2.4 Conjugate gradient descent

A full account of conjugate gradient descent can be found in [Bishop, 1996]. What follows is a

summary of the technique.

2.4.1 Conjugate directions

The concept of conjugate directions is illustrated in Figure 2.7. Consider a minimisation along
d; which is achieved when poi ;. is reached. At this stage a new directidp,; is chosen
such that the new direction is conjugate, i.e. the gradient parallel to the direlgti@mains zero

(indicated by the dashed line). The curved dotted lines represent the contours of the function.

To achieve successive conjugate search directions, the grgdieriv E(w) of the error surface

at the next point must be a minimum in the current search diredtjoiThis is satisfied when
d;11Hd; =0 (2.18)

whereH is the Hessian matrix evaluated at the paint ;. Search directions which satisfy (2.18)

are said to beonjugate
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2.4 Conjugate gradient descent

W
Figure 2.7 : Conjugate directions.

When choosing successive search directidns, it is possible to express (2.18) for a set of con-
jugate search directions (up to the dimensiondlityof the weight space) where each direction is
conjugate to all others
T o . .
d;Hd;, =0 j#i (2.19)

Once a search direction has been established we can use a line search technique to find the mini-

mum along the search direction.

2.4.2 Line search

Once we have established along which directigrirom w; we need to minimise, we can apply a
line search algorithm to perform a 1-dimensional minimisation of the error surface to give the new

weightw ;. The new weight is generated by
w1 = w; +a;d; (2.20)
where the parameter; is calculated using a line search technique such that
gj+1 =VE(w;+a;d;) =0 (2.21)
is a minimum.

A full description of Brent's Method a robust line search algorithm that uses inverse parabolic

interpolation to perform the line minimisation, is provided in [Press et al., 1992].
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2.4 Conjugate gradient descent

2.4.3 Search direction

We have introduced the method to generate conjugate directions to reach the minimum of a

guadratic inl¥ steps using the Hessian (2.19).

Now we need to consider the practical implications of constructing the set of mutually conjugate
directions. This can be achieved by selecting the first direction to be the negative grhdient
—g1 and then choosing each successive direction to be a linear combination of the current gradient

and the previous search direction
dj+1 = —gj+1 + 6;d; (2.22)
where the co-efficient§; can be found by using the conjugacy condition to give

T
8j+1(8j+1 — &j)
e (2.23)
g; &j

when expressed in theolak-Ribiereform (considered the superior conjugate gradient algorithm

[Press et al., 1992]). Note that we have reformulated the method to avoid calculating the Hessian.

2.4.4 Algorithm

What should be apparent is that we have managed to derive a procedure for finding the next search

direction and the required step size, all without explicitly using the Hessian.

The conjugate gradient descent procedure is expressed formally in Algorithm 2.

{initialisation }

j=1

choose an initial weight vector w(j)

compute the gradient vector g(j) at w(j)

set initial search direction d(j) = —g(y)

perform line minimisation along search direction d(j)

compute w(j+ 1)

{main loop }

while the stopping criteria has not been reached do
j=j+1
compute the new gradient vector g(y) at w(j)
compute the new search direction d(y)
perform line minimisation along search direction d(j)
compute w(j—+1)

end while

Algorithm 2: Conjugate gradient descent.
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2.5 BFGS (Quasi-Newton) method

2.5 BFGS (Quasi-Newton) method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithmva@able metricor quasi-Newton

method. Consider again the quadratic error function evaluatedretar to the minimunw*

B(w) = E(w") + %(w — W) H(w — w) (2.24)
The location of the minimum can be determined directly by differentiating (2.24)
g=VEw)=H(w-w")=0 (2.25)
to give an expression for the minimuwi*
w'=w—-Hlg (2.26)

The vector—H!g is the Newton directiorand when evaluated at asy on a quadratic error

surface will point to the minimum of the error functievi*.

2.5.1 Updating the weights

The algorithm is iterated to minimise the error surface since, in reality, it will only be approxi-

mately quadratic near to a minimum

Wit = W; — Hilg]’ (227)

If we consider the relationship between the weight and gradient vectors generated at two successive

steps then we derive tligiasi-Newton condition

wi —wj=-H g1 —gj) (2.28)

The computational cost of generating the inverse Hessian is prohibitive so quasi-Newton algo-
rithms operate by iteratively generating more accurate approximations to the inverse Hessian ma-

trix G. The approximation must be constructed to satisfy the quasi-Newton condition (2.28).
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2.6 Local-linear regression

2.5.2 Approximating the inverse Hessian matrix

The BFGS expression provides a way to iteratively estimate the inverse Hessian matrix

pp’  (GV)V'G;

Gj1 =G+ o7V VTG + (vI'Gjv)uu” (2.29)
where
P=Wji1 —Wj (230)
V=gj+1—8;j (2.31)
o) G;v
_ _ 2.32
v plv  vIGjv ( )

We can verify that the BFGS method does satisfy the quasi-Newton condition through direct sub-

stitution of p, v andu into (2.29).

The algorithm is initialised by settinG equal to the identity matrix, taking the first step down the

steepest gradient.

2.5.3 Line search

Line search is used to ensure that the Newton step (2.26) does not take the algorithm outside of
the quadratic approximation

Wit1 = Wj + Oéjngj (233)

whereq; is found by line search. The line search ensures that successive iterations of the algorithm
reduce the error. One technique that can be used to perform the line minimis&ient's Method
[Press et al., 1992].

2.5.4 Algorithm

The BFGS algorithm is described in Algorithm 3.

2.6 Local-linear regression

Local-linear regression performs linear regression through,thge nearest points to a query point

to produce a linear model in the locality of that query point. This process is repeated across the
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2.6 Local-linear regression

{initialisation }

j=1

set the inverse Hessian to the identity matrix G =1
choose an initial weight vector w(j)

compute the gradient vector g(4)

{main loop }

while the stopping criteria has not been reached do
compute the search direction d(j) = G()g(y)
perform line minimisation in search direction d(j) to compute w(j+1)
compute the gradient vector gj+1)
update the inverse Hessian G(j + 1) according to the BFGS method
j=Jj+1
end while

Algorithm 3: The BFGS algorithm.

training data to produce a piece-wise linear model. One of the many methods available to perform

a nearest neighbour search is the k-d tree described in Appendix A.
Given a neighbourhood @f,,.. points we must solve the linear matrix equation
Xm=y (2.34)

whereX is apma, x d matrix of thep,,., input points ind-dimensionsx; (1 < i < pp.) are
the nearest neighbour pointg,is a column vector of lengtp,,,... of the corresponding outputs,
andm is a column vector of parameters that must be determined to provide the optimal mapping

from X to y, such that

m1
T11 T12 ri3 - Tid Y1
ma
T2 22 T23 - T2d Y2
ms = . (235)
:Bpmacvl mpmaz2 :Epmaz'?’ :Z:pma,zd ypmaz
mq

Therank r of the matrixX is the number of linearly independent rows, which will affect the

existence or uniqueness of solutionsifor

If the matrix X is square and non-singular then the unique solution to (2.3#) s X 'y. If X

is not square or singular then we modify (2.34) and attempt to find a vacwhich minimises
IXm — y|? (2.36)

As was proved by Penrose the unique solution to this problem is providea by X#y where

X# is the pseudo-inverse matrix [Penrose, 1955], [Penrose, 1956].
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2.6 Local-linear regression

For any given matriXX € RPmezxd the matrixX# € R4*Pmes is said to be gseudo-inversef

X if the following conditions are satisfied

XX#X = X

X#XX# = X

(XX = XX7#

(X#X)T = X#X (2.37)

whereT' denotes the transpose of the matrix. The tegeseralised inverser Moorse-Penrose

inverseare also commonly used for such Xt .

If X is square and non-singular th&ii* is just the inverse matriX . In practice, the computa-
tion of X# is modestly demanding for large matrices. There are many algorithms for approximat-

ing pseudo-inverses [Kerr, 1985] and [Penrose, 1955].

A generalised technique to solve (2.34) fer is singular value decompositio(EVD), which

is a computationally expensive but a widely accepted technique for its accuracy. Both
[Press et al., 1992] and [Cherkassky and Mulier, 1998] provide good introductions to linear al-
gebra and SVD, especially in the wider context of learning from data. For the purpose of this
discussion of modelling techniques, we shall focus on introducing SVD for local-linear regression

and side-step the more general subject of linear algebra.

2.6.1 Singular value decomposition

[Tsui, 1999] has taken the separate theories given in [Press et al.>169#tpvide a unified ac-
count of SVD, where the context of the discussion is similar to this thesis. The detail contained

within that thesis will not be replicated here.

SVD is based on a generalisation in linear algebra that any symmetric matrix can be diagonalised
via an orthogonal transformation. This leads to a technique to obtain the inverse of a non-singular
square matrix, in this cas¥~—!. SVD also solves the linear least squares approximation (2.36)

without requiringX to be non-singular or even square.

From (2.34),X is anp...; X d matrix that can be written, using a standard theorem of linear
algebra, as
X =UwWVT (2.38)

S[Press et al., 1992] focus on providing an algorithm rather than defining the theory behind SVD in a contained

manner.
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2.6 Local-linear regression

whereU is ap,q. x d orthogondt matrix, V is ad x d orthogonal matrix, and is ad x d
matrix with positive or zero elements (singular values) such thatv; > wy > ... > w, > 0,

wherer is the rank ofX. Then rewritingW

A0
W = (2.39)
00
where
A = diag(wn, ..., w,) (2.40)
provides a definition for the pseudo-inveXé
A0 g
X#* =V U (2.41)
0 0

Then to find a solution fom that minimises (2.36), let

m = X%y
A0 T
=V U’y (2.42)
0 0
where
A~ =diag(1/wy,...,1/w,) (2.43)

The inverse of the orthogonal matricksand V are their own transpose (i.&/U7 = I and
VVT = I). Hence the process of finding using (2.42) is trivial onc& is decomposed using

(2.38). It is this decomposition & to generatdJ, V, andW that now needs explanation.

The columns olU are the eigenvectors ®& X7, the columns oV are the eigenvectors ®&”'X,

and the singular values on the diagonaMif are the square roots of the eigenvalueXa” or

XTX (they have the same eigenvalues). The process of extracting the eigenvectors and eigenval-
ues is more difficult to explain and beyond the scope of this general introduction to modelling.
The full computational process to perform the decompositioK @fiven in (2.38) is provided in

[Tsui, 1999] and [Press et al., 1992] provide an algorithm written in C.

2.6.2 Dynamic local-linear regression

Alocal-linear regression model constructed from training data is fixed (or static) once constructed.

However, a simple modification can be made to take account of newly available data to give the

A matrix is orthogonal if its inverse equals its transpose.
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2.7 Comparison of modelling techniques

model a dynamic behaviour. This dynamic behaviour is relatively straightforward to implement:
after the model is tested with a new input-output data point, the new test point is added to the
training data. When the next query is made to the model, the new point is available to use in the

local-linear regression.

The dynamic nature of the model makes it ideal where initially limited training data is available,
or where rapid learning is required (a neural network would have to be re-trained to take account

of new data).

2.7 Comparison of modelling techniques

We have discussed two techniques for modellifegdforward neural networkandlocal-linear

regression This section provides some practical information regarding the main differences.

Local-linear regression models do not require training in the same way that neural network models
do, although they do require a nearest neighbour algorithm to operate efficiently. If a k-d tree (see
Appendix A) is chosen as the nearest neighbour algorithm then the time complexity of model con-
struction isO(M log M) for M training points (this is typically many orders of magnitude faster
than training a neural network). In addition to the nearest neighbour algorithm, the local-linear
regression models need to consist of the training data (since that defines the model’s experience)
and some modelling parameters. During testing,the, nearest neighbours are found for each
query point, so for a training set consisting/df vectors and a test set &f vectors a full test has

a time complexity ofO (N log M) with additional complexity due to the dimensionalityof the
input-space. The resultant local-linear regression model is a piece-wise linear model producing an

approximation of the underlying smooth model.

Neural network models require training and this can be a time consuming process for large or com-
plicated data sets. However, in comparison to the local-linear regression models, testing is much
faster due to the simpler calculations involved. Contrary to local-linear regression, the network

produces a smooth non-linear model.

Figure 2.8 shows a cross-section through a neural network and local-linear regression model

trained using the same data.

The prediction performance of a local-linear regression model is limited by the number of exam-

ple data points in the vicinity of the query point. If the nearest neighbours are distant then the
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(&) A neural network provides a smooth (b) A local-linear regression model produces
non-linear model. a piece-wise linear model that approximates

a smooth function.

Figure 2.8 : A comparison between neural networks and local-linear regression.

prediction quality is very low. This is evident in Figure 2.8(b) where the spikes on the LHS of the

plot are produced because the query point has no reliable near neighbours for reference.

2.8 Conclusions

There are many neural network training algorithms ranging fronotiginal backpropagation,

which relies on a gradient descent minimisation of the error surface with respect to the network
weights, to the more mathematically advanced optimisation routines using the Hessian matrix and
conjugate gradient descent. For most neural network applications it is now unrealistic to think that
backpropagation provides the best training algorithm since the performance is much lower than

the alternatives.

Regardless of the technique used to train a neural network it will always produce a smooth non-
linear model. The model will often behave reasonably well outside of the region for which it was
trained. Local-linear regression models on the other hand perform a piece-wise linear regression
that at best provides a close approximation to a non-linear surface, but will never provide a smooth
or continuous function. Local-linear regression models also cannot extrapolate beyond the region
enclosing the training data. This is a particular shortcoming of any data-derived model, but for a

nearest neighbour modelling routine it is especially difficult to overcome.

Local-linear regression models provide some benefit for rapid modelling. They do not require
training, unlike a neural network, and although testing a model can be lengthy it is rarely pro-

hibitive. It is also very easy to add new data points to the nearest neighbour structure (at least for
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2.8 Conclusions

a k-d tree) allowing the model to adapt when new data becomes available. In comparison a neural

network would require a period of re-training to achieve a similar dynamic effect.

It can often be difficult to train a neural network to an appropriatley low error when the data
justifies it. Sometimes this can be achieved for local-linear regression models when there is a high
density of data, which is not an unreasonable assumption when working with artificially produced

data or data produced from instrumentation.
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CHAPTER 3

The Gamma Test

In this chapter we present tli@&amma tesas a non-linear data analysis routine to be used prior
to modelling. A more general background to the problem of predictive learning and function

approximation can be found in [Friedman, 1994].

To construct a successful model we must capture the systematic behaviour of the observed system.
For a data-derived model this can be achieved by sampling the system at characteristic points or
intervals to create a representative data set that can later be used to build the model. However,
there may be several reasons why the systematic behaviour cannot be fully captured within the
data: there may be measurement errors, the system may contain noise, for time series the sampling

rate may be too low, or perhaps the relevant variables were not measured

The Gamma tests a smooth non-linear data analysis technique that can measure the extent to
which the systematic behaviour of a smooth system can be captured. In the most basic sense
it can be used to determine the variance of the noise in a data set. However, the application of
the Gamma test can be applied to embedding dimension search and feature extraction. More
generally it appears that, given sufficient data, an elegant extension of the Gamma test can be
used to estimatall the higherevenmoments of the noise distribution, or at least as many as is
justified by the amount of data. These techniques are discussed in more detail in Chapters 4 and 5

respectively.

The premise for the Gamma test arose from the definitiornfinuityand smoothnessand a

we shall use the termoiseto collectively refer to all of these aspects (unless otherwise stated).
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3.1 Techniques to improve model quality

paper by [Piand Peterson, 1994]. The idea being th#ti§ a continuous function then, in the
absence of noise, if inputs(i) andx(j) are close we should expegti) andy(j) to be close,
wherey(i) = f(x(i)) andy(j) = f(x(j)). If y(i) andy(j) arenot close it can only be because

of the presence of noise. The Gamma test attempts to quantify this observation using the average
distance between near neighbow($) andx(j) and the corresponding average distance between

y(i) andy(j) to derive an estimate of the amount of noise present.

3.1 Techniques to improve model quality

It is widely recognised that the best models capture only the systematic aspects of the data. Other
aspects of the data due to noise are reduced or eliminated. This ability to include only the system-

atic behaviour is calledeneralisation

The quality of a model is primarily determined by its ability to generalise for unseen data. There
are several secondary considerations that will affect the generalisation capability of the model,
such asis there enough training data? are the chosen variables relevahtand ‘what is the

expected model performance?

In this chapter we offer techniques designed to answer these questions and study their practical

benefits using several examples.

3.1.1 Generalisation

Early stopping in training is a technique that can be used to facilitate good generalisation. Con-
ventionally this requires two or three data dets training set to build the model, a validation set
to test the model during training (not necessarily required), and a test set to test the model once

training has been completed.

The model is trained using the training set and periodically tested with the validation set. If the
training error and the validation error reduce then the training process is continued, otherwise if the
validation error rises then training is stopped. Témshoctechnique ensures that the model does

not overfit the training data and so should provide a model with good generalisation capabilities

Other techniques designed to enhance or maintain generalisation focusstmdijral stabili-

2All data sets are assumed to arise from the same system.
8Using a validation set cannot guarantee to improve the generalisation performance.
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sation(where the number of adaptive parameters in the network are adjustehgiqrisation
(where a penalty is added to the error function for less smooth mappings), arafiiing with

noise(noise is added to the input vectors to create additional samples).

All of the techniques discussed so far work without any prior knowledge of the amount of noise
in the data. An additional approach to improving generalisation has recently arisen because we
can now determine the noise present in a data set prior to model building using the Gamma test
[ADalbjorn Stensson et al., 1997]. This noise estimate provides a lower bound on the best model

performance. This approach has a number of advantages:
1. The noise can be determined directly from the training data.
2. The best model performance is known prior to model building.
3. The noise estimate provides a stopping criteria for training.

4. The significance of variables can be tesfeatUre selection

5. The quantity of available data can be tested to see if there is sufficient data to build a suc-

cessful model.

6. The model complexity can be estimated.

~

. The need for a separate validation set can be reduced or eliminated.

To a large extent these advantages of the Gamma test remove the necessity for a validation set.

In addition, existing techniques for model generalisation are enhanced by using the Gamma test to

compute in advance what the best model performance can be without overtraining.

3.2 An introduction to the Gamma test

The Gamma test is a near-neighbour data analysis routine that estimates the variance of the
noise in continuous data. The inspiration for the Gamma test came fronbDé¢ha test
[Pi and Peterson, 1994] and the definition of continuity: if a function is continuous then near points

in input-space should be close in output-space, i.e.

lim (e +x) = f(x) (3.1)

wheref is a continuous functiorx is a point, and + x is a point close tcx.
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3.3 Supporting heuristic arguments

3.2.1 A Discussion of non-linear regression

Although many physical phenomena are non-linear and continuous, our measurements of these
systems are discrete. We therefore require mathematical techniques to reconstruct the continuum

in order to study, predict and control these systems.

We are going to discuss some of the issues relating to the successful fitting of smooth surfaces
through discrete data measured from continuous systems. In particular we are going to concen-
trate our immediate discussion on the continuity and smoothness of the underlying function that

generated the data.

3.2.2 Assumptions

The principal assumptions associated with the Gamma test are:

1. The training set inputs are non-sparse in input-space (i.e. as the number of data points in-

creases the first nearest neighbour distances reduce).

2. Each output is determined from the inputs by a deterministic process which is the same for

both the training and test sets.

3. Each output is subjected to statistical noise whose distribution may be different for different

outputs but which is the same in both training and test sets for corresponding outputs.

3.3 Supporting heuristic arguments

The theoretical proof of the Gamma test has only recently been completed and is the subject of
another dissertation [Evans, 2001]. However, we provide an heuristic explanation of the basis of
the method and subsequently illustrate the range of applicability using a chaotic time series as a

further example.
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3.3 Supporting heuristic arguments

3.3.1 Introduction

For simplicity we consider the case where we are given data sag(plés, y(i)) : 1 <i < M},
where thénputsx (of dimensiond) are confined to a closed bounded@eind the scalasutput$

y are generated by an unknown smooth functfanC’ € R? — R

y=f(z1,m2,...,2q) + 7 (3.2)

The indeterminable partmay be due to real noise or a lack of functional determination. We shall
consider explicitly the case whereis due to real noise (a lack of functional determination can

only be remedied by measuring new variables).

We use the Gamma test to determine the variance of the noigg vahis provides a lower bound
on the mean squared error of the outp(ite. the variance aoj — f(x)), beyond which any attempt
to improve training will result in over-training. Note that we assume that the noise has zero mean,

since a non-zero mean (bias) can be incorporated into the model.

Consider two data samplés, y) and (x', '), wherex’ is the first nearest neighbour &f i.e.
|x’ — x| > 0is minimaP. In the absence of noise it is reasonable to considerthatly’ must be

close. Heré - | denotes Euclidean distance.

The Gamma test is based on the statistic

IR T ))? 3.3
W—QM;(ZJ (i) — y(i)) (3.3)

Let § = maxXx’ — x| where the maximum is taken over all data samplesi(: < M ) then it
follows from our assumption of non-sparseness that 0 in probability asM — oo. Moreover

under reasonable conditions, for examplé i continuous, one can show that
%in(l)v = var(r) (3.4)

where the convergencedsnvergence in probabilityThis is a highly intuitive result but not quite

S0 easy to establish rigorously.

For finite data sets we cannot have arbitrarily small nearest neighbour distances, however in prac-

tice even the crude estimate provided by (3.3) often proves useful.

“We shall see later that vector outpytsare readily accommodated in the Gamma test at very little extra computa-

tional cost.
SNote thaty’ is not necessarily the first nearest neighbouy.of
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3.3 Supporting heuristic arguments

If we assume thaf is smooth with bounded first partial derivatives then we can generate a more

precise estimate by fitting a regression line usinguthg, near neighbours.

Given data sample(i), y(i)), wherex(i) = (x1(i),...,zq(i)), 1 < i < M, let N[i, p] be the

list of p** (equidistant) nearest neighbofite x(i) then, using a convenient abuse of notation, we

can write
1 & . N2
o(p) = MZW Z [x(i) — x(5)]
i=1 " jeNTi,p)
1 M . . 2
= 37 ; |x(1) — x(NJi,p])| (3.5)

whereL(NTi, p]) is the length of the listV[i, p]. Thusé(p) is the mean square distance to e

nearest neighbour. We also write

M
0 = 357 2 F S V)~ v (3.6)

JENTi,p]
where they observations are subject to statistical noise assumed independerdaraf having

bounded variance.

If now we assume that the unknown functigns smooth with bounded partial derivatives it can

be proved that for any > 0

+ = var(r) + A6 + o(8) + O (M}_R> as M — o 3.7)

whereA is a constant depending on the expectatiofVof|? with respect to the sampling distribu-
tion and the convergence is in probability. This is a much stronger result than (3.4) and very much
harder to prove [Evans, 2001]. This result generaliseptmearest neighbours, ferbounded

with respect taV/, forms the basis of the Gamma test.

The Gamma test computes the mean-squafedearest neighbour distanc&®) and the corre-
spondingy(p), wherel < p < pp,q.. and typicallyp,,.. =~ 10. Next the(é(p),y(p)) regression
line is computed and the vertical intercept is returned asghmma statistic By virtue of the
approximate linear relation (3.7) effectively this is the limit limasé — 0, which in theory is

var(r).

®In general the'" nearest neighbour of(i) may not be unique. If we defin& s, p] as alist of indexes correspond-
ing to the set of equidistapt™ nearest neighbours &f(;), this gives an implementation of the algorithm an opportunity
to report on unusual data files.
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3.3 Supporting heuristic arguments

3.3.2 Heuristic explanation

Using the Gamma statistic (3.3), consider the pairy), (x',v'), wherex’ is the first nearest

neighbour ofx, then for an individual terny’ — )2 in (3.3) we can write

2

W —y)? = (f&)+r'—fx)—r)
= (=12 (f(xX) — f(x) (7 =)+ (f(x) — f(x)° (3.8)

Using the smoothness assumption prve can expand the terrfi(x’) by Taylor’s theorem to

obtain

W~y = (" =)+ (X =% V)24 (0 =) —x)-V+o(X -x?) (39
wherer’ is the noise associated with the data gait ¢/).
The first step towards (3.7) is to average (3.9) overithdata points.

Now (' — r)? = 2 — 2r'r 4+ r2. Since the introduction of a new data point can be expected

to affect only asmall number of the near neighbour relationships in the input data we might
expect that the identically distributed variablBs = (r; — r;)? (1 < i < M) are ‘essentially
independent. We call a sequence of identically distributed random varialles. .., X, L-
dependenfasM — oo) if there exists an integel > 1 (independent ofi/) such that any one of
the X; is dependent on at mostof the others. One part of a rigorous proof consists of showing
thatRy, ..., Ry are indeed.-dependent withl, = 2K (d), whereK (d) (= O(2%)) is the kissing
number ind-dimensional space. It can be shown that one can treat sums of identically distributed
L-dependent variables in very much the same way as one can treat sums of identically distributed
independent variables, i.e. a form of central limit theorem applies. One important step of a rigorous

proof consists in justifying this assertion.

However, if this is true then, when averaged over ii@lata points, we expect, sinceandr are
independent and hence uncorrelated, that in probability the ﬁg@ R; approache&var(r) as

M — oo, i.e. the constant term in the approximate linear relationship (3.7). The second term on
the RHS of (3.9) corresponds to the second term on the RHS of (3.7).

The proof now reduces to two cases. In (3.7) &< M~3%* asM — oo then the linear regres-
sion performed by the Gamma test algorithm is unnecessary, the algorithm is simply returning the

asymptotic value ofy. Otherwise the terms ifi dominate, the rate of convergence is determined

"r! andr; are independent and identically distributed so the distributioR;06nly depends on the distribution of

Ti.
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3.3 Supporting heuristic arguments

by the size ofj in terms of M, but the linear regression inwill produce a vertical intercept that

converges in probability to vér).

Thus we can see that in many cases the probabilistic rate of convergence of the Gamma test will
be determined by the expected sizejoff C' is a chaotic attractor we might expecto be small,
but suppose the sampling distribution in input space has positive density then we might expect

6 ~ ¢/M?/* wherec > 0, asM — oo.

There is a discussion of such a result for a uniform sampling distribution on a torus in
[Cerfetal., 1997]. The difficulty of the analysis is caused by boundary effects, and the advan-
tage of a torus is that it has no boundary. However, in our €4isea closed bounded region &f

and the boundary effects are present. Nevertheless it emerges that for a uniform distribution over
a closed bounded subs@tof R? the result remains true. This follows from a deep unpublished

theorem of W. Schmidt, which asserts that in probability

M
1 / 2 _ cld) < 1 >
— x; — Xi|° = +o 3.10
M ;’ | M7 Mi (310

asM — oo, and that this holds, subject to some reasonable side conditio6$ onder a very

wide range of circumstances (see [Evans, 2001]).

This deals with the first near neighbours. If we were to apply the test in this form we should have

to progressively increas® until the estimate stabilised.

In fact, computing pairgd, ) for increasingM is not the best or only way to exploit the local
linearity of the(d,~) curve asd — 0. Since for a particular value d¥/ a pointx’, which is a
first near neighbour of, is liable to be a second or third near neighbouxdbr larger M, it

is reasonable to conjecture that, provigdei$ small with respect td/, the behaviour of thet"
nearest neighbour distance @sincreases will not substantially differ from the behaviour of the

first nearest neighbour distance.

As long asp remains bounded, rather than recomputing the first nearest neighbougspairéor
increasingM, it is a one shot computation to determine not only the first nearest neighbour for
each data vectat; but to compute the listd&/[i, p] for 1 < i < M consisting of the?" nearest
neighbour ofx (i) for 1 < p < pias (Wherep,,., = 10 say). This leads to the Gamma test in the

form described.

51



3.3 Supporting heuristic arguments

3.3.3 Implementation

The Gamma test algorithm is given in Algorithm 4.

{initialisation }

generate near neighbour structure (e.g. k-d tree)

for p=11to ppa do

5(p) =0
v(p) =0
end for

{main algorithm }
for i=1t0 M do

generate  NJ[i,p] {find the  p,... near neighbours of x(i)}

for p=11t0 P do
d(p) = 8(p) + [x(i) — x(NTi, p])]*
z(p) =0
for j=1to L(NJ[ip|]) do

z(p) = 2(p) + ly(i) — y(Ni,p][5])]?

end for
v(p) = v(p) + [2(p)/ L(Ni, p])]
end for
end for

for p=11t0 pue. do
§(p) = é(p)/M
v(p) = ~v(p)/2M

end for

{Gamma statistic  }
Perform least squares fit on
to compute y=Ax+T

return ( T,A)

(6(p),7(p)) where (1 <p < pmaz)

Algorithm 4:  The Gamma test algorithm.

The time complexity of the algorithm is determined by the data structure and search algorithm

used to find the nearest neighbours. Using a k-d tree [Friedman et al., 1979] the time complexity

is O(M log M), whereM is the number of data points and the implied constant also depends on

the dimensionality of the input data vectors. The k-d tree structure is discussed in Appendix A.

3.3.4 The Gamma scatter plot

It is possible to visualise the Gamma test. If we define

§ = [x(i) — x(5)[* (3.11)

v =5 —y())? (3.12)




3.3 Supporting heuristic arguments

for1 < i # j < M, then we can plot and~ to provide acloud of points that can indicate
the noise level visually. Superimposed on this scatter plot, we plot the averaged near neighbour
distancegqd(p),v(p)) from (3.5) and (3.6), and perform a linear regression (3.7) through these

points. The intercept with the axis &t 0 gives the estimate for the variance of the nolse,
We shall illustrate the Gamma scatter plot using a smooth function
f(z) = sin(4mx) + cos(2mx) (3.13)

Uniformly distributed noise with variand@03 was added to the function and sampled @0
points in the interval [0,1]. Figure 3.1 shows the underlying smooth function and the sampled

‘noisy’ points.

Figure 3.1: The smooth function (3.13) with added uniformly distributed noise (variance var(r) =
0.03, and M = 1000 sampled points).

Figure 3.2(a) shows a Gamma scatter plot for the smooth function (3.13) with no added noise. As
expected for a noise-free function— 0 asé — 0 and the estimate for the variance of the noise,
[=753x10"".

The form of the Gamma scatter plot changes when the Gamma test is run on the ‘noisy’ data set.
The effect of the noise is apparent in Figure 3.2(b) becauge-as0 theny 4 0. The Gamma

statistic for the noise in this examplelis= 0.0299 (the actual noise variance vaj = 0.03).

3.3.5 How reliable is the Gamma statistic: the M-test

The theory assures us thatiaks — oo the resulfl” of Algorithm 4 will converge to the true noise
variance with probability one. However, this does not in itself tell us how largk/dsa required
to give an accurate estimate of the true noise variance. We really need tohkwowuicklythe

estimate returned by the algorithm will stabilise to a close approximation of the true noise variance.
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(a) Gamma scatter plot for the smooth func- (b) Gamma scatter plot for the smooth func-
tion (3.13) with no added noise (M = 1000 tion (3.13) with uniformly distributed noise
sampled points). having variance var(r) = 0.03 (M = 1000

sampled points).

Figure 3.2 : Gamma scatter plots of the smooth function (3.13).

One simple way to accomplish this is to compute the Gamma stafistfor increasingV/ and
examine the resulting graph to determine whether the graph appears to be approaching a stable

asymptot&: we call this procedure th&/-test.

Fortunately, a single Gamma test is normally a relatively fast procedure so that runrningest

with a suitably selected step size is not a prohibitively time intensive procedure.

Using the illustrative example (3.13), the M-test can determine whether the Gamma statistic sta-
bilises for increasingly large sample sizes. This particular function satisfies the condition that the
sampling in input space remains bounded to a closed'd¢ere we have constrained the sam-
pling to take place in the intervé, 1]). If this was not the case, ard/ 0 asM — oo, then the

Gamma statistic may never stabilise.

Two M-test experiments were run on sampled pobits M < 1000 in steps ofl point and

for 1000 < M < 35000 in steps 0f200 points (where each point in input space was randomly
sampled in the interval, 1] using a uniform distribution). Figure 3.3 shows the resulting estimates
for the Gamma statistic. The M-test f8ar< M < 1000 is shown in Figure 3.3(a). The dashed

line indicates the theoretical noise variance and the dotted line shows a vdl® atbove the

81t is easier to do this by eye than to define a reliable and efficient algorithm.
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3.3 Supporting heuristic arguments

theoretical value. The Gamma statistic far > 200 remains bounded between these two lines,

providing a reasonably accurate estimate for I

Figure 3.3(b) shows that & ~ 18000 points, the Gamma statistic stabilises to a constant value

I" = 0.299, which corresponds to an error no worse thaf.3%).

This experiment shows that if eery accurate estimate for vaf) is required then a significant
amount of data is required. However, for most practical applications, an estimateihatli$’

accurate can be achieved with only modest amounts of data (in thidg£ase00).
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0. 045
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T 0.03F
0. 025
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200 400 600 800 1000 5000 10000 15000 20000 25000 30000 35000
M M

(a) The M-test shows the Gamma statistic for (b) The M-test shows a stabilisation of the
M = 1000 sampled points. The dashed line Gamma statistic at M =~ 18000 sampled
shows the theoretical noise variance and points.

the dotted line shows a noise variance 10%

higher. T" is bounded by these two lines indi-

cating that a reliable noise estimate can be

achieved with less than 1000 data points.

Figure 3.3: The M-test for the smooth function (3.13) with added uniformly distributed noise
(var(r) = 0.03) and a variable M sample size.

Performing an)/-test prior to model building can establish whether there is sufficient data to
get a reliablel’ estimate. The fact that the graph has stabilised indicates that we have enough
information (i.e. data) to accurately estimate the noise and so to construct a feasible surface with
the performance corresponding to the measured noise level. The Gamma test itself provides the
criterion for ceasing training of a non-parametric model such as a neural network. This is based on
the idea that one criterion of a good model is that when tested on unseen data it can be expected to
produce aMSEwhich is the same (or close to) the true or estimated noise variancassbciated

with the data. We shall return to this discussion of what constitutes a good model in Chapter 5.
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3.4 A further example using a chaotic time series

3.4 A further example using a chaotic time series

The utility of the Gamma test is illustrated using thértén map (a chaotic time series) which
provides an interesting function to study without requiring a detailed knowledge of chaos. This
section also illustrates that the Gamma test is remarkably robust with respect to the precise nature

of the sampling distribution of input space.

