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Abstract

The Gamma test is a simple technique for assessing the extent to which a given set of
M data points can be modelled by an unknown smooth non-linear function f . If the
underlying model is of the form y = f(x)+r where r is a random variable representing
that part of the data which cannot be accounted for by the smooth function f , the
Gamma test produces an estimate ΓM for the variance Var(r). This estimate is rapidly
computed directly from the data, and since its introduction in 1995 has been used
extensively for a variety of different applications in several theses and papers. Thus it
is of some interest to provide a formal basis for the method, and this is precisely the
problem addressed in this thesis.

The Gamma test is based on the behaviour of certain near neighbour statistics as
the number of data points M becomes large. Our analysis involves determining the
probabilistic asymptotic behaviour of the mean squared kth nearest neighbour distance
in a set of M points, and other related sums. We develop new techniques for near
neighbour functions on sets of points sampled from a compact convex body in Rm, the
study of what we have chosen to call L-dependent variables, and some quite technical
generalisations of earlier ideas of Bickel and Breiman [1983].

Using these techniques we are able to produce some quite interesting incidental results,
but the main result is that for sets of points selected from a compact convex body in
Rm according to some smooth positive sampling density then the Gamma statistic ΓM
converges in probability to the noise variance Var(r) as M → ∞. While we believe
that the Gamma test has wider applicability, this result is sufficient to justify the test
in a wide variety of practical applications.
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Chapter 1
Introduction

The Gamma test [Stefánsson et al. 1997; Končar 1997] is a data–analysis technique

originally developed as a tool to assist in the construction of data-derived models.

The method has subsequently been successfully applied to problems in control theory

[Končar 1997], feature selection [Chuzhanova et al. 1998; Durrant 2001], secure commu-

nications [de Oliveira 1999] and controlling chaotic systems [Tsui 1999; Tsui et al. 2002;

Jones et al. 2002].

The aim of this thesis is to establish a rigorous mathematical foundation for the Gamma

test and to provide a detailed analysis of the conditions under which it may be shown

to be applicable.

1.1 Data–derived modelling

Data–derived modelling techniques seek to construct models of a system directly from

a set of measurements of the system’s behaviour, without assuming any a priori knowl-

edge of the underlying logical rules or equations that determine this behaviour. With-

out further assumptions the class of potential models is enormous, ranging from logic

functions through rule based systems and probabilistic models to parameterised func-

tions. In this thesis we shall concentrate on the case where the underlying system

behaviour is an unknown smooth function.

Neural networks, trained by some variant of back-propagation, may be considered as the

generic example of a non-parametric smooth modelling technique. While the methods

discussed in this thesis are entirely independent of the particular modelling technique

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



1.1 Data–derived modelling 16

employed, they have nevertheless proved to be extremely useful when applied to model

construction using neural networks.

We restrict our attention to those systems which may be thought of as smoothly trans-

forming some input vector into a corresponding output. This is a fairly general repre-

sentation – in the case of a smooth dynamical system the current state of the system

(possibly together with some of its previous states) may be thought of as the input, with

the output representing the transformed state of the system after some time interval

has elapsed.

Suppose we have a set of input–output observations of the form

{(xi, yi) | 1 ≤ i ≤M} (1.1)

where the inputs x ∈ Rm are vectors confined to some closed bounded set C ⊂ Rm

and without loss of generality, the corresponding outputs y ∈ R are scalars. In the

general case where the outputs are vectors, the algorithms we consider can be applied

independently to each component and as we shall see, this involves very little extra

computational cost.

For our purposes a model is an algorithm which, using a data structure derived from

the initial data set (1.1), can be used to predict the output y corresponding to a

previously unseen query vector x. It is an implicit requirement that the process of

model construction and query should be computationally efficient. In practice this

means that at worst model construction should have time complexity O(M logM) and

querying the model for a single input vector should at worst have time complexity

O(logM) as M → ∞. A technique such as the Gamma test, which is intended to

assist in the model construction process, must therefore also have time complexity of

at worst O(M logM) as M → ∞.

1.1.1 Noise

One problem in constructing models solely on the basis of observation is that measure-

ments are often corrupted by noise. We define noise to be any component of an output

that cannot be accounted for by a smooth transformation of the corresponding input.

Noise may occur in a set of observations for several reasons.
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1.1 Data–derived modelling 17

• Inaccuracy of measurement.

• Not all causative factors that influence the output are included in the input.

• The underlying relationship between input and output is not smooth.

The Gamma test is a technique for estimating the noise level present in a data set. It

calculates this estimate directly from the data and does not assume anything regarding

the parametric form of the equations governing the system. The only requirement in

this direction is that the system is smooth – the precise conditions under which the

Gamma test may be applied will be given later.

1.1.2 A non–parametric approach

The traditional approach to data–derived modelling is to make some specific assump-

tions regarding the form of the relationship between the input x ∈ Rm and the cor-

responding output y ∈ R. An attempt is then made to find the ‘best fit’ for the

parameters in the hypothesised relationship, relative to the observed data. This ap-

proach leads to to the study of parametric statistics, see for example [Bates and Watts

1988].

However, in many cases we have no a priori knowledge with which to construct a para-

metric model. Traditional statistical models are then reduced to studying quantities

such as correlations, auto–regressions and co–variances, all of which are likely to be

very crude estimators of the ‘average’ causal relations between the input variables and

the outputs we seek to predict.

A new approach to this general problem is presented in [Pi and Peterson 1994]. Letting
f represent the optimal model of the system under investigation1, then rather than
presupposing some particular parametric form for f we suppose instead that it simply
belongs to some general class of functions, in particular those which are uniformly
continuous over the input space.

The relationship between an input x and the corresponding output y is then expressed
as

y = f(x) + r (1.2)

where

1The goal of any modelling technique is to ‘identify’ this function in some sense.

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



1.2 Applications of a data–derived estimate of noise 18

• f is a smooth function representing the system.

• r is a random variable representing noise.

Without loss of generality, the expected value of the noise variable r may be assumed
to be zero, since any constant bias can be absorbed into the unknown function f .
Despite the fact that f is unknown, subject to the condition that f has bounded first
and second partial derivatives over the input space C, the Gamma test provides an
estimate for the variance of the noise variable, Var(r).

This estimate is called the Gamma statistic, denoted by Γ, and may be derived in
O(M logM) time2 where the implied constant depends only on the dimension m of
the input space. The Gamma test is a non-parametric technique and the results apply
regardless of the particular methods subsequently used to build a model.

1.2 Applications of a data–derived estimate of noise

Before describing the Gamma test in detail we outline some important applications of
having an efficient technique for estimating Var(r).

• The Gamma test provides a method for assessing the ‘quality’ of the data.

If the Gamma statistic is small (relative to the variance of the output y) then it is likely
that the output is determined from the inputs by some smooth model. The Gamma
test can therefore tell us directly from the data whether or not we have sufficient data
to form a smooth non–linear model, and also indicates how good that model is likely
to be. If the error of prediction is too high regardless of how much data we are given,
then we might increase the accuracy of our measurements or alternatively investigate
whether or not we have included all input variables that are likely to affect the output.
In the case of time series analysis we may also choose to increase the rate of sampling.

To illustrate the convergence of Γ to Var(r) as the number of points M increases we
define f(x) = sin(x), generate 500 uniformly distributed points x in the range [0, 2π]
and construct the corresponding output values y by adding a uniformly distributed
noise component with a variance of 0.075 to each of the f(x) values.

The data points thus obtained are shown in Figure 1.1 and Figure 1.2 shows the
convergence of the Gamma statistic Γ to the true noise variance of 0.075 as M increases
from 30 to 500 (the dashed line shows the true noise variance).

2In practice on a 500MHz PC with M ≈ 1000 and m ≈ 100 a single Gamma test computation is
complete within a few seconds.
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Figure 1.1: The noisy sine function y =
sin(x) + r where Var(r) = 0.075

100 200 300 400 500

0.07

0.075

0.08

0.085

0.09

0.095

0.1

G

M

Figure 1.2: The convergence of Γ to
Var(r) for y = sin(x) + r.

Figure 1.3: Model (red) trained to a
mean squared error of 0.0786

Figure 1.4: Model (red) trained to a
mean squared error of 0.056

• The Gamma test provides a method for determining a suitable stage at which to
stop adapting a model to fit the data.

Whatever the choice of non–linear modelling tool, one of the central problems of model
construction is to determine when to stop adapting the model to fit the data.

The mean squared error between the actual (measured) output values and those pre-
dicted by the model provides one indicator of how well the model fits the training
data. If we fit a model beyond the point at which the mean squared error over the
training data falls significantly below the noise level, we will have incorporated some
aspect of the noise into the model itself. The model will then perform poorly on pre-
viously unseen inputs despite the fact that its performance on the training data may
be almost perfect. Such models have effectively memorised the training data and are
consequently said to suffer from overfitting. If we stop adapting the model when the
mean squared error on the training set reaches our estimate Γ for the noise variance
Var(r), and if we have confidence that our estimate Γ is reasonably accurate, then
we should obtain a smooth model having the best possible mean squared error when
used to predict the output corresponding to an input point not seen during the model
construction process.

Figure 1.3 shows the model obtained by training a 1-5-5-1 neural network to a mean
squared error of 0.0786 on 100 points of noisy sine data (corresponding to Γ = 0.0795),
while Figure 1.4 shows the model obtained by a training a 1-5-5-1 neural network to a
mean squared error of 0.056. In both cases model is plotted in red while the function
f(x) = sin(x) is plotted in black.
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• The Gamma test can determine the minimum number of data points required
build a good model.

Suppose we compute a sequence of Gamma statistics ΓM for an increasing number of
points M (see Figure 1.2)3. The value Γ at which the sequence stabilises serves as our
estimate for Var(r), and if M0 is the number of points required for ΓM to stabilise to
within some prescribed error of Γ then we will need at least this number of data points
to build a model that may be expected to predict with a mean squared error of Γ.

• The Gamma test provides a new technique for determining the most significant
input variables4.

In this context, the goal of model identification is to choose a selection of input variables
that best models the output. That the Gamma test may be useful in this respect derives
from the fact that low noise levels will only be encountered when all of the principal
causative factors that determine the output have been included in the input. Some
input variables may be irrelevant, while others may be subject to high measurement
error so that incorporating them into the model will be counter-productive (leading to
a higher effective noise level on the output). Since performing a single Gamma test is
a relatively fast procedure, provided the number m of possible inputs is not too large
we may compute a noise estimate for every possible subset of the input variables. The
subset for which the associated noise estimate is closest to zero can then be taken as
the ‘best’ selection of inputs.

We can see that this approach to smooth data modelling is extremely general and far
reaching. Thus the issue of placing the Gamma test and its associated algorithm into
an established framework is of considerable interest.

1.3 Conditions

We now state the conditions under which the Gamma test can be applied. These fall
into three categories

• Conditions on the class of models f

• Conditions on the noise distribution Ψ

• Conditions on the sampling distribution Φ

We remark that some of the requirements described below are only necessary for the
purpose of obtaining a proof of the algorithm5. Experimental results show that the
algorithm continues to work under less restrictive conditions.

3This is known the M -test.
4In conventional statistical analysis this problem is often addressed by a ‘principal components

analysis’ which suffers from the essential limitation that it is based on an ‘average’ linear model.
5Although we loosely speak of obtaining a ‘proof’ of the Gamma test, we acknowledge that this is

an abuse of terminology and that in fact we are proving the consistency of the algorithm.

Data Derived Estimates of Noise for Smooth Models Dafydd Evans
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1.3.1 The class of models f

The domain of possible models f : Rm → R is restricted to the class of continuous
functions having bounded first and second order partial derivatives over the input space
C ⊂ Rm. In particular, we remark that the Gamma test is not directly applicable to
problems involving categorical data.

Let ∇f(x) and Hf(x) denote the first and second partial derivatives of f at the point
x ∈ C, defined by

∇f(x) =

(
∂f

∂x(i)

)m

i=1

and Hf(x) =

(
∂2f

∂x(i)∂x(j)

)m

i,j=1

(1.3)

where x(i) and x(j) are the ith and jth components of x respectively. Let H(C)
denote the convex hull of C. Then we require that there exist constants b1 > 0 and
b2 > 0 such that for all x ∈ H(C),

F.1 |∇f(x)| ≤ b1 and |Hf(x)| ≤ b2 (1.4)

These conditions are denoted by F.1 for later reference, and are required in order that
we can apply the second mean value theorem to the unknown function f .

1.3.2 The noise distribution Ψ

The noise r is defined to be a random variable representing that component of the
output which cannot be accounted for by any smooth model f having bounded first
and second partial derivatives. We denote the distribution function of the noise variable
by Ψ and the corresponding density function by ψ.

Since any bias within the system can be included in the unknown smooth component f
we may suppose without loss of generality that the noise distribution Ψ has mean zero.
Using Eψ to represent an expectation with respect to Ψ we denote this by Eψ(r) = 0.

As we are aiming to estimate the variance of the noise variable r we also impose
the condition that this variance is finite. For technical reasons the third and fourth
moments of the noise are also required to be finite.

N.1





Eψ(r) = 0
Eψ(r2) = Var(r) <∞
Eψ(r3) <∞
Eψ(r4) <∞

(1.5)

We impose two further conditions on the noise distribution as follows.

N.2 The noise is independent of the input corresponding to the output on which it is
measured. Thus we assume that the noise on an output is homogeneous over the
input space.
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N.3 The noise values ri and rj on two different outputs yi and yj (i 6= j) are indepen-
dent – in particular they are uncorrelated so that Eψ(rirj) = 0 if i 6= j.

If the noise is not homogeneous over the input space, this is not necessarily fatal in a
practical application – the Gamma test will return an estimate for the average noise
variance and is therefore still able to provide useful information regarding the selection
of relevant inputs (see [Jones et al. 2001]).

Non-linear coordinate transformations and their effect on noise

Before using any data–derived modelling technique we can attempt to reduce the di-
mension of input vectors by applying a transformation to their component variables,
for example

x̃1 = g1(x1, . . . , xm)
x̃2 = g2(x1, . . . , xm)
...

...
...

x̃t = gt(x1, . . . , xm)

where t < m. If the input points x = (x1, . . . , xm) are confined to some lower dimen-
sional manifold then this transformation may be locally invertible. Locally invertible
transformations which effect dimensional reduction are extremely useful in simplifying
the process of non-linear model construction. However, if the noise on an output is a
consequence of measurement error on the inputs then we should be aware that such a
transformation will also have an effect on the local noise distribution. The effect may
be to invalidate our hypothesis that the noise distribution is homogeneous over the
input space, in which case the Gamma test returns the average noise variance over the
whole input space.

In fact, the Gamma test has proved useful in the comparative evaluation of alternative
non-linear simplifying transformations (see [Končar 1997] for an application to control
systems). Finding a simplifying transformation that preserves the essential features of
a model is important in the study of non-linear dynamical systems.

An example of non–homogeneous noise - toxin levels in fish

As an example of non-homogeneous noise [Bates and Watts 1988] we might consider
the concentration of polychlorinated biphenyls (PCBs) in trout as a function of their
age (the data is taken from SCIENCE 117:1192-1193, 1972). The plot of PCB con-
centration (ppm) against age (years) is given in Figure 1.5 and reveals a non-linear
relationship. Moreover, we see that there is increasing noise in the PCB concentration
as the age of the fish increases.
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Figure 1.5: PCB concentration against
age of fish.
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Figure 1.6: Log of PCB concentration
against transformed age of fish.

It is suggested in [Bates and Watts 1988] that a suitable transformation for stabilising
the noise variance is given by

log y = α + βxγ (1.6)

where x represents the age of a fish and y represents its PCB concentration. We
determine the parameters α, β, and γ by a least-squares fit, which yields

α = −5.268, β = 5.131, γ = 0.181 (1.7)

The transformed data and the associated regression line are shown in Figure 1.6. We
see that the noise variance is much more stable in the new co-ordinate system. Al-
though this transformation does not reduce input-space dimension it is nevertheless an
interesting illustration of how a non-linear change of co-ordinate system can affect the
distribution of the noise.

1.3.3 The sampling distribution Φ

So far we have ignored the question of how the input points xi ∈ C are generated. In
some situations it might be possible for the experimenter to set values for the inputs
and then proceed to measure the corresponding output. However, in most cases of
interest the input and output values are generated autonomously by the process we are
seeking to model, so their selection is not entirely within our control.

In general we suppose that the input points are selected from Rm according to some
sampling distribution function Φ, and denote the corresponding density function by φ.
The input space is then defined to be the set

C = {x ∈ R
m |φ(x) > 0} (1.8)

As we shall see, the Gamma test computes its estimate for the variance of the noise
by considering the distance between nearest neighbours in the input space. Moreover,
it requires that these distances become progressively smaller as the number of input
points increases. Thus we require that the input space C is a perfect set – closed and
bounded and containing no isolated points. We state this for future reference as
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C.0 The input space C ⊂ Rm is a perfect set of finite diameter.

In practice, the condition that C must contain no isolated points may be a bit restrictive
because any closed subset of Rm can have at most countably many isolated points, so
the probability of selecting an isolated point is essentially zero.

This follows by the Cantor–Bendixon theorem, which states that every uncountable
closed set C in Rm can be expressed as C = A ∪ B where A is perfect and B is
countable. To see this, note that every isolated point in C can be centred within a
ball of positive radius containing no other point of C. Since these balls are disjoint
and because each contains a point with rational coordinates then there can be at most
countably many of them.

In a wide class of situations the support C has positive Lebesgue measure (in which
case it must have integral dimension equal to the dimension of the imbedding space
Rm). Given a reasonably well–behaved sampling distribution we show that this case
is manageable theoretically. A simple case of this situation is when the sampling
distribution is uniform over some closed bounded subset of Rm.

Another case of interest is the analysis of chaotic time series. Here, following [Takens
1981] we seek to model a time series by predicting the next value (the output) based
on a number m of previous values (the input vector). For many chaotic time series this
relationship is smooth so the Gamma test might reasonably be applied. In this case the
sampling distribution is determined by an ergodic process over a set C of zero Lebesgue
measure in Rm but having positive Hausdorff dimension d < m. A considerable body of
experimental evidence ([Tsui 1999], [de Oliveira 1999]) strongly suggests that whether
C is of positive Lebesgue measure or of zero Lebesgue measure (and positive Hausdorff
dimension) is largely irrelevant to the estimates of noise variance returned by the
Gamma test. Indeed, in the zero measure case the Gamma test may be more efficient
(in terms of the number of data points required) because the input data is confined to
some lower dimensional subset of the full input space.

1.4 The Gamma test

The Gamma test works by exploiting the hypothesised continuity of the unknown
function f . If two points x and x

′ are close together in input space, the continuity of
f implies that the points f(x) and f(x′) will be close together in output space. If the
corresponding output values y and y′ are not close together in output space, this can
only be due to the influence of noise on f(x) and f(x′).

Let x and x
′ be any two points of the input space C. By (1.2) we have that y = f(x)+r

and y′ = f(x′) + r′, and hence

1

2
(y′ − y)2 =

1

2
((r′ − r) + (f(x′) − f(x)))

2
(1.9)
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The continuity of f implies that

|f(x′) − f(x)| → 0 as |x′ − x| → 0 (1.10)

so by (1.9) we obtain

1

2
(y′ − y)2 → 1

2
(r′ − r)2 as |x′ − x| → 0 (1.11)

Since the expected value of r is zero and since r and r′ are assumed to be independent
and identically distributed we have

E
(

1

2
(r′ − r)2

)
= Var(r) (1.12)

Hence, taking the expectation of both sides in (1.11) it follows that

E
(

1

2
(y′ − y)2

)
→ Var(r) as |x′ − x| → 0 (1.13)

In fact, if the points x and x
′ are identical then E

(
1
2
(y′ − y)2

)
= Var(r). However,

given any finite data set we cannot make the distance |x′−x| between two input points
x and x

′ arbitrarily small and thus we cannot evaluate the limit (1.13) directly.