Hénon map

The Henon map is generated iteratively using the equation
rp=1-— axf,l + bxi_o (3.14)
wherexg = 0,21 = 0,a = 1.4 andb = 0.3.

We can treat the Bnon map as a time series, as shown in Figure 3.4(a).

1
0.5

0

Xt

0.5

-1

0 10 20 30 40 50
t

(a) The first 50 points of the Hénon time se- (b) The Hénon attractor with no added noise.

ries x, against t. The input space sampling is shown above

the attractor.

Figure 3.4 : H&non map.

The points of the map ergodically sample a set of zero measure but positive Hausdorff dimension,
called theattractor of the map. This can be extracted from the time series data and visualised
by simply plotting the inputs to the function against the output as shown in Figure 3.4(b). At the

bottom of the diagram (in the 3-dimensional representation), the relationship between the output
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3.4 A further example using a chaotic time series

x¢ and the input variables; ; andz;_5 is shown. This would be the hypothetical surface that we
might seek to construct in a modelling exercise wheris treated as a function af._; andx;_».

At the top of the diagram a projection shows the input variables andx;_s.

3.4.1 Noise estimation

After generating the noise free data, noise with a known distribution and variance is added to the
output only. Figure 3.5 shows the change. Note that the inputs are unaffected by the noise because
the noise was added after the data set was constfuctais was done to ensure the Gamma test

measured the known noise on the output, and the result was not affected by noise on the inputs.

Figure 3.5: The Hénon attractor with uniformly distributed noise added to the output (var(r) =
0.01). The noise-free input space sampling is shown above the attractor.

Experiment description

The Henon map (3.14) was used to generiafe= 1000 data points using two past values as the

input (z;—1,x;—2) andz; as the output.

A series of data sets was created by adding noise to the output with a uniform distribution with
mean zero and variance ranging from 0 to 0.01 in steps of 0.002. This corresponds approximately

to a noise amplitude between 0% and 4% of the original signal.

®Noise on the inputs producesfectivenoise on the output. The detailed analysis of this interplay would take us

beyond the example, although it is an interesting issue.
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3.4 A further example using a chaotic time series

Results

The Gamma test was run on each data set with 2 to 30 near neighbours. The results of this
experiment are shown in Figure 3.6. The dashed lines indicate the noise level of each data set, the
solid lines indicate the Gamma statistic for each near neighbour for each data set, and the error
bars provide a rudimentary estimate of the error of the estimated noise variance using the standard
error (SE) of the regression line fit (see Algorithm 4). We observe that the SE of the regression

line fit is not itself a precise estimate of the accuracy of the Gamma statistic, although it seems

reasonable to suppose that the two are related. In fact the SE would appear to over-estimate the

errorinT".
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(a) Noise variance estimates for data gener-
ated from the Hénon map. There are 6 ex-
periments shown for different added noise
variance. The dashed lines show the actual

(b) The percentage error of the noise vari-
ance estimates for the Hénon map. The
thickness of each line corresponds to the
actual noise variance added to the signal

noise variance, var(r), used for each ex- (0 = thin,...,0.01 = thick).

periment, the solid lines show the Gamma
statistic, I", and the error bars show the

standard error of the regression line fit.

Figure 3.6 : Noise variance estimates of data generated from the HEnon map.

Figure 3.6 demonstrates the effectiveness of the Gamma test in estimating the variance of the noise
r (despite the fact that the underlying functigris unknown) directly from data sampled from a
non-linear process. The results show that the percentage error of the noise estimate is quite robust
with respect to how many near neighbours are chosen when comgutifgr a wide range of

near neighbours the estimate of the noise variance for each data set was sufficiently close to the
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3.4 A further example using a chaotic time series

known noise variance to be of practical use.

For fixed M, beyond a certain point the noise estimates get progressively worse as the number of
near neighbours increase because the Gamma test starts examining points where the approximately

linear relationship (3.7) ceases to hold.

When the experiment is repeated againfepd00 data points with a noise variance@f1 on the
output, we can improve the stability of the Gamma statistic over a wider range of near neighbours.
Even on the increased scale shown in Figure 3.7 the Gamma statistic is stable across the whole

range.

We stated at the beginning of Section 3.3.1 that data samples should be confined to a closed
bounded seC. We know that the data samples will remain bounded because a chaotic attrac-
tor was used to generate the data, therefore the additional points used in this experiment increased
the density of the points on the attractor to satisfy the condition of non-sparsenegs-thatas

M — oo. There are various ways to illustrate this, such as box counting, but we will use the
Gamma scatter plots in Figure 3.8 to show the change in average near neighbour distances. Figure
3.8(a) shows how widely spaced the average near neighbours are$oi 000 compared to those

shown in Figure 3.8(b) wher®/ = 50000. It is interesting to note that the gradient, used as a
measure of surface complexity is approximately constant irrespective of the number of data points
M.

3.4.2 Longer range predictions of chaotic time series

The results of the previous section show that for thméh map the functional surfacg =
f(xi—1,24—2) is quite simple and can, in fact, be modelled quite accurately using only a few

hundred points.

Whilst accurateshort termpredictions for chaotic time series are quite feasible the nature of chaos
is such that as the prediction interval increases, all things being equal, the accuracy of the predic-
tion rapidly decreases. This is graphically illustrated if we consider the complexity of successive
surfacese; = fi(xi—1,xi—2), Te+1 = fo(Ti—1,Te—2), - -, Teak = fr(zi—1, 71—2) @Sk increases.

These surfaces are shown foK k£ < 6 in Figure 3.9. We see that the complexity rises rapidly.

Now suppose that we compute the Gamma statistic for these surfaces. Of course, with no added
noise and arbitrarily large amounts of data we should expect the Gamma statistic to approach

zero. But suppose wiex M and then compute the Gamma statistics. A sparsely sampled complex
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(a) Noise variance estimates of data generated from the H&non map. The dashed
line shows the actual noise variance, the solid line shows the Gamma statistic
noise variance, and the error bars show the standard error of the regression line
fit. The top chart shows the Gamma statistic for M/ = 1000 sampled points and

the lower chart has M = 50000 sampled points.
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(b) The percentage error of the noise variance estimates for the Hénon map. The
top chart shows percentage error for M = 1000 sampled points and the lower
chart has M = 50000 sampled points.

Figure 3.7 : Confidence of the noise estimates for the Hénon map.
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0.02 0.025

(&) M = 1000 attractor points, A = 1.0988. (b) M = 50000 attractor points, A = 1.0841.

Figure 3.8 : Gamma scatter plots for the Hénon map with added noise (var(r) = 0.01).

surface might be expected to give results comparable to a simpler surface sampled with noise.

The results of this experiment are shown in Figure 3.10. The Gamma stdiistg plotted in

Figure 3.10(a) showing the number of sampled data pdifitasgainst the number of steps ahead

(k) for the Henon map. We see that, for fixdd, ask increases the Gamma statistic rises rapidly.

The graph also shows that the rate of increase in Gamma is dependent on the vafughef
Gamma statistic converges to zero for sufficiently laige Moreover, the slope estimaté in

Figure 3.10(b) (see Algorithm 4) also increases rapidly. Taken together, these observations are a

useful indicator of chad&.

The rudimentary error estimate for the Gamma statistic using the SE of the regression line fit
shown in Figure 3.10(c) (discussed previously in conjunction with Figure 3.7) demonstrates that it
is much harder to accurately estimate the noise variance for complex functions, in this case for a

Hénon map with largé.

%A more conventional indicator of chaos is to compute the Lyapounov exponents. However, this process is computa-
tionally expensive and (what is worse) existing algorithms provide no associated estimate of the errors. Thus assertions
of chaos based on estimates of the Lyapounov exponents must be treated with caution.
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3.4 A further example using a chaotic time series

(a) 1 step ahead. (b) 2 steps ahead.

(e) 5 steps ahead. (f) 6 steps ahead.

Figure 3.9 : Longer range predictions of the H&énon map.
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(&) The Gamma statistic I'.  For large (b) The Gradient A. Short range predic-
sample sizes M the effective noise vari- tions (low k) are situated on less compli-
ance reduces indicating that long range cated surfaces than long range predic-
predictions (high k) are possible. tions (high k). The increasing sample

size M provides little benefit for estimat-
ing the surface complexity A in this ex-
ample.

(c) The SE of the regression line fit. A

larger sample size M provides a more
accurate estimate of the Gamma statis-
tic.

Figure 3.10 : Analysis of long range predictions of the H&non map for increasing M and k (pyaz =
10 near neighbours).
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3.4.3 Conclusions

In this chapter we have described the Gamma test for estimating noise in smooth non-linear sys-
tems and briefly sketched some of the issues associated with the theoretical justification of this

algorithm.

We described some of the associated visualisations developed for the Gamma test, such as the
scatter plot, which (quite independently of the Gamma test) provide useful diagnostic tools for the

examination of non-linear data.

We have provided several examples which illustrate the relative robustness of the accuracy of the
test with respect to the number of near neighbours used and the nature of the sampling distribution
in input space. We also illustrated how the Gamma test can provide a relatively efficient indicator

test for the presence of chaos in a time dependent non-linear process.

In the next chapter we shall further examine the utility of the Gamma test in the process of feature

selection and model building.
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CHAPTER 4

Data Analysis using the Gamma Test

This chapter demonstrates how the Gamma test can assist with non-linear data analysis as a pre-
cursor to modelling. The techniques shown here are used to illustrate that non-linear data sets can
be assessed for quality, used to select important features, and determine whether there is sufficient

data to construct a smooth non-linear model.

Although the Gamma test is, in the first instance, an algorithm designed to estimate noise it can
be used very effectively to select relevant features for a non-linear model in both noisy and low or
zero noise situations. Our first examples are designed to illustrated why the Gamma test can be
used to select relevant features in a zero noise case. We then add noise to determine how the ability
to effectively select features degrades under moderate or high noise levels. In these examples the

sampling distribution over the input space is uniform.

Finally we illustrate how the Gamma test can be used for feature selection in a zero noise chaotic
time series. In this case feature selection corresponds to the selection of appropriate lags in an
embedding model, and the sampling distribution over the input space corresponds to ergodic sam-
pling of a fractional dimension attractor. We also compare the initial estimate of the embedding
dimension from the Gamma test using an ‘increasing embedding’ with the more conventional

‘false nearest neighbour’ algorithm.
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4.1 Feature selection

4.1 Feature selection

The technique of feature selection is used to extract useful information (or features) from a data
set. Redundant or irrelevant variables in the data should be excluded. With the Gamma test
we can define useful information as being those inputs which contribute to lowering the noise
estimate of our input-output data set. In theory, the combination of inputs with the lowest noise
estimate will provide the best model. We shall see using a series of examples that this is the case.
In a mathematical context the features correspond tdntiependent variableand the output

corresponds to théependent variable

Feature selection algorithms have two main componergstaion functionand asearch strategy
[Scherf and Brauer, 1997]. The criterion function determines how good a particular feature set is

and the search strategy decides which set to try next.

The search through feature space has to be performed to ensure that all (or as many) combinations
of inputs are tested within reasonable computational time. For a small number of inputs, for
example up tal0-20, all possible combinations can be tested. In generald fioputs, there are

24 — 1 combinations of those inputs

For larger data sets, or for rapid feature selection, an heuristic search technique must be applied.
The primary technigue that we propose uses a genetic algorithm [Holland, 1975]. Other techniques
involve hill-climbing and similar heuristics. We must recognise that these heuristic methods are

not guaranteed to find the best possible feature set.

Whatever search strategy we choose, we clearly need an efficient criterion function. The two main
types ardiltersandwrappergPfleger et al., 1994]. A wrapper uses a model to evaluate the feature
set: the performance of a model constructed using the chosen features determines the significance
of the feature set. One aspect of this thesis attempts to show that the Gamma test has made this

method redundant in a number of cases.

The filter method does not rely on model building for the evaluation of a set of features. Instead,
it uses the data directly to evaluate a given feature set. Our intention is to show that the Gamma
test performs this task and has other benefits, such as determining the variance of the noise. For

reference, some other examples of filter methods are described in [Cherkauer and Shavlik, 1995]).

To perform a full search of0 inputs requires, 023 Gamma test experiments, wherda®48, 575 experiments
are required foR0 inputs.
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4.2 Complete feature space search

4.1.1 Masks: describing a combination of inputs

We describe feature sets in an efficient way using a mask. For any given data set, the inputs
(z1,x9,x3,...,24) can be masked off to describe a subset of inputs. Usihgnput data set as

an example, we can describe the selection of inputsing the mask001, and the selection of all

the inputs using the mask 11. We use this representation within the context of feature selection

to describe which inputs are used &nd which are not().

4.2 Complete feature space search

A complete feature space search requires all possible combinations of inputs to be analysed.

4.2.1 2-dimensional input space

In these examples we try to provide an intuitive explanation of why, even in the zero noise case,

the Gamma test can be used as an effective tool for the selection of relevant input variables.

We consider sections through two 3-dimensional objects: a cylinder, and affitndata points
were sampled uniformly in input space across each surface to produce a 3-dimensional data struc-

ture of inputs(z, y) and an output.

The cylinder

Figure 4.1 shows the section of the cylinder. The height of the cylingderdependent only upan
andindependenof y. In this case we might expect to find that the best input ihe combination
of inputs(z, y) is only marginally less effective, but that the choice of the single ippe&ads to a

very poor result.

The results of a search of feature space are shown in Table 4.1. We see that the Gamma statistic
I' = —0.000249 for the inputz is very close to zero. The corresponding result for the combination

(z,y) is somewhat larger & = 0.0089, whereas the result for the single inpuis I" = 5.78.

The result for inputy was dramatically higher because theradsrelationship betweep andz.
If we treatz as a function ofy alone the variation of due to changes im appears as a form of

noise, reflecting our ignorance of In fact the variance of this ‘effective noise’ corresponds to the
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Figure 4.1 : A cylindrical function. The effective noise from sampling in the y-dimension only is
shown projected onto the y-z plane.

variance ofz (var(z) ~ 5.555) in the interval over whicly was sampled.

r A Ty

—0.00024903 | 1.5633 | 10
0.0089737 | 0.48245 | 11
5.7815 136.11 | 01

Table 4.1: Feature space search results for the 3-dimensional cylinder section (M = 500).

The cone

Suppose now there is some small dependenceanfy. We replace the cylinder by the cone of

Figure 4.2.

Part of the cone is shown in Figure 4.2. The height of the coisedependent on thér, y) co-
ordinates. We should discover that usingr y alone will not determine, but usingz andy

together will.

The darkly shaded projection onto thez plane in Figure 4.2 corresponds to the component part
of the signal that is expected to act like noise when data is sampled from across the cone but where
only thex input is used to model. This effective noise is not uniform across thénput space

and the variation of noise variance as a function: @ shown in Figure 4.3. If we average this
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4.2 Complete feature space search

Figure 4.2 : A conical function. The darkly shaded projection on the z-z plane shows the effective
noise from sampling in the 2-dimension only. The lighter shaded projection on the y-z plane shows

the effective noise from sampling in the y-dimension only.

noise variance across theinput space we obtain the valid.0126. Thus we might expect the
associated Gamma statistic to be approximately this value. Similarly, if we project the cone onto
the y-z plane (shown as the lighter shaded region) we see an even larger effective noise variance
when sampling across the cone but using only inptd modelz. These projections allow us to

see geometrically thatis far more sensitive to variation inthan iny.

Vari ance

Figure 4.3: The effective noise variance of output » determined by input z. The dashed line

indicates the average noise variance 14.0126 in the sampling interval [—25, 25].

Table 4.2 lists the feature space search results. As expected, the effective noise variance was lowest
when inputse andy were used together. For the results where eithary were exclusively used,

the noise variance corresponds to the variancesaimpled in the interval over whichor y were
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4.2 Complete feature space search

correspondingly sampled.

When inputz is used to determing, the estimated noise variandé= 14.76, corresponds to the

average noise variance shown in Figure 4.3.

r A xy

0.44217 | 11.257 | 11
14.76 | 6.6419 | 10
52.569 | 4896 | 01

Table 4.2: Feature space search results for the 3-dimensional cone section (M = 500).

4.2.2 16-dimensional input space (zero noise)

The previous example was intended to give an intuitive understanding of why, even using noise-
free data, the Gamma test results for different selections of input variables can be used to discrim-

inate significant inputs for a non-linear model.

In the following experiments we illustrate that this procedure remains effective where functional

dependences are more subtle and many more input variables are present.

We consider 6 inputs andl output. The firstl0 inputs,z1, zo, . . ., x19, are allrandom numbers

in the rangg0, 7). The final6 inputs are:

x11 = sin(2xq)

x12 = cos(4xz)

x13 = sin(x3) 4 cos(z?)

x4 = exp(xs)

Tis = —xf

T = x? 4.1)
The target output is

y = sin(2x1) — cos(4x2)

y = x11 — cos(4xs)

y = sin(2x;) —x19

y = Ti1— T2 (4.2)
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4.2 Complete feature space search

These functions are plotted in Appendix B = 5000 points were generated and in the initial

experiment no noise is added to the output.

The outputy is a relatively complicated function of inputs andz,. There is a much simpler
relationship between the output amgh andz,5. There are also the intermediate relationships
involving z; andx12, andx, andx1;. In order to demonstrate the effectiveness of the Gamma
test, the feature space search should discover these relationships. It should also highlight the

simplest relationship as being the best.

The best results from the complete feature space search are shown in Talbletl3e estimate

for the variance of the noise antlis the gradient of the regression line fit — see equation (3.7).

Mask (:L‘l . 1,‘16)

N A T1T9...T11%12 - . -

3.01 x 1077 | 0.142124 | 0000110100110011
6.35x 1077 | 0.12549 | 0001101010111100

2.00 x 1076 | 0.0881483 | 0101111110111001
2.49 x 1076 | 0.33071 | 0000010000110000
4.08 x 1076 | 0.293724 | 0100000001110000

4.15 x 1075 | 0.0955764 | 0100111101111001

4.79 x 1076 | 0.506928 | 0000000000110000
5.71 x 1076 | 0.149792 | 0001000010111001
5.80 x 1076 | 0.17813 | 0000000101110010

6.31 x 1076 | 0.0997976 | 0110101010111010
6.36 x 1076 | 0.224083 | 0000000000111010
6.86 x 1076 | 0.143837 | 0010110100110010

8.70 x 107% | 0.0910738 | 0111011100111100
9.79 x 107% | 0.107996 | 0001110011110001

Table 4.3: Best results from a complete feature space search (|T'| < 1 x 1075), M = 5000.

Inputsxy, z2, 11 andx1o are underlined in the mask to highlight their expected significance given
by (4.2). These results do show the importance of inpytsandz5 in determining the output
y; the inputs were usédn all of the best results foil’| < 1 x 10~°. The histogram of features

shown in Figure 4.4 confirms this.

2A 1 in the mask indicates the inclusion of the input in the calculatianiradicates exclusion.
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Figure 4.4 : Feature set of best results (|T'| < 1 x 1079).

The results shown in Table 4.3 foF| < 1 x 10~° are significant because they show that the
Gamma test can select the best combination of inputs. If we were to take any of the individual
results we would include more inputs than are required to model the function. However, the
necessary information would be incorporated singceandx,o appear in all of the results. The
power of this technique comes from analysis of a set of results. By looking at the frequency of
occurrence of the inputs for these results we have been able to establish that only a small subset of
inputs are actually relevant. In the following section we discuss this further with a more detailed

analysis of all of the results for this example.

Gamma histogram

A Gamma histograntan be used to show the distribution of the noise variance estimates for
different feature sets. Using the previous example, we obtain the Gamma histogram shown in

Figure 4.5 for the complete feature space search.

There are significant parts to the distribution:

1. The first peakl” < 0.03.

2. The second peak,03 <T < 0.1.

3. The space between the second and third peaks I' < 0.4.
4. The third peak).4 < T < 0.6.

5. The space between the third and fourth p&ak < I" < 0.95.
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Figure 4.5 : Gamma histogram for a complete feature space search over 16 inputs. The output of

the function contained no noise and so the histogram starts at I" ~ 0.

6. The fourth peakl’ > 0.95.

The first peak in the Gamma histogram is shown in Figure 4.6(a). This peak contains the feature
sets that produced results with< 0.03. A histogram of these features is shown in Figure 4.6(b).
According to this histogram, inputs;; andx, are the most significant features, appearing in
very nearly all of the results. The remaining inputs appeared with approximately equal frequency.
Thus the Gamma test feature selection analysis supports the faet thatdz,5 should provide

the simplest function which smoothly models the output

The second peak in the Gamma histogram is shown in Figure 4.6(c) and indicates that the feature

combinationz; andzs is also significant, as shown in Figure 4.6(d).

The space between the second and third peak is shown in Figure 4.6(e). This region in the his-
togram covers a large range of resulitsi(< T" < 0.4) where the noise variance estimate ap-
proaches a level that is too high to be of practical significance. However, the feature set indicates

the significance af; andx, which is the most complicated form of the relationship given in (4.2).

Figures 4.7(a), 4.7(c) and 4.7(e) cover a region of the histogram where we would expect the rele-
vant inputs £1, x2, £11 andzy2) to have reduced influence. Indeed in the corresponding feature
sets shown in Figures 4.7(b), 4.7(d) and 4.7(f) these inputs appear with less frequency or are com-
pletely eliminated. The exception is the high frequency of occurrence of inpatFigure 4.7(d).

The reason for its significance is unclear, but it may in part be due to the fagj thg#.2) is

more sensitive to variations im, from the contribution ofos(4x2) than to variations in:; from

the contribution ofin(2x;).
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4.2 Complete feature space search

The highest results forl" > 0.95 illustrates the importance of this technique. In Figure 4.7(f)
the significant inputs:1, x2, £11 andxzy5 are virtually eliminated. Used in conjunction with the

results for the lowedt, we see that the Gamma test analysis can be used to justify the selection of

inputsz1; andz12 (shown in Figure 4.6(b)) for use in a model of the output
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Figure 4.6 : Gamma histogram components (I" < 0.4).
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Figure 4.7 : Gamma histogram components (I" > 0.4).
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4.2.3 16-dimensional input space (noisy output)

We can adapt the example in Section 4.2.2 by adding noise to the autpugxamine how the
feature selection algorithm performs. In this example, a noise variance) vai0.25, was added

to the output.

The Gamma histogram in Figure 4.8 illustrates how the addition of noise affects the histogram.
The Gamma histogram is in the inter{@l195, 1.338]. There are three major peaks in the Gamma
histogram, which exist in roughly the same relative positions in the previous Gamma histogram in
Figure 4.5. The two largest peaks exist in the centre of the histogram and at tlieciod: The

third peak is smaller and exists at the higlend of the histogram.

r-di stribution

P N W b~ OO O N

probability density

0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.8: Gamma histogram for a complete feature space search of 16 inputs. Noise with a
variance var(r) = 0.25 was added to the output — consequently the Gamma histogram starts at
I' =~ 0.25.

There ares significant parts to the distribution:

1. The first peakl’ < 0.3.

2. The space between the first and second peakl I' < 0.7.
3. The second peak,7 <I' < 0.8.

4. The space between the second and third peaks T" < 1.2.

5. The third peakl” > 1.2.

The first peak in the Gamma histogram is shown in Figure 4.9(a). This peak contains the feature

sets that produced results with< 0.3. A histogram of these features is shown in Figure 4.9(b).
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4.2 Complete feature space search

This histogram shows that inputg; andz;2 are the most significant features since they appear
in most of the results. The remaining inputs appeared with approximately equal frequency (with
the exception of input; which appeared slightly more frequently). On this evidence, the Gamma
test feature analysis supports the fact thatandxz12 provide the information necessary to model

the outputy.

The space between the first and second peaks in the Gamma histogram, shown in Figure 4.9(c),

indicates that the feature combinatiommgfandzs is also significant, as shown in Figure 4.9(d).

The remaining Figures 4.9(e)-(f) and Figures 4.10(a)-(d) provide additional evidence that inputs
x1, T2, 11 andxyo are significant. This is demonstrated by the absence of these significant inputs

in the worst results.

4.2.4 Feature selection hypothesis

It is our hypothesis that the peaks visible in the Gamma histograms contain information that could
be used to determine the number of significant input variables. A peak at the lower end of the
Gamma histogram should contain results that use all of the available relevant input variables. A
peak at the higher end of the Gamma histogram should show results generated from input variables

that have little or no relevance in determining the output.

A re-examination of the experiments in Sections 4.2.2 and 4.2.3, the 16-dimension input feature
space searches with no added noise @28 variance noise added to the output respectively,
provides support for our hypothesis. There are 4 inputs that can be used to define theagqutput (
T2, x11 andxi2), although this essentially reduces to two inputs singeis a function ofzq,

andzxqs is a function ofz,. Any combination of these inputs:{ and/orzy; andxy and/orxys)

provides all of the information to determine the output.

The peak at the lower end of the Gamma histogram should contain all of the results that use
and/orzi; andzs and/orzys in combination. The central peak would then contain most of the
results that use only one of the significant variables, eithe®s, 211 or x12. The final peak then

contains results which use none of the significant variables.
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Figure 4.9 : Gamma histogram components (I" < 0.8).

78



4.2 Complete feature space search

r-distribution 0.8=<r<1.2
oL 0.6
@ 0.5
3 z
= 0. — 0.4
> —
Zo S0.3
= S
g0 5 0.2
Qo
° 0. 0.1
. o B
.1 1.2 123456 7 8 910111213141516
i nput
(a) Gamma histogram (0.8 < T' < 1.2). (b) Feature set (0.8 <T' < 1.2).
r-distribution r=1.2
1
> 0.5
» 0.8
§ > 0.4
> 0.6 — 0.3
— Q
—_ ©
— 0.4 g0.2
Q —
[ (s}
S0.2 0.1
5 ol _
1.2 1.22 1.24 1.26 1.28 1.3 1.32 1.34 123456 7 8 910111213141516
T i nput
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Figure 4.10 : Gamma histogram components (I" < 0.8).
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11-dimensional function

The hypothesis that the peaks in the Gamma histogram contain useful information is re-inforced
with an additional examplell inputs were generated;, . .., g are random numbers uniformly

distributed in the intervdl, 7]. The other inputs are defined as

xg = sin(2xq)
r190 = COS(4$2)
x11 = —cos(2x3) (4.3)
The target output is
y = sin(2x;) + cos(4x) — cos(2z3)
Yy = X9+ Ti0+T11 (4.4)

The output is directly dependent on three input variabigsz 1o andz;;. However, a combination
of inputs consisting of; or xg, andxs or 19, andxs or z1; will provide sufficient information

to define the output.

A full feature space search produces the Gamma histogram shown in Figure 4.11.

r-di stribution

probability density

0 0.25 0.5 0.75 1 1.25 1.5
T

Figure 4.11 : Gamma histogram for a complete feature space search of 11 inputs.

The Gamma histograms shown in Figures 4.5, 4.8 and 4.11 demonstrate a striking similarity in that
the number of peaks in the respective Gamma histograms is a function of the number of significant
inputs variables. Figures 4.5 and 4.8 had two significant inputs and three peaks in the histogram,
whereas Figure 4.11 has three significant inputs and four peaks. The number of significant inputs
is then given directly from the number peaks in the histogram. These examples have shown that

there is always one more peak than the number of significant inputs. The extra peak lies at the
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high noise end of each histogram and signifies results that contain no useful information, whereas

the other peaks in the histogram signify results that contain at least one significant input.

A more detailed examination of the results of all of these experiments shows that the first peak
contains results using ail significant inputs, the next peak contains- 1 significant inputs, and

SO on.

Conclusions

The observations made of the full feature space search have shown that the Gamma histogram
provides a method to estimate the number of significant input variables. The results from the full

feature space can then be used identify those inputs.

When there is noise on the output, the clarity of the analysis is reduced, but, providing that the

noise level is not excessive, the full feature space search can pinpoint the relevant inputs.

4.3 Heuristic feature space search

The complete feature space search described in Section 4.2.2 is only practical for a relatively small
number of inputs, limited to no more th&0 variables. As an illustration, th&l-dimensional
example took approximateyhours to compute, whereas thé-dimensional examples took ap-

proximately4-5 days to compute

In light of the computation required for even a modest number of inputs we have developed a
number of heuristic search techniques to find good solutions in reasonable computational time.
We shall discuss our main heuristic search technique: the genetic algorithm. A general description
of evolutionary algorithms can be found in [Michalewicz and Fogel, 2000] where the discussion

revolves around the general application of heuristics rather than providing solutions to specific

problems.

Feature Space Search using a Genetic Algorithm

The introduction of genetic algorithms by [Holland, 1975] provides the primary inspiration for the

design of our genetic algorithm heuristic search technique. For simplicity we quote in Algorithm

3Machine specification: AMD Athlon 800MHz, 320MB RAM, Windows 2000.

81
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5 the general form of an evolutionary algorithm, as described in [Michalewicz and Fogel, 2000].

t=0
initialise P(t)
evaluate  P(¢)
while not termination condition do
t=t+1
select P(t) from P(t—1)
alter  P(t)
evaluate  P(t)

end while

Algorithm 5:  Evolutionary algorithm.

The algorithm maintains a populatidh of potential individual solutions;;, in this caser; rep-
resents a particular mask. The populat®(t) = {z},z%, ...,z } undergoes modification in an

iterative process that mimics genetic evolution. The initial populak@®) is created randomly.

The selection of individual solutiong ! from P(¢ — 1) is performed in a probabilistic manner.

The better solutions, that is the masks that represent solutions with the lowest Gamma statistics,
have a greater chance of being selected for the next generation. We call the probability with which
a solution is likely to be selected ifgness The alteration ofP(¢) in our genetic algorithm uses
mutation, the unary genetic operator to modify individual masks, and the crossover operator to
generate a new mask from two parent masks (the worst solution is rejected to maintain a constant
population size). The evaluation 8t) then performs a Gamma test on ea¢fin the population,

from which the fitness can be calculated.

The fitness of a particular mask or feature set can be determined by three principle factors of the
Gamma test:

1. Theintercept- the Gamma statistic.
2. Thegradient- the model complexity estimate.

3. Thelength- the number of inputs required.

The relative significance of these factors can be adjusteédn®solutions towards a particular
requirement. For example, we may be interested in solutions that use only a small subset of the
available inputs, therefore the length fithess would be given a greater significance than either the
intercept or gradient. Hence the calculation of the fithess
fitness(mask) = 1— [Wintercept X interceptFitness(mask) +
Woradient % gradientFitness(mask) +

Wiength X lengthFitness(mask)] (4.5)
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can be weighted by means of user defined param&¥&rs..ccpt, Wyradient @Nd Wigpger, in ac-
cordance to the importance ascribed to the three fitness factors. The maximum fithess will occur

when the fitness function (4.5) reaches a maximum.

There are limits applied to the fithess components

fitness(mask) <1
interceptFitness(mask)
gradientFitness(mask) p >0

lengthFitness(mask)

N
Wintercept

0< Wgradient <1

VVlength
Wintercept + Wgradient + I/Vlength >0 (46)

The individual components of (4.5) are defined as

1-— L : vRatio(mask) <0
interceptFitness(mask) = I_IOXVRatllo(m‘lSk) ( ) 4.7)
2 — 2m . VRath(m(ISk) 2 0
0.
@ 0.
(&)
c
= 0.
0.

v-ratio

Figure 4.12 : Genetic algorithm intercept fitness.

. . 1
gradientFitness(mask) =1 — | Eradient(mask) (4.8)
+ ’ outputRange ‘
k
lengthFitness(mask) = M (4.9)
length(mask)

whereones(mask) counts the number of ones in the mask (i.e. the number of inputs selected) and

length(mask) returns the length of the mask.
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4.3.1 16-dimensional input space (zero noise)

We repeat the experiment of Section 4.2.2 to demonstrate the usefulness of the genetic algorithm
to search for good solutions in reasonable computational time. The same data sétusmgs

and a single output with no added noise has been used to test the genetic algorithm.

Two experiments have been performed to demonstrate the GA. The first experiment is tuned to
produce solutions with a low intercept irrespective of the number of inputs used, whereas the
second experiment is tuned to search for solutions with both a low intercept and a low mask length.
This subtle difference between the two experiments aims to show that the second experiment can

find good solutions using the minimum number of inputs.

The full search took-5 days of continuous computation to perfo6%635 unique Gamma tests.
These new experiments generate a random populatideoahdividual masks, with only an addi-
tional 200 Gamma tests performed after the initialisation stage. 3D8eGamma tests required for
each experiment took approximatdl§y minutes to compute and the results are shown in Figures
4.13 and 4.14.

Figure 4.13(a) shows that all of the solutions were reasonably good and Figure 4.13(b) demon-
strates that the GA identified inputs; andz,2 as being the most significant. The evolution of

the population is shown in Figure 4.13(c) where the average population fithess converged to the
fitness of the best solution towards the end of the execution of the GA. This indicates that the GA
had probably run for a sufficient time using the current settings (we do not intend to discuss too

deeply the intricacies of interpreting the results generated using genetic algorithms).

Figure 4.14(a) shows that there were two clusters of solutions with the majority of solutions being
accurately classified as being noise free. Figure 4.14(b) demonstrates that the GA identified inputs
xo andzq; as being the most significant. The evolution of the population is shown in Figure
4.14(c).