1.4.1 The Delta test

The Gamma test has its origin in the Delta test [Pi and Peterson 1994], where it
is observed that the conditional expected value of 1

2
(y′ − y)2, on hypothesis that the

associated input points x
′ and x are located within a distance δ of each other, converges

to Var(r) as δ approaches zero, i.e.

E
(

1

2
(y′ − y)2

∣∣∣∣ |x′ − x| < δ

)
→ Var(r) as δ → 0 (1.14)

The Delta test is based on the fact that for any particular value of δ, the expectation
in (1.14) can be estimated by the sample mean

E(δ) =
1

|I(δ)|
∑

(i,j)∈I(δ)

1

2
|yj − yi|2 (1.15)

where

I(δ) = {(i, j) | |xj − xi| < δ, 1 ≤ i 6= j ≤M} (1.16)

is the set of index pairs (i, j) for which the associated points (xi,xj) are located within
distance δ of each other.
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At first sight, (1.14) suggests that computing the sample mean E(δ) for δ sufficiently
small will provide us with a reasonably good estimate for Var(r). A problem arises due
to the fact that given only finitely many data points, the number of pairs xi and xj

satisfying |xj −xi| < δ decreases as δ decreases. Choosing a small value of δ therefore
implies that the corresponding sample mean E(δ) is computed over a small number of
pairs yi and yj, so E(δ) is subject to significant sampling error for small δ. Any δ must
therefore be chosen sufficiently large, say δ > δ0, to ensure that the sample mean E(δ)
provides a good estimate for the expectation in (1.14). Clearly, this restriction reduces
the effectiveness of E(δ) as an estimate for Var(r).

If we knew the parametric form of the relationship between δ and the corresponding
sample mean E(δ) we could compute the E(δ) for a range of values of δ > δ0, then
estimate the limit as δ → 0 using some kind of regression technique. However, a
parametric form for the relationship between δ and E(δ) is not apparent. A further
problem is that the computational cost of finding the index list (1.16) is of order O(M 2)
where M is the number of data points. This restricts the usefulness of the Delta test
in practical applications.

The Gamma test addresses these problems by defining quantities analogous to δ and
E(δ), denoted by δ and γ respectively. These are based on the nearest neighbour
structure of the input points xi in such a way that

γ → Var(r) as δ → 0 (1.17)

The first advantage of this approach is that the computation time is reduced to
O(M logM), a significant improvement over the O(M 2) time required by the Delta
test. More importantly, in this case we are able to establish a parametric form for the
relationship between γ and δ, and a regression technique can therefore be employed to
estimate the limit in (1.17).

1.4.2 Nearest neighbours

Returning to (1.9) and (1.13), since f is continuous and has bounded first and second
partial derivatives over the input space C, and since C is assumed to be closed and
bounded, then by the second mean value theorem of the differential calculus we may
write

f(x′) − f(x) = (x′ − x).∇f(x) +O(|x′ − x|2) as |x′ − x| → 0 (1.18)

Hence, by (1.13) we see that the error involved in estimating Var(r) by the expectation
E(1

2
(y′ − y)2) essentially depends only on the distance |x′ − x| between the points x

and x
′. This error will be minimised if we consider pairs of output values y and y ′ for

which the corresponding inputs x and x
′ are nearest neighbours in the input space C

(i.e. those pairs of points x and x
′ for which the distance |x′ − x| is minimised).
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Let x
′
i denote the nearest neighbour of xi among the input points {x1, . . . ,xM}, defined

to be a point that is closer to xi than any other. The nearest neighbour relations for a
set ofM points can be found in O(M logM) time using the kd–tree technique developed
by J. L. Bentley [Bentley 1975].

By (1.13) we may compute an estimate for Var(r) by the sample mean

γM =
1

2M

M∑

i=1

(y′i − yi)
2 (1.19)

where y′i is the output value6 associated with the input point x
′
i. By (1.18), an indi-

cation of the error involved in estimating Var(r) by γM is given by the mean squared
distance between a point xi and its nearest neighbour x

′
i. We represent this by

δM =
1

M

M∑

i=1

|x′
i − xi|2 (1.20)

where |.| denotes the Euclidean metric. Intuition then suggests that (1.13) is in some
way equivalent to

γM → Var(r) as δM → 0 (1.21)

Since the values of γM and δM depend on a particular sample of input–output data,
the notion of convergence must now be weakened to that of convergence in probability.
Furthermore, by the condition that the input space C contains no isolated points
and since the sampling density φ is assumed to be strictly positive over C, the distance
|x′

i−xi| between nearest neighbours in input space will converge to zero (in probability)
as the number of points M → ∞ so that

δM → 0 as M → ∞ (1.22)

and hence

γM → Var(r) as M → ∞ (1.23)

1.5 A more detailed description

Let x
′ denote the nearest neighbour of x among the input points {x1, . . . ,xM}. By the

conditions that the input space C contains no isolated points and that the sampling
density φ is assumed to be strictly positive over C, the distance |x′ − x| converges to
zero in probability as the number of points M → ∞. In particular

Eφ(|x′ − x|) → 0 as M → ∞ (1.24)

6Note that y′

i is not necessarily the nearest neighbour of yi in output space.
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Replacing f(x′) − f(x) in (1.9) by the first order approximation (x′ − x).∇f(x) we
obtain

1

2
(y′ − y)2 ≈ 1

2
(r′ − r)2 + (r′ − r)(x′ − x).∇f(x) +

1

2
((x′ − x).∇f(x))

2
(1.25)

Let us now take the expectation of (1.25) with respect to both the noise distribution
Ψ and the sampling distribution Φ. Since the noise variable r is assumed to be in-
dependent of the input x on which it is measured, and since x is independent of its
associated noise value r, it may be argued that any expression involving only r and r′

is constant relative to Φ and that any expression involving only x and x
′ is constant

relative to Ψ. Thus we write

E
(

1

2
(y′ − y)2

)
≈ Eψ

(
1

2
(r′ − r)2

)
+ Eψ(r′ − r)Eφ ((x′ − x).∇f(x))

+
1

2
Eφ
(
((x′ − x).∇f(x))

2
) (1.26)

By (1.12) the first expectation on the right hand side of (1.26) is equal to Var(r). By
hypothesis, r and r′ are independent and E(r) = 0 so it follows that Eψ(r′ − r) = 0.
Thus, since |(x′ − x).∇f(x)| ≤ c1b1 < ∞ where c1 is the diameter of C and b1 is the
bound on the first partial derivative of f over C, we see that the second expectation
on the right hand side of (1.26) is equal to zero and hence

E
(

1

2
(y′ − y)2

)
≈ Var(r) +

1

2
Eφ
(
((x′ − x).∇f(x))

2
)

(1.27)

Let

A(M) =
Eφ
(
((x′ − x) · ∇f(x))2)

2Eφ(|x′ − x|2) (1.28)

so that (1.27) becomes

E
(

1

2
(y′ − y)2

)
≈ Var(r) + A(M)Eφ

(
|x′ − x|2

)
(1.29)

Since |(x′ − x).∇f(x)| ≤ |x′ − x||∇f(x)| and |∇f(x)| ≤ b1 it follows that |A(M)| ≤
1
2
b21 <∞ and hence

E
(

1

2
(y′ − y)2

)
→ Var(r) as Eφ

(
|x′ − x|2

)
→ 0 (1.30)

From our data set {(xi, yi) : 1 ≤ i ≤ M} we compute estimates for the expected
values E

(
1
2
(y′ − y)2

)
and Eφ (|x′ − x|2) via the sample means

γM =
1

2M

M∑

i=1

|y′i − yi|2 (1.31)
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and

δM =
1

M

M∑

i=1

|x′
i − xi|2 (1.32)

respectively.

If the sample mean of a set of identically distributed random variables converges to
its expected value (as determined by the associated distribution function), the sample
mean is said to satisfy the law of large numbers . It is relatively straightforward to
prove this in the case of independent random variables. The difficulty in our case is
that γM and δM are sample means of dependent random variables.

One step in establishing a rigorous mathematical foundation for the Gamma test will be
to show that the law of large numbers holds for both γM and δM , and also to determine
the error incurred by replacing the expected values in (1.30) with the sample means
γM and δM .

Supposing for the moment that γM and δM do in fact satisfy the law of large numbers
so that

γM → E
(

1

2
(y′i − yi)

2

)
and δM → E

(
(x′

i − xi)
2
)

(1.33)

as M → ∞, then (1.30) is equivalent to

γM → Var(r) as δM → 0 (1.34)

and (1.24) becomes

δM → 0 as M → ∞ (1.35)

so that

γM → Var(r) as M → ∞ (1.36)

1.6 The crude method

Let us now perform a Gedanken experiment in which we plot successive pairs (δM , γM)
as the number of pointsM increases in significant steps. By (1.34) and (1.36) the result-
ing curve should intersect the δM = 0 axis at the noise variance Var(r), as illustrated
in Figure 1.7. If we knew the parametric form of this curve we could extrapolate the
result of our successive computations to determine the required intersection, providing
us with an estimate Γ for Var(r).

The Gamma test is based on the assertion that this curve
is approximately linear in probability near δM = 0.
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Figure 1.7: Gedanken Experiment

Thus we assert that there there exists some ‘constant’ A(M), independent of the par-
ticular sample {x1, . . . ,xM}, such that

γM ≈ Var(r) + A(M)δM + o(δM) as δM → 0 (1.37)

or by (1.35),

γM ≈ Var(r) + A(M)δM + o(δM) as M → ∞ (1.38)

where the convergence is in probability.

This assertion forms the basis of the crude Gamma test algorithm, in which we compute
the pairs (δM , γM) as M increases in significant steps then perform linear regression
on the resulting points. The constant term of the regression line is then returned as
our estimate Γ for the variance of the noise, Var(r). We remark that the ‘constant’
A(M) in (1.38) may depend on the number of points M , so if the regression technique
is to be effective we require that A(M) converges to some fixed value as the number of
points M increases.

1.7 The refined method

We now present a refinement of the crude method, and indicate its advantages.

1.7.1 kth nearest neighbours

For any ordered set of points T = {x1, . . . ,xM} the kth nearest neighbour of any point
xi ∈ T is uniquely defined as follows.

The first nearest neighbour of xi is that point xj1 ∈ T \ {xi} having minimal distance
from xi and minimal index j1. The second nearest neighbour of xi is that point
xj2 ∈ T \ {xi,xj1} having minimal distance from xi and minimal index j2. In general,
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the kth nearest neighbour of xi is that point xjk ∈ T \ {xi,xj1 , . . . ,xjk−1
} having

minimal distance from xi and minimal index jk.

Ordering equidistant points by their indices means that every point xi has a uniquely
defined kth nearest neighbour. More importantly, if x

′
i is the kth nearest neighbour of

xi then there are at most k points xj ∈ T with |xj − xi| < |x′
i − xi|. This property

will be required in (4.17) in order to construct a rigorous proof of the algorithm.

The kth nearest neighbour lists for a set of M points can be found in O(M logM) time
using kd–trees [Bentley 1975] and as we shall see, this is the most computationally
expensive aspect of the Gamma test algorithm.

1.7.2 The kth nearest neighbour modification

Let xN [i,k] denote the kth nearest neighbour of the point xi in the set {x1, . . . ,xM}
and define the sample means

γM(k) =
1

2M

M∑

i=1

|yN [i,k] − yi|2 (1.39)

and

δM(k) =
1

M

M∑

i=1

|xN [i,k] − xi|2 (1.40)

where |.| denotes the Euclidean metric and yN [i,k] is the output value7 associated with
xN [i,k].

The refined Gamma test algorithm (which we refer to simply as the Gamma test) is
based on an extension of the asymptotic linearity assertion (1.38) to the kth nearest
neighbour statistics γM(k) and δM(k).

In this instance, we claim that there exists some ‘constant’ A(M,k) (defined in (1.46))
which is independent of the particular sample {x1, . . . ,xM} such that

γM(k) ≈ Var(r) + A(M,k)δM (k) + o(δM(k)) as M → ∞ (1.41)

where the convergence is in probability.

On the basis of this assertion, we compute the pairs (δM(k), γM(k)) for 1 ≤ k ≤ p
(where p is typically taken in the range 10-50) and perform linear regression on these
points as illustrated in Figure 1.8. The constant term Γ of this regression line is
returned as our estimate for the variance of the noise, Var(r).

In order to establish a rigorous mathematical foundation for the Gamma test we must
provide a proof of the asymptotic linearity relation (1.41), along with a formal justifi-
cation of the associated linear regression technique.

7Note that yN [i,k] is not necessarily the kth nearest neighbour of yi in the output space R.
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Figure 1.8: The Gamma test regression plot

1.7.3 The gradient of the Gamma test regression line

The gradient A(M,k) of the regression line computed by the Gamma test may depend
both on the number of points M and the near neighbour index k.

In the crude Gamma test algorithm the gradient A = A(M) is required to converge
to some fixed value as M → ∞. However, in the refined Gamma test algorithm the
question of whether or not A(M,k) depends on M is not relevant, since the pairs
(δM(k), γM(k)) for 1 ≤ k ≤ p are each computed with respect to the same number of
points.

In many cases A(M,k) is also independent of k although simulation results (see sec-
tion 7.8.3) suggest that this is not the case for some sets of fractional dimension.
However, subject to a fairly weak condition on the asymptotic behaviour of δM(k) as
M increases we can show that even if A(M,k) depends on k, the intercept of the re-
gression line computed by the Gamma test still converges in probability to Var(r) as
M → ∞.

1.7.4 Advantages of the refined method

In the crude Gamma test algorithm we compute the pairs (δM , γM) as the number of
points M increases in significant steps. Since the nearest neighbour structure of the
input points will change as M increases in this way, we will need to construct a separate
kd–tree [Bentley 1975] for every pair (δM , γM), and this incurs a computational cost of
order O(M logM) each time.

However, provided p is small relative to the number of points M a single kd–tree is
sufficient to determine the kth nearest neighbours of the input points for all 1 ≤ k ≤ p.
Thus, in order to compute the pairs (δM(k), γM(k)) the refined algorithm requires only
a single computation of order O(M logM).

Furthermore, some of the sample means δM and γM computed by the crude algorithm
are necessarily computed over a small number of points (relative to the total number
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available), and will therefore involve a relatively large sampling error. In contrast,
each of the sample means δM(k) and γM(k) computed by the refined algorithm is
computed over the complete set of M data points, and the sampling error can therefore
be considered as the best possible in each case.

1.8 Statement of the main theorem

The following theorem, proved in Chapter 7, reiterates the conditions and definitions
and is best regarded as a formal statement that provided the gradients A(M,k) are
independent of k, then with probability approaching one as M → ∞ the relation-
ship between the points (δM(k), γM(k)) for 1 ≤ k ≤ p is approximately linear for M
sufficiently large.

Theorem 1.1. Let C be a closed bounded subset of Rm containing no isolated points.
Let f : Rm → R be continuous and have bounded first and second partial derivatives on
the convex hull H(C) of C. Let the points x1, . . . ,xM in C ⊂ Rm and r1, . . . , rM in R

be independently selected according to the probability distributions Φ and Ψ respectively,
where the first four moments of Ψ are finite, and write

yi = f(xi) + ri 1 ≤ i ≤M (1.42)

Let xN [i,k] denote the kth nearest neighbour of xi and define

δM(k) =
1

M

M∑

i=1

|xN [i,k] − xi|2 (1.43)

γM(k) =
1

2M

M∑

i=1

|yN [i,k] − yi|2 (1.44)

Then for every κ > 0,

γM(k) = Var(r) + A(M,k)δM(k) + o(δM(k)) +O

(
1

M1/2−κ

)
(1.45)

with probability greater than 1 −O(1/M 2κ) as M → ∞, where

A(M,k) =
Eφ
((

(xN [i,k] − xi) · ∇f(xi)
)2)

2Eφ(|xN [i,k] − xi|2)
(1.46)

and satisfies

0 ≤ A(M,k) ≤ 1

2
b21 <∞ (1.47)

where b1 is the upper bound on the gradient of f over C.

Remark: In Chapter 3 we show that the expected value of δM(k) is of order 1/M 2/m.
Of the two error terms in (1.45) it thus follows that O(1/M 1/2−κ) dominates o(δM(k)
for m ≤ 4, while o(δM(k) dominates O(1/M 1/2−κ) for m ≥ 5.
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1.9 Statement of the algorithm.

Procedure Gamma Test (data)
{data is a set of points {(xi, yi) | 1 ≤ i ≤M} where x ∈ Rm and y ∈ R}
for i = 1 to M do

for k = 1 to p do
compute the index N [i, k] of the kth nearest neighbour of xi.

end for
end for
{If multiple outputs do the remainder for each output}
for k = 1 to p do

compute δM(k) as in (1.40)
compute γM(k) as in (1.39)

end for
Perform linear regression on {(δM(k), γM(k)), 1 ≤ k ≤ p} obtaining γ = Γ + Aδ
Return (Γ, A)

Algorithm 1: The Gamma test algorithm.

The Gamma test algorithm is given in Algorithm 1. We shall see that Theorem 1.1
allows us to infer that the Gamma statistic Γ returned by Algorithm 1 converges in
probability to Var(r) as M → ∞.

Theorem 1.2. Subject to the condition that for some fixed p ≥ 1 there exists a positive
constant c < 1 such that

δM(1) ≤ cδM(p) (1.48)

for all sufficiently large M , the number Γ returned by Algorithm 1 converges in proba-
bility to Var(r) as M → ∞.

Using the results of Chapter 3 we can then infer

Theorem 1.3. Let C be a compact convex body in Rm and let Φ be a sampling distribu-
tion having smooth positive density over C. Then the number Γ returned by Algorithm 1
converges in probability to Var(r) as M → ∞.

In addition to Γ, Algorithm 1 also returns the gradient A of the regression line. As we
shall see in section 7.7, this often provides an indicator of the complexity of the surface
defined by the unknown function f .

1.10 Historical remark

The original version of the Gamma test described in [Stefánsson et al. 1997] used
smoothed versions of the statistics γM(k) and δM(k) defined by

γ∗M(k) =
1

k

k∑

j=1

1

2M

M∑

i=1

(yN [i,j] − yi)
2 (1.49)
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and

δ∗M(k) =
1

k

k∑

j=1

1

M

M∑

i=1

|xN [i,j] − xi|2 (1.50)

The idea behind this was to decrease the significance of more distant near neighbours.
Taking p large in such an implementation often does not significantly alter the resulting
value of Γ. Later experience showed that provided p is kept small, the extra complica-
tion of computing γ∗M(k) and δ∗M(k) is largely unnecessary (although this form of the
Gamma test can sometimes produce better estimates when the number of data points
M is small) and the later implementations of the technique are based on the definitions
(1.39) and (1.40) presented here.

1.11 Summary

In this chapter we have given a brief introduction to the ideas behind the Gamma test
and indicated why one should be interested in a noise estimation technique. We have
also attempted to clarify the line of reasoning leading from the crude Gamma test to
the more efficient form of Algorithm 1.