Both of these experiments show that the GA can be applied to complex problems to provide good
solutions in reasonable time. Although a more detailed analysis could be achieved with a larger
population size and a longer run, the aim here was to demonstrate the concept that mask searches

can be achieved quickly using an heuristic technique such as a GA.
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Figure 4.13 : Gamma histogram for an heuristic search using a genetic algorithm. The two most
significant inputs are z1; and x> and these appear in the majority of solutions. The GA settings
are population size = 100, interceptFitness(mask) = 1, gradientFitness(mask) = 0.1 and
lengthFitness(mask) = 0.1. In approximately 10 minutes the algorithm performed 300 Gamma

tests, of which 100 were used to initialise the population.
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Figure 4.14 : Gamma histogram for an heuristic search using a genetic algorithm. The two most
significant inputs are z1; and x> and these appear in the majority of solutions. The GA settings
are population size = 100, interceptFitness(mask) = 1, gradientFitness(mask) = 0.1 and
lengthFitness(mask) = 1. In approximately 10 minutes the algorithm performed 300 Gamma

tests, of which 100 were used to initialise the population.
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4.4 Embeddings: the analysis of chaotic time series

It is possible to model a continuous dynamical system, which in the first instance may be de-
fined by a system of differential equations, by a smooth non-linear input/output model which over
time generates new states of the system based on a finite window of previous states. This ob-
servation is in fact a quite deep theorem due originally to [Takens, 1981] and later extended by
[Sauer et al., 1991].

The false nearest neighbours algorithm [Kennel et al., 1992] was developed to find a suitable em-
bedding dimension for a time series. We proposédnhmeasing embeddings an extension of the

Gamma test to perform the same task.

After introducing the two embedding dimension search techniques we shall analyse two chaotic
time series, the Bhon map and the generalised Chua’s circuit, to provide a comparison between

the techniques.

4.4.1 False nearest neighbours

Thefalse nearest neighboFNN) algorithm [Kennel et al., 1992] is a technique to determine the
embedding dimension for phase-space reconstruction. A chaotic attractor is typically a compact
object in phase-space, such that points of an orbit on the attractor acquire neighbours. It has
been suggested that the evolution of phase-space neighbourhoods can determine how points on
or near the attractor will evolve, and also provide a way to accurately compute the Lyapunov
exponents. However, in this restricted discussion we are purely concerned with identifying the

correct embedding dimension.

If the embedding dimension of an attractor is sufficient there will be a one-to-one mapping from the
delay-space (the time series) to the original phase-space of the attractor such that the topological
properties of the attractor will be maintained. The assumed smoothness of the function means that

neighbourhoods of points in delay-space will map to neighbourhoods of points in phase-space.

An embedding dimension that is too small will not preserve the topological structure of the at-
tractor, so that points that are neighbours in one embedding dimewdsiaill not necessarily be
neighbours in the next higher embedding dimensibn; 1, because the attractor has not been
completely unfolded. It is these points that are classifiddlas nearest neighbouesd the num-

ber present for a particular embedding dimension determine whether that embedding dimension,
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d, sufficiently describes the attractor. The FNN algorithm identifies these points for a range of em-
bedding dimensions and (in theory) the optimal embedding dimension has the minimum number

of false nearest neighbours.

In order to describe the FNN algorithm we define the delay-space point§ gand the corre-
sponding phase-space pointszgs), wherez(i) = (zi17, Tiyor, - - -, Tiy(@—1)r), WhereT'is the
time-lag'. In phase-space, thenearest neighbours i) arez(N[i, p]), using the same nearest
neighbour notation introduced in Chapter 3. For notational simplicity, we dgfineV|i, p] for a

giveni andp.

The phase-space dimension is increased fiidmd + 1 to identify the false nearest neighbours.
This identification compares the distance between near neighbodidinmensional phase-space,
the distance betweexy(i) andz,(N|i, p]), to the distance between near neighbourg # 1 di-
mensional phase-space, the distance betwge(i) andz .1 (N [7, p]). If the difference between

the two distances is high then the point is a false nearest neighbour.

We can conclude that the attractor has been suitably unfolded in phase-space when, for a given
embedding dimensiod, the number of false nearest neighbours is minimum compared to results

for a wide range of embedding dimensions.

The squared-Euclidean distance betwegi) andz,(N|i, p]) in d-dimensions is

Dy(i,p)® = [za(i) — za(N[i, p])]?
-

= 2(i+ ¢T) — x(j + qT)]? (4.10)
:0

,_.

Q

If we increase the embedding dimensionite- 1 we obtain the corresponding squared-Euclidean

distance between nearest neighbatjts, (i) andzg,1 (N[, p|)

Dg1(i,p)? = [2at1(d) — Zar1(N[i, p])]>
= D(i,p)3+ [x(i +dT) — z(j + dT)]? (4.11)

Using (4.10) and (4.11) we can compute the change in distahdegtweenz(i) andz(N|i, p])

when changing dimension fromto d + 1 to be

Day1(i,p)* — Da(i, p)?
Dd(iap)Q
_ |x(z+d11;)d(—i Z()j +dT)| (4.12)

4A full discussion of the significance of the time-ldgis beyond the scope of this thesis. In all of the experiments

S

used within this thesis we assume tfiais fixed.
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The final expression df in (4.12) describes the distance metric as a ratio of the distance between
a pointz(i + dT') andz(j + dT') in delay-space, and the corresponding pei} and its nearest

neighbourz(N|i, p]) in phase-space.
The false nearest neighbours can be defined to exist beyond a diflgnsech that
S > Dyl (4.13)

The distance metri¢ is the ratio of the nearest neighbour distance in delay-space to the corre-
sponding nearest neighbour distance in phase-space. If the measure is large then the point is a

false nearest neighbour.

A second criterion is applied to handle the issue of limited data/lLebe a measure of the size

of the attractor
1
2 . _12
Di=35> [¢(6) -] (4.14)
where

1 N
= > (i) (4.15)
i=d—1

If a nearest neighbour id + 1 dimensional phase-space is distant (compared to the size of the
attractor) then we consider that point to also be a false nearest neighbour. This arises because if the
nearest neighbour,;(N|i, p]) is not close ta (i), i.e. Dy(i,p) ~ D4, thenind + 1 dimensional

phase-spaeDy (i, p) > cD4 Wherel < ¢ < 2.

In this second criterion, any point beyor,, is classified as a false nearest neighbour

Day1(i,p)

A 4.16
l)A > Atol ( )

This ensures that distant near neighbours, which are stretched to the extremities of the attractor as

the embedding dimension increases, are classed as false nearest neighbours.

As explained in [Kennel et al., 1992], the utility of the second criterion is to distinguish between

low dimensional chaos and high dimensional chaos or noise.

The algorithm computes the total proportion of false nearest neighbours in the data set as deter-
mined by the two criteria (4.13) and (4.16). It is sufficient to use the first nearest neighbours only

(pmaz = 1) for each of thel/ points in the data set.

S[Kennel et al., 1992] refer to the condition beil, ; (i, p) ~ 2D but this is not intuitive.
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4.4.2 Increasing embedding

The increasing embedding examines the relationship betwggngenerated from the past
points in phase-space such that) = >-9_j[(i + ¢T)], and the next point in the time series
z(i + dT') using the Gamma test (is the time-lag and is the dimension)d is increased until
the magnitude of the Gamma statistic reaches a minimum, at which &tsigeuld provide the

optimal embedding dimension.

4.4.3 The Hénon map

The Henon map was introduced in Section 3.4. From the defining equation (3.14) we can instantly
see that the output of the functian is dependent on the two previous valugs; and z;_».
Figure 3.4(b) confirms that the attractor is a smooth function using theseameters inputs

and1 output).

Figure 4.15 shows the results from the FNN algorithm and the increasing embedding on the time
series data generated from théridn map. The optimal embedding dimension selected by both

methods use2 lags in the embedding window.
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(a) False nearest neighbour embedding for (b) Increasing embedding for the Hénon
the Hénon map. The graph shows that an map. The graph shows that an embedding
embedding dimension d = 2 would be suit- dimension 2 < d < 7 may be suitable. Em-
able. pirical evidence suggests that selecting the

lowest embedding dimension from a range
of possible solutions is best, in this case
d=2.

Figure 4.15 : The comparison between the false nearest neighbour method of estimating an em-

bedding dimension and the increasing embedding using the Gamma test for the Hénon map.
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4.4.4 Generalised Chua’s circuit

The generalised Chua’s circuit is defined as

33.1 = a[wg — h(a;l)]
Ty = X1 — T2+ @3
1:3 = —5@ (4.17)
where
2q—1
1
h(l‘l) = Mog—121 + 5 Z (mi,l — mz)(|a:1 + Cz‘| — |J}1 — Cz|) (4.18)

=1
andg denotes a natural number. We want to obtain the 5-scroll attractor used in the time series

competition described in [Suykens and Vandewalle, 1998]. That 5-scroll attractor had parameters

qg = 3
m = (0.9/7,-3/7,3.5/7,-2.7/7,4/7,—2.4/7)
c = (1,2.15,3.6,6.2,9)

wherem = (mg, m1,...,mgg—1), ¢ = (c1, ¢z, ..., Cc29—1), and the initial state = (0.1, —0.2,0.3).

The 5-scroll attractor for these parameters is shown in Figure 4.16.

10

-10

Figure 4.16 : The 5-scroll attractor generated from Chua’s generalised circuit.
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The time series data generated by (4.17) and (4.18) was passed through a multi-layer perceptron
with 3-hidden nodes to produce a non-linear scgjathat hides the underlying structure of the
attractor

yr = W tanh(Vxy) (4.19)

The multi-layer perceptron is defined as

\%%

(—0.0124,0.3267, 1.2288)

—0.1004 —0.1102 —0.2784
vV = 0.0009 0.5792  0.6892 (4.20)
0.1063 —0.0042  0.0943

The time series competition involved constructing a model f2060 points on the attractor, and

using that model to predict the n€X0 points. The data provided for the competition, and the data
used to evaluate the competition entries is shown in Figure 4.17. The results of the competition
were published in [Suykens and Vandewalle, 1998] and the winning solution was published in
[McNames et al., 1999]. The quality of the contestants results were judged using the mean-squared

error. Our rather hastily constructed model came sixth ol @ntries.

y OEH iy NM

0 500 1000 1500 2000 2500 3000

Figure 4.17 : The data generated from the 5-scroll attractor for the time series competition. The
first 2000 points (up to the first vertical bar) were provided as a training set for modelling. The next
200 points between the vertical bars were used to evaluate the submitted competition predictions.
The final 800 points illustrate how the system developed.

We return to the analysis of the problem and show how the FNN algorithm and the increasing

embedding can be used to find the embedding dimension for this problem. Figure 4.18 shows the
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4.4 Embeddings: the analysis of chaotic time series

embedding dimension analysis for the two algorithms. The graphs show similar results: the FNN
algorithm selects an embedding dimensibe- 14 whereas the increasing embedding selects a
dimensiond = 15. The similarity in these results is striking since both of these analyses are
dependent on a number of variablé,,; andA;,; must be chosen for the FNN algorithm, whereas

Pmae affects the increasing embedding.
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(a) False nearest neighbour embedding for (b) Increasing embedding for the 5-scroll
the 5-scroll Chua attractor. The graph shows Chua attractor. The graph shows that an
that an embedding dimension d = 14 would embedding dimension d = 15 would be suit-
be suitable. able.

Figure 4.18 : The comparison between the false nearest neighbour method of estimating an em-
bedding dimension and the increasing embedding using the Gamma test for the 5-scroll Chua
attractor.

4.45 Conclusion

The analysis of the Ehon map showed comparable results between the false nearest neighbours
algorithm and the increasing embedding. The false nearest neighbour technique probably pro-
vided the more instructive result for the more complicatestroll attractor indicating a range of
suitable embedding dimensions. The Gamma test solution was not as conclusive as fardghe H
map, which can perhaps be attributed to the Gamma test requiring a lot of data to produce very
accurate estimates for the Gamma statistic. It is worth noting that the data points generated from
the5-scroll attractor covered a very small region of the attractor [Suykens and Vandewalle, 1998]

making measurement of the embedding dimension more difficult.

In terms of computation, both techniques are comparable since they use the same near neighbours

routine.

The recommendation from this study for determining the optimal embedding dimension is to com-
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pare the results from a number of techniques to see if a consensus can be reached.

4.4.6 Irregular embedding

An embedding window selected using the false nearest neighbour technique or increasing embed-
ding often provides a starting point to refine the model. In many cases an optimal model may exist
that requires only a subset of the inputs. If that is the case, we can describe the model using an

irregular embedding

We can perform an irregular embedding by first running an increasing embedding or false nearest
neighbour test to identify the embedding window, then one of the feature selection techniques

discussed in Section 4.1 is applied to find the best input combination.

We illustrate the technique using two examples: (1) tléh map and (2) the 5-scroll Chua

attractor. In Section 4.4 we calculated the optimal embedding windows for both examples.

The Hénon map

The analysis of the Bhon map in Section 4.4 indicated that an embedding dimension of between

2 and6 would provide a good model.

We can demonstrate the effectiveness of the full feature space searghdimansional embed-

ding. The top two results from the analysis are shown in Table 4.4. The two best results, measured
purely in terms of their respective Gamma statistic values, demonstrate a noteworthy point. Re-
member that we know from (3.14) that the next value in teadh time series; is generated from

a function ofz;_; andz;_o. The result for the irregular embedding described by the raask10

uses inputs:s andx; which correspond te; 4 andx;_o respectively to predict;. It would seem

that using this result would not provide the best model. However, if we use the second result from

Table 4.4 then we can see that the outputioes indeed directly depend ep_; andz;_,. The

key to interpreting these results is to use either the gradieag an indicator of surface complex-

ity, or the Gamma scatter plots to provide a visual measure of the noise (the Gamma scatter plots

for these two results are shown in Figure 4.19).

The Gamma scatter plots shown in Figure 4.19 highlight the difference between the irregular em-
bedding001010 and001011. The best irregular embeddingd$1011 despite having a slightly

higher Gamma statistic. The Gamma scatter plots show that this embedding has no scatter points
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|F| A MaSk($1 156)
3.054 x 107° | 3.1404 001010
3.6029 x 1072 | 0.72488 001011

Table 4.4: The top two irregular embeddings from a complete feature space search of the time
series generated from the Hénon map (M = 994, d = 6). The best result in this case cannot
be measured on the Gamma statistic alone, but relies on the judgement that the gradient of the
regression line fit, A, provides a simpler model for the second best result.

0.14
0.12
0.1
v 0.08
0.06
0.04

0.02

(@) The Gamma scatter plot for the ir-

regular embedding 001010 shows noise
(scatter points in the low § high ~ region)
even though T' = 3.054 x 10~° was the
lowest measured for the selected em-
bedding dimension.

(b) The Gamma scatter plot for the ir-
regular embedding 001011. This em-
bedding did not have the lowest Gamma
statistic, but in comparison had a lower
gradient, A, and shows no noise on the

scatter plot.

Figure 4.19 : Two Gamma scatter plots, generated from irregular embeddings of the HEnon map,
demonstrate that the Gamma statistic is not the only measure to consider when selecting inputs
for a model.

in the region that indicates noise, whereas the irregular embeddirty 0 does indicate that the

data would be difficult to model.

Figure 4.20 shows the test results from two models built from the irregular embeddingso
and001011 of the Henon map. The models had the same architectural complexity (structure), but
only the model based on the irregular embeddiogo11 trained to its expected MSE, determined
byT.
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1 1
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t
(a) The model built using the irregular em- (b) The model built using the irregular em-
bedding 001010. bedding 001011.

Figure 4.20 : The models created from the irregular embeddings 001010 and 001011 of the Hénon
map show that the irregular embedding 001011 provides a much better neural network model
when using the same level of model complexity (in this case two hidden layers containing 5 nodes
each). The actual output values are shown using the green line, which is obscured by the blue
line that shows the model output. The error between the actual output and the model output is
indicated by the red line.

The 5-scroll Chua attractor

Using the embedding dimension tf computed in Section 4.4.4 for the 5-scroll Chua attractor, a
full feature space search was performed to identify the irregular embedding. The best results are

shown in Table 4.5 with a corresponding chart showing the significance of each of the inputs in

Figure 4.21.

1 2 3 456 7 8 9 101112131415
i nput

= o o
B o ®

probability

o
N

Figure 4.21: The best irregular embeddings from a complete feature space search of the time
series generated from the Chua 5-scroll attractor (|T'| < 3.8 x 1078, M = 1984, d = 15) shows that
inputs 2, 7, 11, 12, 13 and 15 should provide the best model.
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‘F‘ A MaSk(l‘l....CUlg,)

5.98 x 1079 | 0.118676 | 010111100110011
9.81 x 1079 | 0.11795 | 011011001110011

1.06 x 1078 | 0.184786 | 000110100011001
1.10 x 1078 | 0.164729 | 001001001010101
1.14 x 1078 | 0.120221 | 100001100101111
1.41 x 1078 | 0.10644 | 011111101001111

1.63 x 1078 | 0.152616 | 010100111000101
2.29 x 1078 | 0.170846 | 010000110011001
2.62 x 1078 | 0.153349 | 010001100000111

2.66 x 1078 | 0.135786 | 010011111001101
3.02 x 1078 | 0.172887 | 011100110110111
3.05 x 1078 | 0.155446 | 001110101011001

3.06 x 1078 | 0.172044 | 001001010011001
3.72 x 1078 | 0.171036 | 110000001001101
3.73 x 1078 | 0.134671 | 010100110111101

Table 4.5: The best irregular embeddings from a complete feature space search of the time series
generated from the Chua 5-scroll attractor (|T'| < 3.8 x 1078, M = 1984, d = 15).

Figure 4.21 shows six inputs from thé available that potentially contribute significant informa-
tion. Here we are defining inputs as significant if they appear in at ®86tof the cases. This
limit may be refined for other functions, for example the feature selection analysis in Section 4.1

used a much higher threshold to select relevant inputs.
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4.5 The Gamma test analysis of a random walk: a salutary

example

For time series analysis, particularly using a single time seriedM8t€is notinvariably a useful
measure of the predictive value of a model. The following is a salutary exampndom walk
time series is generated by taking the current value and, with probabilitadding+/ — 1 to it

to generate the next value. Figure 4.22 shows a random walk generated @ifAgoints.

100+

50+

-50+

0 2000 4000 6000 8000 10000

Figure 4.22 : Arandom walk time series generated by taking the current value and, with probability
0.5, adding +/ — 1 to obtain the next value (M = 10000 points).

The expected absolute value of the series dffesteps is aroung/M and so after a large number

of steps the change from one step to the next will be relatively small compared to the actual current
value. This small local change will manifest itself as a kind of low noise measurement with the
Gamma test returning a small value for the estima&E Indeed wecan construct one-step

prediction models that predict with this MSE as we shall demonstrate.

Since the random walk is a time series, an embedding dimension analysis was performed to deter-
mine the optimal embedding dimension. Table 4.6 shows an estimated MSEfor embedding
dimensionsl < d < 4. Itis interesting to note thad appears to be inversely proportional to the

embedding dimension.

Figure 4.23 shows the results of the increasing embedding dimensionality analysss to 20.

It would appear at first glance that the greater the dimensionality, the better the model. However
this is a misleading assumption due to tuese of dimensionalitywhereM = 10000 points are
insufficient ind = 20 dimensions to provide an accurdtestatistic. M-tests performed 2and

20 dimensions shows that the Gamma statistic is stabPedimensions but not i20 dimensions

indicating that more data is required for higher dimensional analysis.
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Figure 4.23 : An increasing embedding performed on the random walk time series indicates that

the analysis may be affected by the curse of dimensionality. Further analysis shows that more
points are required to provide an accurate Gamma statistic.

1 0.25
0.95 /\/—\/\/\/\/—’ 0.2
0.9 0.15
T T
0.85 0.1
0.8 0.05
5000 6000 7000 8000 9000 10000 5000 6000 7000 8000 9000 10000
M M
(a) An M-test performed on the d = 2 dimen- (b) An M-test performed on the d =
sional embedding shows that M = 10000 20 dimensional embedding shows that the
points are sufficient to get an accurate es- asymptotic convergence of M = 10000
timate of the Gamma statistic. points is insufficient to get an accurate es-

timate of the Gamma statistic.

Figure 4.24 : The M-tests performed on the random walk time series for embedding dimensions
d=2and d = 20.
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embedding

T A V-ratio dimension

0.95535 | 0.49886 | 0.0005628 1
0.95786 | 0.24916 | 0.0005643 2
1.01004 | 0.17087 | 0.0005950 3
1.11083 | 0.12863 | 0.0006544 4

Table 4.6: An embedding dimension search for a random walk (M = 10000). The embedding
dimension does not significantly change the value of the I" statistic (I' ~ 1). The V-ratio indicates
that there would be approximately a 5.5% error on any prediction.

If we increaseM to 65000 points then in2 dimensionsI” = 0.993568 and in20 dimensions
I' = 0.49973. In 2 dimension the Gamma statistic is virtually unchanged providing confidence
that indeed the estimate fbrwas accurate. However, 29 dimensions the corresponding Gamma

statistic value has still not converged.

In an arbitrary test, a full feature space search dvdimensions shows that the previous value
is the most significant at predicting the next value. This is illustrated in Table 4.7 where input

x5 = x4—1 1S selected foall of the best results.

Figure 4.25 shows a predictive model constructed from the random walk time series with embed-
ding dimensiond = 5 and an irregular embeddirgg 101 (the result with the lowedt value from

Table 4.7). A model built using this input combination is shown in Figure 4.25. Figure 4.25(a)
appears to show a satisfactory model, but if we look closer, as in Figure 4.25(b), then we can see
that the model constantly predicts the next value as being approximately equal to the last value in
the time series (hence there appears to be a lag of one time step between the model output and the

actual output).

We can conclude that the predictive value of random visghemodels is zero since the change of

+/ — 1 from one step to the next is entirely random and the model has failed to predict any of the
turning points. Indeed, it is apparent that the model uses approximately the previous value as the
forecast for the next value. The absolute error between the actual output and the predicted value is
then always approximately. The MSE or variance of this error is al$@and this corresponds to

the Gamma estimates in Table 4.6 for the lower dimensionis] < 4. Indeed, although the model

was predicted to have a MSE performanc@.868538 the model could only achieveM SE ~ 1

on independent training and test sets. This difference between the predicted model performance

and the actual attainable model performance can be explained by the M-test experiments shown in
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(a) The response of the model appears to be identical to the actual
signal. However, a closer inspection reveals that the model output lags
behind the actual signal by one time step, as shown in Figure 4.25(b).

Xt

8380 8390 8400 8410 8420

(b) The model output is one step behind the actual signal. This provides
the model with a low MSE but provides no predictive capabilities.

Figure 4.25 : A model built from the random walk time series with embedding dimension d = 5 and
irregular embedding 01101. The first 6000 points were used to train the model with an additional
4000 points being used to test the model. The error performance (M SE = 1) is constant for the

training and test sets showing that the model has not been overtrained.
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mask
T A V-ratio | x1,...,75
0.858538 | 0.214628 | 0.000506 01101
0.886423 | 0.130978 | 0.000522 11111
0.92067 | 0.189405 | 0.000542 10101
0.950982 | 0.234933 | 0.00056 11001
0.955484 | 0.498851 | 0.000563 00001
0.958221 | 0.249163 | 0.000565 00011
0.972159 | 0.249172 | 0.000573 00101
0.976081 | 0.250479 | 0.000575 10001
0.98153 | 0.249072 | 0.000578 01001
1.000665 | 0.140286 | 0.00059 10011
1.010141 | 0.170882 | 0.000595 00111
1.013751 | 0.127712 | 0.000597 10111
1.019968 | 0.155698 | 0.000601 01011
1.054338 | 0.130582 | 0.000621 11011
1.110924 | 0.128635 | 0.000654 01111
1.244438 | 0.139867 | 0.000733 11101
1.828649 | 0.216258 | 0.001077 11010
1.901981 | 0.497633 | 0.001121 00010
1.925159 | 0.248459 | 0.001134 00110
1.955525 0.2482 0.001152 01010
1.959832 | 0.249239 | 0.001155 10010
1.994026 | 0.170071 | 0.001175 01110
1.994565 | 0.156041 | 0.001175 10110
2.090096 | 0.12856 | 0.001231 11110
2.873091 | 0.496461 | 0.001693 00100
2.906746 | 0.248162 | 0.001712 01100
2.953016 | 0.248013 | 0.00174 10100
2.982243 | 0.170445 | 0.001757 11100
3.871387 | 0.495112 | 0.002281 01000
3.915813 | 0.247974 | 0.002307 11000
4.904878 | 0.493297 | 0.00289 10000

Table 4.7: A feature selection search on a random walk shows that the most recentlag x5 = z;_
is the most significant input, where all of the top results use input z;_; and 0.85 < I" < 1.25. The
worst results exclude x;_; where 1.8 < I < 5. This arises because the last value is (in probability)
the closest to the next randomly generated value in the time series. The embedding dimension is
d=5and M = 10000.

Figure 4.24, since that, in all likelihood, there was insufficient data at this dimension to accurately

estimate the expected MSE.

The Gamma test analysis of this data set using 5 inputs and 1 output and an irregular embedding of

01101 gives a V-ratio (i.e. the normalised Gamma statiStiwar(z;)) of around0.000506 which
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in the normal course of events would suggest that this time series is highly predictable (roughly a
5% error). In a sense it is highly predictable for we know that the next value will never differ from

the current value by more thap/ — 1.

When analysing financial time series or stock market data we often (but not necessarily inevitably)
find that the time series behaves very much like a random walk. Since many financial time se-
ries exhibit the same characteristics as a random walk, a prediction method will have to look for

multiple time series that contain leading indicator information for the time series to be predicted.

4.6 Estimating model complexity

In Section 4.4.6 we described the gradiginas a statistic that describes model complexity. The
comparison between two irregular embeddings for teadh map illustrated thatis not the only

useful measure to determine the optimal model.

Although we do not intend to go into great detail about the gradieot the regression line fit, it

is important to mention that when selecting relevant or causal features it is also helpful to consider
the complexity of the resulting functional surface. For two possible subsets of features with the
same Gamma statistic it can easily happen that one will result in a more complex model surface

than the other.

We know from the theoretical analysis that the slope estimateturned by the Gamma test
(Algorithm 4) depends to a large extent on the averagg/gf?> over the input space. To date,
various proposals have been made to automatically determine optimal neural network architectures
from the gradientd by [KonCar, 1997] and [Tsui, 1999], however we believe this requires further

investigation.

4.7 Conclusions

Feature selection using the Gamma test has provided a practical benefit for dimensionality re-
duction and model optimisation. One of the first practical demonstrations was to classify genetic
sequences, [Chuzhanova et al., 1998]. Many unpublished examples of feature selection have been
demonstrated by the sponsors of this work, Universal Solutions, who have produced many suc-

cessful modelling projects in the field of advertising and marketing.
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4.7 Conclusions

Feature selection prior to model building has revolutionised the way in which neural networks and
other models are constructed. In the past, feature selection was made using a constructed model,
where many models had to be built to provide comparison between different input selections. In
effect, the Gamma test has decoupled feature selection from the model building process, making

it independent of the model type.

A complete feature space search can usually be carried out in reasonable time fr. How-
ever, we have demonstrated that an heuristic technique, such as using a genetic algorithm, can

provide a reliable estimate of the optimal features in a short time.

In Section 4.2.1 we demonstrated that the Gamma statistic returns the average noise variance
across the data set. This is an important result that shows that the noise distribution need not be

constant to get a reliable estimate of the noise variance.

Time series analysis using the Gamma test provides comparable results to the False Nearest Neigh-
bour (FNN) technique, described in Section 4.4.1, for finding the optimal embedding dimension.
This is encouraging because the FNN technique is an established method for determining the op-

timal embedding dimension and the Gamma test produces very similar results.

The example of the random walk in Section 4.5 shows that the Gamma test can find the optimal
model for the given data, but it does not always produce the anticipated result. Trying to predict
the future of a time series using previous values from the same time series will often produce a
model with no predictive power. The exceptions are models constructed from smooth dynamical
systems where the attractors can often be found, as shown in the examples usiggdhardp

in this and the previous chapter.
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CHAPTER 5

Higher Moments Gamma Test

In Chapter 3 we introduced the Gamma test as a technique for estimating the variance of the noise

var(r) contained within data generated by a smooth, continuous, non-linear system.

In this chapter we propose a natural extension to the Gamma test in the form of a system of equa-
tions which we conjecture provide a link between the higher moments of the noise distribution
and certain easily computed regression line intercepts. The goal here is to derive further infor-
mation regarding the noise distribution by estimating the moments. We first introduce a heuristic

derivation of these equations and then provide some experimental evidence.

For non-symmetric unbounded noise distributions it emerges that even if the conjectured equations
are true so much data is required to give accurate estimates of the regression line intercepts that

the method would in most cases be impractical.

There is a further problem in that for non-symmetric distributions the equations alone do not
provide sufficient information to solve for the higher moments. Howeversyonmetricnoise
distributions much less data is required and, because we may assume that all odd moments are
zero, there are sufficient equations to solve for as many hgg@moments as is justified by the

amount of data.

Finally we show that if the noise distributionassumed symmetriben the estimates for the even

moments can be used to approximately reconstruct the original noise distribution.
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5.1 Moments

5.1 Moments

Data is often represented in a relatively simple way in order to understand and characterise it. In
the introduction to the Gamma test in Chapter 3, a noise distribution was characterised in terms of
its variance var). The data can be further characterised using the higher moments of the noise

distribution, and in addition these can often be used to reconstruct the noise distribution.

In our discussions so far we have used the mean and variance, which are the first and second
moments of a distribution respectively, to describe the noise. The mean of a noise distribution is
assumed to be zero since any bias can be incorporated into the model. However, the mean and

variance tell us very little about the overahapeof the distribution.

Higher moments can provide greater evidence for the shape of a distribution. For example the
third momentskewnesds often used to describe the asymmetry of a distribution. The ratio of the
fourth moment about the mean of a distribution to the square of the variance, is independent of the
unit employed. This invariant of the distribution is calledktstosis and is frequently denoted by

(2 [Kendall and Stuart, 1963]. For a normal distributign= 3.

The idea of moments has its origin in mechanics where we can describe the moment of &fforce,
as being the forcef;, multiplied by the perpendicular distanag, from the force to the fulcrum.
Hence the moment of the force fsx. If there are several forces acting then the total moment of

all these forces i3/ = fix1 + foxa + fsxs + ... = > fiz;.

Moments are defined either about the origin, the mean of a distribution, or around a reference point
[Rosander, 1957]. Unfortunately we cannot use these existing technigues to calculate the moments
of the noise distribution from our non-linear data because the noise distribution is entangled within
the data arising from a smooth model. However, we already have the Gamma test to calculate the
second moment, and it turns out to be relatively straightforward to adapt it to calculate the higher

moments as we shall demonstrate in Section 5.2.

If we consider the moments about the meanwe can write a general formula for the moment

calculation '
1 < .
Ml = M é 1 fl(T‘Z — a) (51)

wherel is the order of the moment & 1 corresponds to the meah~= 2 the variance] = 3

the skewness, and so on) amflis the number of samples in the populatigi.is the number of

sample values ofr; — a) in thei*” group andj is the number of groups such thell_, fi = M.
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5.2 Higher moments: an extension of the Gamma test

5.2 Higher moments: an extension of the Gamma test

The argument of Section 3.3.1, which provides a relationghip= 2M, between the second
momentl’ = M, of the noise distribution and the vertical interc&ps of the regression line

betweeny,; (k) andy,,(k), can be extended.

For eveni > 2 let GG be the vertical intercept of the regression line betw&g(k) andy,, (k, 1)

where
| M
om(k) = 57 D (@i — ) (5.2)
i=1
and
| M
(k0 = 72> (Untin = v:)' (5.3)

=1
Now consider the analogous expression to (3.9) obtained by raising (3.8)it6 pwver, i.e.

W =9 = (0" =)+ & %) VI + ol —x])
= =) ()07 0 +

l
(5)0" =02 (=2 T160) 4ol = xP) (54)
wherer’ denotes the noise associated with a near neighkbaf x etc. Sincer’ andr are

independent we have
! /1 . .
£ ((r/ - r)l) => (-1 <j>5(r/3)5(rl_]) (5.5)
j=0
We recall that’ andr are distributed identically so that (5.5) becomes

£ ((r’ . r)l> - i(—l)lj (j) MM, (5.6)

j=0
whereMy = 1, My = 0 andM; (forl > 2) is the!'” moment about the mean for the distribution

of r.
Summing both sides of (5.4) we obtain

M 1
Z YN[ik] — = Z T NTi,k]
i=1 z:l

1
M

M:

+

l
<1> ("N[ik — Ti)l_l(XN[i,k} —x;) - Vf(x;)

=1

M
% Z <;> (TN[i,k] - Ti)li2 ((XN[i,k] — XZ‘) . Vf(xi))2

i=1

_|_

+o(dnr(k)) (5.7)
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5.3 Non-symmetric noise distributions

asM — oo. Now, sincel is even/ — 1 is odd so thaE ((ry; . — 7:)'~') = 0. Hence asymptot-

ically the second term on the RHS is zero and

LM LM
MZ(?JN[Lk] - yi)l ~ M E (TN[i,k] — ri)l
=1 i=1
1M )
+M Z <2> N ri) (=N — %i) - V(i)
i=1

+o(op(k)) (5.8)

Notice that, proceeding as before, the slope of the regression line now really does depend on
[ in addition to possibly depending drn and from (5.6) also depends on the noise moments
Moy, ..., M;_,. Following the line of proof in the Gamma test we can show that the regression
line interceptz; converges in probability t& ((r’ — r)l) asM — oo. Then from (5.6) and (5.8)

using M, = 0 we obtain forl = 2,4,6, 8,10, ... the following limiting equations a8/ — oo

(with convergence in probability)

Gy =~ 2M,
Gy ~ 2My+ 6M;3
Ge =~ 2Mg+ 30MyMy — 20M3
Gg ~ 2Mg+ T0M? — 112M3Ms + 56 My Mg
Gio ~ 2Myg — 240M7 M3 + 420 M4 Mg — 252M7 + 90 My Mg

(5.9)

Computing the&7; and solving equations (5.9) successively willimmediately gifgeand M, from

the equations fo7, andG4. We cannot proceed beyond this, at least without further equations
or assumptions, since there are too many unknown quantities. Compggifay example leaves

two unknown terms\iz and Ms. Unfortunately, computingr; for odd! is easily seen to provide

no useful informatioh so that the odd moments cannot be determined in this way. Hence, if we
are interested in determining the higher moments of the noise distribution we must make further

assumptions.