At the time the work of this thesis began there was already a substantial body of ex-
perimental results demonstrating the utility of the technique. Moreover, there had also
been substantial software development to provide easy-to-use Windows (winGammaTM )
and Unix based software for the analysis of non-linear systems using the Gamma test.
Thus there was a clear need to provide a formal mathematical basis for the method,
and the goal of this thesis is to address this need.

1.12 Thesis outline

Following Chapter 1 the structure of this thesis is as follows.

In Chapter 2 we outline the general strategy motivating the proof of the Gamma test.
We introduce some notation and show how the expression γM(k) can be decomposed
into three separate sums of dependent random variables. The chapter concludes by
identifying the need to establish upper bounds on the variance of each of these sums.
Figure 1.9 outlines the logical structure of the proof.

In Chapter 3 we give an account of near neighbour distance distributions. The results
of this chapter represent extensive generalizations of the little that had previously ap-
peared in the literature. In particular, using a novel boundary shrinking technique
suggested to us by W. M. Schmidt, we are able to find asymptotic expressions for all
moments of the kth nearest neighbour distance distribution on M points as M → ∞,
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Problem Decomposition
(Chapter 2)

L-dependent random variables
(Theorem 5.1)

The Gamma test

Expected Near Neighbour Distance
(Theorem 3.2)

Maximum number of points that can
share a common nearest neighbour

(Theorem 4.4)

pth nearest neighbour condition
(Condition 1.48)

Sums of bounded functions of a
point and its th nearest neighbour

(Theorem 6.1)
k

Figure 1.9: Logical structure of the proof.

where the points may be selected from any compact convex body C ⊂ Rm according
to any sampling distribution having smooth positive density over C. We conjecture
that these results may generalize to sets of zero Lebesgue measure but having positive
Hausdorff dimension, and provide some preliminary experimental evidence in this di-
rection. These investigations are prompted by the need to quantify the term δM(k) in
as wide variety of circumstances as possible and the results will subsequently be used
in Chapter 7.

In Chapter 4 we study kth near neighbour graphs. These are defined to be the directed
graphs obtained by joining each point in a set of points {x1, . . . ,xM} ⊂ Rm to its kth
nearest neighbour in the set. The main result of this chapter establishes an upper bound
on the number of points in the set that can share a common kth nearest neighbour,
the crucial fact being that the bound is independent of the total number of points M .
We also digress to mention an interesting observation on first near neighbour graphs
which follows from the investigations of Chapter 3.

It emerges that two quite separate techniques are needed to establish the required
upper bounds on the variance of the three sums identified in Chapter 2, both of which
depend on the main result of Chapter 4. In Chapter 5 we develop the theory of L-
dependent variables to establish the required bounds for the first two sums. Although
not required for a proof of the Gamma test algorithm we also prove a Central Limit
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theorem for this class of random variables. In Chapter 6 we extend some results of
[Bickel and Breiman 1983] regarding functions of a point and its kth nearest neighbour
to obtain a bound on the variance of the third sum.

In Chapter 7 we assemble the results obtained in Chapter 4, 5 and 6 to construct a
proof of Theorem 1.1. Following this we identify a simple condition that allows us to
infer the validity of Algorithm 1 from Theorem 1.1, then use the results of Chapter 3
to show that this condition is satisfied by the class of sampling distributions having
smooth positive density over a compact convex body in Rm.

The Gamma test is a technique for estimating the second moment of the noise distribu-
tion Ψ, despite the fact that both the underlying function f and the noise distribution
itself are unknown. In [Durrant 2001] an interesting and potentially useful generalisa-
tion of the Gamma test is described that enables one to estimate all higher moments
of a symmetric noise distribution. This idea is based on a conjectured system of easily
computed equations that constrain both odd and even moments. If Ψ happens to be
symmetric then there are precisely as many equations as there are even moments and
we can therefore solve for the moments. [Durrant 2001] provides experimental evidence
supporting this system of equations and in Chapter 8, using techniques similar to those
used in Chapter 7, we are able to provide a full proof.

The concluding Chapter 9 provides an overview of what has been accomplished and
summarises the extent to which these results are new and original. We also indicate
some unresolved questions which would be natural to pursue as a result of the present
study.

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



38

Chapter 2
Decomposition of the problem and proof strategy

2.1 Introduction

In this chapter we give a representation of the problem in terms of random samples.
Following this we provide a decomposition of the problem from which emerges three
distinct sums of dependent random variables. As we shall see, we will need to show that
each of these sums converges to zero in probability as the number of points M → ∞.

The general line of attack to prove the convergence of each sum is based on Chebyshev’s
inequality. Using Fubini’s theorem to separate the noise terms from the near neighbour
distance terms, we show that the expectation of each sum is zero and hence that the
main problem of proving convergence in probability becomes that of suitably bounding
their variances.

2.2 Random samples

Let C ⊂ Rm and let X = (X1, . . . XM) be a vector of independent and identically
distributed random variables Xi, each taking values xi ∈ C according to the sampling
density function φ. We think of X as a random point sample of size M taking values
in the sample space CM .

Associated with each random point sample X in CM we define a random noise sample
R = (R1, . . . , RM) of identically distributed random variables Ri, each taking values
ri ∈ R according to the sampling density function ψ. By hypothesis (N.1) we have
that Eψ(Ri) = 0, Eψ(R2

i ) <∞, Eψ(R3
i ) <∞ and Eψ(R4

i ) <∞.

Let XN [i,k] denote the kth nearest neighbour of Xi in the random point sample X =
(X1, . . . XM). For every such point sample X we have a corresponding indexing struc-
ture N (X) = {N [1, k], . . . N [M,k]}, and the associated noise sample R inherits this
indexing structure from the point sample X.
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Any expression defined in terms of the noise sample R = (R1, . . . , RM) and the indexing
structure N (X) might not be independent of the corresponding point sample X. On
the other hand, by hypothesis N.2 we see that any expression defined in terms of X
and its kth nearest neighbour indexing structure N (X) is clearly independent of the
associated noise sample R.

Finally, corresponding to each pair (X,R) in the product space CM × RM we define a
random sample Y = (Y1, . . . , YM) ∈ RM where Yi = f(Xi) + Ri for each 1 ≤ i ≤ M ,
and this also inherits the indexing structure N (X) from its associated point sample
X.

Reformulating our problem in terms of random samples we obtain

δM(k) =
1

M

M∑

i=1

|XN [i,k] −Xi|2 (2.1)

γM(k) =
1

2M

M∑

i=1

(YN [i,k] − Yi)
2 (2.2)

and think of δM(k) : CM → R and γM(k) : CM × RM → R as random variables on
the sample spaces CM and CM × RM respectively.

2.3 Decomposition

Consider

1

2
(YN [i,k] − Yi)

2 =
1

2

(
(RN [i,k] −Ri) + (f(XN [i,k]) − f(Xi))

)2
(2.3)

By hypothesis (1.4) f has bounded first and second partial derivatives at each point
in the convex hull H(C) of C so it follows that we can apply the second mean value
theorem to the function f . Thinking of Xi as a column vector, this means that there
exists some point Ξi ∈ H(C) on the line segment joining the points XN [i,k] and Xi such
that

f(XN [i,k]) − f(Xi) = (XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k]) (2.4)

where

Tf (Xi, XN [i,k]) =
1

2
(XN [i,k] −Xi)

THf(Ξi)(XN [i,k] −Xi) (2.5)

Note that the value of Hf(Ξi) is uniquely determined by the points XN [i,k] and Xi,
even though the intermediate point Ξi may not be. Substituting (2.4) back into (2.3)
we get

1

2
(YN [i,k] − Yi)

2 =
1

2

(
(RN [i,k] −Ri) + (XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)2

(2.6)
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Expanding the square on the right hand side of (2.6) we obtain

1

2
(YN [i,k] − Yi)

2 =
1

2

(
RN [i,k] −Ri

)2

+
(
RN [i,k] −Ri

) (
(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)

+
1

2

(
(XN [i,k] −Xi) · ∇f(Xi)

)2

+
1

2
Tf (Xi, XN [i,k])

(
2(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)

(2.7)

Summing both sides of (2.7) over 1 ≤ i ≤M then dividing by M it follows that

γM(k) = ÃM(k, h) +BM(k, h) + C̃M(k, h) +DM(k) (2.8)

where

ÃM(k) =
1

M

M∑

i=1

1

2

(
RN [i,k] −Ri

)2
(2.9)

BM(k) =
1

M

M∑

i=1

(
RN [i,k] −Ri

) (
(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)
(2.10)

C̃M(k) =
1

M

M∑

i=1

1

2

(
(XN [i,k] −Xi) · ∇f(Xi)

)2
(2.11)

DM(k) =
1

M

M∑

i=1

Tf (Xi, XN [i,k])
(
(XN [i,k] −Xi) · ∇f(Xi) +

1

2
Tf (Xi, XN [i,k])

)
(2.12)

First, by hypothesis (1.4) there exists some constant b1 <∞ such that

|(XN [i,k] −Xi) · ∇f(Xi)| ≤ b1|XN [i,k] −Xi| (2.13)

and some constant b2 <∞ with

|Tf (Xi, XN [i,k])| ≤ b2|XN [i,k] −Xi|2 (2.14)

By definition of δM(k) it thus follows that DM(k) = o(δM(k)) as M → ∞ and hence

γM(k) = ÃM(k) +BM(k) + C̃M(k) + o(δM(k)) as M → ∞ (2.15)

Our aim is to prove Theorem 1.1 which states that for every κ > 0,

γM(k) = Var(r) + A(M,k)δM(k) + o(δM(k)) +O

(
1

M1/2−κ

)
(2.16)

in probability as M → ∞ where

A(M,k) =
Eφ
((

(XN [i,k] −Xi) · ∇f(Xi)
)2)

2Eφ(|XN [i,k] −Xi|2)
(2.17)
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In view of this, we define

AM(k) =
1

M

M∑

i=1

1

2

(
RN [i,k] −Ri

)2 − Var(r) (2.18)

CM(k) =
1

2M

M∑

i=1

((
(XN [i,k] −Xi) · ∇f(Xi)

)2 − A(M,k)|XN [i,k] −Xi|2
)

(2.19)

so that ÃM(k) = AM(k) + Var(r) and C̃M(k) = CM(k) +A(M,k)δM (k). Substituting
(2.18) and (2.19) into (2.15) we thus obtain

γM(k) = Var(r) + A(M,k)δM (k) + o(δM(k)) + AM(k) +BM(k) + CM(k) (2.20)

and think of AM(k), BM(k) and CM(k) as random variables on the product space
CM × RM .

2.4 Chebyshev’s inequality

Let P(A) denote the probability that event A occurs. A sequence Z1, Z2, . . . of random
variables is said to converge in probability to the random variable Z as M → ∞ if for
any ε > 0,

P(|ZM − Z| > ε) → 0 as M → ∞ (2.21)

This is equivalent to

P(|ZM − Z| ≤ ε) → 1 as M → ∞ (2.22)

so the probability that ZM is within any ε > 0 of Z approaches 1 as M → ∞.

By (2.20), in order to prove Theorem 1.1 we need to show that each of the terms
AM(k), BM(k) and CM(k) converges to zero in probability as M → ∞. Our starting
point is the following fundamental result of Chebyshev.

Lemma 2.1 (Chebyshev’s Inequality). For any random variable Z and any ε > 0,

P (|Z − E(Z)| > ε) ≤ Var(Z)

ε2
(2.23)

Applying Chebyshev’s inequality to each element of the sequence Z1, Z2, . . . of random
variables we obtain

P (|ZM − E(ZM)| > ε) ≤ Var(ZM)

ε2
(2.24)

Hence, if Var(ZM) = o(1) as M → ∞ it follows by (2.21) that ZM → E(ZM) in
probability as M → ∞, in which case ZM is said to satisfy the weak law of large
numbers. The smaller the upper bound on Var(ZM), the faster the rate at which ZM
converges (in probability) to its expected value.

Thus, in order to prove Theorem 1.1 we need to
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(1) show that AM(k), BM(k) and CM(k) each has expected value zero

(2) obtain the best possible asymptotic upper bounds on the variance of AM(k),
BM(k) and CM(k) as M → ∞.

2.5 Representation of AM(k), BM(k) and CM(k)

Let h : C × C → R be any bounded function in the sense that

||h|| = sup{|h(x, y)| : x, y ∈ C} <∞ (2.25)

We define a set of random variables (h1(X), . . . , hM(X)) on the set of random point
samples CM by

hi(X) = h(Xi, XN [i,k]) X ∈ CM (2.26)

Similarly, let g : R × R → R be any function and define a set of random variables
(g1(R), . . . , gM(R)) on the set of random noise samples RM by

gi(R) = g(Ri, RN [i,k]) R ∈ R
M (2.27)

where N [i, k] is the index of the kth nearest neighbour of Xi in the associated point
sample X = (X1, . . . XM). For suitable choices of the functions g and h, each of the
terms AM(k), BM(k) and CM(k) is a random variable of the form ZM = ZM(X,R)
defined by

ZM =
1

M

M∑

i=1

gi(R)hi(X) (2.28)

over the product space CM × RM .

2.6 The expected value of AM(k), BM(k) and CM(k)

Lemma 2.2.

E(ZM) = E(gi(R)hi(X)) for all 1 ≤ i ≤M (2.29)

Proof. Consider the random variables hi(X) and hj(X). By hypothesis, the component
variables Xi, Xj, XN [i,k] and XN [j,k] are identically distributed over C and since i 6=
N [i, k] and j 6= N [j, k] it follows that hi(X) and hj(X) are identically distributed over
CM . Similarly it follows that gi(R) and gj(R) are identically distributed over RM and
hence E(gi(R)hi(X)) is independent of the index i, as required.
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The expected value AM(k), BM(k) and CM(k) must be computed over every pair of
random samples (X,R) ∈ CM×RM . Let Pφ denote the probability measure on CM such
that each component variable Xi is identically distributed in C with common density
φ. Similarly, let Pψ denote the probability measure on RM such that each component
variable Ri is identically distributed in R with common density ψ. Furthermore, let Eφ
denote an expectation taken with respect to Pφ over CM , let Eψ denote an expectation
taken with respect to Pψ over RM and let E denote an expectation taken with respect
to the product measure Pφ ⊗ Pψ over CM × RM .

Lemma 2.3.

E(ZM) = Eψ(gi(R))Eφ(hi(X)) (2.30)

Proof. By hypothesis, the point sample X is independent of the noise sample R so by
Lemma 2.2 and the Law of total probability (see [Billingsley 1979]) we have that

E(ZM) =

∫

X∈CM

hi(X)Eψ(gi(R)
∣∣X) dPφ (2.31)

where Eψ(gi(R)
∣∣X) is the conditional expected value of gi(R) over all noise samples

R ∈ RM under the dependence structure N (X) inherited from X ∈ CM .

Clearly, since the component variables Ri are identically distributed in R and since
i 6= N [i, k], the expected value of gi(R) = g(Ri, RN [i,k]) is independent of any particular
X ∈ CM . Thus it follows that Eψ(gi(R)

∣∣X) = Eψ(gi(R)) and hence

E(ZM) = Eψ(gi(R))

∫

X∈CM

hi(X) dPφ = Eψ(gi(R))Eφ(hi(X)) (2.32)

as required.

Lemma 2.4.

E(AM(k)) = E(BM(k)) = E(CM(k)) = 0 (2.33)

Proof. (a) Taking gi = 1
2
(RN [i,k] −Ri)

2 − Var(r) and hi = 1 in Lemma 2.3 we obtain

E(AM(k)) =
1

2
Eψ
(
(RN [i,k] −Ri)

2
)
− Var(r) (2.34)

=
1

2

(
Eψ(R2

N [i,k]) + Eψ(R2
i ) − 2Eψ(RN [i,k]Ri)

)
− Var(r) (2.35)

Since i 6= N [i, k], by hypothesis we have that Ri and RN [i,k] are independent so

Eψ(RN [i,k]Ri) = Eψ(RN [i,k])Eψ(Ri) = 0 (2.36)

and since Eψ(R2
N [i,k]) = Eψ(R2

i ) = Var(r) it follows that E(AM(k)) = 0.

(b) Taking gi = RN [i,k] − Ri and hi = (XN [i,k] − Xi) · ∇f(Xi) + Tf (Xi, XN [i,k]) in
Lemma 2.3 we obtain

E(BM(k)) = Eψ(RN [i,k] −Ri)Eφ
(
(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)
(2.37)
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Clearly,
∣∣∣Eφ
(
(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)∣∣∣

≤ Eφ
(∣∣(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

∣∣
)

(2.38)

≤ Eφ
(∣∣XN [i,k] −Xi

∣∣∣∣∇f(Xi)
∣∣+
∣∣Tf (Xi, XN [i,k])

∣∣
)

(2.39)

By hypothesis, |XN [i,k] −Xi| ≤ c1, |∇f(Xi)| ≤ b1 and |Hf(Xj)| ≤ b2 for all Xi, Xj ∈ C
so by (2.5) we have that

∣∣Eφ
(
(XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k])

)∣∣ ≤ c1b1 + c21b2 <∞ (2.40)

Hence the second expectation in (2.37) is finite and since Eψ(RN [i,k]) = Eψ(Ri) = 0, the
first expectation in (2.37) is identically zero and thus it follows that E(BM(k)) = 0.

(c) Taking gi = 1 and hi = 1
2
((XN [i,k] − Xi) · ∇f(Xi))

2 − A(M,k)|XN [i,k] − Xi|2 in
Lemma 2.3 we obtain

E(CM(k)) =
1

2
Eφ
(
((XN [i,k] −Xi) · ∇f(Xi))

2
)
− A(M,k)Eφ

(
|XN [i,k] −Xi|2

)
(2.41)

so by definition of A(M,k) it follows that E(CM(k)) = 0.

2.7 The variance of AM(k), BM(k) and CM(k)

In order to apply Chebyshev’s inequality we need to establish the smallest possible
upper bounds on the variance of AM(k), BM(k) and CM(k) in terms of the sample size
M . By Lemma 2.4, this is equivalent to finding upper bounds on their second moments
E(AM(k)2), E(BM(k)2) and E(CM(k)2).

Lemma 2.5.

E(Z2
M) =

1

M2

M∑

i,j=1

Eφ
(
hi(X)hj(X)Eψ(gi(R)gj(R)

∣∣X)
)

(2.42)

where Eψ(gi(R)gj(R)
∣∣X) is the conditional expected value of gi(R)gj(R) over all noise

samples R ∈ RM subject to the dependence structure inherited from X ∈ CM .

Proof. We write

Z2
M =

1

M2

M∑

i,j=1

gi(R)gj(R)hi(X)hj(X) (2.43)

and take the expectation of Z2
M over all pairs (X,R) ∈ CM × RM so that

E(Z2
M) =

1

M2

M∑

i,j=1

E
(
gi(R)gj(R)hi(X)hj(X)

)
(2.44)
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Since X and R are distributed according to the probability measures Pφ and Pψ re-
spectively, by Fubini’s theorem we have that

E(gi(R)gj(R)hi(X)hj(X)) =

∫

X∈CM

(∫

R∈RM

gi(R)gj(R)hi(X)hj(X) dPψ

)
dPφ

(2.45)

Furthermore, by hypothesis the point sample X is completely independent of the noise
sample R so

E(gi(R)gj(R)hi(X)hj(X)) =

∫

X∈CM

hi(X)hj(X)

(∫

R∈RM

gi(R)gj(R) dPψ

)
dPφ

(2.46)

which we write as

E(gi(R)gj(R)hi(X)hj(X)) =

∫

X∈CM

hi(X)hj(X)Eψ(gi(R)gj(R)
∣∣X) dPφ (2.47)

Hence

E(gi(R)gj(R)hi(X)hj(X)) = Eφ(hi(X)hj(X)Eψ(gi(R)gj(R)
∣∣X)) (2.48)

and the result follows by (2.44).