5.3 Non-symmetric noise distributions

The conjectured equations (5.9) ligk for eveni with the theoretical moments of the noise distri-

bution. Since these equations also involve odd moments, plainlyfof we have more unknowns

1@, — 0asM — oo for odd! using (5.6).
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5.3 Non-symmetric noise distributions

than equations. Hence measuritigfor [ > 4 on data suspected of havinghan-symmetritioise

distribution is not helpful because at present we have no method for estimating the odd moments.

We can however perform some experiments with known non-symmetric noise distributions in
order to check whether equations (5.9) seem likely to be true. This is achieved using the known

moments of a variety of non-symmetric noise distributions.
The function defined in (3.13)
f(z) = sin(4nx) 4 cos(2mx) (5.10)

will be used to produce the underlying smooth function for the experiments in this section. The
experiments performed use two different non-symmetric noise distributions: (1) a distribution
composed by combining a pair of uniform distributions (we refer to thiswasfarm distribution-

pair), and (2) a lognormal distribution. These distributions are described in Appendices C.1 and

C.2 respectively.

The experiments to calculatg; use a uniform distribution-pair withwvidthLeft = 1.5,
widthRight =1, meanRight = 1, numPoints = 50000, andproportionRight =0.2

as required for Algorithm 14. There are two additional experiments using the lognormal distribu-
tion; the first uses a distribution whose shape is less asymmetrigwitl2 ando = /0.4, closer

to the symmetric noise distribution case, and the second uses a more pronounced asymmetric dis-
tribution with » = 0.5 ando = v/0.4. These two lognormal distributions may indicate how the
asymmetric nature of the distribution affects the calculatiof¥ ofvith respect to the expected val-

ues given by (5.9). For brevity, these distributions will be identifiedr@form distribution-pair

lognormal distributiony, = 2, andlognormal distributionu = 0.5.

The noise distributions used for these experiments, and some example sampled points around the

smooth function (5.10), are shown in Figure 5.1.

5.3.1 Experimental verification of (5.9)

We attempt to verify (5.9) by inserting into these equations the known moments of our artificial
noise. In this way we can arrive at a prediction for the valuegipfor eveni. The higher
moments Gamma test is used to compute the appropriate regression lines, for inckéasing
arrive at numerical estimates f6f;. Comparison of these values enable us to test the validity of
(5.9).
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5.3 Non-symmetric noise distributions
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(e) The lognormal distribution with . = 0.5 (f) The data points generated from the log-
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with the underlying smooth function.

Figure 5.1 : The non-symmetric noise distributions used to estimate the asymptotic nature of the

moments.
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5.3 Non-symmetric noise distributions

The known theoretical moments for the three non-symmetric noise distributions are shown in Table

5.1 where each distribution is shown to have approximately the same varighce ().4).

Uniform Lognormal distribution

Moment | distribution-pair w=2 uw=0.5

1 0 0 0

2 0.41666 0.4 0.4

3 0.12500 0.248 1.472

4 0.41250 0.76097 15.7007

) 0.29166 1.47 397.684

6 0.56473 4.36534 2.49511 x 10%

7 0.57421 13.8841 3.95841 x 108

8 0.91362 52.6426 1.60958 x 10°

9 1.10000 226.69 1.69006 x 10*2

10 1.62118 1111.27 4.59940 x 105

Table 5.1: The theoretical moments of the non-symmetric noise distributions.

One problem associated with calculating the higher moments directly from the data is that a great
deal of data is required for lognormal distributions to get accurate results. Table 5.2 illustrates
the problem clearly for a lognormal distribution with= 2 ando = +/0.4. Using M = 50000
data points and calculating directly from the generated noise data, the higher moments are ‘inac-
curate’ compared to the theoretical values of the moments, and evéif fer10° or M = 107

convergence to the theoretical values is not really achieved.

The theoretical values @, for the three distributions were calculated using (5.9) with the theo-
retical moments given in Table 5.1. These theoretical valugs, @re shown in Table 5.3. The
data derived estimates 6f; calculated using th€entralMoment routine inMathematicaare

shown in Table 5.4.

Experimental validation of (5.9) should show that the higher moments Gamma test estimate for
(; converges to either the theoreti¢al given in Table 5.3, or to the data derived estimategpr

given in Table 5.4, depending on the noise distribution.
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5.3 Non-symmetric noise distributions

Moment | Theoretical| M = 50000 | M = 10% | M = 107
1 0 0 0 0
2 0.4 0.39700 0.39928 0.39978
3 0.248 0.23966 0.24661 0.24790
4 0.76097 0.72525 0.75564 | 0.76080
) 1.47 1.32874 1.44478 1.46947
6 4.36534 3.71976 4.22978 4.35184
7 13.8841 10.6917 13.0859 13.7170
8 52.6426 35.3785 47.5822 50.9471
9 226.69 125.909 192.103 210.681
10 1111.27 480.292 857.108 963.253

Table 5.2: The theoretical and experimental moments of a lognormal noise distribution with ; =
2, 0 = +/0.4. The experimental moments were calculated using the CentralMoment routine in

Mathematica.
Uniform Lognormal distribution
G, | distribution-pair w=2 uw=0.5
2 0.83333 0.8 0.8
4 1.86667 2.48195 32.3614
6 5.97321 16.6323 5.00474 x 10*
8 22.8319 202.774 3.21968 x 10?
10 96.6792 4141.95 9.19886 x 10

Table 5.3: The theoretical G; derived from (5.9) and the theoretical moments of the non-symmetric

noise distributions.

Experimental results

Figures 5.2, 5.3, and 5.4 show the higher moments Gamma test estim@jenith (where possi-

ble) two predicted lines: (1) the theoretical estimaté&gfand (2) the noise-data derived estimate

of Gj.
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5.3 Non-symmetric noise distributions
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Figure 5.2 : Asymptotic nature of G, for the uniform distribution-pair described in Figure 5.1(a) with
M = 50000 sampled points. The higher moments Gamma test estimate for G, is shown relative
to the values predicted by (5.9) using the data derived moments (shown as the dashed line). The

value of GG calculated from the theoretical moments are not shown since they approximately equal

the noise-data derived moments.
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5.3 Non-symmetric noise distributions
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Figure 5.3: Asymptotic nature of G; for a lognormal distribution with x = 2, ¢ = /0.4, and
M = 50000 sampled points. The higher moments Gamma test estimate for G, is shown relative
to the values predicted by (5.9) using the theoretical moments (shown as the dotted line) and the
noise-data derived moments calculated for M = 50000 (shown as the dashed line).
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5.3 Non-symmetric noise distributions
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Figure 5.4 : Asymptotic nature of G; for a lognormal distribution with z = 0.5, o = /0.4, and
M = 50000 sampled points. The higher moments Gamma test estimate for GG, is shown relative
to the values predicted by (5.9) using the theoretical moments (shown as the dotted line) and the
noise-data derived moments calculated for M = 50000 (shown as the dashed line).
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5.3 Non-symmetric noise distributions

Uniform Lognormal distribution
G, | distribution-pair =2 pw=10.5
2 0.83247 0.79400 0.79256
4 1.86327 2.39618 24.9706
6 5.95950 14.9286 3699.17
8 22.7740 154.609 7.94720 x 10°
10 96.4257 2297.83 1.93001 x 108

Table 5.4: The G, derived from (5.9) using the experimental moments of the non-symmetric noise
distributions calculated using the CentralMoment routine in Mathematica (M = 50000).

Analysis of results

Figure 5.2 verifies (5.9) for the uniform distribution-pair. Although the higher moments Gamma
test slightly over-estimated’; against the noise-data derived estimates and the theoretical esti-
mates, the results were nevertheless very good indeed considering the algorithm had to deal with

the smooth underlying function as well.

From the conclusion drawn from Table 5.2, the Gamma test estimatés far the lognormal
distributions given in Figures 5.3 and 5.4 were closer to the noise-data derived estimaigs for
than the theoretical values. This is because a substantial amount of data is required to closely
approximate the theoretical values. However, since the higher moments Gamma test estimates
for GG; were close to the noise-data derived estimates for the known noise distribution, we can be
satisfied that the Gamma test is ‘no worse’ than existing techniques of measuring the moments, and
is in fact the only known technique available to deal with data that contains an entangled unknown

smooth function and noise distribution.

The confirmation of (5.9) has been much easier to demonstrate for a bounded distribution using
the uniform distribution-pair than for the unbounded lognormal distributions. The less conclusive
results for the lognormal distributions show a discrepancy between the higher moments Gamma
test and the theoretical moments, which is likely to be directly attributable to the sample size. This
hypothesis that (5.9) are correct has been partly substantiated using a separate analytical technique

to calculate the moments from the noise distribution for lav§€Table 5.2).

If indeed (5.9) are correct, then measuridgaccurately for largé requires massively large data
sets particularly if the distribution is unbounded. The sample &iz&so appears to be dependent

on the skewness of the distribution, for example for the less skewed lognormal noise distribution
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5.3 Non-symmetric noise distributions

(v = 2) the experimental and theoretical moments were similar and (for Rrgeunded the
higher moments Gamma test estimates@gr Both the higher moments Gamma test and other
analytical techniques severely underestimate the theoretical valugsflmrreasonablé/, [ > 2,

and high skewness (largés).

Table 5.5 shows the comparison between the theoretical moments and the higher moments Gamma
test estimates for the three non-symmetric distributions.djrestimates for the uniform distribu-

tion were reasonably accurate at |dw = 1000. The lognormal distribution witlx = 2 provides
reasonably accurate fa@¥s ... Gg for M = 10000. The highly skewed lognormal distribution

with ¢ = 0.5 could only approximatér, at M = 50000. This table confirms that highly skewed

and unbounded distributions require many data points to calatilate

One technical aspect to note for these experiments is the precision of the arithmetic used, since
the algorithm depends on takiuiifferencesaised to thé* power. These results were computed

in both single precision and double precision in C++ to see whether there was a significant affect
on accuracy. Although there were slight differences in the results, they were largely insignificant
in their affect on the overall results. For large quantities of data where 0 asM — oo, the

measurements @fand~ must be performed in at least double precision to maintain accuracy.

There is little point in examining the relationship betwe&@nand M; because the odd moments

cannot be determined using the higher moments Gamma test.
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5.3 Non-symmetric noise distributions

Table 5.5: A comparison of the theoretical and experimental GG; of the non-symmetric noise distri-

butions.

Uniform distribution-pair

M
G; | Theoretical 1000 10000 50000
0.83333 0.839124 0.834511 0.836781
4 1.86667 1.87385 1.8814 1.89319
5.97321 5.964 6.07577 6.10984
8 22.8319 22.6236 23.4911 23.5029
10 96.6792 94.9311 100.8080 100.0060
Lognormal distributionu = 2
M
G | Theoretical 1000 10000 50000
0.8 0.756204 0.788235 0.809417
4 2.48195 2.05152 2.42253 2.55415
16.6323 10.1903 16.0798 17.1127
8 202.774 69.7921 179.286 188.159
10 4141.95 567.746 2730.99 2804.13
Lognormal distributionu = 0.5
M
G; | Theoretical 1000 10000 50000
0.8 0.55948 0.73561 0.785579
4 32.3614 4.94418 13.6598 22.5250
5.005 x 10* 103.6920 1065.38 2985.32
8 3.220 x 10° 2794.85 118771 594083
10 | 9.199 x 10 |  82805.5 1.450 x 107 | 1.360 x 10®
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5.4 Symmetric noise distributions

5.4 Symmetric noise distributions

Let us now assume that the noise distribution is symmetric, so that all higher odd moments are

zero. Then equations (5.9) become (with convergence in probability)

Gy =~ 2Ms
Gy ~ 2My+6M3
G ~ 2Mg+ 30MyM,
Gs =~ 2Mg+ 7T0M3 + 56 MyMg
Gio ~ 2Mo+ 420M, Mg + 90M, Mg

(5.11)
asM — oo.

We shall use the higher even moments Gamma test algorithm described in Section 5.4.1 to calcu-

late theG; from (5.11) and solve for the higher even momehts

5.4.1 The higher even moments Gamma test algorithm

The higher even moments Gamma test algorithm is given in Algorithm 6. It is a natural extension

of the original Gamma test algorithm described in Algorithm 4.

5.4.2 Experimental verification of (5.11)

If our diverse heuristic arguments are valid then under the assumption of symmetric noise these
equations should permit us to efficiently compute as many higher order even moments as the

quantity of data justifies.

We first show using a series of experiments that the computed valug&sfof symmetric noise
distributions do indeed asymptote to the values predicted by (5.11) using the true values for the
M,.

We then show several experiments which illustrate that this method is in fact a remarkably effective
way to estimate the higher even momehis Of course, once the higher order moments are known
or estimated we can then proceed to reconstruct the noise distribution and we shall return to this

issue in Section 5.5.
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5.4 Symmetric noise distributions

{initialisation }
generate near neighbour structure (e.g. k-d tree)
for p=11to ppa do

é(p) =0
for =21t k step 2 do
v(p,1) =0
end for
end for

{main algorithm }
for i=1to M do
generate  NJi,p] {find the  p,.., near neighbours of x(i)}
for p=11t0 ppa do
5(p) = 8(p) + [x(i) — x(NTi, p])]?
for 1=21to k step 2 do
z(p) =0
for j=1to L(NJ[i,p]) do
2(p) = 2(p) + [y(i) — y(N i, p][5])]
end for
v(p,1) = v(p,1) + [2(p)/L(NTi, p])]
end for
end for
end for

for p=11t0 ppa do
6(p) = d(p)/M
for =21t k step 2 do
v(p,1) = v(p, 1)/ M
end for
end for

{Gamma statistics }
for =2 to k step 2 do

Perform least squares fit on (0(p),v(p,1)) where (1 <p < pmaz)
to compute G; from y= Ajx+ G,
end for
{Moments }

for =2 to k step 2 do
Solve M; from known G, where (2<n <)
end for

return (M, 4;) for (2<1<k)

Algorithm 6: The higher even moments Gamma test algorithm.
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5.4 Symmetric noise distributions

The following examples use (5.10) as the underlying function. Symmetric noise distributions
were added to the function to examine the effectiveness of calcul@jiagd hence estimating the

momentsi;.

The three noise distributions chosen for these experiments are shown in Figure 5.5. Each distri-
bution has a varianc&/, ~ 0.4 which is comparable to that used for the experiments using the
non-symmetric noise distributions. The distributions used are: (1) a uniform noise distribution, (2)
a normal distribution, and (3) a bimodal distribution that consists of two separated, but identically

shaped, normal distributions.

The theoretical moments for the three symmetric noise distributions are shown in Table 5.6 where
each distribution is shown to have approximately the same variavigex{ 0.4). The uniform
distribution is on the intervdl1.095445, 1.095445] to give a variance df.4. The normal distri-

bution has mean zero and variaricé and the bimodal distribution is a combination of two normal
distributions with mean-/ — 1/0.4/1.155 and variance,/0.4/2 to give a variance o.39984.

Moment | Uniform | Normal | Bimodal
1 0 0 0
2 0.4 0.4 0.399844
3 0 0 0
4 0.288 0.48 0.29981
5 0 0 0
6 0.24685 | 0.96 0.31174
7 0 0 0
8 0.2304 | 2.688 | 0.40880
9 0 0 0
10 0.22621 | 9.6768 | 0.64296

Table 5.6: The theoretical moments of the symmetric noise distributions

The theoretical moments given in Table 5.6 are inserted into (5.11) to predict a valtigftoithe
distributions. Verification of the higher moments Gamma test estimatg;foan be established if

those values asymptote to the predicted theoretical values shown in Table 5.7.

G, has been independently calculated using data generated from the noise distributions. The mo-
ments were calculated using tBentralMoment  routine inMathematicausing50000 sampled

points from each of the noise distributions. These values were then substituted into (5.11) to cal-
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5.4 Symmetric noise distributions
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(c) The normal (Gaussian) distribution with
mean zero and variance 0.4.

(b) The data points generated from the uni-
form distribution in Figure 5.5(a) shown with

the underlying smooth function.

(d) The data points generated from the nor-
mal distribution in Figure 5.5(c) shown with
the underlying smooth function.
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(e) The bimodal distribution consisting of
two normal distributions with mean +/-
v/0.4/1.155 and variance +/0.4/2, which
gives an overall variance of 0.39984 for the

distribution.

Figure 5.5: The symmetric noise distributions used to estimate the asymptotic nature of the

moments.

(f) The data points generated from the bi-
modal distribution in Figure 5.5(e) shown

with the underlying smooth function.
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5.4 Symmetric noise distributions

G, | Uniform | Normal | Bimodal

2 0.8 0.8 0.79968
4 1.536 1.92 1.55888
6 | 3.94971 7.68 4.21986
8 | 11.7965 | 43.008 | 14.0902
10 | 38.6066 | 309.658 | 55.253

Table 5.7: The theoretical G; derived from (5.11) and the theoretical moments of the symmetric

noise distributions.

culateG; for the distributions, as shown in Table 5.8. These values were intended to provide an
experimental comparison to the higher moments Gamma test. However, the difference between
the theoretical and experiment] for the symmetric noise distributions appears to be less impor-
tant than for the non-symmetric case, so that only the theoretical valué$ fared to be used in

these experiments.

G, | Uniform | Normal | Bimodal

2 | 0.80155 | 0.80893 | 0.79774
4 | 1.54058 | 1.97111 | 1.5511
6 | 3.96158 | 8.0365 | 4.18669
8 | 11.8248 | 46.1027 | 13.9325
10 | 38.6613 | 342.198 | 54.4216

Table 5.8: The G, derived from (5.11) using the experimental moments of the symmetric noise
distributions calculated using the CentralMoment routine in Mathematica (M = 50000).

Experimental results

Figures 5.6, 5.7 and 5.8 show the higher moments Gamma test estimdte fimr increasing
sample sized/ up toM = 50000 sampled points. The theoretical valuesdgrare shown by the
dashed lines. The estimates &y (for evenl) for the distributions will asymptote to the theoretical

values as\f — oo, providing the technique described in Section 5.4 is reliable.
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5.4 Symmetric noise distributions

0 10000 20000 30000 40000 50000 ) 10000 20000 30000 40000 50000
M M
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Figure 5.6 : Asymptotic nature of G; for the uniform distribution described in Figure 5.5(a) with

M = 50000 sampled points. The higher moments Gamma test estimate for G;; is shown relative to

the value predicted by (5.11) using the theoretical moments (shown as the dashed line).
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5.4 Symmetric noise distributions
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Figure 5.7 : Asymptotic nature of GG; for the normal distribution described in Figure 5.5(c) with
M = 50000 sampled points. The higher moments Gamma test estimate for G; is shown relative to
the value predicted by (5.11) using the theoretical moments (shown as the dashed line).
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5.4 Symmetric noise distributions
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Figure 5.8: Asymptotic nature of G; for the bimodal distribution described in Figure 5.5(e) with
M = 50000 sampled points. The higher moments Gamma test estimate for G;; is shown relative to
the value predicted by (5.11) using the theoretical moments (shown as the dashed line).
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5.4 Symmetric noise distributions

Analysis of results

Figures 5.6, 5.7 and 5.8 empirically verify (5.11) for the three symmetric distributions. The con-
vergence of the higher moments Gamma test estimatg &b the theoreticaly; was evident for

all three distributions (Table 5.9 provides a humerical comparison). This verification is very en-
couraging, especially considering that the estimates were made from data containing an underlying

smooth function.

The confirmation of (5.11) is more conclusive than for the non-symmetric distributions used to
verify (5.9). It has become evident through these experiments that much less data is required
to accurately estimaté’; for symmetric noise distributions than for (unbounded) non-symmetric

distributions.

Now that we are confident that the results@grare accurate, the higher moments can be calculated

using (5.11) using the higher moments Gamma test estimatég for

5.4.3 Using G, to estimate the even moments

The values of7, calculated for the previous experiments were sufficiently accurate to justify (5.11)
and provide confidence that the moments can be calculated with reasonable accuracy. The calcu-
lation of the moments frond; was performed and the results shown in the Figures 5.9, 5.10, and

5.11 for the three noise distributions.

The moments\/; measured using the higher moments Gamma test for each of the distributions
asymptoted to the values predicted by the theoretical moments. The asymptote to the theoretical
values required approximatefp000 sampled points to provide sufficiently accurate results for
largel (see Table 5.10). In one sense this is an expected result since a lot of data is required
to accurately define the original probability density functions. This fact aside, in practice the
moments determined by the higher moments Gamma test for much less data often provides an

acceptable measure.

In these experiments the moments of the noise distributions determined experimentally using
Mathematicavere similar to the theoretical moments making comparison usamgralMoment
unnecessary (contrary to the experiments using the lognormal distributions for the non-symmetric

noise case).

These results show that, feymmetrimoise distributions, the moments estimated from the higher
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5.4 Symmetric noise distributions
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Figure 5.9 : Asymptotic nature of moments for a uniform noise distribution, and M = 50000 sam-
pled points.
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5.4 Symmetric noise distributions
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Figure 5.10: Asymptotic nature of moments for a normal noise distribution, and M = 50000

sampled points.
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Figure 5.11: Asymptotic nature of moments for a bimodal noise distribution, and M = 50000
sampled points.
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5.4 Symmetric noise distributions

Uniform distribution

M
G; | Theoretical 1000 10000 50000
2 0.8 0.765647 0.794516 0.801646
4 1.536 1.41982 1.52707 1.54282
3.94971 3.51855 3.94181 3.97423
8 11.7965 10.1008 11.8186 11.8815
10 38.6066 31.7261 38.8007 38.8928

Normal distribution

M
G, | Theoretical 1000 10000 50000
0.8 0.72985 0.760654 0.798732
4 1.92 1.77652 1.71271 1.91237
7.68 7.96515 6.62619 7.60584
8 43.008 52.1634 39.2998 42.4734
10 309.658 426.373 344.51 310.442

Bimodal distribution

M
G; | Theoretical 1000 10000 50000
0.79968 0.811248 0.804177 0.800964
4 1.55888 1.58641 1.5751 1.56066
4.21986 4.2165 4.23444 4.21713
8 14.0902 13.4455 13.8269 14.0772
10 95.253 48.8346 52.0118 55.509

Table 5.9: A comparison of the theoretical and experimental G,; of the symmetric noise distribu-
tions.

moments Gamma test do indeed asymptote to their theoretical values, which now allows us to

discuss the reconstruction of the noise distributions.
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5.5 Reconstructing a symmetric noise distribution

Uniform distribution
M
M; | Theoretical 1000 10000 50000
2 0.4 0.382823 0.397258 0.400823
4 0.288 0.27025 0.290093 0.289432
0.246857 0.207407 0.242279 0.246949
8 0.2304 0.270981 0.268991 0.23724
10 0.226211 —0.576024 —0.167783 0.157596
Normal distribution
M
M; | Theoretical 1000 10000 50000
0.4 0.364925 0.380327 0.399366
4 0.48 0.488747 0.422411 0.477704
0.96 1.30724 0.903284 0.941242
8 2.688 4.36392 3.78563 2.72449
10 9.6768 7.35309 27.338 11.8347
Bimodal distribution
M
M; | Theoretical 1000 10000 50000
0.399844 0.405624 0.402089 0.400482
4 0.299813 0.299612 0.302522 0.299174
0.311748 0.285302 0.292607 0.311358
8 0.408804 0.340567 0.415944 0.414532
10 0.642966 0.250113 —0.109427 0.722397

Table 5.10: A comparison of the theoretical and experimental M; of the symmetric noise distribu-

tions.

5.5 Reconstructing a symmetric noise distribution

It is well known that the moments do not in general completely determine the distribution even

when moments of all orders exist [Kendall and Stuart, 1963]. Only under certain conditions will a
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5.5 Reconstructing a symmetric noise distribution

set of moments determine a distribution uniquely, but fortunately these conditions are satisfied for
all distributions likely to be encountered in practice. For all practical purposes, a knowledge of the
moments, when they exist, is equivalent to a knowledge of the distribution function. In particular
we expect that if two distributions have a certain number of moments in common they will bear
some resemblance to one another. Further discussion of this topic can be found in, for example,
[Kendall and Stuart, 1963] Chapter 3.

For our purposes we should like to perform an approximate reconstruction of the probability den-
sity function (pdf) of the noise distribution based on estimates for the first few even moments and
the hypothesis that this distribution is symmetric, so that the odd moments are zero. In practice we

are unlikely to be interested ik/; for [ > 10.

In Algorithm 7 we represent the unknown pdf as a normal distributir) multiplied by a poly-
nomialp(x) = 3 a2 of degreen having only even powers. This representation is a compro-
mise based on the assumption that in most practical situations the noise distribution is likely to be

approximately normal.

The mean and standard deviatiar) for the normal distribution are assumed respectively to be
zero and the square root of the variange<{ /M) as estimated by the Gamma test. The unknown
coefficients of the polynomial are determined from the moments by symbolically integrating
Ro
/ da(x)p(x)de (j =2,4,6,...,n) (5.12)
—Ro
where R is chosen to bé as a suitable compromise determined empirically to give reasonable
results. The symbolic expressions determined by (5.12) are then equated to the estimated moments

and the resulting linear equations can be solved to give the polynomial coefficients.

A Mathematicamplementation of this noise reconstruction method is given in Algorithm 7, where
iLimit  corresponds t& in (5.12), andkmin andxmax define the interval within which the re-
constructed noise distribution should be plotted. The plot of the noise distribution is then returned

by the algorithm.

5.5.1 Experimental reconstruction

The moments computed for the three symmetric noise distributibhs=(50000) are shown in
Figure 5.12. The noise distributions were reconstructed using Algorithm 7 and overlaid on to the
original noise distributions shown in Figure 5.5 to provide a comparison between the reconstruc-

tion and the original distribution.
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5.5 Reconstructing a symmetric noise distribution

PlotEPNoise[allMoments _, humMoments _, iLimit _, {xmin _, xmax _}] :=
Module[
{ moments, n, stdDev, alpha, f, a, LO, L, j, eqgns, coeffs s

moments = Abs[Take[allMoments, humMoments]];
n = Length[moments]/2;
stdDev = Sqrtfmoments[[2]]];

alpha[x ] :=
1 / (stdDev * Sqgrt[2*Pi]) * Exp[-(X"2) / (2 * stdDev2)];
flx _, n ] := alpha[x] * Sum[a[2*i] * x"(2*), {i, 0, n }I;
LO = Integrate[f[x, n], {X, -iLimit*stdDev, iLimit*stdDev H;
L = Table[o, {i, 1, 2*n }];

For[j = 2, j <= 2*n, j += 2,
L[[]l = Integrate[xj * fx, n], {x, -iLimit*stdDev,
iLimit*stdDev H;

I;

eqns = Join[ {LO == 1}, Table[L[[2*i]] == moments[[2*]], {i, 1,
nH;
coeffs = Table[a[2*i], {i, 0, n }];

Evaluate[coeffs] = coeffs /. Solve[eqns, coeffs][[1]];

Return[Plot[f[x, n], {X, xmin, xmax }]J;

Algorithm 7:  The EP (even polynomial) algorithm for reconstructing a distribution.
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5.5 Reconstructing a symmetric noise distribution
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(c) The bimodal noise distribution.

Figure 5.12: The reconstructed symmetric noise distributions using Mo, ..., M, (shown by the

line) overlaid on to the original noise distribution.
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5.6 Perfect models

The distributions were reconstructed using all of the computed even momentsiti toThe
bounded uniform distribution is only approximated by the EP algorithm, which considering that
the distribution is being represented by an even polynomial times a normal distribution, is satisfac-
tory. An improvement might be possible through careful consideration of the integration range of
(5.12) but, due to the nature of the reconstruction method, this will only have a minor effect. The
normal and bimodal distributions, as would be expected given the nature of the reconstruction,

were well represented using this reconstruction method.

The EP algorithm has been shown to work well for the normal and bimodal noise distributions.
However, if uniform noise is suspected then this may not be the most appropriate algorithm for

reconstructing the noise distribution.

5.6 Perfect models

In building non-linear models we have previously accepted the idea that a model whose error
variance is close to the noise variance estimated by the Gamma test is probably the best that can
be accomplished. For example in training a neural network by error backpropagation we attempt

to reduce the mean-squared error to the Gamma statistic.

However, the ability (albeit rather restricted) to estimate the higher order moments suggests a

refinement of the idea of what constitutes a good model. We offer the following:

o An idealmodel would have an error distributigsienticalto the noise distribution.

Of course, this is a useful criterion only if there is a method of accurately reconstructing the noise
distribution. We have seen that approximate reconstruction of a noise distribution is possible pro-
vided it is symmetric. An interesting question now arises: if the goal of conventional backpropa-
gation were modified so as to reduce some measure of the difference between the estimated higher
moments and the actual error moments of the neural network, then would the resulting model have

a superior performance?

5.7 Conclusions

We have shown that a plausible generalisation of the original Gamma test allows the higher even

moments to be measured directly from the data (providing we assume that the noise distribution
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5.7 Conclusions

is symmetric). This discovery has enabled a noise distribution to be reconstructed and this leads
us to propose further work beyond the scope of this thesis such as: (1) what is the best method to
reconstruct the noise? and (2) how can modelling techniques be improved using the reconstructed
noise distribution?

Perhaps the most challenging development is to turn the Gamma test algorithm into one that can
measure both the even and odd moments. It is not obvious how to proceed at present with the

Gamma test in its current form, but perhaps this will become clearer as the research continues.
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CHAPTER 6

winGamma

winGammawas specified to provide an easy-to-use Windows application for use by the consultants
of Universal Solutions as a research and teaching tool for academics and students, and as a
commercial product available to data modellers requiring state-of-the-art analysis and modelling

techniques.

This is the first commercial Gamma test software and took approximately three man-years to
develop (including research, prototyping, design, implementation and testing). Some of the algo-
rithms contained withinvinGammeahad been previously implemented for use within the research
group at Cardiff University using a rudimentary scripting interface. This project developed those
algorithms further and added a suitable graphical interface to enable practitioners from any field

to use the software tool with the minimum of effort.

A lot of the design, prototyping and programming was undertaken using some of the tech-
niqgues now described asxtreme programmingXP) and explained in [Beck, 2000] and
[Hunt and Thomas, 2000]. These practices ensured that the software was delivered quickly, with
appropriate quality and to specification. However, there are some limitations to the software that
have come to light now that this first software tool has been developed, particularly involving scal-

ability, maintainability and platform independence. These aspects are considered towards the end

tUniversal Solutions are an advertising consultancy operating within Universal McCann to help media planners
develop more effective marketing campaigns. Universal McCann is owned by the McCann-Erickson global advertising
agency that sponsored this wonkinGammahas been supplied to McCann-Erickson under a commercial agreement

that preventsvinGammabeing released to their direct competitors.
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6.1 Requirements definition and specification

of this chapter and new judgements are presented to show how to proceed with the design of the
next version of the software. Most of the analysis and modelling techniques mentioned within
this thesis have been includedwinGammaas have some techniques not previously discussed,

all of which have implications for future development and research work. The techniques not

implemented so far are the higher moments Gamma test and false nearest neighbours.

6.1 Requirements definition and specification

The winGammaspecification focuses on code re-fis@d the development of a quality user in-
terface to provide an easy-to-use system. This broad starting point enabled the requirements to
become more formally defined.

Requirements definition

The software must provide a means of non-linear data analysis using the Gamma test
and provide a method for non-linear modelling. The software must be of commercial

quality and compatible with Microsoft Windows.

The requirements definition was developed into a flexiBlguirements specificatiomwith the

final scope of the project limited by the ability to develop the algorithms and provide a suitable
graphical user interfac€GUI) using the tools available and within the time-limits imposed by the
research.

Requirements specification

1. Develop an environment for running Gamma test experiments and model build-

ing using neural networks and local-linear regression.

2. Provide a commercial quality interface compatible with Microsoft Windows
95/98/NT (and later ME/2000).

Re-use existing algorithms where possible.

Provide a means to access data files generated by other tools.

o > w

Maintain the functionality of the existing software.

6. Interface withiMathematicdor additional analysis.

2A script based Gamma test and modelling system was developed for UNIX in 1997 by Steve Margetts.
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6.2 Development environment

6.2 Development environment

After the specification avinGammeéhad been agreed the development language and environment

were chosen. The numerical content of the analysis and modelling routines required a language
that offered favourable execution speed from compiled code. Speed was chosen as the criterion
since there is little to choose between most high-level languages regarding accuracy. Some lan-
guages such as Java did not, at least at the time, provide suitable performance. In the end C++ was

chosen as the development language for several reasons:

1. C++ offered the best combination of execution speed, object-oriented features and memory

management.
2. The original Gamma test and modelling code was written in C++.

3. Suitable Microsoft Windows-based development tools exist for C++ including Microsoft

Visual C++ and Borland C++ Builder.

4. Third party tools, for example for charting and reporting, are widely available with C++ and

Microsoft Windows interfaces.

The two potential software development tools Microsoft Visual C++ and Borland C++ Builder
were compared and Table 6.1 provides a summary of the main featiBeth development en-
vironments have a similantegrated development environmgl2E) and each suppohlicrosoft
foundation classe$MFC), essential for programming native Microsoft Windows applications.
However, visual GUI building is absent from Microsoft Visual C++ and this is a major drawback
for rapid application developmerfRAD). Conveniently Borland has also abstracted Microsoft's
rather esoteric MFC to provide a simpler programming interface throughwiseial component
library (VCL).

Borland C++ Builder was chosen as the development environment because it was more compre-
hensive, especially regarding the reasons highlighted over GUI development. The GUI building
capability and the VCL abstraction of the MFC library combine to produce a well-designed RAD

tool.

There were additional considerations that exerted a secondary influence on the choice of devel-
opment environment that did not arise during the initial specification. For example, to create a

distributed application, perhaps to take advantage of a ‘pool of machines’, an interface such as

3Source: Borland (only the relevant points are shown).
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6.3 Design and prototyping

Borland Microsoft
Feature C++ Builder 4 Visual C++ 6
Real visual development Yes No, use Visual Basiq
Class framework MFC, VCL, OWL MFC
CORBA ORB VisiBroker No
Integrated CORBA development Yes No
Distributed object interfaces COM and CORBA COM
High performance RDMS Native and ODBC ODBC
Visual database design Yes Yes
Internet protocol components/classes Yes Yes

Table 6.1: A comparison of Borland C++ Builder and Microsoft Visual C++ showing the key de-

velopment features.

CORBA could be used. This has an advantage over the alternative COM proposed by Microsoft
because it is platform independent and would allow computation to be spread over different ma-
chine architectures and operating systems (Borland support CORBA, Microsoft do not). This
would allow thewinGammeainterface to run on a Microsoft Windows platform and communicate

to a distributed network of (heterogenous) computers. Database connectivityppsimgatabase
connectivity(ODBC) would enable integration with industry standard databases such as Oracle

and Objectivity to extract and store data and results.

6.3 Design and prototyping

The design and prototyping describes the structure of the existing code and ideas that have de-
veloped from prototype versions einGammancluding various application and interface ideas.
Finally we introduce the latest designwinGamma This discussion has been purposely produced

to sufficiently describe the software without entering into a comprehensive software engineering
review. This is for two reasons: (1) the thesis is intended to describe non-linear data analysis and
modelling and psuedo-code has been provided throughout, and (2) a comprehensive review is not
necessary understand how the program was constructed using standard (and familiar) Microsoft

Windows interface components.

Many of the design elements were influenced by the existing code which is discussed in Section

6.3.1. Section 6.3.2 discusses some of the issues that arose during the prototyping stage of the
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6.3 Design and prototyping

project, which in turn helps to justify many of the final design features described in Section D.

6.3.1 Existing code: the Gamma test and modelling components

The existing objects provide data manipulation, a nearest neighbour algorithm, the Gamma test
and neural network and local-linear regression models. The objects were written in C++ (with

some dependence on UNIX libraries).

The pre-existing components are represented in Figure 6.1 usi@pjeet Modelling Technique
(OMT) described in [Rumbaugh et al., 1991]. Through code re-use the fundamental design of

these components remains unchanged.

Data

data set
type

load
transform
summarise

]

| Result
gamma value
run {abstract} analyse gradient test {abstract}
graph mask what-if

. query

A

Experiment

1 |

kle :;:Ifs': Networks Linear Models
neighbours near neighbours weights results
start train {abstract}
end test
step
run
| BFGS | [ Coniuaate | [ static | [ Dvnamic

Figure 6.1 : OMT representation of the winGamma components

These existing objects form a script-based UNIX program where the user is able to run a Gamma
test and build or test a model. Results visualisation and additional analysis have to be done using

external software.

6.3.2 Prototyping winGamma

Several prototype systems were developed to understand how an integrated environment could
work. Although the prototypes no longer exist, they proved useful at the time to highlight several

important requirements:
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6.3 Design and prototyping

1. Users wanted to manipulate a data set within the application for repeated analysis, for ex-

ample by changing the lags used in a time-series analysis.
2. It was desirable to perform standard results visualisation within the application.

3. An export facility should be provided to allow results to be analysed in standard applications

(spreadsheets, databases Erathematic.

Software modification of the existing objects (Section 6.3.1) was required to ensure that the in-
teraction and feedback originally coded for a UNIX console was redirected to the GUI and the

dependency on UNIX libraries was removed.

Project-based operation

Analysis of a data set can involve many experiments. The existing script-based UNIX software
allowed single experiments to be run, where it was up to the user to manage the results as they
were produced. The initial prototype versionsvaihGammafollowed this implementation as a

way of rapidly developing an example application. However, it soon became clear that it would
be beneficial to manage repeated experimentation on a data set within the contexbjaica
environment This lead us to propose that experimentation should be recorded for a given data set
and that the resultant project should be able to be saved to disk and loaded baeikBémma

at a later time.

Data set management

One of the requirements that came from developing a prototype system included the facility to
view multiple data sets. Data sets fall into three categories: (latiadysis data setised for
analysis with the Gamma test and to construct a model, {&tadata setised to test constructed
models, and (3) arediction data setised to query a constructed model (where the outputs are

unknown).

A number of components are available within Borland C++ Builder for retrieving and displaying
data, ranging from reading the data into a text box (the simplest) to a full database option (the
most complex). The database solution introduced additional complexity to the software, requiring
either a database engine to be shipped withilGammaeaor by providing an ODBC interface to the

user’s existing databases.
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For this first version ofvinGammait was more important to provide the core functionality of
data analysis and modelling so the database development was dropped. Ultimately it was felt
that a user's data would most likely be available in spreadsheet, database or plain text format.
Although this approach requires the user to export their data to an ASCII format file, it was felt
that it provided the greatest flexibility for the least development effort leaving, as a priority, the
main task of developing the analysis and modelling routines. A method to retrieve the text files
and display the data in a spreadsheet-like grid was chosen. This solution introduced an additional
problem: the VCL data grid available to perform this function can only handle modest size data
sets before the component becomes unmanageable (during the prototyping stage we discovered
that the component used a disproportionate amount of memory to store the data). To overcome
this problem it was decided to split the data sets pagesthat contained a manageable subset of

the data.

Results visualisation

The standard numerical results from the Gamma test and modelling routines can easily be dis-
played in any of the standard Windows visual components: text boxes, text grids, etc. The main
priority was to include the standard visualisation tools, including the Gamma scatter plot and
model testing and what-if query charts. Additional real-time visualisation of the performance of
the GA and model training algorithms was also desirable. The charting components available
in Borland C++ Builder were compared during the protoyping stage. THe€hartcomponent

was chosen because the component includes the ability to display scatter plots, histograms, 3-
dimensional charts, line charts, real-time charts and custom drawing routines. In addition to these
visualisation techniques, methods to zoom/pan, print/preview, export and customise the charts

were also provided.

Exporting results

Although the analysis and modelling should be performed withitGammamany users also use
spreadsheet, database, presentation and mathematical software. All components that contain data,
charts and results will be implemented with an export facility. It was decided to implement charts

to be exported as either a chart image (in a humber of standard image formats) or as raw data for
re-generation in another application. These routines should provide enough flexibility to analyse

the results and re-create the charts in most readily available software.
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Threads

Perhaps the greatest architectural addition to arise from the prototyping stage invwobsating

the application. A GUI by default provides a single application thread that all computation is
performed on. Using this basic application model the GUI cannot be interacted with while other
operations are running, where the subtlest manifestation is that standard window operations, such
as window repainting, have to wait until the computation on the main application thread is com-
pleted. To overcome this, the computationally intensive operations were placed on threads. This
directly benefits the user in a number of ways: (1) interaction is maintained with the GUI, (2)
threads can be easily paused/resumed to enable the user to regain the CPU for other tasks without
aborting the current operation, and (3) threads can be terminated before the operation running on

it is complete and (depending on the implementation) can return any results produced so far.

Threads offer additional computational complexity that is not present in single threaded applica-
tions. Suitable management of threads is required to avoid deadlock (where a thread continuously

waits for another thread to finish) or to avoid overuse of the available computing resources.

It was apparent from the prototype systems that two threads were required for a single user, single
processor machine. The application thread was left to automatically manage the GUI compo-
nents, and another thread was created to perform the analysis or modelling computation as each
request was issued. This required a thread management component to prevent multiple requests

for analysis or modelling to maximise the efficiency of the computation.

Notification that a thread has terminated (either through the natural completion of a task or through
user termination) is required by an application to ensure that the GUI reflects the current opera-
tional state of the program and to enable other operations to be executed that were previously

denied.

6.4 Implementation

We shall focus this discussion on the issues surrounding the implementatigm@immarather
than describe in detail every aspect of the implementation. For reference, a general discussion of

the operation oivinGammarom a user interface perspective is provided in Appendix D.
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6.4.1 Implementation lessons

The initial structure ofvinGammamanifested itself during the prototyping stage (Section 6.3.2)
where many of the user requirements became apparent. This stage of development was also partic-
ularly important forwinGammebecause we were unsure what functionality could be developed in

the time using the skills available to us. Although we had experience of developing algorithms and
applications using rudimentary console based interfaces, this was the first project implemented to
handle a fully interactive GUI environment and the first implemented using a professional quality
IDE (integrated development environment). We quickly learnt that choosing the best IDE allowed

us to easily produce applications with a complicated GUI.

From the prototyping stage we learnt that it was relatively straightforward to implement standard
graphical interfaces for getting data into and out of a program. The real problem with GUI develop-
ment stems from the interactiveness provided for the user and that requires careful management of
user-triggere@vents This is necessary, for example, to avoid simultaneous access to hon-sharable
resources or to provide considerate feedback to the user regarding the state of the application (for

example by removing the ability to paste when the clipboard is empty).

Handling normal user interaction with the GUI had to be maintained even whgBammawas
performing processor intensive tasks and this was achieved using threads. Although this produces
a slight computational overhead in terms of thread management and multi-tasking, it is not onerous
and is more desirable than removing all user interaction with the application whilst computation

is being performed.

The implementation and adaption of the algorithms used some of the methods of extreme pro-
gramming (XP). There were times during the development cycle, especially for writing particulary
complicated code, when it was necassary to design, program and debug the code with another per-
son present. This enabled the full impact of the design to be discussed before implementation and
helped to avoid mistakes during coding. This was particularly useful when the existing Gamma
test components had to be adapted to provide feedback to the user via the GUI. The adaptation
of the code was performed in tandem with the person who wrote the original code to ensure that

functionality and performance were not unduly affected.

Another aspect of XP that was put into practice helped wvtdvethe software. This meant that
instead of having a rigid design fainGammeaat the start of the project, we allowed the software
to be constructed in small stages. This allowed us to continuously review the application and add

new features when it became apparent that they would benefit the user. For example, we had
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no plans to write code to perform what-if scenarios on the models (see Appendix D.4.6). After
implementing a query function (see Appendix D.4.5), we realised that it would be a small step
to allow the user to analyse a scenario (the scenario algorithm just calls the query routine many

times).

The main benefits of this approach to programmingGammawas that the project was flexible
enough to adapt as we discovered new techniques and developed our skills. Newn@Gatnma
has been produced and has been used for some time by a number of users, we can determine what

features would be useful and how the application should be developed in the future.

6.5 Conclusions

winGammais a fully functional application that meets the original design specification. In the
evolution of the project it has become apparent that many other features could be useful and these

are introduced in Section 6.6.

The application implemented all of the features available in the UNIX version of the code and

added additional experiment and model types.

The winGammainterface evolved through various prototypes and in its current form has proven

very usable.

There are some structural improvements that could be made to the code as complications have
been introduced awinGammahas evolved. The original code has been repeatedly adapted to
ensure that interface elements and the threading code worked correctly. This creep effect has been
very hard to eliminate because many of the features naviriGammavere not envisioned during

the preliminary design stage.

6.6 Future development

The future development afinGammaconsiders features that could be added to assist with data
analysis and model building, or technological approaches that could be adopted to improve the

performance of the software.

The intention of this section is to introduce ideas that can be used during a discussion of how to
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develop future versions efinGamma

6.6.1 Features

The proposed features describe concepts and ideas that could be implemented to improve the

analysis and modelling capabilitieswinGamma

Stand-alone models

winGammaproduces models that can be exportedtethematica Although useful for research,
Mathematicas not widely used making this feature redundant for many potential users. There are
a number of solutions to this problem that can be easily implemented to widen the market. The first
is to produce models in more readily available formats such as Microsoft Excel. Another solution
would be to produce a code segment that describes the model, which could then be included in
the users own applications (a number of languages would have to be supported). Alternatively the
models could also be exported in ASCII format and the users could implement their own method

to use the model.

Higher order Gamma test

The code to perform the higher order Gamma test, described in Chapter 5, was not included in
winGamma Instead, it was developed independently with enhanced features for managing inter-
face communication to provide machine independence since it does not rely on a particular GUI

specification, such as VCL or MFC.

Heuristic data scaling

An heuristic scaling algorithm was developed to automatically determine the relative importance
of inputs using the Gamma test and scale them accordingly. The technique and methodology are
still being researched, but could potentially provide important insights into the nature of non-linear

relationships.

148



6.6 Future development

Input selection and masks

The current implementation uses a mask to specify which inputs are used and which are not. The

feature selection routines use these masks in a rather rudimentary fashion.

There is an obvious natural extension to the specification of a mask that would allow the user to
apply more ‘structure’ to aid the selection of inputs. For example, this structure could take the
form of a request to seleatinputs fromm (wheren < m) or to exclude a number of inputs from

an analysis.

Scripting language

A scripting language could be used to extend the functionalityiofGammawithout requiring
developer intervention. The intention would be to provide users with the ability to implement new

experiment types or to automate repetitive tasks.

Various scripting languages are available that could possibly be includeth@®@amma Python
and Perl are obvious choices, but during the development of such a system it may be that a custom

language would be required to define full functionality.

Automatic analysis and modelling

winGammarequires a suitably qualified analyst to analyse and model data. This dependency
on skilled users could be reduced by providing routines to automatically analyse and model data.
These routines could then be extended to provide data mining facilities for the analysis of databases

and data warehouses.

Visualisation

The graphical routines winGammawere implemented using tHeeCharcomponent. Although

this component provides some very flexible features, it is virtually impossible to extend the usabil-
ity of TeeChartbeyond that envisioned by the authors. This is a limiting factor of the component
when additional visualisation routines are required. TeeChartcomponent is also bonded to

the Microsoft Windows environments, making the transition to a platform independent version of

winGammamore problematic. At present some or all of these limitations would be overcome by
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choosing new or additional charting components.

A technique that could enhance model analysis is volumetric data visualisation. For example,
the current what-if routines vary a single input to measure the response of the output from the
model. This could be extended to see how two input dimensions affect the output visualised using
a 3-dimensional surface plot. Taken one stage furtherdimensional volumetric visualisation
could examine what effect three input variables had on an output. This form of visualisation,
for example, would enable the analyst to look for multiplicative or synergetic effects between
variables (i.e. where two or three inputs combined produce an effect different from the sum of

their individual effects).

6.6.2 Technology

This section introduces some ideas arising from developments in computing technology.

Platform independence

The goal of platform independent software is primarily to extend the market audience. Importantly
this goal provides a secondary benefit over multiple platform implementations in that only one

variant of the source code is maintained and developed.

At the time whenwinGammawas being specified it was decided to use C++ because that pro-
duced the fastest code. Additionally Borland C++ Builder was chosen to provide the best way
of coupling the algorithms to an interface. At the time Java was considered because it offered
platform independence, but at the time was not a serious contender regarding execution speed,
requiring a virtual machine to interpret the Java code. However, there have been massive perfor-
mance improvements since the project was specified and Java would now provide a more credible

development language.

However, using a single development language is not necessarily the only solution. The speed
of C++ code still makes it superior to Java, and is available for most computer architectures.
Providing development follows standard conventions, such as those specified by ANSI, then a
single implementation of the code can be compiled for multiple architectures. In this way, the
next version ofwinGammamay benefit from the speed of the C++ algorithms and a platform

independent Java interface.
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Distributed/parallel algorithm implementation

One of the limitations of the current implementationwdhGammais that it cannot handle very

large data sets in reasonable time due to the required computation. For example, it is very difficult

to perform a full feature selection search on data sets withZiyverputs. If this sort of analysis is
desirable, then the computation needs to be spread over several processors, whether they reside on
local machine or distributed across a network. However the need for this sort of implementation

reduces with the development of more advanced heuristic algorithms.

The are two obvious methods of parallelising the Gamma test. The first is to parallelise the al-
gorithms, dividing the computation across processors. This form of algorithmic parallelisation
is really only feasible on a dedicated parallel machine since a distributed environment would be
hampered by the low communication rate. The second form of parallelisation arises when feature
selection routines are decomposed. This form of analysis would allocate a series of Gamma test
experiments to individual processors. The results (which are of a limited size) then pose no serious

communication overhead.

Database support

Linking winGammato a database could provide two important improvements. The first is that a
database could be used to store all of the experimental results. The second is that a lot of commer-
cial data is stored within a database and this could be accessed directly rather than requiring the

user to export data from the database prior to analysis.

ODBC (open database connectivity) and JDBC (Java database connectivity) provide industry stan-
dard interfaces for database access. If Java or C++ is used as the development language then these

tools could be employed accordingly.

The volume of data held on corporate databases can be very largayisGdmmas turned into
a data mining application accessing large corporate databases then the analysis algorithms would

have to be speeded up using some of the ideas discussed in the previous section.

Internet access

Internet access twinGammaprovides a number of attractive solutions. Firstly this approach

provides an attractive way to handle software licensing because the user would be required to
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connect to a license server that would validate the authenticity of the user/software. Secondly it

is feasible to implement the interface wtnGammaas a Java or ActiveX application that could

be accessed using a web browser. This could provide a method of analysing data via an internet
connection, perhaps providing access to a powerful remote machine that would otherwise not be

available to the user.

However, there are still technological limitations to such an implementation where the bandwidth
would limit how much communication could be made to the remote machine. In the case of
runningwinGammaremotely, only modestly sized data files could be transferred in reasonable
time. At present the software licensing application remains the attractive use of the internet and has
been implemented for th@inGammasoftware running in the Department of Computer Science.

If the application is copied and taken away from the university then it becomes inactive because
eitherwinGammacannot connect to the server to verify its authenticity or the server recognises

that the software is off site.
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CHAPTER 7

Flood Prediction System

This chapter investigates how the Gamma test and the non-linear modelling techniques described
in the previous chapters can be applied to the problem of river modelling. Our main interest

in developing these techniques is to produce a flood forecasting system. However, these same
techniques could provide forecasts to aid the management of hydroelectric generation schemes

where it is desirable to control the flow of water.

7.1 Introduction

The impact of flooding can be devastating causing loss of life and the destruction of crops, homes
and industry. In the aftermath of a flood the health of the population is put at risk by water-borne
diseases (cholera for example) that can quickly spread once the water supplies are contaminated

and sewerage systems are destroyed [Smith, 1996].

In light of the devastating effects caused by flooding and the costly disaster recovery process,
a flood prediction system would aid disaster impact reduction schemes by providing a reliable
warning of any flood threat. It will enable action to be taken before a flood strikes which is more

cost-effective both economically and socially [Anderson, 1991].

An accurate and timely flood warning should allow time for remedial action to be taken, ensuring

that the affected population, emergency services, transportation routes and flood defence systems
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are all managed effectively. A suitable response to a flood warning should ensure that the impact

is reduced or eliminated, allowing the affected area to more rapidly recover.

This project highlights many of the problems that need to be overcome in order to build a reliable
flood prediction system, and provides a basis for future research using the techniques described in

this thesis.

It is worth noting that the same basic techniques might be applied to the management of hydro-
electric reservoirs. An example might be the operation of a reservoir with an uncontrolled inflow
but which has the means of regulating the outflow. If advance information regarding the inflow

is available then the reservoir can be operated, perhaps by some rule based system, so as to op-
timise electricity production or minimise downstream flood damage. This problem is discussed

in [Valenca and Ludermir, 2000], which provides a comparison between higher-order neural net-
works (see [Kumoluyi et al., 1995] for an excellent introduction to higher-order neural networks)
andPARMA(Periodic Auto-Regressive Moving Averages) models. The model was implemented

to forecast weekly average inflow on a step-ahead basis and was tested on four hydroelectric plants

located in different river basins in Brazil.

7.2 Statement of the problem

The aim of the proposed flood prediction system is to demonstrate that reliable predictions can
be made of the water flowing in a river using observations of the river, its tributaries and the

environment.

Perhaps the most crucial factor in the design of a prediction system is the forecasting time. The
effectiveness of a prediction can be maximised if a suitably large forecasting time can be achieved
with sufficient accuracy. Itis our long-term aim to design a flood prediction system that maximises
the forecast time and, if constructed, will therefore require rapid data collection and fast model
operation to provide a rapid prediction. It is also essential that the system operates automatically

and continuously to provide constant monitoring and warning.

This project is intended to provide a prototype for a real flood forecasting system, and as such
ignores the physical problems of how to measure and record data. For example, the engineering
requirements of a real-time system require remotely distributed monitoring equipment that can

relay their measurements to a base station for analysis.
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7.2.1 Modelling approaches

To construct an effective flood warning system requires the dynamics of the river to be mod-
elled. There are several favoured approaches to modelling river systems and predicting flood-
ing, many providing analytical solutions. For example the Poisson-Parseval solution to the wave
equation provides a semi-analytical solution of the Saint-Venant equation in two dimensions
[Stephens and Stapleton, 1983]. Additionally, the use of finite differences or finite element meth-

ods allows the flow to be modelled if the dimensions of the river system are known.

Continuous forecasting of water levels can be made by indirect or direct methods. The indirect
method initially involves prediction of runoff either through a rainfall-runoff model or by rout-

ing the flow observed at an upstream gauge to the desired location downstream. The predicted
runoff is later converted to a water level by use of a rating curve. The rainfall-runoff models,
for example [Kitadinis and Bras, 1980a], [Kitadinis and Bras, 1980b], [Georgakakos, 1986a] and
[Georgakakos, 1986b], require knowledge of the underlying hydrology and establishment of many
rain gauges together with a good telemetry system. Routing technigues are more useful when the
travel time is longer and the downstream flow is low or controlled. For direct prediction of water
levels, statistical correlation technigues have been employed [Mutreja et al., 1987]. Unlike indirect

methods these techniques are not dependent on the rating curves.

These techniques can provide accurate results in a reasonably wide range of circumstances. How-
ever, the empirical models require careful construction for each particular catchment area and so
it would be hard to envisage a general purpose adaptive system which could proceed from such a

basis.

[Thirumalaiah and Deo, 1988] use neural networks as a pattern recognition technique for river
stage forecasting in the Godavari Basin (India) and their results show that adaptive modelling for

level prediction is quite practical.

The geographical area covered by a single system is a specification parameter which should be
considered carefully. Too large an area will require too many monitoring units and hence too
many inputs for the model. We envisage that a model will be competent to deal with up to 50 input
variables, although further experimentation on real data is required to confirm this expectation.
A modular system could then be constructed from networks of individual models where single
modules are combined, and predictions from one model act as inputs to downstream models. This
would provide an extendable modular architecture covering a much larger area and under some

circumstances allow greater prediction times.
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Our approach uses a data-derived model created from a series of observations made throughout the
river system. We shall determine which variables are relevant (for example flow rate, river level,

rainfall) to provide a suitable long term prediction for the water level of the river.

One advantage of data-derived modelling techniques is that the underlying fluid flow equations do
not need to be defined (they could never be defined exactly anyway). Instead, the relationships

inherent within the data are used to determine the behaviour of the river flow.

The placement of sensors at discrete points in the river environment leaves the difficult problem of
how to interpolate between sensor points. This is essential if flood prediction is to be made along
the whole length of a river. The finite-difference and finite-element techniques used within the
semi-analytical models allow flows to be modelled at points between any two consecutive sensors,
potentially allowing flood prediction to be made at all points along the river. However, this is

a computationally expensive process and we are not proposing to provide interpolation between
sensors at this time. It is therefore essential for our models that sensors are positioned at the most

critical points along the river.

7.2.2 Data sources

There are two main sources of data: (1) measurements made of the river and its tributaries, and (2)
measurements taken of the environment. Measurements taken of the environment should increase

the prediction time, even though, for example, it is difficult to accurately predict rainfall.

The following is a list of variables that could be measured to produce a flood prediction system:

1. Measurements taken directly from the river:

() Flow rate.
(b) Water level.

(c) Quantity of water extracted.
2. Measurements made of the environment:

(a) Rainfall - from rain-gauges or radar.
(b) Cloud cover - from satellite.
(c) Temperature.

(d) Ground saturation.
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(e) Tidal behaviour.

7.3 River simulator

A simulated river will be used to develop the analysis and modelling techniques for the flood
prediction system. This artificial data provides a deterministic system for analysis. It is hoped that
the techniques developed for the river simulator can be subsequently applied directly to a real river

system.

In the following sections we describe the design of the simulator and methods for data analysis.

7.3.1 Simulator design

The simulator is an abstraction of a real river system. The main river is fed by its tributaries, where

each tributary may be fed by other tributaries, and each tributary is affected by the local rainfall.

Figure 7.1 illustrates our simulated representation of a river. Each node represents an intersection
in the river system where measurements of flow and rainfall are made. Each channel has an
associated length and this determines how long the water measured at one node takes to flow to
the successive node in the river. Although not implemented, flood conditions could be allowed to
develop by specifying the maximum quantity of water that can flow down a channel. The river

would then flood whenever the channel limit is exceeded.

Flow

@ sensor
— river

Figure 7.1: The river simulator used to prototype the analytical techniques used in the flood

prediction system.

The behaviour of the simulated river is deterministic. Each node on the river is affected by the
water flowing in from its tributaries and the water generated by the local rainfall. The source

nodes, which are labelled 4, 7 and8 in Figure 7.1, provide inputs to the river system which are
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created solely from rainfall.

Rainfall is simulated using houndedrandom number generator to add a quantity of water to the
river. The flow through the channel is then calculated by adding the local rainfall to the water

flowing into the channel, as illustrated in Figure 7.2.

flow 1 flow 2
rain { rain,

lag lag,

flow 3

Figure 7.2: The flow dynamics of the simulator are modelled at each node. The water flowing
at a node is a sum of the water and rain at the upstream node, lagged in time according to the

distance between the nodes.

The flow through the rivefflow; can be defined at each nodasing the local rainfaltain; and

the flow flow; measured at the adjacent upstream ngdes

n

flow;(t) = Z(flowj(t — lag;) + rain(t — lag;)) (7.1)
j=1

wheret indicates the time of measuremeiity is the time taken for the river to flow from the

upstream nodg to the downstream nodeandn is the number of adjacent upstream nodes.

For example, at noddsand2 in Figure 7.1, the flows are

flowy(t) = 0
flows(t) = 0
flows(t) = flowi(t —lag) + rainy (t — lagy) +
Flows(t — lags) + raina(t — lags) (7.2)

where, in this exampleflow; = 0 and flows = 0 because they are source nodes that have no
water flowing into them from other rivers. In effect, the water flowing out of the channel will be
determined by the rainfall only. Rain and flow are delayed uéirglag;) according to how long

it takes these two sources of water to flow to the receiving node.

We can see from (7.1) that in this simple model the flow is a linear combination of the flow and
rainfall at an upstream node. A sufficiently large data set containing rainfall and river flow data

should provide enough information to model the river.
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7.4 Determining the relevant time lags

It is crucial to capture the simulated river dynamics in order to build a successful model. We
assume that the rainfall and river levels are measured at each node in the simulator, which leaves
(if we look at the data only) the lag time between the nodes as the unknown factor. Once the
lag time has been discovered we can accordingly delay the measurements to produce an optimal

model.

We chose to approach the task of estimating the lags in two ways: (1) using the Gamma test, and
(2) using a lag correlation routine. The lag correlation roufdedta correlationis described in
Section 7.4.1.

The results of the analysis of the simulator are described in Section 7.4.3 with a comparison be-

tween the two proposed techniques.

7.4.1 Delta correlation

One method to find the optimal embedding delay is to vary the delay on a set of input time series
to see how they correlate to the target (output) time series. We have called this technique the Delta

correlation.

From vector algebra we have
a-b

|a[|b|
Given an input time series and an output time serids, the correlation is determined lys «,

cosa = (7.3)

whereq is the angle between the two vectors. Strongly correlated time series wiltbawe— 1

for a positive correlation anebs « — —1 for a negative correlation.

In the context of river flows, the correlations will be positive since the expectation is that as an
upstream river rises (or falls) then the downstream river will correspondingly rise (or fall) at a later

point in time. The time taken for the flow to reach the downstream point is the delay time (or lag).

For optimal performance the time series are transformed to differences to accentuate the changes
in river conditions (all of the experiments in this thesis that use the Delta correlation algorithm

take differences). This gives better performance than using the direct river observations.

The Delta correlation algorithm is shown in Algorithm 8.
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pre-conditions:
input_time_series contains one or more time series
output_time_series contains one time series

pre-processing (optional):
convert input and output time series to difference time series

{main algorithm }
vector lag_correlations
for lag=1 t0o mazrimum_ag do
lag_correlations|lag] = Correlation( input_time_series, output_time_series, lag)
end for
{end of main algorithm }

Correlation( input_time_series, output _time_series, lag)
vector  correlation
M = number of elements in time series
number_items = M — 1 — lag
b = last number_items in output_series
for input =1 to number of input_series do
a = first number_items in input_series[input]
correlation[input] = a-b/ab
end for
return ( correlation)

Algorithm 8: The Delta correlation algorithm.

7.4.2 Gamma test lag correlation

The Gamma test lag correlation is an adaptation of the feature selection techniques described in
Chapter 4. An input time series is generated from the upstream river sensor data and converted to a
new data using a sensible embedding dimension. The output values of the data set are constructed

from the time series measurements made at the downstream node.

The feature selection routine constructs a mask consisting of a single input that, as the feature
space search continues, slides back in time through the embedded time series (compared to the
static output). Running the Gamma test for each mask should show the minimum Gamma statistic

occurring at the correct time lag between sensors.

Conversely the input time series could be constructed from the downstream node data with an

output consisting of the upstream data, and moving the input mask forward in time.
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7.4 Determining the relevant time lags

7.4.3 Simulator analysis

This analysis is carried out on the river simulator shown in Figure 7.1 using the river flow only.
The purpose of not recording the simulated rainfall is to introduce a level of uncertainty into the
analysis that reflects the real problem of not being able to monitor all of the processes taking place

in the real-world. This will help to test the robustness of the analysis techniques.

7L|node
—2
6F—3
—5
H—6
H—9

| evel

0 20 40 60 80 100
time step

Figure 7.3: In these simulator flow graphs the correlations between node measurements are
easily seen.

The flow at each stage was measured and correlated to the flow at the target node (node 9). Both
the Gamma test lag correlation (Section 7.4.2) and the Delta correlation algorithm (Section 7.4.1)
extracted the correct lag times for each sensor as illustrated in Figures 7.4 and 7.5 respectively.

The results are summarised in Table 7.1.

The Gamma test lag correlation of the river simulator data is shown in Figure 7.4. The optimal
lags are indicated by a minimum in the reporiédtatistic. This analysis was performed twice,

to demonstrate that taking differences of the time series can improve the quality of the results.
Although we can see in Figure 7.4(a) that the analysis correctly identifies the lag times, the results

of the analysis on the differences time series is much more exaggerated as shown in Figure 7.4(b).

In these figures the lag time from nodes 2, 3, 5 and 6 are reported to be 4, 5, 3 and 7 time steps
respectively. We can see from Table 7.1 that the analysis has correctly estimated all of these lag

times.

The Delta correlation lag analysis of the river simulator data is shown in Figure 7.5, where the

optimal lag times are indicated by a maximum in the correlation. This analysis also correctly
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0.5

2 4 6 8 10 12 14
|l ag

(a) Gamma test lag correlation on the simulated river time series data.

2 4 6 8 10 12 14
|l ag

(b) Gamma test lag correlation on the simulated river differenced time

series data.

Figure 7.4 : The Gamma test lag correlation shows that the lag to node 9 from node 2 is 4 time
steps, from node 3 is 5 time steps, from node 5 is 3 time steps, and from node 6 is 7 time steps.
Figure 7.4(a) shows the analysis performed on the time series river data and Figure 7.4(b) shows

the analysis performed on the differenced time series river data.
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7.4 Determining the relevant time lags

identified the lag times from nodes 2, 3, 5 and 6 as being 4, 5, 3 and 7 respectively.

correl ation

| ag

Figure 7.5 : The correlation lag analysis shows that the lag to node 9 from node 2 is 4 time steps,
from node 3 is 5 time steps, from node 5 is 3 time steps, and from node 6 is 7 time steps.

Node
measurement 112|13(4]|5|/6|7]8
actual lag 7/4|5/6|3|7,9|8
Gamma test lag -14|5|-13|7|-1-
Gamma test lag (differences) |4 |5 |- |3 |7 |- | -
Delta correlation -1415|-|3|7]|-|-

Table 7.1: The lag times calculated for the simulated river system show that both the Gamma test
lag correlation and the Delta correlation analysis can correctly identify the time delays between
the upstream nodes (nodes 1-8) and the point of prediction at node 9. These lags correspond

exactly to the distances between the nodes shown in Figure 7.1.

7.4.4 Simulator design limitations

The physical environment contains a level of complexity not represented in the river simulator. For
example, the complicated dynamics of the geology and its effect on the level of ground saturation,

or the effects of the weather on the amount of water lost to evaporation are not considered.

Rivers carry more water faster when full and this dynamical effect on the lag time is not represented
in the simulator. When the volume of water increases the flow time between nodes should decrease

accordingly.

These limitations do not in themselves prohibit the development of a flood prediction system.
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7.5 The Thames area: a real river system

However, a more realistic simulator would allow for more comprehensive testing of the analysis

and modelling techniques, even when real data is in short supply.

7.5 The Thames area: a real river system
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Figure 7.6 : Thames region study area.

The river system used in this analysis was the Thames and Kennet river basin between Newbury
and Windsor. The data, provided by the UK Environment Agency, consists of flow and level
readings taken hourly over one calendar year (10am, 1 January 1999 to 9am, 1 January 2000). The
flow rate and level were given in the standard measurements of cumecs (cubic metres per second)
for flow, and metres for level. Hourly rainfall readings from five nearby sensor sites were also
provided. The river basin is shown in Figure 7.6 with the river and rainfall measurement sites
marked.