Since each X ∈ CM imposes a particular dependence structure on the noise samples
R ∈ RM , the conditional expectation Eψ(gi(R)gj(R)

∣∣X) is likely to depend on X.
However, since we only need an upper bound on E(Z2

M) (i.e. on the variance of the
terms AM(k), BM(k) and CM(k)) it will be sufficient to establish an upper bound on
the conditional expectation Eψ(gi(R)gj(R)

∣∣X)) which is independent of any particular
X ∈ CM .

2.8 Summary

We have shown how the term γM(k) can be decomposed into three rather different
sums of dependent random variables and seen how the problem of estimating their
probabilistic asymptotic behaviour as functions of the sample size M may be reduced
to obtaining upper bounds on their variance. We shall address the issues of obtaining
such upper bounds in Chapter 5 and Chapter 6.

In the next chapter we turn to the problem of computing the expected value of the
mean squared distance δM(k) between kth nearest neighbours in a set of M points.
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Chapter 3
Moments of nearest neighbour distance
distributions

3.1 Introduction

The Gamma test is based on the mean squared distance δM(k) between kth nearest
neighbours in a set of M points selected at random from the set C ⊂ Rm according
to some sampling distribution function Φ. In Chapter 6 we show that the sample
mean δM(k) converges in probability to its expected value as the number of points M
increases without bound. The aim of the present chapter is to compute this expected
value under the weakest possible restrictions on the sampling distribution Φ and the
associated set C. Our method of dealing with boundary effects will subsequently be
used in Chapter 4 to prove a result on first nearest neighbour graphs.

Let X = (X1, . . . , XM) be a random sample of independent and identically distributed
random variables where each Xi takes a value uniformly at random from the unit
hypercube in Rm. Let dM,k = dM,k(X) denote the distance between Xi and its kth
nearest neighbourXN [i,k] in the random sample X. In [Percus and Martin 1998] it is
shown that under periodic boundary conditions1, the expected value of dM,k over all
such random samples X ∈ CM satisfies the asymptotic expression

E(dM,k) = V −1/m
m

Γ(k + 1/m)

Γ(k)

1

M1/m
+O

(
1

M1+1/m

)
as M → ∞ (3.1)

where Γ is the Euler gamma function and Vm is the Lebesgue measure of the unit ball
in Rm.

In this chapter we prove a similar result for the αth moment E(dαM,k) of the kth nearest
neighbour distance distribution, with the following important generalisations:

• The sample points Xi may be selected from any compact convex body C in Rm,
relaxing the restriction regarding periodic boundary conditions.

1Sets having ‘periodic boundary conditions’ are sets that have no boundary at all, e.g. the surface
of a torus or sphere.
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• The sample points Xi may be selected according to any sampling distribution
whose density is smooth and strictly positive over C, relaxing the uniformity
assumption.

The first of these is achieved using a novel method of dealing with boundary effects,
suggested by Professor W. M. Schmidt of the Department of Mathematics, Colorado
University, USA (private communication to A. J. Jones).

Under these conditions, Theorem 3.2 states that for all ρ > 0,

E(dαM,k) =
c

Mα/m
+O

(
1

M (α+1)/m−ρ

)
as M → ∞ (3.2)

where c = c(m,α, k, φ) is independent of M and given by

c = V −α/m
m

Γ(k + α/m)

Γ(k)

∫

C

φ(x)1−α/m dx (3.3)

A related result appears as Theorem 8.3 of [Yukich 1998], which gives an asymptotic
expression (in terms of the number of points) for the length of the k-nearest neighbours
graph2 of a set of points selected from the unit cube [0, 1]m (m ≥ 2) according to a
well behaved sampling distribution. A scaling argument is then employed to extend the
result to arbitrary compact subsets of Rm. This will be discussed further in section 6.8.

For the proof of the Gamma test given in Chapter 7 the result specifically needed from
this chapter is the expected asymptotic behaviour of the second moment (α = 2) in
Theorem 3.2. However, the Gamma test appears to work very well for a far larger
class of sampling distributions than those whose densities are smooth and strictly
positive over C. In particular it has been applied to chaotic dynamical systems where
the sampling is an ergodic process over some set C which, far from being a compact
convex body in Rm, is an attractor of fractional dimension. In section 3.9 we examine
some of the issues involved in estimating the asymptotic size of the mean squared kth
nearest neighbour distance δM(k) where the sampling is over a chaotic attractor. This
appears to raise very difficult questions and although Proposition 3.2 provides a weak
result in this direction, we have to be content with Conjecture 3.2.

Nevertheless, in section 3.10 we provide an experimental comparison between Theo-
rem 3.6 for a uniform sampling distribution and Conjecture 3.2 for case where the
points lie on the chaotic attractor in R2 generated by the Hénon map. The case of the
Hénon map provides some modest support for Conjecture 3.2.

The following notation will be employed throughout this chapter.

• µ denotes Lebesgue measure in Rm.

2The k-nearest neighbours graph of a set of points is constructed by inserting an edge between
each point and its k nearest neighbours in the set
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• ∂C denotes the boundary of the set C ⊂ Rm.

• Bx(r) denotes the closed ball of radius r centred at x ∈ Rm.

• Vm denotes the (Lebesgue) volume of the unit ball B0(1) in Rm.

• For any C ⊂ Rm and δ > 0, the set of points of C that are within a distance δ of
its boundary is called the boundary region of width δ, and denoted by

C(δ) = {x ∈ C : inf
y∈∂C

|x− y| < δ} (3.4)

3.2 The sampling distribution Φ.

If the sampling distribution function Φ has a well defined density function φ, the
associated probability measure on subsets A ⊆ Rm is given by

P(A) =

∫

A

φ(x) dx (3.5)

which corresponds to the probability that a point is selected from the set A ⊂ Rm.
Let C denote the set of points x ∈ Rm for which the sampling density φ(x) is strictly
positive,

C = {x ∈ R
m : φ(x) > 0} (3.6)

We restrict our attention to those sampling distributions Φ satisfying the following
conditions:

P.1 C is closed and bounded

P.2 φ is continuous on C.

P.3 φ has bounded partial derivatives at each point of C.

Note that by (3.6), condition P.1 means that C is equivalent to the support of φ. In
the following lemma we show that conditions P.1 and P.2 ensure that φ is uniformly
bounded away from zero for all x ∈ C. Since C is closed, this means that φ cannot
be continuously extended beyond C. Thus conditions P.1 and P.2 eliminate sampling
distributions whose densities vanish at the boundary of C.

Lemma 3.1. If Φ satisfies conditions P.1 and P.2 then there exist constants a1, a2

such that for all x ∈ C,

0 < a1 < φ(x) < a2 <∞ (3.7)

Proof. Since φ is continuous and C is compact there exist x1, x2 ∈ C such that x1 =
inf{φ(x) : x ∈ C} and x2 = sup{φ(x) : x ∈ C}. Taking a1 = φ(x1) and a2 = φ(x2)
completes the proof.

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



3.2 The sampling distribution Φ. 49

3.2.1 The set C

To deal with boundary effects we need that C satisfies the following geometric condi-
tions.

C.1 There exists some finite constant c1 > 0 such that

max{|x− y| : x, y ∈ C} = c1 (3.8)

so C has diameter c1.

C.2 There exists some constant c2 > 0 such that for all x ∈ C and 0 < r < c1,

µ(Bx(r) ∩ C) > c2r
m (3.9)

so for every r > 0, at least a uniformly constant proportion c2/Vm of the
ball Bx(r) intersects C.

C.3 There exist constants c3 > 0 and λ = λ(C) > 0 such that for all 0 < δ < λ,

µ(C(δ)) ≤ c3δ (3.10)

so for sufficiently small δ > 0, the measure of the boundary region C(δ) is
uniformly bounded by some constant multiple of its width δ.

C

x

x

r

r

B r
x
( )

B r
x
( )

Figure 3.1: Condition C.2 eliminates
certain types of boundary points (top).

C( )d

d

Figure 3.2: Condition C.3 bounds the
measure of C(δ) in terms of its width.

3.2.2 A probability measure on neighbourhood balls

Let ωx(r) denote the probability measure induced by the sampling distribution Φ on
the neighbourhood balls Bx(r) of C. This is defined by

ωx(r) =

∫

Bx(r)∩C

φ(t) dt (3.11)

and corresponds to the probability that a point selected from C according to Φ is
contained in the ball Bx(r). Since the sampling density φ is strictly positive on C we
have that ωx(r) is a monotonic increasing function of r. In the following lemma we
show that ωx(r) satisfies a positive density condition on C.
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Lemma 3.2. Subject to conditions P.1, P.2 and C.2, there exists some constant
c4 > 0 such that

ωx(r) ≥ c4r
m for all x ∈ C and 0 ≤ r ≤ c1 (3.12)

Proof. Since φ satisfies P.1 and P.2, by Lemma 3.1 there exists some constant a1 > 0
such that φ(x) > a1 > 0 for all x ∈ C. By (3.11) it thus follows that ωx(r) ≥
a1µ(Bx(r) ∩ C) and by condition C.2 we have that ωx(r) ≥ a1c2r

m where c2 > 0 is
constant. The result follows on taking c4 = a1c2 > 0.

3.2.3 Compact convex bodies in Rm

We now show that the conditions C.1,C.2 and C.3 are satisfied by compact convex
bodies in Rm.

Proposition 3.1. Conditions C.1,C.2 and C.3 are satisfied by compact convex bod-
ies in Rm having non-empty interior.

Proof. Let C be a compact convex body in Rm. Condition C.1 follows easily by
compactness.

To prove condition C.2 we first note that a convex body has non–empty interior by
definition, so there exist points a, b ∈ C and some ra, rb > 0 such that the balls Ba(ra)
and Bb(rb) are disjoint and completely contained in C.

a

x

b

C

C
x

B r
a
( )

a

B r
b
( )

b

Figure 3.3: The cone Cx is completely contained in C.

First suppose that x ∈ C \ Ba(ra) and consider the cone Cx having vertex x and base
equal to the intersection of Ba(ra) with the hyperplane through a perpendicular to the
line joining x and a (see Figure 3.3). By convexity, Cx is completely contained in C
and furthermore, since x /∈ Ba(ra) and ra > 0 it follows that Cx is of positive measure
for each x ∈ C \Ba(ra).

Let cx(r) > 0 denote the proportion of the ball Bx(r) occupied by the cone Cx, given
by

cx(r) =
µ(Cx ∩Bx(r))

µ(Bx(r))
(3.13)
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As r increases from 0 to c1, the proportion cx(r) remains constant while r ≤ |x − a|
and then decreases monotonically for r > |x− a|. Let cx = cx(c1) denote the minimum
value of cx(r). Since µ(Cx) > 0 and µ(Bx(c1)) <∞ it follows that cx > 0 and also that
µ(Bx(r) ∩ C) ≥ cxµ(Bx(r)) > 0 for all 0 < r ≤ c1.

Define ca to be the minimum value of cx over all points x ∈ C\Ba(ra). This corresponds
to those points x that lie on the boundary of the ball Ba(ra), for which the cones Cx
are of minimum volume. Since Ba(ra) is of positive radius we have that ca > 0 and
hence µ(Bx(r) ∩ C) ≥ caµ(Bx(r)) > 0 for all 0 < r ≤ c1 and x ∈ C \Ba(ra).

Now suppose that x ∈ Ba(ra) and define Cx and cx as above but this time relative to
the ball Bb(rb). Define cb to be the minimum value of cx over each x ∈ Ba(ra). Since
Ba(ra) and Bb(rb) are disjoint and since Bb(rb) is of positive radius we have that cb > 0.
Hence µ(Bx(r) ∩C) ≥ cbµ(Bx(r)) > 0 for all 0 < r ≤ c1 and x ∈ Ba(ra). Thus, letting
c = min{ca, cb} > 0 it follows that for all 0 < r ≤ c1 and for every x ∈ C,

µ(Bx(r) ∩ C) ≥ cµ(Bx(r)) ≥ cVmr
m > 0 (3.14)

and hence condition C.2 is satisfied with c2 = cVm > 0.

Finally we show that C satisfies condition C.3. Since C is a convex body then by
definition it has non–empty interior. Suppose without loss of generality that the origin
0 ∈ intC. Let B0(λ) denote the ball of maximal radius λ > 0 centred at the origin and
contained in C. We claim that for every 0 < δ < λ the sets C(δ) and (1 − δ/λ)C are
disjoint.

Let 0 < δ < λ and suppose that x ∈ C(δ). Let y be a boundary point of C such that
the distance from x to y is strictly less than δ. Such a point exists by definition of
C(δ).

Consider the vector z defined by x = y + z. Then |z| < δ and we write −z = (δ/λ)a
for some a ∈ Rm. From here we see that a = (λ/δ)(−z) and hence |a| = (λ/δ)|z|.
Furthermore, |z| < δ implies that |a| < λ and hence a ∈ intB0(λ). Since B0(λ) ⊆ C,
this means that a ∈ intC and hence −z ∈ int (δ/λ)C as illustrated in Figure 3.4.

Figure 3.4: The vector −z = y − x is contained in (δ/λ)C.

Now suppose that x ∈ (1 − δ/λ)C. Then y = x − z can be expressed as y = (1 −
δ/λ)b + (δ/λ)a for some b ∈ C and a ∈ intC. Since 0 < δ < λ we have 0 < δ/λ < 1
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and 0 < 1 − δ/λ < 1 and since C is convex and a ∈ intC this implies that y ∈ intC,
contradicting the fact that y is a boundary point of C.

C(d)

0

C

(1-d/l)C

Figure 3.5: The sets C(δ) and (1 − δ/λ)C are disjoint.

Hence x /∈ (1 − δ/λ)C so the sets C(δ) and (1 − δ/λ)C are disjoint. C(δ) is therefore
contained in C \ (1 − δ/λ)C so

µ (C(δ)) ≤ µ(C) − µ ((1 − δ/λ)C) (3.15)

Writing µ((1 − δ/λ)C) = (1 − δ/λ)mµ(C) it follows that

µ(C(δ)) ≤ µ(C) (1 − (1 − δ/λ)m) (3.16)

which we write as

µ(C(δ)) ≤ δµ(C)

(
1

λ
− mδ

λ2
+ . . .+ (−1)m

δm−1

λm

)
(3.17)

By compactness we know that µ(C) < ∞. Hence, for all 0 < δ < λ we see that
µ(C(δ)) ≤ c3δ for some constant c3 > 0, as required.

3.3 An integral representation of the moments

Let C ⊂ Rm satisfy conditions C.1,C.2 and C.3 and let X = (X1, . . . XM) be a
random sample of independent and identically distributed random variables Xi, each
taking values in C according to the probability distribution Φ. Let XN [i,k] denote the
kth nearest neighbour of Xi in X ∈ CM and consider the function dM,k : CM → [0, c1]
defined by

dM,k(X) = |XN [i,k] −Xi| (3.18)

so that dM,k(X) is the distance between Xi and its kth nearest neighbour in X ∈ CM .
We think of dM,k = dM,k(X) as random variable on the sample space CM and its αth
moment is given by

E(dαM,k) =

∫

X∈CM

dαM,k(X) dP (3.19)
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where P is the probability measure on CM for which each Xi is identically distributed
in C with distribution Φ. Note that since the component variables Xi are independent,
this expectation is independent of the index i.

For each x ∈ C let

CM(x) = {X ∈ CM : Xi = x} (3.20)

be the set of samples X ∈ CM for which the component variable Xi takes the fixed
value x ∈ C and define the random variable dM,k(x) on CM(x) by

dM,k(x) : CM(x) → [0, c1]
X 7→ |XN [i,k] −Xi| (3.21)

By Fubini’s theorem

E(dαM,k) =

∫

x∈C

E(dαM,k(x))φ(x) dx (3.22)

where

E(dαM,k(x)) = E(dαM,k(X)
∣∣Xi = x) (3.23)

is the conditional expected value of |XN [i,k] −Xi|α given that Xi is fixed at x.

3.3.1 A radial density function

Let qx(r) = qx(r,M, k) be the distribution function of dM,k(x) over CM(x), defined by

qx(r) = P(dM,k(x) ≤ r) (3.24)

This corresponds to the probability that the distance dM,k(x) from Xi = x to its kth
nearest neighbour in the random sample X ∈ CM(x) is at most equal to r. The
conditional expected value of dαM,k given that X ∈ CM(x) is then given by

E(dαM,k(x)) =

∫ c1

0

rα dqx(r) (3.25)

where the integral is the Stieltjes integral of rα with respect to qx(r) as r ranges over
[0, c1]. Following [Percus and Martin 1996], we obtain the following expression for the
corresponding density function dqx(r).

Lemma 3.3. For fixed x ∈ C the probability density function of the random variable
dM,k(x) is given by

dqx(r) = k

(
M−1

k

)
ωx(r)

k−1(1 − ωx(r))
M−k−1 dωx(r) (3.26)

where ωx(r) is the probability measure of the ball Bx(r) centred at x having radius r.
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Proof. Let ε > 0 and consider the probability that the kth nearest neighbour of Xi = x
lies in the spherical shell of radius r and width ε > 0 centred at x. By (3.24) this is
given by

qx(r + ε) − qx(r) = P(r ≤ dM,k(x) ≤ r + ε) (3.27)

Since the sampling density φ is assumed to be continuous on C, for ε sufficiently small
we may suppose that the kth nearest neighbour of x is the only point lying in this
region. As illustrated in Figure 3.6 we must therefore have

• k − 1 points in the ball Bx(r), each selected with probability ωx(r).

• Exactly one of the remaining M −k points in the shell Bx(r+ ε)\Bx(r), selected
with probability ωx(r + ε) − ωx(r).

• The remaining M − k − 1 points in the region C \ Bx(r + ε), each selected with
probability 1 − ωx(r + ε)

x
r

r+e

C

Figure 3.6: Exactly one point falls in the shaded region Bx(r + ε) \ Bx(r).

Using elementary combinatorial arguments we obtain

qx(r + ε) − qx(r) = k

(
M−1

k

)
ωx(r)

k−1(1 − ωx(r + ε))M−k−1(ωx(r + ε) − ωx(r)) (3.28)

and letting ε→ 0 we obtain (3.26) as required.

By (3.22), (3.25) and Lemma 3.3 it follows that

E(dαM,k) =

∫

C

E(dαM,k(x))φ(x) dx (3.29)

where

E(dαM,k(x)) = k

(
M−1

k

)∫ c1

0

rαωx(r)
k−1(1 − ωx(r))

M−k−1dωx(r) (3.30)
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3.4 Asymptotic expansions

We aim to find an asymptotic expression for (3.29) in terms of the number of points
M as M → ∞. We first prove some asymptotic expansions required for this purpose.

Lemma 3.4. For any fixed c, d > 0,

(
1 − c

M

)d
= 1 +O

(
1

M

)
as M → ∞ (3.31)

Proof. Using the series expansion (1 + x)d = 1 + dx+O(x2) as x→ 0 we get

(
1 +

c

M

)d
= 1 − d

( c

M

)
+O

(
1

M2

)
= 1 +O

(
1

M

)
as M → ∞ (3.32)

as required.

Lemma 3.5. For any fixed c > 0,

(
1 − c

M

)M
= e−c

(
1 +O

(
1

M

))
as M → ∞ (3.33)

Proof. Taking x = c/M in the expansion log(1 − x) = −x+O(x2) as x→ 0 we have

log
(
1 − c

M

)M
= M log

(
1 − c

M

)
= M

(−c
M

+O

(
1

M2

))
= −c+O

(
1

M

)
(3.34)

as M → ∞, as required.