The river data is subject to the measurement errors often present in real-world applications and,
unlike the clean simulated data, will introduce additional analytical complexity. Figure 7.7 imme-

diately demonstrates how frequently the sensors have malfunctioned during the study period for
the river level and flow measurements. In some cases these malfunctions can continue for signif-
icant periods. The cause of these malfunctions is unknown, but could be due to sensor failure or

periods of routine maintenance.
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(b) The raw river flow rate data.

Figure 7.7 : The raw river level and flow rate data. Faulty sensor readings are indicated on the
graphs by the plunging vertical lines.
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7.6 Data cleaning routines

It was apparent that, before any analysis or modelling could be attempted, the data would have to
be cleaned to eliminate or reduce the effect of faulty sensor readings. One factor that influenced the
type of data cleaning routine employed was the requirement that the final system should operate

in real-time.

For the purposes of a purely theoretical reconstruction of a missing data point we could employ a
more sophisticated interpolation routine. However, the techniques open to use are limited in a real-
time system where the data is being used for forward prediction. Interpolation using future data
values would severely limit the forward prediction time. An alternative may be to use a previously
constructed model to estimate the missing values from other sensor readings, but since at this stage

we do not have a model, it is not an available option.

The routine we employed compared each data point in the file with the previous one and, if it
differed by more than a specified threshold, it was assigned the previous value. This routine was
designed to work with time series values that gradually change over time. This same routine could

not be applied, for example, to rainfall measurements where the values arrive in bursts.

Data cleaning algorithm

A Mathematicaversion of the data cleaning routine is given in Algorithm 9. The algorithm accepts
a multiple time seriedSeries and a thresholtheta . The time series are scanned and values
that are flagged as missing or appear faulty are replaced with the last known reliable value. Setting

showChanges to true will display the errors to the user.

7.6.1 Theriver data

Table 7.2 shows the thresholds used in Algorithm 9 for each river time series. The thresholds are
data-stream dependent and were determined by manual inspection of the data. A natural extension

of this would be to automate the threshold assignment.

The results of the data cleaning process can be seen in Figures 7.8 and 7.9 where a considerable
improvement in data quality is achieved. In most cases where there are single missing values this
provides a simple and effective approximation. A disadvantage of this technique occurs when a

string of missing values are assigned the last valid measured value. If the string is of considerable
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7.6 Data cleaning routines

RTClean[MSeries _, theta _, showChanges _] := Module[
{numln, lists, M, i, k, newMSeries Iy

numin = Length[MSeries[[1]]];
lists = Transpose[MSeries];
M = Length[lists[[1]]];

Fori = 1, i <= numln, i++,
Forlk = 2, k <= M, k++,
DD = Absllists[[i, K]] - lists[[i, k - 1]]I;

If(DD > theta || lists[[i, k]| == 0),

If[showChanges == True,
Print["Possible faulty sensor value in list ", i,
" at time = ", k];
Print["Actual value = ", lists[[i, K]],

" Replaced with , lists[[i, k - 1]]I;
I
lists[[i, K]] = lists[[i, k - 1]]
| l;
h,‘[shOWChanges == True, Print["End list"]];
l;

newMSeries = Transpose]lists];
Return[newMSeries]

I

Algorithm 9:  Mathematica data cleaning algorithm.
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Threshold

River Level | Flow

Wye at Bourne End 0.2 10
Enbourne at Brimpton 2 10

Kennet at Newbury 5 50
Thames at Reading 5 120
Lambourne at Shaw | 0.2 10
Kennet at Theale 2 50
Loddon at Twyford 2 50
Thames at Windsor 5 120

Table 7.2: The thresholds used in data-cleaning for flow and level: these are selected separately
for each River.

length then this would be liable to produce an increasingly inaccurate approximation.

7.6.2 The rainfall data

The raw data for the five hourly rainfall sites over the data period of one calendar year is shown
in Figure 7.10. The graphs in Figure 7.10 show that the rainfall measurements were relatively
stochastic and discontinuous and hence could not be subjected to the data cleaning routine de-
scribed in Section 7.6. In fact we have assumed that the rainfall was correctly measured since it is

much easier to measure rainfall reliably and much harder to estimate errors in the values.

After prolonged periods of heavy rainfall the surface soil of the catchment area becomes saturated
and underground reservoirs become full. This results in a change in the runoff dynamics: more

water arrives in the tributary and main watercourses, and it arrives more rapidly.

To incorporate these effects into the model and to investigate their relevance, the rainfall measure-
ments were aggregated into moving averages windowed over different time intervals: 24-hours,
7-days and 28-days. These three values were easily calculated and can be included as inputs where

the analysis proves them useful. These moving averages are shown in Figure 7.11.
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Figure 7.8 : The cleaned river level data for the one year analysis period.
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Figure 7.9 : The cleaned river flow data for the one year analysis period.
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Figure 7.10 : The rainfall monitored at the sites marked on the map shown in Figure 7.6.
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7.6.3 Sensor consistency

Apart from the issue of sensor malfunction there is also an issue regarding the accuracy and/or re-
liability of sensor readings which, although not obviously in error, can nevertheless produce some
puzzling results when correlated with other sensor readings taken at the same site. For example, if
we correlate flow and level readings taken at the same site at the same time we might expect to see
a simple functional relationship in which increased flow produces a non-linear increase in level.

Figure 7.12 shows flow-level correlation plots for the various sensor sites shown in Figure 7.6.

We can see that in some instances (River Wye at Bourne End, River Enbourne at Brimpton, River
Lambourn at Shaw, and to some extent River Kennet at Theale) our naive expectations are con-
firmed. However, in other instances (River Kennet at Newbury, River Thames at Reading, River
Loddon at Twyford, and River Thames at Windsor) the flow-level correlations show very un-
predictable and widely differing scatter plots capable of varying interpretations. For example, in
Figure 7.12(d) (River Thames at Reading) we might suspect progressive defistmdeed closer
inspection of the data (the point colour changes progressively through the spectrum from red to
blue over the calendar year) shows that the different ‘lines’ visible on the scatter plot do occur at
different times. An alternative explanation might be that the river was dredged periodically and
this fact was reflected in an alteration of the flow-level relationship. However, other examples,

such as the River Kennet at Newbury or the River Thames at Windsor are less easy to interpret.

The inspection and cleaning of the raw data in conjunction with the interpretation of the flow-
level correlation plots indicates that there is a serious issue of data accuracy and consistency to be
addressed. Regardless of these data issues, it should be possible to produce moderately accurate

flow/level predictions using this data.

7.7 Model identification

Examination of the regional map in Figure 7.6 shows that two models can be sensibly constructed

from the data measured at the marked sensor sites.

1. Theale area model: Rainfall, Newbury, Shaw and Brimpton to predict Theale.

2. Windsor area model: Rainfall, Theale, Reading, Twyford and Bourne End to predict Wind-

Sor.
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Figure 7.12: The flow-level correlations of the river data measured at each sensor site. The hue
of the points indicates the time of measurement (the colours change progressively through the

spectrum: red points were measured at the start of the period and blue points at the end).
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The first model covers the rivers flowing into Theale, primarily the River Kennet. The second
model covers the rivers flowing into Windsor, primarily the River Thames, but also the flow from
the River Kennet through Theale. This second model allows us to use either the real data measured
at Theale, or the predicted river levels from the first model. This enables us to investigate the

modular design of a predictive system.

The rainfall indicates some combination of lagged rainfall and aggregated rainfall measurements,
and the site name indicates level and flow measurements from the relevant site. Having normalised
these data series our first task is to determine lags where possible. For each model we compare the
lags obtained from level and flow respectively using both Delta correlation and a Gamma test lag

correlation.

7.7.1 Normalisation of data

In this analysis, we are using three different types of measurement (flow rates, levels and rainfall)
each measured on a different scale. We decided to normalise all of the data being used before
attempting to determine the relevant input variables. The standard normalisation routine used in
winGammawhich maps the mean to zero and the standard deviation of a data stréd@mvas

used to re-scale the data. This process of normalisation attempts to equalise the relative numerical
significance between the input variables and aid the feature selection routines, especially in the

absence of any prior knowledge regarding input variable relevance.

Normalising the data will produce a different set of nearest neighbour relationships compared to
those for the unscaled data. However, any two metrics on a Euclidean space are equivalent to
within a constant, so the Gamma test analysis on normalised data will not affect the asymptotic
nature of the Gamma statistic. Normalisation can also affecttie®f convergence of the Gamma

statistic and thguantityof data required to produce a model of given quality.

7.7.2 Determining the lags

We recall from the discussion of the random walk (see Section 4.5) that a small MSE is not neces-
sarily a good indicator of model quality. Our early experiments in river level and flow prediction
indicated that an embedding model constructed from time series data recorddtpesite could

not be used to produce a model that effectively predicted turning points. Although we were able

to obtain models with a relatively low MSE, these models invarit¢daggedthe actual data by one
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time step (in identical behaviour to the random walk) and so were ineffective in anticipating future

changes of level or flow.

We concluded that the only way forward was to endeavour to use upstream data, taken prior to the
time of prediction, to model flow or level at downstream sites. Only in this way could we be sure

that we were genuinely capturing the flow dynamics.

The most obvious way to determine the correct transfer times between successive measurement
points is by direct on-site measurement, preferably under a variety of flow rate conditions. This
would be the recommended approach in areal system. It is relatively straightforward to accomplish
and, once performed, leaves no room for doubt. Additionally such physical measurements act
to validate algorithmic approaches to determining lags. In this account we investigate several

algorithmic techniques to determine the transfer times directly from the data measurements.

The Gamma test lag correlation or the Delta correlation used to analyse the simulator in Section
7.4.3 can be used directly here to determine the lag times. Another approach might be to use a
variation of the False Nearest Neighbour algorithm if it can be modified to handle multiple time

series. This concept has not been researched and as such is left for future work.

Determining the lags for the Theale area model

The Delta correlation produced the graphs in Figure 7.13. The level and flow measurements at
Newbury, Shaw and Brimpton were correlated to the level and flow measurements taken at Theale.
After determining the lags by selecting the maximum correlation we arrive at the Delta correlation

results shown in Table 7.3.

Additional analysis was performed using the Gamma test lag correlation. These results are also

shown in Table 7.3 to provide comparison to the Delta correlation analysis.

The Delta correlation analysis unambiguously identifies the lags from Shaw and Brimpton to
Theale to be8 hours and3 hours respectively. The lag between Newbury and Theale is less
clear cut. The analysis produces &our lag using the flow data andahour lag using the level

data. The proximity of Newbury to Shaw would suggest that the lag to Theale should indeed be
around9 hours. A closer examination of the data used to produce Figure 7.13 shows tBat the
hour lag had a correlation 6f0735 and a correlation di.0732 for 9 hours. We can conclude that

the likely lag is indeed hours given all of the available evidence.
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Figure 7.13: The Delta correlation plots for the Theale model.
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Delta Gamma | used
measurement level | flow | level | flow | lag
Newbury level 9 9 6 7 9
Newbury flow 3 3 1 1 9
Shaw level 8 8 1 3 8
Shaw flow 8 8 1 3 8
Brimpton level 3 3 6 6 3
Brimpton flow 3 3 1 1 3
Regional rainfall 1-hour | 13 13 1 16 13
Regional rainfall 1-day 4 4 16 16 4
Regional rainfall 7-days 8 1 1
Regional rainfall 28-days 4 1 2
Marlborough rainfall 13 9 - - 13
Lambourn rainfall 13 9 - - 9
Chieveley rainfall 13 13 - - 13
Kingsclere rainfall 20 20 - - 8

Table 7.3: Estimated lags for the Theale area measurements. The lags chosen for the analysis
were derived from the Delta correlation analysis. The lag for Kingsclere rainfall was manually
selected as 8 hours.

For the regional rainfall aggregated o@&rdays we obtain a Theale level correlatioroof11 cor-
responding to a lag df hours, whereas for the flow we obtain a correlatiof.@d2 corresponding

to a lag of4 hours. In this case the meaning of a lag againt day aggregated rainfall is less
clear cut, but examining the graphs we decide tiahaur lag may be more appropriate here. The
Delta correlation between individual rainfall sensor sites and Theale were also analysed as they

could introduce additional local information that the aggregated regional rainfall cannot describe.

It is interesting to note that the results of the Delta correlation analysis are relatively consistent,

regardless of whether the level or flow are used.

The results for the Gamma test lag correlation were less conclusive and did not produce such
effective results as were generated using the river simulator. Although the results are shown in

Table 7.3 they did not provide the expected reliability and were not used in this analysis.
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Determining the lags for the Windsor area model

Running the Delta correlation for the Windsor area model produced the graphs shown in Figure
7.14. The level and flow measurements at Theale, Reading, Twyford and Bourne End were corre-
lated to the level and flow measurements taken at Windsor. The lags were then determined from

the Delta correlations shown in Table 7.4.

Following the approach used in the analysis of the Theale area model, the Gamma test lag corre-
lation was performed with the results also shown in Table 7.4 to provide comparison to the Delta

correlation analysis.

Delta Gamma | used
measurement level | flow | level | flow | lag
Theale level 18 18 18 20 | 18
Theale flow 19 18 6 18 | 18
Reading level 12 11 5 5 11
Reading flow 10 1 8 19 11
Twyford level 8 7 9 17 8
Twyford flow 6 3 20 14 8
Bourne End level 4 1 11 3 4
Bourne End flow 4 1 16 15 4
Regional rainfall 1-hour | 1 8 2 2 1
Regional rainfall 1-day 6 8 20 11 8
Regional rainfall 7-days | 1 1 5 2 1
Regional rainfall 28-days 1 8 18 8
Caversham rainfall 11 8 1 14 8

Table 7.4: Estimated lags for the Windsor area measurements. The lags chosen from the analysis
were derived primarily from the Delta correlation analysis.

Both the Delta correlation and the Gamma test lag analysis identify that the lag between Theale
and Windsor should be approximatélyhours. The lag between Reading and Windsor is far more
uncertain. 11 hours was chosen for the lag because, as we saw for the Theale model, the Delta
correlation lags appear to be more reliable. Using Figure 7.14 we deduced that the remaining lags
were likely to be8 and4 hours between Twyford and Windsor, and Bourne End and Windsor,

respectively.
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Figure 7.14 : The Delta correlation plots for the Windsor model.
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The regional rainfall was much harder to correlate. The evidence seems to suggest aHagrof
for hourly and weekly aggregated rainfall. A longer laggdfours is appropriate for the dail3g

day, and Caversham rainfall.

The results of the Delta correlation analysis for level and flow were not as consistent as those
calculated for the Theale area model. This could be due to the low correlation between level and
flow measurements at the Reading, Twyford and Windsor sensors (Figure 7.12). The results for

the Gamma test lag correlation could have been similarly affected.

7.8 Model building

Data files were constructed using the appropriate lags and importedim@&amma These data

files were used to build models for the Theale and Windsor areas discussed in the previous Section.

7.8.1 Theale area model

The lags calculated in Table 7.3 were used to construct a data set for the Theale area model. The
choice of inputs were validated using the feature selection routines availabieGammaand

previously discussed in Chapter 4.

The analysis determined that the rainfall at Lambourn and the flow at Newbury were irrelevant
(IT] = 0.00077 with Lambourn rainfall and Newbury flow and’| = 1.9 x 10~ excluding

Lambourn rainfall and Newbury flow). The results of the analysis are shown in Table 7.5.

This discovery that the rainfall measured at Lambourn and the flow at Newbury were not useful
led us to try a number of manual revisions to the lag time, but at each stage the feature selection
routines discarded the measurements. This observation may have arisen for a number of reasons.
The Lambourn rainfall measurement site is relatively distant from Theale making it difficult to find

a correlation. Considering that when rain occurs it is actually distributed across a region, it may
well be the case that the Lambourn rainfall measurements, insofar as they contribute at all, are con-
tributing at around the noise level. The Newbury flow-level correlation, shown in Figure 7.12(c),
indicates that flow and level are not highly correlated. The analysis has subsequently selected the

most useful of the Newbury measurements and discarded the less reliable flow information.

The consequence of the analysis is to use the inputs and lags in the Theale model that correspond

to those shown in Table 7.3 without the rainfall measurements at Lambourn and the flow measure-

181



7.8 Model building

Including Excluding
Lambourn rainfall Lambourn rainfall
and Newbury flow | and Newbury flow
T 0.00077 2.0638 x 1076
GradientA 0.01865 0.022833
Standard error 0.00066 0.00037164
|V-ratio 0.00306 8.255 x 1076
Near neighbours 10 10
M 8076 8076
Zero nearest neighbours 175 414
Lower 95% confidence —0.00123 —0.0011044
Upper 95% confidence 0.001921 0.0017852
Mask 11111111111111 11011111101111

Table 7.5: The Gamma test analysis results on the Theale area data set. The two results compare
the effect of including or excluding the Lambourn rainfall and the Newbury flow (indicated by a 1

or 0 in the mask respectively).

ments at Newbury.

Once the optimal inputs were selected using the Gamma test, the quantity of data was analysed us-
ing the M-test to determine whether there was sufficient data to provide an asymptotic Gamma es-
timate and subsequently a reliable model. The results of this analysis are shown in Figure 7.15(a).
To capture the seasonal dynamics of the data, an M-test was performed on randomised data and
the results plotted (see Figure 7.15(a)). As the M-test proceeded, the Gamma test algorithm was
exposed to points randomly sampled throughout the year. This produced an asymptotic conver-
gence of the Gamma statistic,~ 0.0007, and indicated that there was sufficient data at around
6000 data points.

The M-tests were run for the level and flow at Theale. The form of the chart in Figure 7.15(a)

indicates that there is very little difference between modelling the level or the flow (the measure-
ments are reasonably well correlated at Theale, shown in Figure 7.12(f)). We know from Figure
7.12(f) that the level and flow measurements at Theale are similar so that the choice of modelling
level or flow should be inconsequential. Since flood conditions are more directly related to level

we decided to model the river level at Theale.

This M-test analysis shows that in order to capture the dynamics of the river system, the river
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Figure 7.15: M-test performed on the Theale area model data. The red lines correspond to the
Gamma statistic calculated for the river level at Theale and the blue lines correspond to the flow.
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7.8 Model building

environment must be sampled for most of one year. Since in this case we only have one year
of available data we cannot build a successful model using the data in chronological order by
selecting one continuous time period for model training and a second disjoint period for testing.
Instead we chose to randomise the data and use a proportion of the data for training and a separate
proportion for testing. Using the M-test in Figure 7.15(b) we know that at [&#st randomised

data points would be required to build a reliable model.

The Gamma scatter plots for this data set show a high level of noise, even though the lags have
been optimised and tHgestcombination of inputs selected. Figure 7.15(d) shows an example of

a Gamma scatter plot where the output was chosen to be the Theale river level data.

The data order was randomised for model training. The target MSE for the models)a@sA 1.
This was calculated for the training set created f&iM0 randomly selected data points and using
the maskl1011111101111 from Table 7.5.

Two types of model were constructed and tested. The first was a LLR modeB{withar neigh-
bours) and the second wa$z10-10-1 BFGS neural network. The LLR model is shown in Figure
7.16 and the BFGS model is shown in Figure 7.17. Since the minimum lag use®isde lag

from Brimpton to Theale, these models give a three hour ahead prediction.

The neural network, trained using the BFGS method, reached a MB8BB6 on the training

set. On the unseen test set the MSE was a reasofalole2. This would seem to indicate that

the model generalises well and had not been overtrained. The LLR model produced a MSE of
0.000776 on the training data an@.00202 on the unseen test set. These MSE figures for the

scaled data are shown in Table 7.6 with the unscaled values.

Local-linear Neural
regression network
Scaled Unscaled Scaled Unscaled

Training data| 0.000776 | 6.679 x 10~° | 0.000863 | 8.002 x 10~
Test data 0.00202 0.000187 0.00124 0.000115

Table 7.6: A comparison of the MSE values of the two Theale area models showing the scaled
and unscaled data performance.

Table 7.6 shows that the neural network performs better than the local-linear regression model on
the unseen test data. This indicates that the neural network provides a better model. Comparing

the two models in unscaled units, this means that the LLR model predicts the level with an average
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erroft of 0.014m and the neural network predicts with an average errordflm.
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(c) The model response in chronological or- (d) A more detailed view of the chronolog-
der (20% of points are unseen). ically ordered test (20% of points are un-
seen).

Figure 7.16 : The performance of the 3 hour look-ahead LLR Theale area model. The green line
shows the actual river level at Theale, the blue line shows the model prediction for the river level,

and the red line shows the error between the actual and predicted level.

7.8.2 Windsor area model

A model for the Windsor area was constructed using the lags shown in Table 7.4. The estimated
model performance was determined using the Gamma test, the results of which are shown in Table
7.5.

1The average error is the square-root of the MSE.
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(c) The model response in chronological or- (d) A more detailed view of the chronolog-
der (20% of points are unseen). ically ordered test (20% of points are un-

seen).

Figure 7.17 : The performance of the 3 hour look-ahead BFGS Theale area model. The green
line shows the actual river level at Theale, the blue line shows the model prediction for the river

level, and the red line shows the error between the actual and predicted level.
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All Windsor

area inputs
IN 0.000921
GradientA 0.030042
Standard error 0.000196
|V-ratio| 0.003682
Near neighbours 10
M 8071
Zero nearest neighbours 2
Lower 95% confidence —0.00136
Upper 95% confidence 0.003633
Mask 1111111111111

Table 7.7: The Gamma test analysis result on the Windsor area data set.

A series of M-tests were performed to determine whether the quantity of data was sufficient to
build a reliable model. In the Theale area model the effect of the seasonal dynamics within the
data were minimised using randomised data. The results of the M-tests in Figure 7.18 show that the
seasonal dynamics can indeed be eliminated this way. In Figure 7.18(a) where the data is analysed
in chronological order there is no obvious asymptote. The M-test performed on the randomised
data (Figure 7.18(a)) shows that the Gamma statistic asympiotes0.001, at approximately

5000 points.

Each M-test was run on the level and flow data measured at Windsor. Figure 7.18(a) shows that
the level and flow Gamma statistics do not converge to approximately the same value as the corre-
sponding values for the Theale area model did, see Figure 7.15(a). This is most likely an artefact
of the scaling routine where in the Theale model flow and level were highly correlated and the
scaling of each would produce approximately the same value. In Windsor, where the correlation
between level and flow was not as significant, the scaling routine performs differently. However,
we can see a correlation between the shape of the level and flow M-test curves and this seems to

indicate that the M-test is reasonably robust in the presence of noise.

Figure 7.18(d) shows a Gamma scatter plot for the Windsor area model with the river level at
Windsor as the output. Even though we are confident that the lags have been optimised and the
bestcombination of inputs selected were selected the plot indicates the presence of noise. This

is entirely reasonable since there are many unmeasured environmental factors that could affect
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Figure 7.18 : M-test performed on the Windsor area model data. The red lines correspond to the

Gamma statistic calculated for the river level at Windsor and the blue lines correspond to the flow.
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the model quality and, if our assumptions about flow and level correlation are correct, the sensors

themselves could be attributable.

A training data set was created fra@®00 randomly selected data points using all of the available
inputs (see Table 7.7 for the analysis). The target MSE for the model9.0@3627 for M =
6500.

Two types of model were constructed and tested. The first was a LLR modeB(withar neigh-
bours) and the second wa$#&20-15-1 BFGS neural network. The LLR model is shown in Figure
7.16 and the BFGS model is shown in Figure 7.20. Since the minimum lag usediistie lag

from Bourne End to Windsor, these models give a four hour ahead prediction.

The neural network, trained using the BFGS method, reached a M8BG334 on the training

set. On the unseen test set the MSE was a reasof@bles. This is a similar result to the Theale
area model where the test MSE was slightly higher than the training MSE and would seem to
indicate that the model had not been overtrained. The LLR model produced a MSE bf9 on

the training data an@.00862 on the unseen test set. These MSE figures for the scaled data are

shown in Table 7.8 with the unscaled values.

Local-linear Neural

regression network

Scaled | Unscaled| Scaled | Unscaled

Training data| 0.00149 | 0.000217 | 0.00334 | 0.000485
Test data 0.00862 | 0.00125 | 0.0056 | 0.000813

Table 7.8: A comparison of the MSE values of the two Windsor area models showing the scaled

and unscaled data performance.

Table 7.8 shows that, like the results for the Theale area model in Table 7.6, the neural network
performs better than the local-linear regression model on the unseen test data. If we compare the
two models in unscaled units, the LLR model predicts the level with an average efro36im

and the neural network predicts with an average error@9m.

7.9 Discussion of prediction results

It would appear that there is no barrier in principle to producing very accurate forward predictions

apart from the data quality issue. Some of the data problems may have arisen due to faulty sensors.
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Figure 7.19 : The performance of the 4 hour look-ahead LLR Windsor area model. The green line
shows the actual river level at Windsor, the blue line shows the model prediction for the river level,
and the red line shows the error between the actual and predicted level.
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seen).

Figure 7.20 : The performance of the 4 hour look-ahead BFGS Windsor area model. The green
line shows the actual river level at Windsor, the blue line shows the model prediction for the river

level, and the red line shows the error between the actual and predicted level.

191



7.9 Discussion of prediction results

However, there are other issues that also need resolving. One problem is particularly evident in
the Windsor data. In Figure 7.21 there are several plots of the hourly river levels over different
300 hour periods, each having an overlay of a series of vertical lines indic2titgur periods.

It is apparent from the charts that there is daily activity affecting the river levels. The effect is
too regular to be explained through coincidence, but instead is either an environmental effect or,

perhaps more likely, has arisen through human intervention.

6.45

| evel (m)

6.35

6.3 !

(a) There is evidence of daily activity affect- (b) The daily activity is not always visible.
ing the river level. The sharp peaks occur on

daily intervals. The blue lines indicate actual

river level observations.

(m

level

(c) The periodic activity is not as dramatic as (d) Daily activity is indicated with the series
in Figure 7.21(a) but it is still distinctive. of peaks.

Figure 7.21: There are daily level fluctuations in the river level at Windsor. The spacing between

each vertical bar is 24 hours.

We might attribute these fluctuations to periodic extractions and replacements, such as might be
created by factory or human use of the river water. If indeed these fluctuations are due to indus-
trial or agricultural use of the river, then our observations could be used to develop an automatic

monitoring program for detecting the unlicensed use of river water.

Figure 7.22 shows that the Windsor area model does not predict the daily fluctuations. This sug-
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gests that extraction and replacement activities are not captured by the inputs to the model. These
activities could be detected by unexpected periodic fluctuations in the error signal, which is pre-
cisely analogous to the detection of a digitally encoded signal masked by a chaotic carrier through

prediction errors [Tsui et al., 2001].
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Figure 7.22 : A comparison between the Windsor area model (blue) and the actual observations
(green) shows that the model does not predict the daily fluctuations. The periodic fluctuations

show up in the error (red).

7.10 Constructing a modular flood system

We constructed a modular prediction system of the River Thames at Windsor using the predicted
behaviour of the River Kennet at Theale as an input to the Windsor area model. This approach
demonstrates the feasibility of a modular flood prediction system, although in this case, because of
the location of the tributaries and the placement of sensors sites, does not increase the look-ahead

time of the prediction.

The Windsor area model takes the level and flow measurements at Theale as inputs. We know that
there is a high correlation between the flow and level measured at Theale (see Figure 7.12(f)) so
we built a neural network model to convert the modelled levels at Theale to flow measurements.

The response of the model is shown in Figure 7.23.

Table 7.9 describes the performance of the Windsor area model using the modified data set and

should be compared with Table 7.8. It can be seen that the LLR model is much less tolerant to
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Figure 7.23: Theale level to flow conversion model.

errors in the Theale predictions whereas the results for the BFGS neural network models are only
marginally worse than those using the actual Theale values. We conclude that a modular system
is feasible and, given an appropriate tributary structure and placement of sensors, could be used to

enhance the look-ahead prediction interval.

Local-linear Neural

regression network

Scaled| Unscaled| Scaled Unscaled

Test data (based on
original training data) 1.6057 | 0.22047 | 0.0045094 | 0.00065244
Test data (based on
original test data) 1.4842 | 0.19361 | 0.0065209 | 0.00094235

Table 7.9: A comparison of the MSE values of the two Windsor area models showing the scaled
and unscaled data performance. The actual river measurements at Theale have been substituted
by predicted values from the Theale area model. In all other respects, the test sets were identical
to those used to train and test the Windsor area model.

If we compare the two models in unscaled units, the LLR model predicts the level with an average

error 0of0.44m and the neural network predicts with an average error@3lm.

The performance of the modular system is illustrated in Figure 7.24 for the LLR model and in
Figure 7.25 for the BFGS model. We can conclude from these results that neural network models

would provide the most robust predictive models.
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used to construct the LLR model. The pre- marginally acceptable error level.
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this test was then run on the full data set.
Thus the remaining points (after the vertical
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(c) The model response in chronological or- (d) A more detailed view of the chronologi-
der (20% of points are completely unseen). cally ordered test (20% of points are com-

pletely unseen).

Figure 7.24 : The performance of the 4 hour look-ahead modular LLR Windsor area model. The
green line shows the actual river level at Windsor, the blue line shows the model prediction for the

river level, and the red line shows the error between the actual and predicted level.
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(c) The model response in chronological or- (d) A more detailed view of the chronologi-
der (20% of points are completely unseen). cally ordered test (20% of points are com-

pletely unseen).

Figure 7.25: The performance of the 4 hour look-ahead modular BFGS Windsor area model. The
green line shows the actual river level at Windsor, the blue line shows the model prediction for the
river level, and the red line shows the error between the actual and predicted level.
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7.11 Conclusions

Reliability of remote sensors and intelligent sensor placement, with appropriate levels of redun-
dancy, are critical issues for a fully automated system. Given the capital expenditure of a fully
automated data collection system complete with real-time data links, together with prior or prompt
notification of river works (such as dredging or flow diversion) and regular extraction/replacement,
it should be possible to rapidly identify sensor failure or progressive sensor degradation. This in
turn carries the implication of a requirement for a rapid and responsive maintenance programme

to maintain the integrity of the system.

In addition to providing predictions using observable data, the overall utility of the system could
be enhanced by providing facilities to run what-if scenarios to predict what affect certain activities
would have on the river. For example, a long-term weather forecast could be used to provide an

advanced warning of theossibility’ of flooding.

Provided these issues are adequately addressed then it would seem entirely feasible to develop
an adaptive system for modelling and predicting river flow and levels over a time scale basically
determined by the delay between the precipitation occurring and the water arriving at the predic-
tion point. This is the intention of thBIAPFLOWS(Modular Automated Rediction and Flad

Warning S/stem project, a proposal currently under consideration.

The MAPFLOWSproposal stems from the following observations:

e Global warming is likely to lead to more unstable weather patterns. Indeed many meteo-
rologists are of the opinion that this is already happening. Thus there is an urgent need for

accurate water level prediction systems which have low set-up times.

e Once precipitation has occurred the process of runoff, although highly complex in any par-
ticular catchment area, is completely determined by smooth processes dependent on details
of the flow system, the topography and underlying hydrology, the ambient conditions, and

any flow control gating in the system.

e Appropriate data for a real-time prediction system can be provided by a number of suit-
ably located standardised monitoring modules with telemetry to a central data processing

location.

2predicting the weather is a complicated undertaking, but if done with a suitable level of accuracy could enable the

flood prediction system to provide early warning alerts.
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One advantage of a system suctvBsPFLOWSs the relatively low model construction time once
appropriate data becomes available. Other advantages include the universality of the tools; once
software, sensor technology and telemetry are constructed the system could be easily replicated,

sold and installed at many sites around the world.

There is another important issue that surrounds data-derived modelling techniques arising from
the extreme and infrequent events that we are often trying to capture. If the training data does not
adequately contain this information then there is a possibility that the model will give the incorrect

response when one of these events occurs. In order to avoid such pitfalls, the engineer of the

system must extensively test it to ensure the model responds in an appropriate way.

Of course, there are other issues that become necessary to resolve. One notable failure of conven-
tional level prediction techniques was the Columbia River (Oregon-Washington, USA) flood of
February 1996, in which accumulated snow in the mountains melted rapidly when the temperature
rose sharply accompanied by high rainfall. Upstream flooding was widespread and only extreme
measures prevented the west coast city of Portland from serious flooding. Thus, apart from the
obvious input variables previously listed, it would be wise to include the current depth of surface
snhow, ambient temperature, relative humidity etc. and to augment the modelling techniques to
accommodate these variables. This would require further research which we were unable to un-
dertake in the present investigation (primarily because of lack of data) but would seem to pose no

insuperable obstacles.

7.12 Future work

As we have emphasised, we are not proposing a precipitation forecasting system at this stage.
However the fusion of satellite cloud images and radar precipitation measurements cannot be ig-

nored because it provides the greatest potential to improve the long term predictability of a river.

It would appear that sensor failure is relatively common. To counter these problems using software,
we could construct models to predict the missing values. A useful by-product, if successful, would
be that the same models could be used to automatically monitor each sensor to rapidly identify
potential degradation and failure. This application could provide immediate benefits for existing

river monitoring systems where telemetry provides continuous feedback from the sensors.

In our experiments we arbitrarily constructed average rainfall data for 1 day, 7 days and 28 days. It

should be possible using the Gamma test to automatically identify the optimal period over which
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to take the average since the Gamma statistic would reach a minimum.

It may be possible to adapt the false nearest neighbour algorithm for multiple time series which
would then provide an additional tool to help identify the correct lags for the model inputs. We
are not aware of existing work along these lines but, regardless of the potential application to river

prediction, it would prove an interesting study in its own right.

The lag times chosen for our models have been constant. It may be possible to improve the quality
of the models by bracketing the lag times since they will not necessarily be constant, but may vary
with the amount of water moving downstream since higher flow rates produce a faster transfer
between the two points in question. Thus once the average transfer time has been determined
it may be necessary to bracket this lag by including one or two measurements both before and
after the average lag. We can then use the Gamma test feature selection routines to determine the

optimal variable combination.
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CHAPTER 8

Conclusion

8.1 Introduction

Non-parametric, smooth non-linear modelling is being transformed from a somewhat hit and miss
process into a precise science in which before the model is built the error associated with a model
prediction can be quantified and, perhaps even more significantly, the relevant input variables can

be selectea priori.