Lemma 3.6 (The exponential convergence lemma). Let c > 0 and 0 < σ < 1 be
constants. For every β > 0

(
1 − c

Mσ

)M
= O

(
1

Mβ

)
as M → ∞ (3.35)

Proof. Let β > 0 and define

y =
(
1 − c

Mσ

)M
(3.36)

so that

log y = M log
(
1 − c

Mσ

)
(3.37)

Since log(1 − x) = −x+O(x2) as x→ 0, we have

log y = M

(
− c

Mσ
+O

(
1

M2σ

))

= −cM 1−σ

(
1 +O

(
1

Mσ

))
as M → ∞

(3.38)
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and therefore

y = exp(−cM 1−σ)

(
1 +O

(
1

Mσ

))
as M → ∞ (3.39)

For all x > 0 the summands in the power series expansion ex =
∑∞

k=0 x
k/k! are all

positive. Hence ex ≥ xk/k! for every integer k ≥ 0 and thus e−x ≤ k!/xk for each x > 0
and k ≥ 0. Since c > 0 we can apply this to x = cM 1−σ so that for each k ≥ 0

y ≤ k!

(cM 1−σ)k

(
1 +O

(
1

Mσ

))
as M → ∞ (3.40)

Since 1 − σ > 0, given any β > 0 we can choose k sufficiently large to ensure that
k(1 − σ) > β and hence

y = O

(
1

Mβ

)
as M → ∞ (3.41)

as required.

Lemma 3.7. For any fixed σ > 0,

Γ(M)

Γ(M + σ)
=

1

Mσ

(
1 +O

(
1

M

))
as M → ∞ (3.42)

where Γ is the Euler gamma function.

Proof. Stirling’s theorem [Artin 1964] states that for x > 0,

Γ(x) =

√
2πxxeθ/x

x1/2ex
(3.43)

for some 0 < θ < 12. Hence

Γ(M)

Γ(M + σ)
=

(
M

e

)M (
e

M + σ

)M+σ (
M + σ

M

)1/2(
eθ1/M

eθ2/(M+σ)

)

= HM,σ

(
M

e

)−σ (
M

e

)M+σ (
e

M + σ

)M+σ (
M + σ

M

)1/2

= HM,σ

( e

M

)σ (
1 − σ

M + σ

)M+σ (
1 +

σ

M

)1/2

(3.44)

where

HM,,σ = exp

(
θ1 + θ2

M + σ
− θ1σ

M(M + σ)

)
(3.45)

By Lemma 3.5

(
1 − σ

M + σ

)M+σ

= e−σ
(

1 +O

(
1

M + σ

))
as M → ∞ (3.46)
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By Lemma 3.4

(
1 − σ

M

)1/2

= 1 +O

(
1

M

)
as M → ∞ (3.47)

Expanding HM,σ via the power series of ex we get

HM,σ = exp

(
θ1 + θ2

M + σ
− θ1σ

M(M + σ)

)

= 1 +
θ1 + θ2

M + σ
− θ1σ

M(M + σ)
+O

(
1

(M + σ)2

)

= 1 +O

(
1

M + σ

)
as M → ∞

(3.48)

Thus

Γ(M)

Γ(M + σ)
= e−σ

( e

M

)σ (
1 +O

(
1

M

))(
1 +O

(
1

M + σ

))
as M → ∞ (3.49)

and since

1

M + σ
=

1

M

(
1 +

σ

M

)−1

=
1

M

(
1 − σ

M
+

σ2

2M2
− . . .

)
= O

(
1

M

)
as M → ∞

(3.50)

for all σ > 0 we conclude that

Γ(M)

Γ(M + σ)
=

1

Mσ

(
1 +O

(
1

M

))
as M → ∞ (3.51)

as required.

3.5 Boundary effects

The boundary of a set C ⊂ Rm is defined to be the set of points x ∈ Rm with the
property that for every r > 0, the ball Bx(r) has non–empty intersection with both C
and Rm\C. If some property of a point x ∈ C is influenced in some way by its proximity
to the boundary of C then the property is said to be subject to boundary effects . Such
effects are certainly significant when considering the expected kth nearest neighbour
distance E(dαM,k(x)). This is because the neighbourhood balls Bx(r) of a point x located
near the boundary of C may intersect the boundary of C, in which case the probability
measure of Bx(r) (and therefore the probability that at least k points are selected
from it) is likely to be smaller than that of a similar ball which does not intersect the
boundary. The kth nearest neighbour distance for a point near the boundary of C is
therefore likely to be greater than that for a point located away from the boundary of
C.
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The problem posed by boundary effects in determining the conditional expectation
E(dαM,k(x)) derives from the fact it is defined as an integral with respect to the proba-
bility measure ωx(r) of the neighbourhood balls Bx(r) for 0 ≤ r ≤ c1. If Bx(r) intersects
the boundary of C then it will not be possible to specify its probability measure ωx(r)
without having exact information regarding the boundary of C in the neighbourhood
of x. Thus we are not able to evaluate the integral explicitly.

This is not critical however, as we are only seeking a first order approximation for this
integral in terms of the number of points M . We show that boundary effects do not
influence this first order approximation, and occur as only a second order phenomenon.

3.5.1 Large balls are insignificant

Let δ > 0 be fixed and let x ∈ C. We make the observation that any ball Bx(r)
having radius r > δ asymptotically contributes nothing to a polynomial expansion of
the expectation E(dαM,k(x)) in terms of the number of points M . To see this, suppose
that the kth nearest neighbour of x is at least a distance δ > 0 away from it. Then
the ball Bx(δ) must always contain at most k − 1 points (distinct from x) and since
the probability measure of Bx(δ) is strictly positive for δ > 0 (condition C.2), this
becomes increasingly unlikely as the total number of points increases without bound.

The following lemma makes this precise by showing that when evaluating (3.30), the
error incurred by ignoring balls of radius r > δ for any fixed δ > 0 is exponentially
small in the limit as M → ∞.

Lemma 3.8. Let 0 < δ < c1 be fixed. Then for every β > 0,

I(δ) = k

(
M−1

k

)∫ c1

δ

rαω(r)k−1(1 − ω(r))M−k−1 dω(r) = O

(
1

Mβ

)
as M → ∞

(3.52)

Proof. Since ω(r) is an increasing function of r we have that 1 − ω(r) ≤ 1 − ω(δ) for
all δ ≤ r ≤ c1. Clearly, r ≤ c1 and |ω(r)| ≤ 1 so

I(δ) ≤ k

(
M−1

k

)
cα+1
1 (1 − ω(δ))M−k−1 (3.53)

Furthermore, (1−ω(δ))−k−1 is constant and
(
M−1
k

)
= O((M − 1)k) as M → ∞. Hence

I(δ) ≤ O((M − 1)k)(1 − ω(δ))M (3.54)

Let y = (1−ω(δ))M so that log y = M log(1−ω(δ)). Then since ω(δ) > 0 is fixed there
exists some constant c > 0 such that log(1 − ω(δ)) ≤ −c. Hence log y ≤ −cM from
which it follows that (1 − ω(δ))M ≤ e−cM for c > 0. From the power series expansion
of ex for x > 0 we see that e−x ≤ n!/xn for each n ≥ 0. Given any β > 0 we may
therefore choose some n > β + k such that (1 − ω(δ))M = O(1/Mβ+k), and the result
follows by (3.54).

Thus, without loss of generality we may choose to evaluate the integral in (3.30) either
over the range [0, c1] as stated, or alternatively over the range [0, δ] for any fixed δ > 0.
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3.5.2 The interior region and the boundary region

Let δ > 0 be fixed and let B ⊂ C denote the boundary region of width δ defined in
(3.4), so that B is the set of points in C that are within distance δ of its boundary.
Let A = C \B denote the corresponding interior region.

By definition, for each x ∈ A and r ≤ δ the neighbourhood ball Bx(r) is completely
contained in C and is not therefore subject to boundary effects as described above.
Furthermore, Lemma 3.8 shows that when evaluating (3.30), we may restrict our at-
tention to those balls of radius r < δ. Thus we need only consider boundary effects for
the points x ∈ B and we decompose (3.29) as

E(dαM,k) =

∫

A

E(dαM,k(x))φ(x) dx+

∫

B

E(dαM,k(x))φ(x) dx (3.55)

so that all boundary effects are confined to the second integral in (3.55). As we shall see,
since boundary effects are negligible for x ∈ A we are able to find an exact asymptotic
expression for the first integral in terms of the number of points M . Our task is
therefore to construct the boundary region B in such a way that the second integral
in (3.55) is of smaller order than the first in the limit as M → ∞.

If δ > 0 is small and the boundary of C is smooth it may be reasonable to suppose
that the proportion of points that are within distance δ of the boundary will be small
relative to the total number M . For example, suppose we select M points according
to a uniform distribution from the unit square C = [0, 1]2. Since points are selected
uniformly and since [0, 1]2 is of unit area, the probability that a point falls in some
subset A ⊆ C is equal to its area. For the unit square, the boundary region B of
width δ is contained in the union of four rectangles, each having width δ and height
1, one of which is located adjacent to each edge of the square. Since the total area of
these rectangles is 4δ, the probability that a point is selected from B is at most equal
to 4δ and the number of points that are subject to boundary effects can therefore be
controlled by choosing δ sufficiently small.

This illustrates the motivation behind condition C.3 which requires the measure of the
boundary region C(δ) to be bounded above by some constant multiple of its width δ.

3.5.3 Asymptotic shrinking of the boundary region

The problem with keeping δ > 0 fixed is that the proportion of points falling in the
boundary region B (and therefore subject to boundary effects) will remain constant as
the number of points M increases. In order to ensure that the second integral in (3.55)
is of smaller order than the first integral (relative to the number of points M), we in
fact need that the proportion of points in B decreases as M → ∞.

In other words we require that the probability measure of the boundary region B ap-
proaches zero as M → ∞ and by condition C.3, it is sufficient that δ → 0 as M → ∞
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to ensure this. However, by defining δ in terms of M both the interior region A and
the boundary region B now become dependent on M . In particular, A approaches C
as M → ∞ and consequently we cannot assert that every point of A is located at least
at a fixed positive distance away from the boundary of C for all M .

In order that we may continue to ignore boundary effects in the first integral of (3.55)
we therefore need a stronger result than that of Lemma 3.8. Specifically, we must define
some δ → 0 as M → ∞ such that every ball Bx(r) of radius r > δ is asymptotically
negligible regarding any polynomial expansion of (3.30) in terms of M . It turns out
that for any 0 < ε < 1/m, taking δ = 1/M ε is sufficient to achieve this.

Lemma 3.9. If 0 < ε < 1/m and

δ =
1

M ε
(3.56)

then for every β > 0,

I(δ) = k

(
M−1

k

)∫ c1

δ

rαωx(r)
k−1(1 − ωx(r))

M−k−1 dωx(r) = O

(
1

Mβ

)
as M → ∞

(3.57)

Proof. Since ωx(r) is an increasing function of r it follows that 1 − ωx(r) ≤ 1 − ωx(δ)
for all δ ≤ r ≤ c1. Furthermore, by Lemma 3.2 we have that ωx(δ) ≥ c4δ

m for some
constant c4 > 0. Hence 1 − ω(r) ≤ 1 − c4δ

m for all δ ≤ r ≤ c1 and since r ≤ c1 and
|ω(r)| ≤ 1 we have that

I(δ) ≤ cα+1
1 k

(
M−1

k

)
(1 − c4δ

m)M−k−1 (3.58)

Clearly,
(
M−1
k

)
= O((M − 1)k) as M → ∞ and since δm = o(1) it follows that (1 −

c4δ
m)−k−1 = O(1) as M → ∞. Substituting for δ in (3.58) we thus obtain

I(δ) ≤ O((M − 1)k)
(
1 − c4

Mmε

)M
as M → ∞ (3.59)

Hence, since 0 < mε < 1 it follows by Lemma 3.4 that (1 − c4/M
mε)M converges to

zero exponentially fast as M → ∞ and the result follows.

3.5.4 An integral over neighbourhood balls

Recall from (3.30) that

E(dαM,k(x)) = k

(
M−1

k

)∫ c1

0

rαωx(r)
k−1(1 − ωx(r))

M−k−1dωx(r) (3.60)

In order to obtain the leading term in an asymptotic expansion for E(dαM,k) relative to
the number of points M we will certainly have to evaluate the integral in (3.60), albeit
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only for those points x ∈ C \C(δ) and for r in the range [0, δ] (i.e. for those balls Bx(r)
that are completely contained in C).

To this end we change the variable of integration in (3.60) by defining ω = ωx(r). Since
the probability measure of a ball of zero radius is zero we have that ω = 0 when r = 0,
and since the probability measure of a ball containing the whole of C is equal to one,
it follows that ω = 1 when r = c1.

Let hx denote the inverse function of ωx so that hx(ω) is the radius of the ball centred
at x having probability measure ω. Then r = hx(ω) and provided hx(ω) exists over
the range 0 ≤ ω ≤ 1, (3.60) becomes

E(dαM,k(x)) = k

(
M−1

k

)∫ 1

0

hx(ω)αωk−1(1 − ω)M−k−1dω (3.61)

Clearly, ωx(r) is an increasing function of r but in order to ensure that hx(ω) is well
defined we need that ωx(r) is strictly increasing for all 0 ≤ r ≤ c1. In general however,
ωx(r) is not likely to be strictly increasing over the whole range 0 ≤ r ≤ c1, since the
ball Bx(r) may contain the whole of C before its radius r reaches c1, the diameter of
C – if Bx(r0) contains the whole of C then ωx(r) = 1 for all r0 ≤ r ≤ c1.

It emerges that we need only evaluate the integral in (3.60) explicitly for those points
in the interior region A. By definition, if x ∈ A then the balls Bx(r) are completely
contained in C for all 0 ≤ r ≤ δ. Thus, since φ > 0 over C it follows that ωx(r) is
indeed strictly increasing for 0 ≤ r ≤ δ and x ∈ A and hence hx(ω) is well defined for
0 ≤ ω ≤ ωx(δ).

For completeness we now show that the error incurred by neglecting balls of probability
measure ω > ωx(δ) (corresponding to balls of radius r > δ) when evaluating the
integral in (3.61) becomes exponentially small as M → ∞. Note that if δ > 0 then by
Lemma 3.2 we have that ωx(δ) > 0 for every x ∈ C.

Lemma 3.10. If 0 < ε < 1/m and δ = 1/M ε then for every β > 0,

I(δ) = k

(
M−1

k

)∫ 1

ωx(δ)

hx(ω)αωk−1(1 − ω)M−k−1 dω = O

(
1

Mβ

)
as M → ∞

(3.62)

where hx(ω) is the radius of the ball centred at x having probability measure ω

Proof. Clearly, 1 − ω ≤ 1 − ωx(δ) for all ωx(δ) ≤ ω ≤ 1. Furthermore, by Lemma
3.2 we know that 1 − ωx(δ) ≤ c4δ

m for some constant c4 > 0. Since |hx(ω)| ≤ c1 and
|ω| ≤ 1 it thus follows that

I(δ) ≤ cα1k

(
M−1

k

)
(1 − c4δ

m)M−k−1 (3.63)
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It is easy to see that
(
M−1
k

)
= O((M − 1)k) as M → ∞ and since δm = o(1) it follows

that (1 − c4δ
m)−k−1 = O(1) as M → ∞. Substituting for δ in (3.63) we get

I(δ) ≤ O((M − 1)k)
(
1 − c4

Mmε

)M
as M → ∞ (3.64)

Hence, since 0 < mε < 1 it follows by Lemma 3.4 that (1 − c4/M
mε)M converges to

zero exponentially fast as M → ∞ and the result follows.

If we choose to evaluate E(dαM,k(x)) using (3.61) we may therefore restrict our attention
to those balls Bx(r) having probability measure in the range [0, ωx(δ)], where δ = 1/M ε

for any 0 < ε < 1/m.

3.6 Asymptotic moments for a uniform sampling

distribution

We shall now focus on deriving an asymptotic expression for E(dαM,k) in the case where
the sample points are selected uniformly from some closed set C ⊂ Rm satisfying
conditions C.1 to C.3. It is a simple matter to show that the uniform distribution
satisfies conditions P.1 to P.3 over any such set C. For convenience, we impose the
condition that µ(C) = 1 so that probability measure over C coincides with Lebesgue
measure over C.

Theorem 3.1. Let C ⊂ Rm be a closed set satisfying conditions C.1 to C.3 and
suppose that µ(C) = 1. Let X = (X1, . . . , XM) be a random sample of independent
and identically distributed random variables where each Xi takes values uniformly at
random from C. Let dM,k denote the distance between Xi and its kth nearest neighbour
in X. Then for all ρ > 0,

E(dαM,k) =
c(m,α, k, φ)

Mα/m
+O

(
1

M (α+1)/m−ρ

)
as M → ∞ (3.65)

where

c(m,α, k) = V −α/m
m

Γ(k + α/m)

Γ(k)
(3.66)

is a constant not depending on M .

Proof. Since µ(C) = 1 and φ is uniform, (3.29) becomes

E(dαM,k) =

∫

C

E(dαM,k(x)) dx (3.67)

where

E(dαM,k(x)) = k

(
M−1

k

)∫ 1

0

hx(ω)αωk−1(1 − ω)M−k−1 dω (3.68)
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and hx(ω) is the radius of the ball centred at x having probability measure ω. By
uniformity it also follows that the probability measure of the ball Bx(r) is equal to the
Lebesgue measure of its intersection with C, i.e.

ωx(r) = µ(Bx(r) ∩ C) (3.69)

Let 0 < ε < 1/m and define δ = 1/M ε. Let B denote the boundary region of width δ
as defined in (3.4), let A = C \B be its complement and write (3.67) as

E(dαM,k) =

∫

A

E(dαM,k(x)) dx+

∫

B

E(dαM,k(x)) dx (3.70)

We treat the cases x ∈ A and x ∈ B separately.

Case (1): x ∈ A.

If x ∈ A then x is at least a distance δ from the boundary of C so Bx(r) is completely
contained in C for all 0 ≤ r ≤ δ. Hence by (3.69) and since µ(C) = 1 we obtain

ωx(r) = Vmr
m for all 0 ≤ r ≤ δ (3.71)

where Vm is the volume of the unit ball in Rm. Inverting this, the radius hx(ω) of the
ball centred at x having probability measure ω satisfies

hx(ω) = V −1/m
m ω1/m (3.72)

provided the ball is completely contained in C. By Lemma 3.9 and (3.68) we know
that for any β > 0,

E(dαM,k(x)) = k

(
M−1

k

)∫ δ

0

hx(ω)αωk−1(1 − ω)M−k−1 dω +O

(
1

Mβ

)
(3.73)

as M → ∞. Since x ∈ A, the balls over which the integral in (3.73) is defined are all
contained in C so

E(dαM,k(x)) = V −α/m
m k

(
M−1

k

)∫ δ

0

ωk+α/m−1(1 − ω)M−k−1 dω +O

(
1

Mβ

)
(3.74)

as M → ∞. Changing the variable of integration and using Lemma 3.10 it thus follows
that

E(dαM,k(x)) = V −α/m
m k

(
M−1

k

)
IM,k +O

(
1

Mβ

)
as M → ∞ (3.75)

where

IM,k =

∫ 1

0

ωk+α/m−1(1 − ω)M−k−1 dω (3.76)
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We recognise the integral IM,k as the Beta function B(a, b) with parameters a = k+α/m
and b = M − k, defined by

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1 dt =
Γ(a)Γ(b)

Γ(a+ b)
(3.77)

Hence

IM,k =
Γ(k + α/m)Γ(M − k)

Γ(M + α/m)
(3.78)

and writing

k

(
M−1

k

)
=

Γ(M)

Γ(M − k)Γ(k)
(3.79)

in (3.75) we obtain

E(dαM,k(x)) = V −α/m
m

Γ(k + α/m)

Γ(k)

Γ(M)

Γ(M + α/m)
+O

(
1

Mβ

)
as M → ∞ (3.80)

Applying Lemma 3.4 to (3.80) then leads to

E(dαM,k(x)) = V −α/m
m

Γ(k + α/m)

Γ(k)

1

Mα/m

(
1 +O

(
1

M

))
as M → ∞ (3.81)

As a consequence of uniformity we see that this is independent of x. Furthermore,
since µ(C) = 1 the probability measure of A is equal to its Lebesgue measure µ(A).
The first integral of (3.70) is thus given by

∫

A

E(dαM,k(x)) dx = µ(A)E(dαM,k(x)) (3.82)

Since C = A ∪ B is a disjoint union and µ(C) = 1 we have µ(A) = 1 − µ(B) and by
condition C.3 we know that µ(B) = O(δ) and hence µ(A) = 1 − O(δ) as M → ∞.
Furthermore, since δ = 1/M ε for 0 < ε < 1/m it follows that 1/M = o(δ) as M → ∞
for all m ≥ 1. Thus the O(1/M) term in (3.81) is subsumed by the O(δ) term in this
expression for µ(A) so

∫

A

E(dαM,k(x)) dx = V −α/m
m

Γ(k + α/m)

Γ(k)

1

Mα/m
+O

(
δ

Mα/m

)
as M → ∞ (3.83)

and hence
∫

A

E(dαM,k(x)) dx =
c(m,α, k)

Mα/m
+O

(
δ

Mα/m

)
as M → ∞ (3.84)
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where

c(m,α, k) = V −α/m
m

Γ(k + α/m)

Γ(k)
(3.85)

Case (2): x ∈ B.

In this case, for any 0 ≤ r ≤ c1 the ball Bx(r) is not necessarily contained in C so we
cannot specify an exact expression for its probability measure ωx(r) = µ(Bx(r) ∩ C).
However, by condition C.2 we know that there exists some constant c2 > 0 such that

ωx(r) = µ(Bx(r) ∩ C) ≥ c2r
m for all 0 ≤ r ≤ c1 (3.86)

Inverting this we see that the radius hx(ω) of the ball centred at x of probability
measure ω satisfies

h(ωx) ≤ c
−1/m
2 ω1/m

x (3.87)

regardless of whether or not the ball is completely contained in C. Substituting this
into (3.68) we obtain

E(dαM,k(x)) ≤ c
−α/m
2 k

(
M−1

k

)
IM,k +O

(
1

Mβ

)
as M → ∞ (3.88)

where IM,k is defined in (3.76). Proceeding as in Case (1) we get

E(dαM,k(x)) ≤ c
−α/m
2

Γ(k + α/m)

Γ(k)

Γ(M)

Γ(M + α/m)
(3.89)

so by Lemma 3.4 it follows that

E(dαM,k(x)) = O

(
1

Mα/m

)
as M → ∞ (3.90)

Hence, the second integral of (3.70) satisfies

∫

B

E(dαM,k(x)) dx = µ(B)O

(
1

Mα/m

)
as M → ∞ (3.91)

and since µ(B) = O(δ) as M → ∞ (condition C.3) we conclude that

∫

B

E(dαM,k(x)) dx = O

(
δ

Mα/m

)
as M → ∞ (3.92)

Combining Case (1) and Case (2) via (3.70), (3.84) and (3.92) we obtain

E(dαM,k) =
c(m,α, k)

Mα/m
+O

(
δ

Mα/m

)
as M → ∞ (3.93)
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and substituting for δ = 1/M ε it follows that for any 0 < ε < 1/m,

E(dαM,k) =
c(m,α, k)

Mα/m
+O

(
1

Mα/m+ε

)
as M → ∞ (3.94)

Finally, taking ε = 1/m− ρ in (3.94) we conclude that for all ρ > 0,

E(dαM,k) =
c(m,α, k)

Mα/m
+O

(
1

M (α+1)/m−ρ

)
as M → ∞ (3.95)

as required.

Remark: Equation (3.80) states that for each x ∈ A,

E(dαM,k(x)) = V −α/m
m

Γ(k + α/m)

Γ(k)

Γ(M)

Γ(M + α/m)
+O

(
1

Mβ

)
(3.96)

as M → ∞. This expression for E(dαM,k(x)) is exact to any polynomial order in M
and displays a remarkable separation of the k–dependence and the M–dependence. We
also note an intriguing symmetry between the near neighbour index k and the total
number of points M .

3.7 Asymptotic moments for a non–uniform sam-

pling distribution

We now extend Theorem 3.1 to the more general case where M points are selected
from C according to any sampling distribution Φ satisfying P.1 to P.3. Intuitively
speaking, we should not expect the asymptotic behaviour of near neighbour distances
determined by such sampling distributions to be significantly different to that observed
in the uniform case. This is because, subject to conditions P.1 to P.3, the sampling
density at any point in a small neighbourhood of a point x will be approximately
equal to the density at x. Hence the sampling density is approximately uniform in
small neighbourhoods and as we have seen, it is precisely these small neighbourhoods
that determine the asymptotic behaviour of the expected near neighbour distances as
M → ∞.

In order to deal with more general sampling distributions, we must make the further
condition that the set C ⊂ Rm is convex. Compact convex bodies in Rm have been
shown to satisfy conditions C.1 to C.3 in Proposition 3.1.

Theorem 3.2. Let C be a compact convex body in Rm. Let X = (X1, . . . , XM) be a
random sample of independent and identically distributed random variables where each
Xi takes values in C according to a probability distribution Φ satisfying conditions P.1,
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P.2 and P.3. Let dM,k denote the distance between Xi and its kth nearest neighbour
in the random sample X. Then for all ρ > 0,

E(dαM,k) =
c(m,α, k, φ)

Mα/m
+O

(
1

M (α+1)/m−ρ

)
as M → ∞ (3.97)

where

c(m,α, k, φ) = V −α/m
m

Γ(k + α/m)

Γ(k)

∫

C

φ(x)1−α/m dx (3.98)

is a constant not depending on M .

Proof. We need to find an asymptotic expression for the integral

E(dαM,k) =

∫

C

E(dαM,k(x))φ(x) dx (3.99)

as the number of points M increases where

E(dαM,k(x)) = k

(
M−1

k

)∫ 1

0

hx(ω)αωk−1(1 − ω)M−k−1 dω (3.100)

and hx(ω) is the radius of the ball centred at x having probability measure ω. Recall
that

ωx(r) =

∫

Bx(r)∩C

φ(t) dt (3.101)

In order to evaluate (3.100) we obtain an expression for hx(ω) by exploiting the con-
vexity of C. That C is convex implies that it is connected, and since φ is continuous on
C (condition P.2) we can therefore apply the first mean value theorem of the integral
calculus to φ . This asserts the existence of a point ξ1 ∈ Bx(r) ∩ C such that

ωx(r) = φ(ξ1)µ(Bx(r) ∩ C) (3.102)

Furthermore, since φ is differentiable at every point of C (condition P.3) we can also
apply the first mean value theorem of the differential calculus to φ. Hence there exists
a point ξ2 on the line segment joining x and ξ1 such that

φ(ξ1) = φ(x) + (x− ξ1)φ
′(ξ2) (3.103)

and since C is convex we have that ξ2 ∈ C. Furthermore, since all partial derivatives
of φ are assumed bounded on C we have

φ(ξ1) = φ(x) +O(|x− ξ1|) (3.104)

Let 0 < ε < 1/m and define δ = 1/M ε. Since ξ1 ∈ Bx(r) ∩ C we may assume that
|x− ξ1| ≤ r and hence

φ(ξ1) = φ(x) +O(δ) as M → ∞ (3.105)
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for all 0 ≤ r ≤ δ. Substituting in (3.102) we see that for all x ∈ C

ωx(r) = (φ(x) +O(δ))µ(Bx(r) ∩ C) as M → ∞ (3.106)

provided 0 ≤ r ≤ δ.

Let B denote the boundary region of width δ, let A = C \ B be the corresponding
interior region and write (3.99) as

E(dαM,k) =

∫

A

E(dαM,k(x))φ(x) dx+

∫

B

E(dαM,k(x))φ(x) dx (3.107)

Case (1): x ∈ A.

If x ∈ A then x is at least a distance δ from the boundary of C so Bx(r) is completely
contained in C for all 0 ≤ r ≤ δ. In this case we have that µ(Bx(r)∩C) = µ(Bx(r)) =
Vmr

m where Vm is the volume of the unit ball in Rm and hence by (3.106) we obtain

ωx(r) = (φ(x) +O(δ))Vmr
m as M → ∞ (3.108)

Rearranging this we get

rm =
ωx(r)

Vmφ(x)

(
1 +

O(δ)

φ(x)

)−1

(3.109)

Since the sampling distribution Φ satisfies conditions P.1 to P.3, by Lemma 3.1 there
exist constants a1 and a2 such that 0 < a1 ≤ φ(x) ≤ a2 < ∞ for all x ∈ C. The
existence of a1 ensures that (3.109) is well defined for all x ∈ A, and the existence of
both a1 and a2 implies that

(
1 +

O(δ)

φ(x)

)−1

= 1 +O(δ) as M → ∞ (3.110)

Furthermore, since m ≥ 1 is fixed it follows that (1 +O(δ))1/m = 1 +O(δ) as M → ∞
so

r =

(
ωx(r)

Vmφ(x)

)1/m

(1 +O(δ)) as M → ∞ (3.111)

Hence the inverse function r = hx(ω) is given by

hx(ω) =

(
ω

Vmφ(x)

)1/m

(1 +O(δ)) as M → ∞ (3.112)

and since α ≥ 1 is fixed it follows that (1 +O(δ))α = 1 +O(δ) as M → ∞ so

hx(ω)α =

(
ω

Vmφ(x)

)α/m
(1 +O(δ)) as M → ∞ (3.113)
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provided Bx(r) is completely contained in C. By Lemma 3.9 and (3.100) we have that
for any β > 0,

E(dαM,k(x)) = k

(
M−1

k

)∫ δ

0

hx(ω)αωk−1(1 − ω)M−k−1 dω +O

(
1

Mβ

)
(3.114)

as M → ∞. Hence, since x ∈ A the balls over which the integral in (3.114) is defined
are all contained in C so

E(dαM,k(x)) = (Vmφ(x))−α/mk

(
M−1

k

)
(1 +O(δ))

∫ δ

0

ωk+α/m−1(1 − ω)M−k−1 dω

+O

(
1

Mβ

)
as M → ∞

(3.115)

Changing the variable of integration and using Lemma 3.10 we thus obtain

E(dαM,k(x)) = (Vmφ(x))−α/mk

(
M−1

k

)
(1 +O(δ))IM,k +O

(
1

Mβ

)
(3.116)

as M → ∞ where

IM,k =

∫ 1

0

ωk+α/m−1(1 − ω)M−k−1 dω (3.117)

As in Theorem 3.1 we recognize IM,k as the Beta function B(a, b) = Γ(a)Γ(b)/Γ(a+ b)
with parameters a = k + α/m and b = M − k. Hence

IM,k =
Γ(k + α/m)Γ(M − k)

Γ(M + α/m)
(3.118)

and writing

k

(
M−1

k

)
=

Γ(M)

Γ(M − k)Γ(k)
(3.119)

we get

E(dαM,k(x)) = (Vmφ(x))−α/m
Γ(k + α/m)

Γ(k)

Γ(M)

Γ(M + α/m)
(1 +O(δ)) (3.120)

as M → ∞. Once again we note the separation and symmetry of the k–dependence
and the M–dependence in this expression. By Lemma 3.4,

Γ(M)

Γ(M + α/m)
=

1

Mα/m

(
1 +O

(
1

M

))
as M → ∞ (3.121)

and since 1/M = o(δ) as M → ∞ the O(1/M) term is subsumed by the O(δ) term
and we have

E(dαM,k(x)) = (Vmφ(x))−α/m
Γ(k + α/m)

Γ(k)

1

Mα/m
(1 +O(δ)) as M → ∞ (3.122)
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Thus the first integral in (3.107) is equal to

∫

A

E(dαM,k(x))φ(x) dx =
c′(m,α, k, φ)

Mα/m
(1 +O(δ)) as M → ∞ (3.123)

where

c′(m,α, k, φ) = V −α/m
m

Γ(k + α/m)

Γ(k)

∫

A

φ(x)1−α/m dx (3.124)

To complete Case (1), we show that the error incurred by replacing the integral in
(3.124) with the equivalent integral over C is at most of order O(δ) as M → ∞.
First note that since 0 < a1 ≤ φ(x) ≤ a2 < ∞ for each x ∈ C, it follows that

|φ(x)1−α/m| ≤ a3 <∞ where a3 = max{1/a1−α/m
1 , a

1−α/m
2 }. Furthermore, by condition

C.3 there exists some constant c3 such that µ(B) ≤ c3δ. Hence

∫

B

φ(x)1−α/m dx ≤ a3c3δ = O(δ) as M → ∞ (3.125)

and since C = A ∪B is a disjoint union we have

∫

A

φ(x)1−α/m dx =

∫

C

φ(x)1−α/m dx+O(δ) as M → ∞ (3.126)

Thus, by (3.123) and (3.124) we conclude that for every x ∈ A,

∫

A

E(dαM,k(x))φ(x) dx =
c(m,α, k, φ)

Mα/m
+O

(
δ

Mα/m

)
as M → ∞ (3.127)

where

c(m,α, k, φ) = V −α/m
m

Γ(k + α/m)

Γ(k)

∫

C

φ(x)1−α/m dx (3.128)

Case (2): x ∈ B.

In this case, for any 0 ≤ r ≤ c1 the ball Bx(r) is not necessarily contained in C and we
cannot specify an exact expression for its probability measure ωx(r) = µ(Bx(r) ∩ C).
However, by Lemma 3.2 there exists some constant c4 > 0 such that for all x ∈ C and
0 ≤ r ≤ c1 we have that

ωx(r) ≥ c4r
m (3.129)

Inverting this, we obtain an upper bound for hx(ω), defined to be the radius of the
sphere centred at x of probability measure ω, given by

hx(ω) ≤ c
−1/m
4 ω1/m (3.130)
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and substituting this into (3.100) we obtain

E(dαM,k(x)) ≤ c
−α/m
4 k

(
M−1

k

)
IM,k (3.131)

where IM,k is as defined in (3.117). Proceeding as in Case (1) we get

E(dαM,k(x)) ≤ c
−α/m
4

Γ(k + α/m)

Γ(k)

Γ(M)

Γ(M + α/m)
(3.132)

and by Lemma 3.4,

E(dαM,k(x)) = O

(
1

Mα/m

)
as M → ∞ (3.133)

Hence, the second integral of (3.107) satisfies
∫

B

E(dαM,k(x))φ(x) dx = O

(
1

Mα/m

)∫

B

φ(x) dx as M → ∞ (3.134)

For each x ∈ B, by Lemma 3.1 there exists some constant a2 such that |φ(x)| ≤ a2 <∞
so the integral of φ(x) over B is therefore bounded above by a2µ(B). Furthermore, by
condition C.3 there exists some constant c3 such that µ(B) ≤ c3δ so

∫

B

φ(x) dx = O(δ) as M → ∞ (3.135)

and hence
∫

B

E(dαM,k(x)) dx = O

(
δ

Mα/m

)
as M → ∞ (3.136)

Combining Case (1) and Case (2) via (3.107), (3.127) and (3.136) we obtain

E(dαM,k) =
c(m,α, k, φ)

Mα/m
+O

(
δ

Mα/m

)
as M → ∞ (3.137)

and substituting for δ = 1/M ε it follows that for any 0 < ε < 1/m,

E(dαM,k) =
c(m,α, k, φ)

Mα/m
+O

(
1

Mα/m+ε

)
as M → ∞ (3.138)

Finally, taking ε = 1/m− ρ in (3.138) we conclude that for all ρ > 0,

E(dαM,k) =
c(m,α, k, φ)

Mα/m
+O

(
1

M (α+1)/m−ρ

)
as M → ∞ (3.139)

where

c(m,α, k, φ) = V −α/m
m

Γ(k + α/m)

Γ(k)

∫

C

φ(x)1−α/m dx (3.140)

as required.
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3.8 Nearest neighbour distances for fractal sets

We now turn our attention to the distribution of kth nearest neighbour distances in a
set of points that are confined to some fractal subset C ⊂ Rm, defined to be a set having
non–integral dimension d < m. This is motivated by the study of chaotic dynamical
systems, whose trajectories in state space X ⊂ Rm are often confined to some fractal
set (the attractor of the system).

In (3.30) the expected distance from an arbitrary point x to its kth nearest neigh-
bour in a set of M points is defined in terms of the probability measure ωx(r) of the
neighbourhood balls Bx(r) centred at x and having radius r. When C is of integral
dimension, the probability measure ωx(r) can be defined in terms of Lebesgue measure.
However, if C is of non–integral dimension in Rm, the Lebesgue measure of C is zero
and in order to exploit (3.30) we must define a more subtle notion of its measure.

First we describe the Hausdorff measure on a fractal set C. This is defined purely in
terms of the geometric properties of C and as a result it may be rather simplistic in the
case where C is the attractor of a dynamical system as it does not take into account
how frequently a typical trajectory of the system visits various parts of its attractor.
In this sense the Hausdorff measure corresponds to uniform density over C. Following
this we define a more natural measure on the attractor of a dynamical system which
does take relative densities across the attractor into account.

3.8.1 Hausdorff measure

For any δ > 0, a δ–cover of C is defined to be a countable collection of sets {Ei}∞1 , each
having diameter |Ei| < δ such that C is contained their union. The δ–approximating
s–dimensional Hausdorff measure of C is defined to be

Hs
δ (C) = inf

{
∞∑

i=1

|Ei|s : C ⊂ ∪∞
i=1Ei, |Ei| ≤ δ

}
(3.141)

where the infimum is taken over all δ–covers of C. Since the class of permissible covers
decreases as δ decreases it follows that Hd

δ increases as δ → 0. The s-dimensional
Hausdorff measure of C is then defined by

Hs(C) = lim
δ→0

Hs
δ (C) (3.142)

Since Hs
δ (C) is a monotonic decreasing function of s, it can be shown that there exists

a unique transition point d, called the Hausdorff dimension of C, such that

Hs(C) =

{
∞ for s < d
0 for s > d

(3.143)

The d–dimensional Hausdorff measure of C will be called the Hausdorff measure of
C. In general, 0 ≤ Hd(C) ≤ ∞. However, in order to employ the Hausdorff measure
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as a probability measure on C, we must restrict our attention to those sets C having
0 < Hd(C) < ∞. Such sets are known as d–sets, see [Falconer 1990] and we assume
without loss of generality that Hd(C) = 1 for such sets.

Having defined the Hausdorff dimension C, the Hausdorff measure of any subset A ⊂ C
is then defined by

Hd(A) = lim
δ→0

inf

{
∞∑

i=1

|Ei|s : A ⊂ ∪∞
i=1Ei, |Ei| ≤ δ

}
(3.144)

where the infimum is taken over all δ–covers of A.