We have proposed a new approach to modelling level and flow in a water catchment area and
performed experiments to illustrate the viability of these ideas. In another application James and
Connellan [James and Connellan, 2000] have used the Gamma test to facilitate the construction
of models for commercial property price prediction. The nature of these two applications differs
in an interesting way. The first is based on general physical principles that flow in a river system
cannot change arbitrarily but is constrained by physical laws. The second attempts to model a

conglomerate of financial factors of which one is arguably sentiment.

8.2 winGamma lessons

The advent ofwinGammahas enabled many researchers to explore new applications of
the Gamma test in diverse areas. We have mentioned the work of James and Connellan

[James and Connellan, 2000] in modelling economic time series for the prediction of commer-
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8.3 autoGamma

cial property prices, and might also mention that of [Chuzhanova et al., 1998] in feature extraction
for the identification of DNA sequences. As it became easier to perform detailed Gamma test anal-
yses the main barrier to finding new and exciting applications emerged as being the acquisition of
appropriate data sets. Researchers understandably tend to adopt a quite propriety attitude towards
their own data, commercial vendors tend to charge high prices for access to their data, and medical
databases are fenced around with ethical restrictions that hamper access even to anonymised data.
Thus it has not always been possible to acquire data which might be suitable and interesting for a

Gamma test analysis.

AswinGammaemerged as a commercially viable product it became apparent that most users were
interested in economic or commercial time series analysis. Here the most promising approach
seems to be to bring to bear user domain knowledge to determine which other available time series
data can act as leading indicators for the target time series. Altheughammacan be used

very successfully for time series analysis it was not designed specifically for this role. Most of the
actual work for time series analysis involves the assembly and preparation of appropriate data sets;
combining leading indicator time series and identifying suitable lags. For this we really require

a separate software tool which can act as a time series editor. Moreover, we have shown that for
activities such as determining the embedding dimension other, possibly faster, algorithms, for ex-
ample False Nearest Neighbours, can also be profitably used. There is also the interesting question
of extending the False Nearest Neighbour algorithm for multiple time series inputs. Ideally, all
these analyses tools should be combined into a software platform specifically designed for time

series analysis.

8.3 autoGamma

As we built up experience iwinGammaanalysis it became apparent that much of the interpreta-
tion of diagnostic results, for example the Gamma scatter plot, could be automatggamma

was constructed as a non-linear analyst’s workbench and, as with any such tool, there is a learn-
ing curve which must be ascended to acquire the necessary skills to apply the tool effectively.
However, as we have gained more experience in the uggn@@ammaand began to develop an
analysis protocol, it has become apparent that the whole analysis process could be automated with
relatively small loss in effectiveness. It thus appears quite practical to construct an automated tool,
autoGammawhich presented with a data set and some general data-semantics could perform a
complete Gamma test analysis and return the results to the user in the form of a report and models

in the form of for exampl&xcelmacros.

201



8.4 GammaMiner

To produceautoGammave would have to construct a rule base extracted from the experience
of manywinGammaexperiments and this would require some further research. However, there
would seem to be no major problems with this proposal and such a tool might well form a useful

and commercial product.

8.4 GammaMiner

Because the Gamma test runs extremely quickly one can therefore envisage a more sophisticated
program GammaMine) which automatically scans large databases looking for relationships be-
tween numerical fields which can be used for modelling and prediction. The user could define
which attributes were of particular interest (the targets or outputs required to be predicted) and
which other attributes the targets might reasonably depend on (these would form the set of po-
tential inputs to the model). Designing such a program is not without pitfalls. For example, at-
tribute values may not be time-stamped and one could easily find the program ‘predicting’ values
which predate the attribute values used as inputs. There are consequently some problems regard-
ing database semantics which need to be addressed. Because not all data falls into the category
of numerical fields which might be modelled by a smooth function and because other types of
tools (e.g. decision trees) may be more appropriate for constructing predictive models on discrete
inputs or categorical outputs, one could also envisage engineering a sulBshofaMineras a

re-usable component designed to be integrated into existing or future data mining tools.

Nevertheless, it is possible to imagine such a program running continuously in the background
and notifying its owner only when it found something interesting, e.g. "It is possible to build a

predictive model for X for one month ahead that gives an accuracy of 0.5%, are you interested?”.
Whilst such program behaviour is arguably not intelligent in any real sense there is no doubt that
such a tool would be useful, especially with the growing adoption of business intelligence tools

that make use of data warehouse and data mining techniques.

Many users ofwinGammaare explicitly interested in time series prediction of economic data.
We propose in the first instance to provide a set of time series editing tools which facilitate the
alignment in time of attribute values from different time series and the selection of subsets of

lagged data to be explored BammaMineiin seeking to evaluate predictive capability.

The GammaMinermroject seeks to prototype an automated model extraction capability possibly
with special reference to time series. Whilst it is indeed possible that genuine new scientific

knowledge might result from the use of such a program, it is worthwhile to reflect briefly on the
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8.5 The status of data-derived model predictions

scientific value of such opportunistic model building.

8.5 The status of data-derived model predictions

When physicists try to make predictions they are following one of the basic principles of science:

e Postulate the basic laws - they are supposed to hold for all time and in all places.
e Calculate the consequences.

e Perform experiments or observations to verify the predictions.

Successful verification does not constitute a ‘proof’ of the law but failure to verify might constitute

a disproof (if all the loopholes in the logic have been plugged).

The philosophical study of our sources of knowledge is knowamstemology Since the laws
of physics are supposed to be invariant over all time and space we could say loosely that physics
espouses a Platonian view of knowledge in which the ‘laws’ are there and fixed and it is up to us

to discover them: usually in some very pure mathematical form.

e The advantageof having such laws available is that because they are supposed invariant
over time and space one may be able to make predictions for circumstances that have never

been observed before - we call this extrapolation.

e Thedisadvantagés that sometimes the calculations directly from the laws (or ‘first princi-

ples’ as it is often called) may be so complicated or take so long as to be impractical.

The barrier which often presents itself is one of computational complexity. As a simple example
consider theprotein folding problem A big protein has thousands of constituent atoms and we
might know its atomic structure exactly. The biological action of the protein is what we would
like to predict. Now if one were to hold the protein by both ends and let go it would collapse
into something which, on the right scale, would look like a tangled ball of wool. The biological
action of the protein is largely determined by what is left on the outside of the ball of wool. So the
problem is simple: we know the effects of atomic bonds, we know the structure so let’s just plug
all this into a computer program and compute the folded structure. That sounds good, but except
for fairly small molecules it can’t be done - the program takes too long to run. But things are even

worse than this!

203



8.6 Main contributions of this thesis

Indeed everwithoutthe Heisenberg uncertainty principle (which says you cannot measure both
the position and momentum of a particle with an arbitrary degree of precision) the uravierse

Newton really contained the seeds of its own destruction.

e Even if you know all the initial conditions of some quite simple chaotic process exactly
(which actually you can't) then the amount of computation required to predict a long way
into the future with the fastest computer one could imagine wouldstjllire a time greater

than the estimated life expectancy of the universe

This is the first lesson of chaos. An example is the weather - where we know all the laws and can
measure to our heart’'s content but we cannot even predict reliably several days into the future, let

alone several months.

But there are other, more pragmatic, approaches. When we talk about ‘predicting the future’ in
this context we have a rather cavalier approach in mind - a kinoppbrtunistic epistemology

which runs more along the following lines:

e Amodelis ‘good’ just as long as it is predicting well. When it stops predicting well, we just

try to build another model.

This is because we come at the question of prediction from an Atrtificial Intelligence perspective.

What we need are predictive models which work and which can be computed rapidly. The extent
to which economic or sociological models discovered by application of tools such as the Gamma
test are truly scientific depends on the context but one should recognise that it is arguably a philo-

sophical question.

8.6 Main contributions of this thesis

We have engaged in a software engineering exercise to produce a novel tool in non-linear analysis
and modelling. This tool has already been widely used by researchers at Cardiff University and
is now a commercial product with a small but rapidly increasing user base in the larger research
community. The lessons learned from this development can now be applied to create more pow-
erful tools which are simpler to use, requiring less expertise on the part of the user. Tools such
asGammaMinemight eventually be used over large distributed databases to elicit genuinely new

scientific knowledge.
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In addition we have introduced a generalisation of the Gamma tedtligler Moments Gamma
testwhich shows how for symmetric noise a close approximation of the original unknown noise

distribution can be reconstructed.

Finally, we have taken the software tools and theoretical techniques developed herein and shown
how to adaptively construct non-linear predictive models for river system level and flow directly
from the data. We believe that this application is the first detailed and extensive analysis of a river
system aimed at constructing non-parametric, non-linear models and, as such, may represent a

significant step forward in practical hydrology.
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APPENDIX A

k-d Tree

The nearest neighbour problem involves finding the closest point (or points) to a query point from
M points in ak-dimensional space. Considerable research has been undertaken to optimise the
nearest neighbour search process particularly within the areactdér quantisatiofVQ) where
nearest neighbour encoding performs a fundamental role, [Ramasubramanian and Paliwal, 1992]

and [Katsavounidis et al., 1996].

Our concern is to find the,,,, nearest neighbours to a query point as efficiently as possible
in order to minimise the execution time of the Gamma test (see algorithm 4). The brute force
technique (which performs an exhaustive search) is only suitable for the simplest problems. The
run-time complexity i€)(1/?) which becomes prohibitive for largel. We must therefore employ

one of the fast near neighbour algorithms designed to deal with large data sets.

We can divide fast nearest neighbour algorithms into two categories

1. Axis-partitioning algorithmse.g. the k-d tree algorithm [Friedman et al., 1979].

2. Triangle inequality-based algorithme.g. the FN [Fukunaga and Narendra, 1975] and FNM
[McNames et al., 1999] algorithms.

We selected the k-d tree fast near neighbour search technique for its simple implementation and

scalability, both in terms of low storage requirements and time complexity.

The scalability of the k-d tree is such that it can be implemented with minimal stevage),
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A.1 k-d Tree

has a time complexity of constructiaf(/ log M), and can be queried with time complexity
O(log M). To perform a complete run of the Gamma test, or modelling using local-linear re-
gression, using.... hear neighbours to each of tldé query points has a time complexity of
O(M log M). The dimensionality of the dataalso affects the execution time. Most (if not all)

alternative near neighbour techniques have the same time complexity, or worse.

A.1 k-d Tree

There are two components to a k-d tree: (1) the construction of the k-d tree data structure, and (2)

the search algorithm for finding the nearest neighbours from the k-d tree.

We begin by describing the technique to build the data structure (the k-d tree) and then describe

the search method to find the nearest neighbours of a query point.

A.1.1 k-d Tree construction

The k-d tree is a generalisation of the binary tree where the search Rpasalivided into two
parts at each node. The root node represents the whole data set and each sub-node represents a
subset of the parent’s data. Maximally efficient information storage is encapsulated when the tree

is balanced, such that each child node has an equal chance of being selected.

The partitioning of the search space occurs for the varifibte {1. .. k} with the greatest range,
where K is thepartitioning key The median value of the variable given by the partitioning key
K provides thepartitioning valueV. Any data pointx; can then be located either into the left
sub-treel or the right sub-tre& with respect to the partitioning valdé and the partitioning key

K, suchthatk; € L if x; x <V, otherwisex; € R (wherex; g Is the K** component ok;).

This process of partitioning the data into sub-trees continues until no mor&thamts are stored

at each node. These nodes are terminal and chilleketsand containl or more data points, up

to the maximunbucket sizeB. Empirical evidence provided by [Friedman et al., 1979] suggests
that betweent and 32 points per bucket provides optimal performance. A bucket sizewés

arbitrarily chosen for our implementation winGamma
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A.1 k-d Tree

k-d Tree time complexity analysis

The whole data set must be scanned at each level of thettremlculate the partitioning keys

and the median values for each node. The calculation of the median for a list of numbers can be
achieved with time complexit§ (M) (an algorithm to achieve this is given in [Press et al., 1992]).
Therefore this computation has time complexityM ) at each level of the tree and must be per-
formed for each of théog M levels. Therefore the total time complexity for k-d tree construction
isO(M log M).

k-d Tree storage requirements

The storage requirements for a k-d tre©®is\/ ). In addition to storing the data set, very little extra
information needs to be stored. In an efficient implementation where, in the process of finding the
median value, the data is sorted in place, the storage requirements are: for each non-terminal node
the location of the data subset, the partitioning k&ythe partition valué’, and the links to the

child nodes need to be stored, and for each terminal node (bucket) the number of data points and

the location of the bucket data needs to be stored.

k-d Tree construction

The k-d tree construction algorithm is shown in Algorithm 10.

The algorithm accepts data as input and returns the root node to the tree. If the number of data
points in the current node does not exceed the bucket size, the node is made terminal and the
algorithm finishes. If more data is available than can be accommodated in a single bucket, the data
set is partitioned into two data sets according to the partitioning key and partitioning value. The
BuildTree function is then called for each of these thedt andright data sets. This recursive
process continues partitioning the data until all of the branches of the tree end with terminal nodes.
As the recursive process unwinds the connections from the parent nodes to their immediate child

nodes are made and stored.

The CalcSpread routine should be implemented to return the range of the data for a partic-
ular variable. TheMedian function returns the median of the data for a particular variable

([Press et al., 1992] describes one method to perform this with time complexity)). The

The scanning of the whole data set at each level of the tree arises from the accumulative effect of scanning the data
subsets of each node.
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A.1 k-d Tree

node function BuildTree(data)
begin
if Size(data) < bucketSize then
return  (MakeTerminal Node(data))
end if
maxSpread = 0
for j=11to k do
if CalcSpread(data,j) > mazxSpread then
maxSpread = CalcSpread(data, j)
partitioningKey = j
end if
J=J+1
end for
partitioningV alue = Median(data, partitioning K ey)

return  (MakeNonTerminal Node(partitioning K ey, partitioningV alue,
BuildTree(LeftSubSet(partitioning K ey, partitioningV alue, data)),
BuildTree( Right SubSet(partitioning K ey, partitioningV alue, data)))
end

root = BuildTree(data)

Algorithm 10: k-d Tree Construction

LeftSubSet and RightSubSet functions create the subsets of the data for the left and right child
nodes according to the partitioning key (given by the variable with the greatest spread) and the

partitioning value (given by the median of the variable with the greatest spread).

MakeNonTerminal Node and M akeT erminal Node create the data structures for the nodes
and store the appropriate supporting variables, i.e. the location of the data subset, partitioning key,
partitioning value, and links to the child nodes for non-terminal nodes, and the number of points

in the bucket and location of the bucket data for the terminal nodes.

A.1.2 Searching for Nearest Neighbours

If, for a given data set, the associated k-d tree is constructed in an optimal configuration (section
A.1.1 describes how to do this) then the number of records required to be searched should be
minimal. The k-d tree data structure enables the search to consider only those records closest to

the query record, thus reducing the overall search time.
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A.1 k-d Tree

k-d Tree search

Some initialisation has to be done prior to the tree being searched and this is shown in Algorithm

11. Once initialised, the search, described in Algorithm 12, can begin.

{initialisation }

set queryPoint and pmax

near Neighbours[l : pmax)]

near NeighboursDistance[l : pmaz] = oo
upper Bound|[l : k] = oo

lower Bound|[l : k] = oo

{search the tree from the root node }
SearchTree(root)

Algorithm 11: k-d Tree search initialisation

The search is made for thenax points closest to thgueryPoint in the data set. A list of

the near neighbours and their associated distances are maintainednealt@deighbours and

near NeighboursDistance respectively. Initially the near neighbour distances are sebttm

enable nearer points to enter the list as the search progresses. A list of upper and lower bounds
are maintained for each dimensiampper Bound andlower Bound respectively). These describe

the current bounds of the search space and are used to eliminate searching branches of the k-d tree

that lie outside of the search space. Finally, a cali¢archTree starts the search.

The search algorithm is shown in Algorithm 12. The initial calSenrchTree is made from the

root node. The algorithm then performs a depth-first recursive search through the tree.

The algorithm first checks whether the current node is terminal. If the node is terminal, all
of the points in the bucket are checked against the current nearest neighbour distances list
near N eighboursDistance to see if any points from the bucket are closer than those found so
far. If a closer near neighbour is foungear N eighboursDistance is updated and the point is
inserted into therear Neighbours list, displacing the furthest near neighbour point found so far.

The algorithm then returns because there are no further branches to enter.

If the current node is non-terminal then the partitioning value (i.e. the median) and the partitioning
key for that node are extracted. These are then used to determine which branch of the tree to
examine from the current node. dfieryPoint[partitioningKey] < median then the search

proceeds down the left-hand branch, otherwise the right-hand branch is searched.

The algorithm proceeds by descending the chosen branch, temporarily updating the upper and

lower search boundaries for that branch, as determined by:tagan, and recursing down the
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A.1 k-d Tree

function  SearchTree(node)

begin
if node is terminal then
Examine each point in bucket and
update nearNeighbours and mnearN eighboursDistance
return
end if
{traverse the tree }

median = Median(node)
partitioningK ey = PartitioningK ey(node)

if queryPoint[partitioningKey] < median then
{recurse on nearest child }
temp = upper Bound[partitioning K ey]
upper Bound[partitioning K ey] = median
SearchTree(Le ftChild(node))
upper Bound[partitioning K ey] = temp

{recurse on furthest child }
temp = lower Bound|partitioning K ey)
lower Bound|partitioning K ey] = median
if  BoundsOwverlapBall then
SearchTree(RightChild(node))

end if

lower Bound|partitioning K ey] = temp
else

{recurse on nearest child }

temp = lower Bound[partitioning K ey)
lower Bound[partitioning K ey] = median
SearchTree(RightChild(node))

lower Bound|partitioning K ey] = temp

{recurse on furthest child }
temp = upper Bound[partitioning K ey]
upper Bound[partitioning K ey] = median
if  BoundsOwverlapBall then
SearchTree(LeftChild(node))
end if
upper Bound[partitioning K ey] = temp
end if
end

Algorithm 12: k-d Tree search
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A.1 k-d Tree

tree to the bucket nodes. As the recursion unwinds, the bounds prior to the descent are reinstated
followed by a call toBoundsOwverlapBall. This is used to determine whether the opposite branch
needs to be searched because it contains points closer to the query point than the furthest near
neighbour found so far. If this is the case, the search bounds for the new branch are temporarily

recorded and the descent is made.

Algorithm 13 describes th&oundsOverlapBall routine. Aball can be imagined to surround

the nearest neighbour points whose extent in each dimension is determined by the minimum and
maximum values of the nearest neighbours in that dimension. If the extent of the ball lies outside
of the search boundaries then there is no need to continue searching. If, however, the search
boundaries overlap theall (i.e. fully or partially contain it) then the search must continue down

the opposite branch (the code that make this decision on the basis BbthelsOverlapBall

routine is shown in Algorithm 12). This is because points in the opposite branch from the one

searched already might be closer than the nearest neighbours found so far.

boolean function BoundsOwverlapBall
begin
sum = 0
for d=1to k do
if  queryPoint[d] < lowerBound[d] then
sum = sum + Distance(queryPoint[d], lower Bound|d))
if  Dissim(sum) > nearestNeighboursDistance( furthest) then
return  false
end if
else if  queryPoint|d] > upper Bound[d] then
sum = sum + Distance(queryPoint[d], upper Bound[d])
if  Dissim(sum) > nearestNeighboursDistance( furthest) then
return  false

end if
end if

end for

return  true
end
{Euclidean distance function }
real function  Distance(x1,x2)
begin

return  (z1 — 22)?
end
{Euclidean dissimilarity function }
real function Dissim(x)
begin

return  sqrit(z)
end

Algorithm 13:  k-d Tree bounds overlap ball
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A.2 Conclusion and further work

In a recent study [McNames et al., 1999] the FN and FNM algorithms were shown to outperform
the k-d tree algorithm for high dimensional data (for> 15). If we assume that each technique

was implemented to the same standard, although no evidence was given about the coding efficiency
of each technique, then this also requires us to examine the FN and FNM algorithms as potential

replacements for the k-d tree for high dimensional data.

An unpublished study by James McNames of Portland State University (February 2, 2000) demon-
strates that, of 7 different near neighbour algorithms chosen for study, aryaforithms could

be chosen based on a variety of criteria. The data sets used to test the algorithms had variable
dimensions, sample sizes, and distributions. For a wide variety of cases, the k-d tree algorithm
produced a high ranking solution compared to the other algorithms (particularly for large sample
sizes). The apparent disadvantage of the k-d tree comes when dealing with high dimensional data
(k > 15 was mentioned in the report). Some care has to be taken when using the results of this
study because implementation details were not fully detailed and it may be the case that some
of the algorithms were more efficiently implemented than others. However, the document does
seem to partially justify our choice of the k-d tree as a fast near neighbour algorithm, although

improvements could be made, especially for high dimensional data.

One significant development of this unpublished study is the introduction of a new nearest neigh-
bour algorithm calledPAT (Principal Axis Tree). This report came to our attention after the de-
velopment ofwinGammaand shows a new algorithm that is significantly faster than most of the

algorithms in the study, including the k-d tree that is currently used.

Further work must be undertaken in order to maximise the performance of the nearest neighbour
search. This part of the Gamma test algorithm contributes the overwhelming processing time
and must be implemented with both the best algorithm and as efficiently as possible in order to
minimise the execution time. In order to achieve this, the techniques that have been discussed

briefly here, primarily FN, FNM, and PAT, require further investigation.
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APPENDIX B

Feature Selection

This appendix provides additional information for the experiments described in Section 4.1.

B.1 Full feature space search

These plots are for the 16-dimensional full feature space search described in Section 4.2.

(@) 11 = sin(2z1) (b) z12 = cos(4x2)

Figure B.1 : Feature selection inputs (x11, z12).
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Figure B.2 : Feature selection inputs (z13, ..., 216).

Figure B.3 : Feature selection output y = sin(2z1) — cos(4x2).
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APPENDIX C

Non-symmetric Distributions

The non-symmetric noise distributions used within this thesis are based either on a pair of uniform
distributions or a lognormal distribution. The techniques used to generate the distributions are

described in the following sections.

C.1 Uniform distribution-pair

A simple non-symmetric distribution can be created from a pair of uniform distributions such that
the distribution has zero mean and a pdf with are&n example of the distribution is shown in
Figure C.1.
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Figure C.1: An example uniform distribution-pair.
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C.2 Lognormal distribution

Algorithm 14 shows the technique used to generate the distribution. The bounds of the two distri-
butions (ninLeft , maxLeft , minRight , maxRight ) and the proportion of points required in
each distributiongfroportionRight ) must be defined to ensure that the algorithm has ability

to generate a distribution with mean zero.

(* set widthLeft, widthRight, meanRight, proportionRight, numPoints
)

minRight
maxRight

= meanRight - (widthRight/2);
= meanRight + (widthRight/2);
rightPoints = numPoints*proportionRight;
leftPoints = numPoints - rightPoints;

rightMoment = meanRight*rightPoints;

meanLeft = -rightMoment/leftPoints;
minLeft = meanLeft - (widthLeft/2);
maxLeft = meanLeft + (widthLeft/2);

uniformDLeft = UniformDistribution[minLeft, maxLeft];
uniformDRight = UniformDistribution[minRight, maxRight];

distLeft = Table[Random[uniformDLeft], x, 1, leftPoints];
distRight = Table[Random[uniformDRight], x, 1, rightPoints];
dist = Join[distLeft, distRight];

Algorithm 14: The non-symmetric uniform distribution-pair for Mathematica.

The values used to generate Figure C.1 wddthLeft = 1.5, widthRight =1, meanRight =
1, numPoints = 50000, andproportionRight =0.2.

C.2 Lognormal distribution

From [Kendall and Stuart, 1963] the lognormal distribution has a probability density function (pdf)
defined by

p(y) = \/%y exp <—;(7 + élog y)2> (C.1)

0 < y < oo, wheres and~ are parametets This is derived by considering the variatelefined

by
E=v+dlogy (C.2)

where¢ is normally distributed with mean zero and standard deviation one.

tUnrelated tos and~y as used in the main text.
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C.2 Lognormal distribution

Letuo = [o°p(y)dy =1, n =1 =[5 yp(y)dy, forr > 2
] = / Oo(y — ) p(y)dy (C.3)
0

and puto? = us. Then, after some algebra, the relationship betw@en) and(y, o) is seen to

| () e
() ) e

We can also check from (C.1) that th& moment about zero is given by

N

7”2 T
pr[0] = exp [252 - ;] (C.6)
and since .
i) =317 () g 0] 0P (C.7)
el ; (j)u i

this enables us to compute|u] for » > 2, when giveny and~y.

Algorithm 15 is aMathematicamodule that returns a random number according to a lognormal

distribution specified by. > 0 ando.

DDelta[mu _, sigma ] := Log[(sigma/mu)2 + 1]°(-1/2);

GGamma[my sigma ] =
(1/2) * Log[(sigma / mu)2 + 1]°(1/2) -
Log[mu] / Log[(sigma / mu)2 + 1]°(1/2);

ALogNormal[mu _, sigma _] := Module[
{ delta, gamma, Xi, y 19

delta = DDelta[mu, sigma];
gamma = GGamma[mu, sigmaj;

Xi = Random[NormalDistribution[0, 1]];
y = Exp[(Xi - gamma) / delta];

Return[y];

Algorithm 15: The lognormal distribution for Mathematica.

For the experiments described in Section 5.3, we clpose2 or . = 0.5 ando = /0.4 ~ 0.632.
From (C.4) and (C.5) this gives~ 3.23914 andy ~ —2.09084 for ;, = 2 and$ ~ 1.02302 and
v~ 1.19785 for u = 0.5.
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C.2 Lognormal distribution

Finally since we require a noise distribution with mean zero we translate the random numbers

generated by- .

From (C.3) we have for = 2

pizlp] = 0.4 ps[p] = 1.47
uslp] = 0.248 pelp] = 4.36534 (C.8)

walp] = 0.760976

and fory = 0.5
p2lp] = 0.4 p5[p] = 397.684
palp] = 1472 pglp] = 24951.2 (C.9)
palp] = 15.7007

We have described this implementation in some detail sinc&agé& ormal Distribution func-

tion supplied inviathematicas defective.
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APPENDIX D

winGamma Overview

The finalwinGammalesign included the existing C++ components and incorporated elements and
ideas generated during the prototyping cycle. This process lead to seven key areas that needed to
be explored:

1. Application interface.

2. Data file management.

3. Data analysis using the Gamma test.

4. Model building using neural networks and local-linear regression.

5. Results visualisation.

6. Results exportation.

7. Project management.

The design and implementation of each of these components is discussed in the following sections.

Screenshots are used where appropriate to show the state of the current implementation.
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D.1 Application interface

D.1 Application interface

The application interface was designed to have a similar ‘look-and-feel’ to most other Microsoft
Windows compatible software. We decided to useudtiple document interfac@DI) design to
provide an application window that can contain many sub-windows. In this case a MDI application
allowed us to provide a sub-window to view the data sdttd set managérand another sub-
window from which experiments could be performeahdlysis managér Figure D.1 shows the

winGammanterface after a data set has been loaded.

The application includes a standard menu structure with the commonest commands replicated on
a toolbar for speed of use. The menu is formatted in much the same way as any other Microsoft
Windows applications, includingfde menu for loading data sets, loading and saving projects and
exiting the program. There is also adit menu for copying and pasting data, exporting results
and deleting Gamma test experiments and modeldraAsformmenu provides access to data
manipulation routines, for example to scale a data set or to rename variablesptidgresmenu

can be used to control threads or to change the basic settingg@mma Thewindowmenu is

a standard menu to control the display of the windows ahelpmenu provides application help

and copyright information. The menu structure is shown in Figure D.2.

D.2 Data file management

winGammawas designed to load text data files in the formats described in Appendix E. In addition

to loading a data file for analysis, we decided to implemeiniGammawith routines to display

and manipulate data files in order to reduce the need for secondary software to perform these
tasks. For example, it seemed unnecessary for data exported from a database to be manipulated in

a spreadsheet prior to analysisvinGammacould perform the task.

The data file management consists of loading, transforming, viewing and exporting data files. The
data can be viewed in, and exported from, the data set manager, whereas loading and transforming

a data set is managed by the maiimGammainterface.

First we must consider how a data set is loadedwittGamma The process to load a data set for

analysis is shown in Table D.1. The data set is only loaded & siéps are completed.

In stepl the entire data file is loaded into memory and parsed to identify invalid formatting and

illegal characters.
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D.2 Data file management

Page  AnamsData | Desle | Prese Grah  Model | Test  Cuep  whetl  Fredet  Iteiste
D b Fie Henl0D0sc (Expermenis | Models |
oput 1 iz Jinpw3  Joupat B Tianing Set Analpss
<xeies 1>: t-] csmiies 15 12 <sevies 1> 1] comins 1320 o Gamma test
036113 035973 035314 1035963 * Increasing rear neighbours
10088 1004 1mm 1.m03 o s
A7974  A7IA A4 179 A e m“ﬁ:"mm e—"—
1.7815 17815 178015 17815 Full enbedding
1 1 1 none Genetic algorthm

10658 48B3 14832 Hicinking
10659 048638 14832 065333 e
Increasing embedding

048630 14832 069 14173
14832 065393 14173 080502
06593 14173 08002 17
14173 a8z 1177 022716
080502 11771 amTE  17MS
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0276 LIMS %M 053
17015 1563 0537 06dEN
5634 053 0R4E14 082
053371 QB4EM 082239 0917
064614 062239 09I7E1 080489
082239 09751 0B04E3 10274
D751 osdss 1074 0%esRR
080489 10274 05ESE2 13849
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(a) The winGamma application interface. The main MDI application window contains the two child
windows: (1) the data set manager, and (2) the analysis manager.

@ winGamma S a ]

File Edit Tramsform Options Window Help

(b) The menu, toolbar and status bar. The toolbar buttons
(from left to right) are load new data set, open project, save
project, resume active process, pause active process and

terminate active process.

Figure D.1: winGamma.
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D.2 Data file management

Cpen Analkysis Data Set
Open Tast Data Set
COpen Prediction Data Set

Open Project
Save Project
Save Project &s
Close Project

File: Histary
Project Histary

Exik Alk+F4

Chrl-F4

(@) The file menu for loading and sav-
ing projects, loading data sets and exiting

winGamma.

Transform data set
Partition analysis data set
Fename data

(c) The transform menu for manipulating

data sets.
Tile: F10
Cascade Fil
Arrange loons Fi2
1 Daka Set Manager

w 2 Analysis Manager

(e) The window menu for manipulating

the active windows.

Chr-C

(b) The edit menu for copying and pasting
data, deleting experiments and models,

exporting results and resetting charts.

(d) The options menu for controlling the
active process and setting basic applica-

tion information.

() The help menu for getting application
help and copyright information.

Figure D.2 : The winGamma menu structure.
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D.2 Data file management

Process

174

Load and verify the data file

Determine the file type

Transform the data
Scale the data
Partition the data

6 View the data

a | b~ |W | IN|PF

t Transform time series data to input-output form and/or randomise the order of the data.

t Optional.

Table D.1: The processes required to load a data set into winGamma. Each stage must be
successfully completed for the file to load.

If the data file is correctly formattedyinGammaperforms step to determine whether the file

is formatted as a time series, input-output or comma separated value (CSV) file. These formats
and file types are detailed in Appendix E. If the file is in CSV format (as typically generated

by a spreadsheet or database) then the user must decide whether to convert it to time series or
input-output format. Figure D.3 shows the dialog designed for this where the user selects which
variables are inputs and which are outputs. Selecting all of the variables as inputs (the default)

converts the file into time series format.

Step3 applies a number of transforms to the data. The order of the data can be randdmised

an input-output file as shown in Figure D.4(a). A time series data set must be formatted with the
correct number of lags required for analysis by specifying the number of inputs and outputs. The
option to randomise the order of the data is also available, but this can only be applied after the
data has been formatted as a time series. Figure D.4(b) shows the dialog box designed for time

series transformations.

Step4 allows the data to be scaled (normalised) to put all of the inputs into the same range,
which (theoretically) gives all of the inputs the same ‘numerical significance’. If normalisation

is selected then the input variables are scaled to mean zero and standard déviatimother
scaling option is called thieeuristic scalingand is an experimental feature that uses the Gamma
test to automatically scale the data according to the significance of each input. In the latest version

of winGammahis has been disabled while more work is done to perfect the algorithm. This is one

LIt is only necessary to randomise a data set if a subset of the data is being used for analysis, otherwise this has no
effect on the analysis.

224



D.2 Data file management

C5¥ Transformation

[ p— [T [Data |input/Duiput |
1 H -3.1290584 31 Input
2 - 292853287 ivgad

Uge the curzor: or mouse to select & row.
Pros sboner daddy slch tntampisthe ighlghtod o tntomningss et et

_ Concel | s |

Figure D.3: The CSV transformation dialog allows the user to specify whether a CSV file is

converted into time series or input-output format. This example shows a file with 3 variables
formatted to input-output format with 2 inputs and 1 output. The values from the first row in the
data set are shown as a guide to aid the user when the variable names are undefined.

Data Transformation Data Transformation

Data Settings | Data Settings  Time Series |
Data lype ectar Funchan Mumber of inputs per senes |3
Inputs 2 ;
Oulputs 1 Mumber of outputs per senes |1
Yectors SO0 Moving average width IIZI
[ Randomize [ Diffesences

_ Corcd |

_ Corcd |

(a) The data transformation dialog sum-
marise the ‘raw’ data file. The option to
randomise the order of the data is avail-
able at this stage. This example shows
the dialog for an input-output format data
set, but the same summary and randomi-
sation option is provided for time series
data, see Figure D.4(b).

(b) The time series transformation dialog
box enables the user to specify the num-
ber of inputs and outputs required and
whether to calculate a moving average

and differences for each time series.

Figure D.4 : The data transformations for input-output and time series data sets.
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D.2 Data file management

of the features discussed for future work in Section 6.6. The scaling dialog box is shown in Figure
D.5.