3.8.2 An integral representation of the moments

Let x ∈ C and define the probability measure of its neighbourhood balls Bx(r) ⊂ Rm

by

ωx(r) = Hd(Bx(r) ∩ C) (3.145)

so that ωx(r) is the Hausdorff measure of that part of C contained in Bx(r). Recall
from (3.61) that

E(dαM,k(x)) = k

(
M−1

k

)∫ 1

0

hx(ω)αωk−1(1 − ω)M−k−1dω (3.146)

where hx(ω) is the radius of the ball centred at x having probability measure ω.

The inverse function hx(ω)

To obtain the leading term in an asymptotic expansion for (3.146) as M → ∞ we
need to find a first order expression for hx(ω) in terms of ω. For some ε > 0, using
arguments similar to those employed in the proof of Lemma 3.9 we can show that
neighbourhood balls of radius r > 1/M ε are insignificant in determining the leading
term in an asymptotic expansion for (3.146) as M → ∞. Hence the following condition
is sufficient to ensure the existence of a first order expression for hx(ω) in terms of ω.

C.4 There exist constants c, d > 0 such that

ωx(r) = crd + o(rd) as r → 0 (3.147)

where c = c(x) and d = d(x) may depend on x.

If C.4 holds then a first order expression for hx(ω) is given by

hx(ω) = (ω/c)1/d(1 + o(1)) as r → 0 (3.148)
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Self-similarity

Taking logarithms of both sides of (3.147) we see that

d = lim
r→0

(
log(ωx(r))

log(r)

)
(3.149)

By analogy with (3.143) and other definitions of fractal dimension (see [Falconer 1990]),
the exponent d of (3.147) can be interpreted as the (local) fractal dimension of C in
the neighbourhood of x. Most elementary definitions of fractal dimension measure the
‘average’ dimension over the whole set. However many fractal sets (especially those
that arise as attractors of chaotic systems) are not uniformly dense.

The variation in density over a fractal set is captured by its generalised dimension,
defined as follows. We divide the imbedding space into N(r) cells of size r, and let
pi be the probability that a point of the set lies in the ith cell. For each q 6= 1 the
generalised (box-counting) dimension Dq is defined by

Dq = lim
r→0

(
1

q − 1

)
log
∑N(r)

i=1 pqi
log r

(3.150)

A set is then said to be self-similar if Dq = D0 for all q. If C is self-similar then we
might expect that the exponent d of (3.147) is independent of any particular x ∈ C.

3.8.3 A conjectured first order approximation

Let µ be a measure concentrated on a set C. If µ is a probability measure we say that
a sequence of points {xi} is distributed in C according to µ if for every µ-measurable
subset A ⊂ C,

1

M

M∑

i=1

IA(xi) → µ(A) as M → ∞ (3.151)

where IA denotes the indicator function for the set A.

We propose the following conjecture.

Conjecture 3.1. Let C ⊂ Rm, let d be its Hausdorff dimension, let Hd denote the d–
dimensional Hausdorff measure on C and suppose that Hd(C) = 1. Let {x1, . . . , xM}
be a sequence of points distributed in C according to Hd and let k ≥ 1 be a fixed integer.
Then if x ∈ C satisfies condition C.4,

E(dαM,k(x)) ∼
c

Mα/d
as M → ∞ (3.152)

where c = c(α, k, d) is a constant not depending on M .

Remark: If this conjecture holds, it may provide a useful method of estimating the
local dimension of C at x.
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3.8.4 Orders of magnitude

While finding an exact expression for the first order term in the asymptotic expansion
of (3.146) in terms of the number of points M , less ambitious would be to determine
its order of magnitude. To achieve this we require the following condition.

C.5 There exist constants c, d > 0 such that

ωx(r) ≥ crd for all 0 ≤ r ≤ c1 (3.153)

where c = c(x) and d = d(x) may depend on x.

If C.5 holds for all x ∈ C then ωx(r) ≥ c̃rd̃ where c̃ = max{c(x)
∣∣ x ∈ C} and

d̃ = min{d(x)
∣∣ x ∈ C}, in which case

hx(ω) ≤ (ω/c̃)1/d̃ forall x ∈ C (3.154)

If C is self-similar then we might expect that d = d(x) is independent of any particular
x ∈ C and furthermore that d is (related to) the Hausdorff dimension of C. In view of
this we define the following (stronger) condition.

C.6 There exists a constant c > 0 such that for all x ∈ C

ωx(r) ≥ crd for all 0 ≤ r ≤ c1 (3.155)

where d is the Hausdorff dimension of C.

Proposition 3.2. Let C ⊂ Rm, let d be its Hausdorff dimension, let Hd denote the
d–dimensional Hausdorff measure on C and suppose that Hd(C) = 1. Let {x1, . . . , xM}
be a sequence of points distributed in C according to Hd and let k ≥ 1 be a fixed integer.
Then if x ∈ C satisfies condition C.6, the αth moment of the distance between x and
its kth nearest neighbour in the set {x1, . . . , xM} satisfies

E(dαM,k(x)) = O

(
1

Mα/d

)
as M → ∞ (3.156)

Proof. By condition C.6 there exists some c > 0 such that ωx(r) ≥ crd for all 0 ≤
r ≤ c1. Hence, the radius hx(ω) of the ball centred at x having probability measure ω
satisfies hx(ω) ≤ (ω/c)1/d. By (3.146) we thus have that

E(dαM,k(x)) ≤ c
−α/d
4 k

(
M−1

k

)∫ 1

ω=0

ωk+α/d−1(1 − ω)M−k−1dω (3.157)

This integral is the Beta function with parameters k + α/d and M − k so

E(dαM,k(x)) ≤ c
−α/d
4

Γ(k + α/d)

Γ(k)

Γ(M)

Γ(M + α/d)
(3.158)

and the result follows by Lemma 3.7.
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We would like to show that condition C.6 holds for all x ∈ C. Failing this, we might
settle for showing that C.6 holds for Hd–almost all x ∈ C, in the sense that for some
c > 0, the set

C ′ =
{
x ∈ C |ωx(r) < crd for some 0 < r ≤ c1

}
(3.159)

is of Hd–measure zero. While we have been unable to prove this, we have obtained a
weaker result where the ‘for some’ condition is replaced by a ‘for all’ condition.

Lemma 3.11. For any δ > 0 and 0 < c < 1, the set

C ′′ =
{
x ∈ C |ωx(r) < crd for all 0 < r ≤ δ

}
(3.160)

is of Hd–measure zero.

Proof. Let {Ui}∞1 be any δ–cover of C ′′. Then

Hd(C ′′) = Hd(C ′′ ∩ C) ≤ Hd(∪Ui ∩ C) ≤ Hd(∪(Ui ∩ C)) ≤
∑

Hd(Ui ∩ C) (3.161)

For each Ui intersecting C ′′ choose some xi ∈ C ′′ ∩ Ui and define Bi = Bxi
(|Ui|) to be

the ball centred at xi having radius |Ui|. Since xi ∈ Ui we have Ui ⊂ Bi and hence
(Ui ∩ C) ⊂ (Bi ∩ C). Furthermore, since |Ui| < δ it follows that Hd(Bi ∩ C) < c|Ui|d
by definition of xi ∈ C ′′, so

Hd(C ′′) ≤
∑

Hd(Bi ∩ C) < c
M∑

i=1

|Ui|d (3.162)

Since {Ui} is any δ–cover of C ′′, taking the infimum of the RHS over all such covers
we get

Hd(C ′′) ≤ cHd
δ (C

′) ≤ cHd(C ′′) (3.163)

and since c < 1, this can only hold if Hd(C ′′) = 0 as required.

3.9 Near neighbour distances for chaotic attractors

In the study of chaotic dynamical systems we often encounter sets of points that are
confined to regions of Rm having non–integral dimension.

3.9.1 Dynamical systems

A (discrete–time) dynamical system is defined by some subspace X ⊂ Rm, called the
state space of the system along with a function f : X → X. Given an initial state
x0 ∈ X, the time evolution of the system is then described by the iterative equation

xi = f(xi−1) = f i(x0) i ∈ N (3.164)
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where xi represents the state of the system at time i. For various initial points x0 we
are interested in the behaviour of the sequences {xi}∞i=0 as i increases. Such sequences
are called trajectories or orbits of the dynamical system.

A subset A ⊂ X is said to be invariant if f(A) ⊂ A. Invariant sets have the property
that whenever x0 ∈ A, the subsequent trajectory of the system remains confined to A
for all i ∈ N. A (minimal) closed invariant set C ⊂ X is said to be an attractor of the
dynamical system if there exists some open neighbourhood V of C such that

• For any x0 ∈ V , the distance from xi to C converges to zero as i→ ∞.

• For some x0 ∈ V , the closure of {xi}∞0 contains C.

The set V is called the basin of attraction of C and for any initial point x0 ∈ V , once
transient effects have diminished the trajectory of the system settles near one of its
attractors. If an attractor C has a fractal structure or exhibits sensitive dependence
on initial conditions (where nearby points in C diverge under iterates of f) then the
dynamics are said to be chaotic. Such attractors often have non–integral dimension
and are commonly associated with dissipative dynamical systems, where volumes in
state space are contracted by time evolution.

3.9.2 The Hénon Map

The Hénon map f : R2 → R2 ([Hénon 1976]) with parameters a, b ∈ R is defined by

f(x, y) = (a+ by − x2, x) (3.165)

and the time evolution of the associated dynamical system can be represented by

xi+1 = a+ byi − x2
i

yi+1 = xi
(3.166)

where (xi, yi) is the state of the system at time i. For a = 1.4 and b = 0.3 the
dynamics of the Hénon map are known to be chaotic, and its attractor is a fractal
set. This will serve as a test case for our investigations into the behaviour of certain
statistics associated with the Gamma test.

3.9.3 Probability measures on attractors

Let {x1, . . . , xM} be a time series generated by a dynamical system f : X → X
where X ⊂ Rm and suppose for simplicity that f has a single attractor, denoted by
C. Then C provides a global picture of the long–term behaviour of the system and
loosely corresponds to the ‘sample space’ from which the points xi are selected. The
distribution of the points xi on C is determined by the dynamical system itself, along
with the initial state x0.
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In order to estimate the expected value of the distance between nearest neighbours in
the set {x1, . . . , xM} we need to define a probability measure on C. As we have seen,
the Hausdorff measure on C is defined in terms of its geometric properties and thus
corresponds to a uniform density over the set. In general however, a typical trajectory
of a chaotic dynamical system is likely to visit some regions of its attractor more
frequently than others, in which case the points of the time series will not be uniformly
distributed over the attractor. It therefore becomes necessary to specify a measure on
C which takes such variations into account.

Invariant measures

Firstly, any measure defined on C must be invariant under time evolution, i.e. for every
subset A of C we have that µ (f−1(A)) = µ(A) where f−1(A) = {x ∈ Rm | f(x) ∈ A}. It
is possible to construct many invariant measures on C, not all of which are particularly
useful. For example, the measure concentrated on an unstable fixed point satisfies
µ (f−1(A)) = µ(A), but tells us nothing about the general time evolution of the system.

To describe the distribution of iterates on an attractor C, we need an invariant prob-
ability measure which describes how frequently various parts of C are visited by a
‘typical’ trajectory. In view of this, the natural invariant measure on C, called the
residence time measure (see [Falconer 1990, page 263]), is defined by the time average

µ(A) = lim
M→∞

1

M

M∑

i=0

IA(xi) (3.167)

where x0 is a ‘typical’ initial state and IA is the indicator function for the set A. Clearly,
µ is invariant since xi = f i(x0) ∈ A if and only if xi−1 = f i−1(x0) ∈ f−1(A). Thus
µ(A) represents the proportion of iterates which fall in A and µ is concentrated on the
set of points to which the trajectory f i(x0) comes arbitrarily close infinitely often (so µ
is supported by the attractor of f). As it stands however, the definition of µ in (3.167)
depends on the initial state x0.

Remark: The “ergodic average” (3.167) need not converge for arbitrary measurable
sets A – we usually need that the boundary of A has measure zero.

The ergodic theorem

An invariant probability measure µ may be decomposable into several different com-
ponents, each of which are again invariant. If not then µ is said to be ergodic. The
following theorem (see [Falconer 1990, page 191]) asserts the existence of an ergodic
measure on the attractor of any dynamical system.

Theorem 3.3. If the compact set C is invariant under the dynamical system f n then
there exists an invariant ergodic measure µ with support contained in C
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The fundamental property of ergodic measures is that a time average is equal to a
space average weighted by the ergodic measure.

Theorem 3.4 (The Ergodic Theorem). If µ is ergodic then for any continuous
function g,

lim
M→∞

1

M

M∑

i=0

g(xi) =

∫
g(x) dµ(x) (3.168)

for almost all initial states x0 with respect to µ.

In particular, taking g = IA we have that for µ–almost all initial states x0,

lim
M→∞

1

M

M∑

i=0

IA(xi) =

∫

A

dµ(x) (3.169)

As with (3.167), to ensure that (3.169) converges we usually need that the boundary
of A has measure zero. Further details regarding ergodic theory can be found in the
original paper of [Birkhoff 1927] and also [Ott 1993].

3.9.4 Near neighbour distances on chaotic attractors

Theorems 3.3 and 3.4 ensure the existence of invariant measures defined by time aver-
ages for µ–almost all initial conditions x0 where µ is defined in (3.167). In view of this
we may define the probability measure of the ball Bx(r) in Rm by

ωx(r) = lim
M→∞

1

M

M∑

i=0

IBx(r)(xi) (3.170)

By the Poincaré Recurrence Theorem [Falconer 1990], if x is a point on the attractor
then the trajectory f i(x0) comes arbitrarily close to x infinitely often. This suggests
that perhaps ωx(r) > 0 for small r > 0, provided ωx is defined carefully.

We propose the following analogue of Conjecture 3.1.

Conjecture 3.2. Let k ≥ 1 be a fixed integer and let {x1, . . . , xM} be a time series
representing a trajectory of a dynamical system f having attractor C ⊂ Rm. Then if
x ∈ C satisfies condition C.4 with ωx(r) as defined in (3.170),

E(dαM,k(x)) ∼
c

Mα/d
as M → ∞ (3.171)

where c = c(α, k, d, f) and d can be interpreted as the fractal dimension of C.

Remark: If this conjecture holds, it may provide a useful method of estimating the
fractal dimension of a chaotic attractor.
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Table 3.1: Scaling behaviour of δM (k) as M increases.

δM(k) ≈ cM−β

Uniform distribution Hénon Map

Experimental Theoretical Experimental

k c β c β c β
1 0.32159 1.00087 0.318309 1.0 7.06533 1.59765
2 0.68335 1.00629 0.636619 1.0 24.6000 1.62701
3 1.03724 1.00711 0.954929 1.0 51.4725 1.64240
4 1.40184 1.00817 1.273239 1.0 85.8252 1.65035
5 1.77714 1.00935 1.591549 1.0 129.529 1.65781
6 2.14373 1.00970 1.909859 1.0 178.568 1.66184
7 2.52942 1.01069 2.228169 1.0 235.310 1.66521
8 2.91086 1.01125 2.546479 1.0 295.118 1.66679
9 3.30097 1.01193 2.864788 1.0 351.112 1.66556
10 3.68841 1.01239 3.183098 1.0 416.175 1.66573

3.10 Experimental results

We examine the rate at which the mean squared kth nearest neighbour distance δM(k)
converges to zero as the number of points M increases.
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Figure 3.7: Graph of log(δM (k)) against
log(M) for the uniform distribution.
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Figure 3.8: Graph of log(δM (k)) against
log(M) for the Hénon map.

For each k in the range 1 ≤ k ≤ 10 we compute the pairs (log(M), log(δM(k))) as
M increases from 1000 to 100000 in steps of 1000. Figures 3.7 and 3.8 show plots of
log(δM(k)) against log(M) for the uniform distribution and the Hénon map (3.165)
with a = 1.4 and b = 0.3 respectively. Performing linear regression on these points we
obtain the results shown in Table 3.1.

The theoretical values for the uniform case are provided by Theorem 3.2 and while the
results are encouraging we should remark the errors in estimating the constant (which
must be exponentiated from the least squares fit) are very high.

Note that given Conjecture 3.2, the scaling exponent of approximately 1.6 for the
Hénon map in Table 3.1 would suggest a fractal dimension of approximately 1.25. This
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is close to the published estimates which tend to be around 1.26 [Falconer 1990, page
180].

3.11 Summary

We have estimated the asymptotic behaviour of the moments of the kth nearest neigh-
bour distance distribution under quite general hypotheses. Although a result of this
type for the first moment of the distribution under uniform sampling has previously
appeared, this result was subject to the assumption of periodic boundary conditions.
Using the novel technique of boundary shrinking suggested by W. M. Schmidt we have
removed the assumption of periodic boundary conditions and generalised the result to
all moments and arbitrary smooth positive sampling densities.

This raises the possibility of using an inversion technique to construct an asymptotic
form for the actual kth nearest neighbour distance distribution on M points. This
involves technically difficult issues which we shall not pursue here.

We conjecture that such asymptotic results may be true under even more general
conditions, where the sampling is driven by an ergodic process over a chaotic attractor
of zero Lebesgue measure and positive Hausdorff dimension in Rm. The further pursuit
of these questions would raise some rather difficult issues and would somewhat divert
us from the immediate goal of proving the Gamma test. Still, the fact remains that
if such asymptotic results could be established they might be helpful in extending the
provable range of applicability of the Gamma test and may also provide a route to an
efficient O(M logM) algorithm for estimating Hausdorff dimension.
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Chapter 4
Near neighbour geometry

4.1 Introduction

The primary objective of this chapter is to establish certain geometric results that
assist us in dealing with the various sums of dependent random variables identified
in Chapter 2. In pursuing this goal we find ourselves studying the directed graphs
obtained by joining each point in a set of points {x1, . . . ,xM} ⊂ Rm to its kth nearest
neighbour in the set – we call these kth near neighbour graphs. For our purposes we
are mainly interested in random kth nearest neighbour graphs where the points are
chosen from Rm according to some sampling distribution Φ. Whether random or not,
these graphs are of considerable interest in their own right.

The result from this chapter required for the proof of the Gamma test is Theorem 4.1
which gives an explicit bound for the number of points that can share a common kth
nearest neighbour. This result may also be of interest in coding theory.

Having spent some time in Chapter 3 developing techniques for dealing with boundary
effects when computing the expected distance between kth nearest neighbours in a
set of M points it seems appropriate to further illustrate the power of these methods
by addressing the rather different but related question of determining the expected
number of connected components in a random first nearest neighbour graph. This we
do in section 4.5 where we are able to establish a precise asymptotic formula for the
number of components in the case of a uniform sampling distribution. These results
are also confirmed experimentally.

4.2 Nearest neighbour graphs

The kth nearest neighbour graph associated with a set of points {x1, . . . , xM} ⊂ Rm

is defined to be the directed graph G = G(V,E) where the vertex set V is the set of
points itself and the edge set E contains the directed edge (xi, xj) if and only if xj is
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the kth nearest neighbour of xi. Note that if xj is the kth nearest neighbour of xi, this
does not necessarily imply that xi is the kth nearest neighbour of xj.

In Figure 4.1 we plot the first nearest neighbour graph for a set of 500 points selected
uniformly at random from the unit square [0, 1]2.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4.1: The first nearest neighbour graph for 500 uniformly distributed points in [0, 1]2

(Courtesy of Dr A.P.M. Tsui)

Figure 4.2 shows a single connected ‘component’ of a first nearest neighbour graph,
where the word ‘component’ refers to the underlying undirected graph and A → B
means that ‘B is a nearest neighbour of A’.