Data Scaling

[T Momalize
r

Carwced |

Figure D.5 : The data scaling dialog box provides access to routines to normalise the data. Heuris-

tic scaling has been disabled in winGamma until the algorithm is completed (see Section 6.6).

At stepb, after the user has selected how the data should be transformed, re-ordered and scaled, the
data set can be partitioned. This facility is provided to enable a subset of data to be selected, either
for preliminary analysis or where a subset of the data is sufficient for analysis and modelling. The
dialog box created for selecting a range of data (and used througim@ammafor partitioning

any of the loaded data sets) is shown in Figure D.6.

Select proportion of data set for analysis

Star 1 500 End
30 | | 200

Cancel

Figure D.6: The data partitioning dialog box enables a subset of the data to be selected for
analysis or modelling. The whole data is represented by the white bar (in this case 500 vectors),
and the selected data is represented by the green bar (vectors 30-200).

After a data set has been loaded, verified and the file type determined then the data set can be

manipulated at any time according to st8psin Table D.1.

The final step is to display the transformed data set. The prototyping stage highlighted several
ways to display data where an implementation using a text grid was chosen as the best solution.
There are performance limitations of this technique because it requires an excessive amount of
memory to display a large data set. We decided to work around this problem by dividing large
data sets intgpagesto maintain fast scrolling and efficient memory management. The current

implementation uses the data viewer shown in Figure D.7 using this paged me€@todectors
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D.2 Data file management

are placed on each page in the current implementation.

=10/ x|
Page  Analysis Dala | Test Data| Prediction Data |
N > Fie Hen1000 ssc
% Irput 1 Input 2 Iript 3 Dutput 1 il
4 <series 13 3] <senes 13 12| <senes 1> 1] <saries 13 1
g Mean |036113 0.35373 0.35914 0.35963
7 Sid Dev |1.0039 1.0104 1.0 1.0103
g Min 1.7974 1.7974 1.7974 1.7974
10 Max  |1.7815 1.7815 1.7815 1.7815
Wi 1 1 1 none
1 1.0653 048633 1.4832
2 1.06859 048639 1.4332 065393
3 048639 1.4832 065393 1.4173
4 1.4832 065393 1.4173 0.80502
5 065393 1.4173 080502 11T
3 14173 0.80502 1A 022716
7 0.BOB02 11771 02276 1.7015
8 11771 022716 1.72015 1.5634
3 022716 1.7015 -1.5634 053371
10 1.7015 1.5634 0.53371 064614
1 1.5634 05337 064514 082239
12 05337 064614 082239 0.91751
13 064614 0.82239 0.91751 0.80483
14 082239 0.91751 080433 1.0274
15 091751 0.80433 1.0274 058532
16 080439 1.0274 058592 1.3649
17 1.0274 0.58532 1.3649 028722
18 058532 1.3649 028722 1.727
19 1.3643 0.28722 1727 1 BEEE
20 Q28722 1.727 16686 08662
2 1727 1. GEBE 0 BEBZ 0.14311 .

Figure D.7 : The data set manager window can show up to three loaded data sets (all of which are
visible in this example). The data is divided into pages containing 100 vectors each. The pages
are listed in the left pane of the window and the right tabbed-pane shows the active data set page.

In this example, the data set contained 1000 vectors requiring 10 pages.

Additional data files can be loaded for testing and prediction (see Sections D.4.4 and D.4.7 re-
spectively). These files must be in the same format as the analysis data set (except that prediction

data sets do not contain output variables). The testing and prediction data sets then automatically

undergo the same transformations that occurred to the analysis data set.
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D.3 Data analysis using the Gamma test

D.3 Data analysis using the Gamma test

Once the data set has been loaded (described in Section D.apahesis managewindow is
displayed, shown in Figure D.8. The experiments are displayed in the left pane, where the Gamma
test experiment types are divided into the categat@a set analysiandmodel identification

=

RET

Experments | Modsls |

= @ Training Set Analysis

® Increasing neal neighbours

o M-Teszt

»  Mowing window gamma best
-1 Model |denhfication

»  Full embadding

e Genehc algonthm

o Hill clirbing

» Sequential embadding

® Increasing embedding

Figure D.8 : The analysis manager window shows the Gamma test experiment types.

D.3.1 Experiment types

There are nine standard Gamma test experiments included with®amma These are divided

into two distinct groupsdata set analysiandmodel identification The data set analysis experi-
ments are (1) the Gamma test, (2) increasing near neighbour test, (3) M-test, and (4) the moving
window Gamma test. These experiments perform basic tests on the data set to estimate, for exam-

ple, whether there is sufficient data, or how sensitive a solution is to the number of near neighbours.

The model identification experiments perform feature selection or find the optimal embedding
dimension. These techniques are (1) full search, (2) genetic algorithm search, (3) hill climbing,

(4) sequential search, and (5) increasing embedding.

It is important that a record of past experiments is maintained for each data set to enable the user
to easily compare results from many experiments. The tree structure listing the experiment types

was developed to do this. The experimental results are designed to ‘hang’ under the appropriate
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D.3 Data analysis using the Gamma test

experiment type as shown in Figure D.9. This approach arose from the desire to maintain a project

containing analysis and modelling experiments for a particular data set.

=l & Tianing Set Analpsis
o Gamma test
& |horeasing neat neighbours:
= o M-Test
= Experimernt 2
s Experiment 3
& Maoving window gamma test
= & Model | denbific:ation
= » Fullembadding
o Experiment 1
& Genetic algotithn
= & Hill clirabing
# Esperiment 4
o Sequential embedding
e |ncreasing embedding

Figure D.9: The tree structure lists the available experiment types and records the results of
experiments.

An experiment is created by selecting the appropriate experiment type from the tree structure and

pressingnewon the button bar at the top of the analysis manager, as shown in Figure D.10.

i x
M e elete & Fralp e Tt M ode et duery rrat Fre t terate

Experiments | Models |
= & Training Sat Analpsis
o Gamma test
o Increasing neal neighbours
= [AED
o Mowing window ganma begt
+ « Model ldentification

Figure D.10: A new experiment is created by selecting the experiment type from the tree (as
indicated by the arrow) and pressing the new button on the button bar.

Once the experiment is complete, the results are recorded in the tree under the appropriate experi-

ment type, as shown in Figure D.11.

ol
f Delete bpalpse  Graph  Model Juery Predict terate
Ewm'm' Fhfsﬂslsqu
=1 & Taining Set Analysis - Output; IDukput‘I :{penes 131 j
®  Gamma test
o |noreasing near neighbours Analyse/Model Row 1
= M-Test Gamma Giradient |S-t-':hd Errar |'J-Fh;|
b C pzimert 1 1 0.042389 0.70043 07e
o Mowing window ganma begt :I Pl 3

Figure D.11 : The results for an experiment are stored in the tree under the appropriate experiment
type. The results for the selected experiment are shown in the right pane.
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D.3 Data analysis using the Gamma test

D.3.2 Experiment options

We have briefly discussed how to create an experiment: the user selects the experiment type from
theanalysis managewindow and clicksnewon the button bar. However, before the results can be
computed, certain parameters must be set for the particular experiment. The parameters that must

be specified for each of the nine experiments are shown in Table D.2 (indicatgd by

Experiment type
Interface T1 | T2 | T3 | T4 | M1 | M2 | M3 | M4 | M5
Near neighbours | o o o o o o ) o
Mask o o o | o o o
Number of results o o
Histogram size o )
Evaluated output o o o
Additional input o | o | o o
Code Experiment Code Experiment
T1 Gamma test M1 Full search
T2 | Increasing near neighbour test| M2 | Genetic algorithm search
T3 M-test M3 Hill climbing search
T4 Moving window test M4 Sequential search
M5 Increasing embedding

Table D.2: The highlighted parameters (o) must be specified for the Gamma test experiments.
Note that additional input is required for some experiments beyond the generic parameters tabu-
lated here.

We have provided a description of each experiment type withimth€&ammanterface to remind

the user of the purpose of the selected experiment. Generic interfaces have been created to reduce
the number of specific interface components. These are shown in Figure D.12. Several unique
interfaces were developed for experiments requiddditional input(shown in Table D.2) and

these are shown in Figure D.13.

The required interfaces (as shown in Table D.2) for each experiment type are combined into a
tabbed display and displayed within a single dialog box. The user then has the option to set any of

the parameters @axecuteghe experiment immediately using the default values.
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D.3 Data analysis using the Gamma test

Ew|m|

Expeniment selecled  Simple Gamma T est

iFun the Gamma test once.

Fatameters
Near nexghbours
Mask.

Selact the rumber of nearest neighbours
10 j

Ewperiment Editor
Experiment  Mask |
Use the cursors or mouse to select a rom.

Press retun or double click to select or deselect input from mask. B | B |

<senes 1>:t-2
<senies 1501

1.0659
0.48633

Yes
es

Altematively, paste of lype in a mask below
fm

Cancel

(@) The initial page provides an experi-
ment description and provision to specify
the number of near neighbours, which is
hidden if not required.

(b) The mask dialog allows an input mask
to be specified. A mask can be randomly
generated or set by either typing a mask in
or by toggling the inputs on or off using the
mask grid.

Expeiment Aol | Expesiment | Genetio Agorthmn  Fesults |
Click. on row to select output for evalustion
0 Alias First value
Output 1
<series 1>: 1
Select the rumber of results required Select the number of histogram bins required Select the number of histogram bins required
7 - 50 = 50 =
Cancel Cancel

(c) The results dialog allows the total number
of experimental results returned to be lim-
ited. The number of buckets required for the
Gamma histogram can also be set. This is
the same dialog as shown in Figure D.12(d)
with the output selector hidden.

(d) Some heuristic experiments are eval-
uated for a specific output (e.g. the GA
search). This dialog allows the evaluated
output to be specified. The user can also
set the number of buckets required for the
Gamma histogram. This is the same dialog
as shown in Figure D.12(c) with the irrele-

vant options hidden.

Figure D.12 : Generic dialog boxes used for Gamma test experiments.
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D.3 Data analysis using the Gamma test

Experiment Editor

Experiment Increasing Neat Neighbours | Magk. |

Experiment Editor

Expetment MTest | Mask |

Inkial sample size | | % fio
Iritial near neighbours J 2 Final sample size | J :m]337
Final near newghbours |_J W Step size J |1_
Step size J 1 Randomise data [~
Cancel E Cancel

(a) The increasing near neighbours test per-
forms a Gamma test for a range of near
neighbours. The dialog allows the user to
select the range of near neighbours and the
step size to take between successive near

neighbour values.

Experiment Editor

Experiment  Moving Window | Mask |

(b) The M-test requires the user to specify
the range of data points to be used from
the smallest data set size to a maximum
size. Gamma tests are then performed for
increasingly large sample sizes within the
specified range, incremented according to
the step size. The order of the data can be
randomised and the results averaged over

several M-tests (not shown).

Experiment Editor

Experiment  Gienebc Algorthn | Fiesuts |

Population size I_J |1gg
Mutstion rate I f Joss—
Windowsies [ — | lr Crassower rate [ I 05
e e J I1 Gradient litness - J 01
. = r Intercept fitness [ J 1
Lengthfiness - jai
Minutes Hours Drays
Fiury tirne: 2hlm [ J_ [ J_ J_
Cancel [ Execule | Cancel

(c) The moving window Gamma test per-
forms a Gamma test within a set window
size (number of data points). The window
size is kept at a constant size and moved
through the data set in fixed steps deter-
mined by the step size. The order of the
data can be randomised and the results av-
eraged over several moving window tests

(not shown).

(d) The genetic algorithm search has many
options to tune the performance of the algo-

rithm including the maximum run-time.

Figure D.13: Specific dialog boxes used for Gamma test experiments.
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D.3 Data analysis using the Gamma test

D.3.3 Experiment execution

Once a user has started an experiment the application prevents the user running any other ex-
periments until the current one completes or is terminated. This is handled through the thread

management routines developed during the prototyping stage.

Each experiment provides feedback to the user during execution. The form of reporting varies
between experiments and data sets as required. By default the nearest neighbour algorithm reports
via a progress meter which, if the data set is small, is automatically turned off to reduce the
processing overheadIn particular the heuristic experiments provide a lot of feedback to enable

the user to examine how the experiment is running. Figure D.14 shows two examples of reporting.
19.0476% done Finding neighbours ANNRENEENEENNENENEER

(a) The status bar provides the primary source of feedback during the experiment. The first panel
on the status bar describes the overall progress of the current experiment. The second and third
panels describe the current operation and display its progress using a progress meter.

Seftings Fleal Time Evaluation

»
GA Fitness: Best and Average Fitness

066
D64

062
060
0358

056 e
054 /‘“

052
050
048
046
044
D42

Fitness

1] 5 10 15 20 25 30 35 40 45 50 55 60 65 YO 7S5 B0 &5 90 95 100 105 110 115 120 125
Cycles

~ dverage — Best

(b) The genetic algorithm performs an optimisation that can be mea-
sured in terms of the overall population fitness and best individual so-
lution fithess. This chart is produced in real-time to provide continu-
ous feedback during the experiment. This feedback can be used to
determine when to stop the algorithm, for example when there is con-
vergence between the best individual fitness and the overall population
fitness.

Figure D.14 : In-experiment feedback.

2Presenting visual information is computationally intensive and is only used where it consists only a small fraction

of the computation time or is of relevance.
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D.3 Data analysis using the Gamma test

D.3.4 Experiment results

All of the Gamma test experiments return the results in the same structure as shown in Table D.3.

Result components

Gamma statistid,
Gradient,A

Standard error of the regression line §t&

Noise variance to signal variance ratid;ratio = I' /var(y)

Number of near neighbourg,, ..

Start vector

Number of vectors

Evaluated output

Number of zero nearest neighbours

Lower95% confidence on noise estimate using the zero nearest neighbour samples

Upper95% confidence on noise estimate using the zero nearest neighbour samples
Mask

Table D.3: The results structure.

Where a data file contains multiple instances of the same input vector, together with non-identical
corresponding outputs, these zeroth nearest neighbours might be construed as measurements of
the same output variable with an identical input vector. In these, perhaps unusual, circumstances
we have the opportunity to compute the variance of the noise directly, i.e. without recourse to the
Gamma test. In this case we compute the variance of the output corresponding to identical input
vectors, assume a normal distribution and, in addition to the Gamma test result, return estimates
for the noise variance at the Upper and LoWwg¥;, confidence level as calculated from Student’s
T-test. Student’s T-test is used because under most normal circumstances there will not be very
many zeroth near neighbours. These Upper and Lower estimates for the noise variance can then be
compared with the Gamma statistic returned by the Gamma test. If all three are in close agreement

this is strong evidence that the Gamma statistic is estimating the noise variance accurately.

The reporting of results is shown in Figure D.15. Figure D.15(a) shows a completed experiment
listed in the left pane of the analysis manager window with the corresponding results for the ex-
periment shown in the right pane. The method of displaying the results in the analysis manager is
shown in Figures D.15(b)-(d).
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D.3 Data analysis using the Gamma test

e
Hew Delete | Anabse  Graph  Model Test . Ouery - Wetl Predet et
=1 » Training Sel Analyss Diput: {Dutput 1 <series 15: 1 =]
* Gamma test
* Increasing near neighbours Analyses/Model Row 1
» MTest Gamma Gradient | Standard Enor ]'.f:;gil
®  Moving window gamma lest 1 11404 0.0010035 3
=} » Model dentification
&- e Ful enbeddng z 36023E 5 0.72488 0.00020013 153
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B v S i B |7993€5 06453 DO0DG54AS 782
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(a) The analysis manager displays the completed experi-
ment in the left pane and shows the corresponding results
in the right pane.

Giradient [Standand Evar [v-Rato [Near Neighbou] Start Vectar [u.:-i

31404 000003 29835 10 1 .
IB02ES5 072488 00002019 35311ES 10 1 3
4EETES 1,037 0OD0Z79Z1 ASTIES 10 1 3
GEMES 01979 00011968 E7DOSES 10 1 3
7IMES 0643 DODOGOIZZ  TASTEES 10 1 3
7IMMES 064563 DODOSSH4S  TEZIES 10 1 S
BITHES 0BT DODOZSEZ:  B2DEEES 10 1 _as'ﬂ

»

(b) The left hand side of the results grid.

Mear Neighbour] Start Vector [ Uriaue Poirts |Em.unm[z-omurqqnssx:.(uﬂ
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3 o 1 EN 1 D
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(c) The centre of the results grid.
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E o o 8 1 o P
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6 |o T [0 W
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(d) The right hand side of the results grid.

Figure D.15: The results reporting format is illustrated using some example results. (b)-(d) show
the statistics recorded in the results table for each Gamma test.
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D.3.5 Experiment analysis

Several standard types of analysis have been described within this thesis and it was appropriate to
include them inrvinGammawhere possible. The analysis can be divided into two main types: (1)

analysis of a single result, and (2) the analysis of all the results generated by an experiment.

Figure D.16 shows the type of analysis possible for an individual result. The Gamma scatter
plot is shown in Figure D.16(a) with an interpretation3isdimensions in Figure D.16(b). The
Gamma angle histogram shown in Figure D.16(c) is an analysis not previously discussed. The
histogram is produced by counting the number of points in the scatter plot at a particular angle
from the intercept. This can be used as a guide to determine whether there are any points in the
scatter plot in the crucial region at loivand highy wherenoisecan be most evident (at an angle
approximately> 80°). The final screenshot in Figure D.16(d) shows a summary of the result being

analysed.

The analysis of all results is performed within tlesults visualisershown in Figure D.17, and is

only available for an experiment that contains more than one result. The visualiser can plot any
of the available statistics for all results as demonstrated in Figure D.17(a). Initially the visualiser
automatically determines which statistics should be plotted for each experiment type, for example
the analysis of an increasing embedding plots the lags against the Gamma statistic to show what the
optimal embedding dimension should be. Figure D.17(b) shows the analysis available for feature

selection using full and GA searches.

D.4 Model building

A model can be constructed minGammaeonly after a Gamma test analysis has been completed.
This is to ensure that the user does not attempt to blindly model the data, but instead uses any
insights gained from the data to improve the model performance. A model is created from a single

result generated from any Gamma test experiment.

The result selected as the basis for modelling contributes several parameters to the design of the
model. The primary factors for modelling are the Gamma statistic, which determines optimal
model performance, and the mask, which provides the best combination of input variables. Sec-
ondary consideration must be given to the gradient, which provides an indication of the required
model complexity and roughly determines how many nodes are required in a neural network

model. The way in which the data was scaled during the analysis will also affect how the model
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Figure D.16: An individual Gamma test result can be analysed using variations of the Gamma
scatter plot.
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(b) The results from the feature selection experiments are
used to construct a Gamma histogram.

Figure D.17: All of the results for a single experiment can be analysed together. The results

visualiser can graph any of the available statistics and provides facilities to copy, print or save the
chart data.
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will perform.

Figure D.15(a) illustrates the method by which a model is constructed from experimental results.
Firstly, the experiment is selected from the tree structure in the left hand pane of the analysis
managerwinGammashows all of the results for the selected experiment in the right hand pane,
where the result that forms the basis of the model design is selected. The modelling process is

started by selecting thmodelbutton on the analysis manager toolbar.

The proportion of analysis data to be used for creating the model needs to be selected, as shown
in Figure D.18. By default the proportion of data used for modelling is the same as was used to
generate the experimental result. This default behaviour ensures that the Gamma statistic, to be
used as the target MSE, is passed to the modelling routines. However, if a different proportion of
data is selected then there is an option to recalculate the Gamma statistic to give a more appropriate
estimate of the target MSE for the data. Once the proportion of data has been ssla@athma

displays the model editor.

Select proportion of data set for model braining :
Start ] 334 Erd
[ | | [s00
»
Cancel

Figure D.18: The user selects how much data is used to create the model. The default is to use
the same data as was used for the analysis.

D.4.1 Model types

winGammeacan be used to construct neural network and local-linear regression models (technical
details of these model types can be found in Chapter 2). The selection of model type is made using

themodelling editor Figure D.19 shows the editor and the choice of models available.

D.4.2 Model options

Table D.4 describes the parameters that must be set for each type of model.

The corresponding interface dialogs which enable the user to supply input parameters are shown

in Figure D.20. In cases where there is a duplicate interface, for example linear regression and
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D.4 Model building

Model type
Interface L1 | L2 | N1 | N2 | N3
Near neighbours o | o
Regression constant o | o
Local flow threshold o o
Number of nodes in first layer o | o | o
Number of nodes in second layer o o )
Target MSE o o o
Learning rate )
Momentum o
Regularisation o
Initialisation time o
Training time °
Code Model Code Model
L1 Local-linear regression N1 Backpropagation trained network
L2 | Dynamic local-linear regression | N2 | Conjugate gradient trained netwo
N3 BFGS trained network

Table D.4: The highlighted parameters (o) must be specified for each model type.

rk
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Modelling Editor

Model type: |BFGS Neural Network |

Lacal Linear Regression

Cynamic Local Linear A egrezsion

B ack propagation Two Layer Heual Me
Coryugate Gradient Meural Network,

BFGS Newal Nebwark
Tain ba
Mumber of nodes in fiest laper: Taiget MSE:
5} R 2 0 [305403E 5 Recalc
Mumber of nodes in second layer:

gor
- =

Cancel | Build |

Figure D.19: The modelling editor provides a choice of models to the user. The model type is

selected from the pull-down menu. There are two main model types (neural networks and local-
linear regression) with several variants of each. The editor changes appearance depending on
the parameters required for the chosen model type.

dynamic local-linear regression have identical parameters, only one example is shown.

The neural network dialog boxes allow the user to independently set the target MSE. By default
the target MSE is set to the Gamma statistic of the experiment result used as a basis for the model.
If the target MSE is changed, or the proportion of data selected for modelling was not the same as

was used for the analysis, then it can be recalculated.

D.4.3 Model training

The local-linear regression models (at their most basic level) consist of only data organised as a
k-d tree, and subsequently are trivial to produce. In contrast, a neural network model requires

training time to learn from the data.

To provide feedback to the user during training, the neural network training algorithms produce a
real-time chart showing the progress of the training measured in terms of the model MSE. Also
shown on the chart is the target MSE because that is the model performance goal that determines

when the training algorithm will terminate.
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(a) The dialog box for local-linear regression (b) The dialog box for backpropogration
and dynamic local-linear regression. showing the network parameters.

(c) The dialog box for backpropogration (d) The conjugate gradient and BFGS dia-

showing the training time parameters. log box.

Figure D.20 : The dialog boxes for setting modelling options.

242



D.4 Model building

Figure D.21 shows the feedback given during a typical training run. In addition to the real-time
chart, feedback is also provided on the status bar. This gives numerical information regarding
the training performance that can seen by the user even when they are using other features of

winGammawhich may obscure the real-time chart.

Seftings Fleal Time Evaluation

»
Training Mean Squared Error

MSE

\\

\

0 2 4 8 B 10 12 14 16 18 20 22 M 262 28 30 32 34 X 3 0 42 4 &£ 8 0 52 54 =
Cycles

— M3E Target MSE

o

(a) The model performance is charted in real-time during network train-
ing. The model MSE is shown in comparison to the target MSE (in most

cases this will be the Gamma statistic measured on the training data).
hugetuiammaq-ns MSE 004573 L[ [[[]]

(b) The status bar provides numerical feedback on the training process. The progress meter
shows the progress of the current training operation (in winGamma the primary network
training operation is punctuated at regular intervals with a simulated annealing routine to

avoid the confinement of the network weights to a local minima.).
Figure D.21 : In-training feedback.

Once model construction has been completed, either because the training algorithm completed
or was terminated early by the user, then the model is added to the record of models held by
the analysis manager. The models are viewed using essentially the same tree structure used to
hold experimental results, although the models cannot be constructed directly in the same way
that experiments can. The constructed model is ‘hung’ under the appropriate model type and
automatically numbered to keep a record of the order in which the models were created. Figure

D.22 shows an example of a trained model in the analysis manager window.
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-0
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Figure D.22 : Constructed models are shown on the analysis manager window. The models page
has been selected in the left hand pane. The constructed models are shown in the tree structure
in the corresponding model type branch. The buttons on the button bar (test, query, what if, predict
and iterate) are activated for modelling.

D.4.4 Model testing

All of the model types produce the same format of output when tested. The main difference be-
tween the models is that the neural network models require a feedforward calculation to compute
the output, whereas the local-linear regression models require a more complicated (and hence more
time consuming) computation involving finding thg ... nearest neighbours and then performing

a singular value decomposition to obtain the least squares fit. Hence, local-linear regression mod-

els take much longer to test.

The form of the output generated through testing a model is shown in Figure D.23. The standard
output is a graph showing actual output versus model output, an example of which is shown in
Figure D.23(a). As shown in Figure D.23(b), the corresponding values can also be displayed and
exported. Figure D.23(c) shows the error distribution plot as produced by the model for a particular

test data set.

D.4.5 Model querying

When a small number of queries are required of a model it may be more efficient to run a query

as opposed to a model test or prediction. The query model routine was designed to handle these
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(a) The graphical representation of the model (b) These are the data values corresponding to
performance, shown by the blue line, compared those plotted on the chart in Figure D.23(a).
to the actual data observation (obscured),
shown by a green line. The error is shown by
the red line and the overall MSE value is shown
above the chart.
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(c) The error histogram shows the error distri-
bution given by the model for the particular test
set.

Figure D.23 : The model testing output is represented in three ways.
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situations. The user types in the inputs to the model and the corresponding output is calculated.

Query Model B

Erter values for query vectar:

Input |slias iﬂueﬁ Value |
1 Cpenes 13 t6

2 <zemes 1> t5 1.0659

3 <genes 1 4 043633

4 <senes 13 t-3 1.4832

5 penes 1 12 065393

E <zemes 13> b1 14973

Predicted oubputs

Outp Alias Predicted V alue

0. 83606274 3742141

Cloze

Figure D.24: The query model interface allows the user to enter the inputs to the model from
which the output is calculated and displayed.

D.4.6 Model what-if (scenarios)

The what-if model query is a more advanced form of a model query. The user enters the inputs to
the model, but instead of returning just a single value for the output in the way that a query works,
the model performs a series of queries across a range of values for a specified input. This allows
the user to see how a model responds to a change in stimulus on a given input. Figure D.25 shows

the what-if dialog and the resulting graphical output.

D.4.7 Model predict

The prediction routine is similar to the test routine, but with one crucial difference. The prediction
routine works when the output is unknown. This can be a useful technigque for testing scenarios or
performing a batch of queries. The model cannot provide an estimate of the prediction accuracy

because a reference is unavailable.
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whatr
Enter values for query vechor:
Input | tias Iia-m. ,
1 <senes 1 16
b <zengs 1> 15 1.0659
3 cpenes 1 -4 0.45639
4 <zemes 13 -3 1.4832
5 <senas 1 b2 0 B5393
B <zenes 1> 11 1.4173
Select vanable input:
fInput 5 csaries 1512 =]
Select range for vanable input:
biniiraunm: RECTT Humber of steps acioss range:
|166422914283356 |2 37974480285297 {50 -
Cloze I bt 1f I

(a) The what-if dialog requires the user to specify the point at which the
what-if query takes place. The input to be varied and the range over
which it is to be varied must also be specified by the user.

I8
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(b) The what-if query produces a chart that displays how the model
varies with respect to the changing input stimulus.

Figure D.25: The what-if query allows the user to examine how a model responds to the change
in stimulus on a single input.
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Model Tester

AU

3 10 19 0 ¥ MW ¥ M4 &M W\ 3 G0 G M ™M @O B W

— Predicted

Figure D.26: The predict routine is used when the output for a particular data set is unknown.
A judgement of the prediction quality remains with the modeller because the prediction routine

works without comparison to a known output.

D.4.8 Model iteration

An artificial system can often be successfully modelled usingséep ahead model, whereis
low. An extension to this form of modelling is to iteratevastep ahead model a number of times

to predict the outcome.

The model iteration routine works by first testing the model on a fixed number of points to pro-
vide a starting point for the iteration. The iteration routine then takes over and takes successive
predictions of the output to generate the new inputs. If the model is successful then iterations will

produce solutions similar to the expected values.

D.5 Application information

An on-line help system has been included witinGammato provide assistance. There is an
electronic user manual created using the Microsoft HTML help system, an example is shown in
Figure D.28.

In addition to the on-line help, we have implementedaéout dialog that displays the version
number and licensing information specific to the user. This also provides contact e-mail addresses
and the provides the address of thmGammawebsite. A second dialog box describes to@y-

right information. This also provides a disclaimer regarding the usage of the software to protect
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Model Tester
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Figure D.27 : Model iteration tests the model for a number of points then iterates forward for a
specified number of time steps. In this example, the model was tested with 50 points followed by
an iteration to generate the next 10 points. The blue line shows the test involving first the 50 points
and then the 10 iterated points. The green line shows the actual output and the red line shows the

error.
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Figure D.28: The help system provides information about how to use winGamma and how to
interpret the results.
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the authors from any legal action that may arise from events caused through the use of the software.

Figure D.29 shows these dialog boxes.
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About winGamma # jJ

@ winla amma IDR]
u ‘ersion 1.3 [15 September 2000]
Copyiight 1333-2000, Cardiff Lkniversity

Ongingl concept b Antoniad. Jones
Algarithrs by Shewve Margefts
whindow: concept and programming by Peter Dureant

For information on software updates contact
emal  winG smmadcs of o uk

URLs:  wwwe.gammatest.com
w2 of ac uk Awingarmg

Physical memony: 3271528
Phisical memony available: 178.804 EB
Wirtual memony: 827160 KR
irbual memon aeailable: E30,116 EB

Thiz application iz hoansed to
Universal Salutions
Universal McCann, London, UE

(a) The about dialog provides application information,
including e-mail and internet addresses for contact and
real-time system monitoring of memory (useful to ex-
amine system performance when analysing large data

sets).

Department of Computer Science CARDlFF
winGamma UNIVERSITY

This program is experimental and should be
used with caution. All h use is at your own
risk. To the extent permitted by applicable
laws, all warranties, including any express or
implied warran of merchantability or of
fitness for a pa lar purpose, are hereby

excluded. The authors and distributors of
this software disclaim all liability for direct,

consequential, or other damages
in any way resulting from this software.

This program is protected by copyright
You may not

written permission of the copyright holder.
You may not modify this program

£ 1999-2000 De partment of Computer Science, Cardiff University, University of Wales, UK

(b) The copyright dialog box exists to detail which organisation owns the
copyright and to give notice that the authors accept no liability for any losses

incurred during the use of the software.

Figure D.29 : winGamma has the standard about and copyright dialog boxes to give information
about the winGamma application.
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APPENDIX E

winGamma Data and File Formats

This section provides supplementary information alwinGamma

E.1 File structures

All file formats use the ASCII representation. This enables files to be generated and read any
application that supports ASCII. Examples include text editors, spreadsheets, databases and web

repositories.

E.1.1 winGamma format (asc)

The file format native to the original Gamma test components is the asc format. This is an ASCII

file format that describes either time series or input-output format data files.

Time series format

A single time series consists of a single column of numbers. A multiple time series file consists
of several columns of numbers separated by white-Spaeach row in the data set corresponds

to the next set of readings in the time series and is terminated by a comma followed by a new-line

lwhite-space consists of space and tab characters but not new-line characters.
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character. A multiple time series file is shown below.

1.2 5.4 0.1 7.3,
1.4 5.7 0.0 6.4,
1.6 6.2 0.3 6.0,

Vector format

Vector (input-output) data is a natural format for the Gamma test and neural network supervised

training algorithms.

Each row in the file describes an input vector and the corresponding output vector. The input and
output vectors are separated by a comma. The values in each vector are separated by white-space.
An example of an vector format file is shown below. Each vector can be optionally terminated

with a comma (not shown).
1.2 5.4 0.1, 7.3

1.4 5.7 0.0, 6.4
1.6 6.2 0.3, 6.0

E.1.2 Comma-separated file format (csv)

The csv file format is an industry standard file format. It is commonly used with spreadsheet and

database applications as a way of exporting and importing data in a platform independent manner.

The file consists of a number of rows and a fixed number of columns. Each value is separated from
the next with a comma. The end of a row is marked with a new-line character instead of a comma.

An example is shown below.
1.2, 5.4, 0.1, 7.3

1.4, 5.7, 0.0, 6.4
1.6, 6.2, 0.3, 6.0

winGammaeacan also handle csv files that have each row terminated with a comma.

E.2 Data formats

There are two types of data format:
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1. Vector format data.

2. Time series data.

All data must be in vector format for the Gamma test and modelling algorithms. Time series data
must be converted to this input-output form.

E.2.1 Vector file format

The input-output format consists 8f pairs of vectors. Each vector pair consists of an input vector

X (sizen) and an output vectoy (sizem).

11 T12 X13 - Tin Yyilr Y12 - Yim
T21 T22 XT23 - Top Y21 Y22 - Yom
TM1 TM2 TM3 - TMn Ymi1 Ym2 - YMm

E.2.2 Time series file format

Time series data consists ofn variables sampled at regular time intervafer T' time steps.

Tlt=1 T2t=1 T3t=1 "' Tm,t=1
T1t=2 T2t=2 T3t=2 "' Tm,t=2
T1t=T L2t=T T3 t=T " Tmt=T

Time series data must be transformed into vector format (see Section E.2.1) using a window of
past measurements to generate the input vectors and window of future measurements to generate

the output vectors. The concept is illustrated below for a single time series transformed to vector
format.

Tt=1 Tt=i—3 Tt=i—2 Tt=i—1 Tt=; Tt=i+1

Tt=2 Ti=(i+1)—3 Tt=(i+1)—2 Tt=(i+1)—1 Ti=(i+1) Tt=(i+1)+1
—

Tt=T Tt=N-3 Tt=N-2 Tt=N-1 Tt=N Tt=N+1
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wherei = steps_back +1 and N = T — steps_ahead + 1 and the number of vectors B —

(steps_back + steps_ahead) + 1.
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