Figure 4.2: A connected component of a first nearest neighbour graph.

Using geometric methods we show that the maximum in–degree of any vertex in the
kth nearest neighbour graph (subsequently called simply the maximum degree of a
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vertex) is bounded above by some constant that is independent of the total number of
points M . This result will be used in subsequent chapters to control the dependence
between certain random variables associated with the Gamma test.

4.3 The maximum vertex in–degree

The following result [Bickel and Breiman 1983] shows that the maximum degree of any
vertex in a first nearest neighbour graph remains absolutely bounded as the number of
points increases to infinity.

Lemma 4.1. For any set of distinct points x1, . . . , xM in Rm, any point xi can be the
nearest neighbour of at most some finite number N(m) other points, where N(m) is
independent of the number of points M .

Proof. Let S(xi) denote the surface of the unit sphere in Rm centred at xi. Since S(xi)
is compact there exist disjoint sets S1, . . . , SN with

S(xi) =

N(m)⋃

j=1

Sj (4.1)

such that for every 1 ≤ j ≤ N(m),

|a− b| < 1 for all a, b ∈ Sj (4.2)

From this partition we define a set of disjoint cones

Cj = {xi + λa | a ∈ Sj, λ > 0} 1 ≤ j ≤ N(m) (4.3)

having xi as their common peak.

xi

xj

xj’

Cj

Figure 4.3: If xj is the nearest point to xi in the cone Cj , then any other point x′
j in Cj

must be closer to xj than it is to xi.

To prove the lemma we show that at most one point from each Cj can have xi as its
nearest neighbour. Let xj be a closest point to xi in Cj and let x′j be another point in
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Cj. We claim that x′j is closer to xj than it is to xi and cannot therefore have xi as its
nearest neighbour. To this end let

xj − xi = λa for some a ∈ Sj and λ > 0
x′j − xi = µb for some b ∈ Sj and µ > 0

(4.4)

where 0 < λ ≤ µ. Then |x′j − xj| = |µb− λa| which we write as

|x′j − xj| = µ

∣∣∣∣
(

1 − λ

µ

)
b− λ

µ
(a− b)

∣∣∣∣ (4.5)

from which it follows that

|x′j − xj| ≤ µ

((
1 − λ

µ

)
|b| + λ

µ
|a− b|

)
(4.6)

Since a, b ∈ Sj it follows that |b| = 1 and |a− b| < 1 so

|x′j − xj| < µ

((
1 − λ

µ

)
+
λ

µ

)
= µ = |x′j − xj| (4.7)

Hence x′j is closer to xj than it is to xi and cannot therefore have xi as its nearest
neighbour. Thus there can be at most one point in each cone Cj having xi as its
nearest neighbour, as required.

While Lemma 4.1 is a step in the right direction, it does not specify how large the
maximum vertex degreeN(m) is likely to be in any given dimensionm. A quantification
of this maximum vertex degree may obtained using the notion of kissing numbers.

4.4 Nearest neighbours and the maximum kissing

number in Rm

A sphere packing in any m–dimensional space is a collection of disjoint open spheres of
unit radius, and the kissing number of any sphere S is the number of open unit spheres
in the packing that share a common tangent with S. In a lattice packing, each sphere
has the same kissing number. The maximum kissing number in Rm, denoted by K(m),
is the largest kissing number that can be attained by any packing of m–dimensional
spheres. K(m) is known exactly in only a few dimensions: K(1) = 2, K(2) = 6,
K(3) = 12, K(8) = 240 and K(24) = 196560.

The following lemma gives upper and lower bounds for the maximum kissing number
in Rm, found in [Kabatiansky and Levenshtein 1978] and [Wyner 1965] respectively.

Lemma 4.2. The maximum kissing number K(m) in Rm satisfies

20.2075m(1+o(1)) ≤ K(m) ≤ 20.401m(1+o(1)) (4.8)

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



4.4 Nearest neighbours and the maximum kissing number in Rm 86

The following lemma [Zeger and Gersho 1994] shows that the degree of a vertex in any
first nearest neighbour graph in Rm is equal to at most the maximum kissing number
in Rm.

Lemma 4.3 (Zeger and Gersho). The maximum number of points in Rm that can
share a common nearest neighbour is equal to the maximum kissing number in Rm.

Proof. Suppose we have a set of N > K(m) distinct points {x1, . . . , xN} having a
common nearest neighbour c. Let di = |xi − c|, d = min{di : 1 ≤ i ≤ N} and define

yi =

(
di − d

di

)
c+

(
d

di

)
xi (4.9)

so that each point yi lies on the sphere of radius d centred at c (see Figure 4.4). We

x
2

d

x
1

x
5

xi

xN

x
4

x =y
3 3

c

y
4

y
1

yi

yN

y
2

y
5

Figure 4.4: The vectors xi − c are scaled so that they all have the same length d.

claim that |yi−yj| ≥ d for each i 6= j. Let i 6= j and suppose without loss of generality
that

|xi − c| ≤ |xj − c| ≤ |xi − xj| (4.10)

Using the identity

2(xi − c) · (xj − c) = |xi − c|2 + |xj − c|2 − |xi − xj|2 (4.11)

we get

2(xi − c) · (xj − c) ≤ d2
i ≤ didj (4.12)
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where the second inequality follows by (4.10). By definition of yi and yj,

2(yi − c) · (yj − c) =
2d2

didj
(xi − c) · (xj − c) (4.13)

so by (4.12) we have that 2(yi − c) · (yj − c) ≤ d2. Hence, using the identity

|yi − yj|2 = |yi − c|2 + |yj − c|2 − 2(yi − c) · (yj − c) (4.14)

it follows that |yi − yj|2 ≥ d2, which proves the claim.

The set {y1, . . . , yN} is therefore a set of N > K(m) distinct points, all of which are
located at a distance d from c and which are all at least a distance d apart. Thus
we can place a set of N non–overlapping spheres of radius d/2 centred at each yi and
each of these will be tangent to the sphere of radius d/2 centred at c, contradicting the
fact that the sphere of radius d/2 centred at c can have at most K(m) such tangent
spheres. Hence N ≤ K(m) as required.

We now extend Lemma 4.3 to obtain an upper bound on the maximum number of
points in Rm that can share a common kth nearest neighbour and in this way we get
an upper bound on the maximum degree of a vertex in any kth nearest neighbour
graph in Rm.

Theorem 4.1. The maximum number of points F (m, k) in Rm that can share a com-
mon kth nearest neighbour satisfies

F (m, k) ≤ kK(m) (4.15)

where K(m) is the maximum kissing number in Rm.

Proof. Suppose that F (m, k) > kK(m) and let S = {x1, . . . , xt} be a set of t > kK(m)
points in Rm having a common kth nearest neighbour c.

First we choose α1 to be a point of S which is furthest away from c,

|α1 − c| ≥ |xi − c| for all xi ∈ S (4.16)

and define S1 ⊂ S to be the set of points in S that are strictly closer to α1 than c is to
α1, i.e.

S1 = {xj ∈ S : |α1 − xj| < |α1 − c|} (4.17)

Then S1 contains at least one point (namely α1 itself) and since c is the kth nearest
neighbour of α1 it follows by definition of kth nearest neighbours (Section 1.7) that S1

contains at most k points. Hence, the cardinality of S1 satisfies 1 ≤ |S1| ≤ k.

Next we eliminate the points of S1 and choose α2 ∈ T1 = S \ S1 among the remaining
points to be a furthest point away from c, as illustrated in Figure 4.5. We then define

S2 = {xj ∈ S \ T1 : |α2 − xj| < |α2 − c|} (4.18)
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Figure 4.5: α2 is the furthest point away from c that is not contained in the open ball
B(α1, |α1 − c|).

whose cardinality again satisfies 1 ≤ |S2| ≤ k. Since α2 ∈ T1 it follows that α1 6= α2

and |α1 − c| ≤ |α1 − α2|. By construction we also have |α2 − c| ≤ |α1 − c| and hence

|α2 − c| ≤ |α1 − c| ≤ |α1 − α2| (4.19)

We continue this process, after n steps obtaining the sequence of disjoint sets S1, . . . , Sn
and a corresponding set of distinct points {α1, . . . , αn}. If Tn = S \ ∪ni=1Si is empty,
the process terminates. Otherwise we choose αn+1 ∈ Tn to be a point which is furthest
away from c and define

Sn+1 = {xj ∈ S \ Tn : |αn+1 − xj| < |αn+1 − c|} (4.20)

so that 1 ≤ |Sn+1| ≤ k as above. Since αn+1 ∈ Tn then αn+1 is distinct from each point
in the set {α1, . . . , αn} and furthermore, |αi − c| ≤ |αi − αn+1| for each 1 ≤ i ≤ n. By
construction we also have that |αn+1 − c| ≤ |αi − c| for each 1 ≤ i ≤ n and hence

|αn+1 − c| ≤ |αn+1 − αi| for each 1 ≤ i ≤ n (4.21)

The condition |Sn| ≥ 1 means that at least one point is eliminated at each stage
and hence the process must eventually terminate, say after N steps where N ≤ t.
Furthermore, since |Sn| ≤ k for each n, at most k points are eliminated at each stage
so it also follows that N ≥ t/k.

By hypothesis we have assumed that t > kK(m) so it follows that N > K(m). Thus
we have a set of N > K(m) distinct points {α1, . . . , αn} which by construction, have
the property that |αi − c| ≤ |αi − αj| for each 1 ≤ i 6= j ≤ n.

Hence the point c is the first nearest neighbour of the N > K(m) points αi. This
contradicts Lemma 4.3 which asserts that at most K(m) distinct points have this
property and we conclude that F (m, k) ≤ kK(m) as required.

Theorem 4.1 is all we need in this regard for the proof of the Gamma test in Chapter 7.
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4.5 Expected number of components in a first near-

est neighbour graph

We derive an expression for the expected number of connected components1 in the first
near neighbour graph of a set of points selected uniformly at random from a compact
convex body in Rm. Our result is based on the observation, found in [Eppstein et al.
1997], that every component of a first nearest neighbour graph contains exactly one
pair of vertices that are nearest neighbours of each other. For completeness we include
a proof of this observation.

Lemma 4.4. Every connected component of a first nearest neighbour graph has exactly
one pair of vertices that are nearest neighbours of each other.

Proof. Let G be a (directed) first nearest neighbour graph having vertices X1, . . . , XM .
Let H be a (simply) connected component of G. We show that H contains exactly one
cycle and that the length of this cycle is equal to 2.

Suppose thatH hasN vertices (N ≤M). By definition, eachXi has exactly one nearest
neighbour so H contains exactly N arcs. Since H is (simply) connected, N −1 of these
arcs must be such that they form a spanning tree for the underlying (undirected) graph
of H. Thus follows that H contains exactly one directed cycle. The cycle is directed
because each vertex of H has exactly one arc directed away from it (i.e. towards its
unique nearest neighbour). Furthermore, since a vertex cannot be its own nearest
neighbour the length of the cycle must be greater than 1.

Suppose that the length of the cycle is equal to n ≥ 3. Letting σ denote an appropriate
permutation of the index list 1, . . . ,M we represent the cycle by

Xσ(1) NNXσ(2) NN . . . NNXσ(n) NNXσ(1) (4.22)

where the symbol ‘NN ’ represents the ‘is the nearest neighbour of’ relation (not that
this relation is not necessarily symmetric). If we define σ(n + 1) ≡ σ(1), this can be
summarised by saying that Xσ(i) is the nearest neighbour of Xσ(i+1) for each 1 ≤ i ≤ n.
Clearly,

|Xσ(2) −Xσ(1)| ≤ |Xσ(2) −Xσ(3)| since Xσ(1) NNXσ(2)

|Xσ(3) −Xσ(2)| ≤ |Xσ(3) −Xσ(4)| since Xσ(2) NNXσ(3)
...

...
...

...
...

|Xσ(1) −Xσ(n)| ≤ |Xσ(1) −Xσ(2)| since Xσ(n) NNXσ(1)

and hence

|Xσ(2) −Xσ(1)| = |Xσ(3) −Xσ(2)| = . . . = |Xσ(n) −Xσ(n−1)| = |Xσ(1) −Xσ(n)| (4.23)

Thus each vertex Xσ(i) is equidistant from its nearest neighbour Xσ(i−1) and the point
Xσ(i+1) having Xσ(i) as its nearest neighbour, i.e.

|Xσ(i) −Xσ(i−1)| = |Xσ(i) −Xσ(i+1)| for all 1 ≤ i ≤ n (4.24)

1The components in question are those of the underlying undirected graph.
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Let σ(j) = min{σ(i)
∣∣ 1 ≤ i ≤ n} and consider the nearest neighbour Xσ(j−1) of Xσ(j).

As we have seen, the distance between the nearest neighbour Xσ(j−2) of Xσ(j−1) is equal
to the distance between Xσ(j) and Xσ(j−1). However, by definition the index σ(j) is
(strictly) less than the index σ(j−2), contradicting the fact that Xσ(j−2) is the nearest
neighbour of Xσ(j−1). Thus the cycle must be of length 2, as required

Remark: That Lemma 4.4 does not hold for general kth nearest neighbour graphs
(i.e. k > 1) is illustrated in Figure 4.6, where each arrow points to the second nearest
neighbour of its starting point.

Figure 4.6: A connected component in a second nearest neighbour graph

4.5.1 Preliminaries

Let X ′
i = XN [i,1] denote the (first) nearest neighbour of Xi in the random sample

X = (X1, . . . , XM). By Lemma 4.4, we need to determine the conditional probability
that Xi is the nearest neighbour of X ′

i, given that X ′
i is the nearest neighbour of Xi.

Remark: For a set of points selected from Rm according to any well behaved sampling
distribution, an explicit expression for the probability that a point is the jth nearest
neighbour of its own kth nearest neighbour appears in [Henze 1987]. Related results for
point processes can be found in [Henze 1986], [Pickard 1982] and [Cox 1981]. The work
of [Henze 1987] is considerably more general than that presented below – we consider
only the case j = k = 1 for a uniform distribution. We do however give asymptotic
results with error terms as M → ∞.

Let N = N(X) be the number of components in the first nearest neighbour graph
of the random sample X and let Xi NNX ′

i represent the event that Xi is the nearest
neighbour of X ′

i. Then

E(N) =
1

2
M P(Xi NNX ′

i) (4.25)

For every x ∈ C let

σ(x) = P(Xi NNX ′
i

∣∣Xi = x) (4.26)

be the conditional probability that Xi is the nearest neighbour of X ′
i given that Xi

takes the value x, so that

P(Xi NNX ′
i) =

∫

x∈C

σ(x)φ(x) dx (4.27)
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For every x ∈ C and for all 0 ≤ r ≤ c1 let

ux(r) = P(Xi NNX ′
i

∣∣Xi = x, |X ′
i −Xi| = r) (4.28)

be the conditional probability that Xi is the nearest neighbour of X ′
i given that Xi

takes the value x and that the distance from Xi to its nearest neighbour is equal to r.

As in (3.24) of Chapter 3 we define

qx(r) = P(|X ′
i −Xi| ≤ r

∣∣Xi = x) (4.29)

to be the conditional distribution function of the first nearest neighbour distance of Xi

given that Xi takes the value x, so that

σ(x) =

∫ c1

0

ux(r) dqx(r) (4.30)

By Lemma 3.3,

σ(x) = (M − 1)

∫ c1

0

ux(r)(1 − ωx(r))
M−2 dωx(r) (4.31)

We seek to express ux(r) in terms of ωx(r) so that the integral may be evaluated by
changing the variable of integration from r to ω = ωx(r).

4.5.2 Boundary effects

If X ′
i takes a value near the boundary of C then the probability that Xi is the nearest

neighbour of Xi is likely to be greater than it would be if Xi and X ′
i were both located

away from the boundary. Under certain circumstances it may be that this probability
is equal to one (i.e. that Xi is certain to be the nearest neighbour of X ′

i) so the only
thing we can say for sure regarding σ(x) is that it satisfies |σ(x)| ≤ 1.

Let 0 < δ < c1 and let B ⊂ C denote the boundary region of width 2δ, defined to be
the set of points in C that are within distance 2δ of the boundary. Let A = C \ B be
the corresponding interior region and write

P(Xi NNX ′
i) =

∫

x∈A

σ(x)φ(x) dx+

∫

x∈B

σ(x)φ(x) dx (4.32)

By Lemma 3.1 there exists some constant 0 < a2 < ∞ such that |φ(x)| < a2 for all
x ∈ C. Furthermore, by condition C.3 there exists some constant 0 < c3 < ∞ such
that µ(B) ≤ c3δ. Since |σ(x)| < 1 it thus follows that the second integral in (4.32) is
bounded above by a2c2δ and hence

P(Xi NNX ′
i) =

∫

x∈A

σ(x)φ(x) dx+O(δ) as M → ∞ (4.33)

As in Lemma 3.9 we show that for every x ∈ A and for suitable δ → 0 as M → ∞, the
error incurred by evaluating the integral in (4.30) over [0, δ] rather than [0, c1] becomes
exponentially small as M → ∞.
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Lemma 4.5. Let 0 < ε < 1/m and δ = 1/M ε. Then for all x ∈ C and every β > 0,

σ(x) = (M − 1)

∫ δ

0

ux(r)(1 − ωx(r))
M−2 dωx(r) +O

(
1

Mβ

)
as M → ∞ (4.34)

Proof. Let

I(δ) = (M − 1)

∫ c1

δ

ux(r)(1 − ωx(r))
M−2 dωx(r) (4.35)

Since ωx(r) is monotonic increasing in r and ωx(r) ≥ c4r
m for all x ∈ C it follows that

1 − ωx(r) ≤ 1 − c4δ
m for all δ ≤ r ≤ c1.

Since 0 ≤ ux(r) ≤ 1 and δ > 0 we therefore have that

I(δ) ≤ c1(M − 1)(1 − c4δ
m)M−2 (4.36)

and substituting for δ we obtain

Iδ ≤ (M − 1)
(
1 − c2

Mmε

)M−2

(4.37)

Hence, since 0 < mε < 1 we can apply Lemma 3.4 and the result follows.

4.5.3 The probability ux(r)

Let x, y ∈ C and define

ξ(x, y) = P(Xi NNX ′
i

∣∣Xi = x,X ′
i = y) (4.38)

Let X = (X1, . . . , XM) be a random sample in which Xi takes the value x and X ′
i takes

the value y, and consider the ball Bx(|x − y|) centred at x having y on its boundary.
SinceX ′

i is the nearest neighbour ofXi it follows thatBx(|x−y|) is empty, i.e.Bx(|x−y|)
contains no other point of the sample.

Now consider the ball By(|x − y|) centred at y and having x on its boundary. As
illustrated in Figure 4.7 the probability ξ(x, y) that Xi is also the nearest neighbour of
X ′
i is equal to the conditional probability that By(|x− y|) is empty given that the ball

Bx(|x− y|) is empty,

ξ(x, y) = P
(
By(|x− y|) is empty

∣∣Bx(|x− y|) is empty
)

(4.39)

Using the identity P(A |B) = P(A ∩B)/P(B) for conditional probabilities we obtain

ξ(x, y) =
P(Bx(|x− y|) ∪By(|x− y|) is empty)

P(Bx(|x− y|) is empty)
(4.40)
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x

B |x-y|x( )

B |x-y|y( )

y

C

Figure 4.7: If y is the nearest neighbour of x, then x is the nearest neighbour of y if and
only if the shaded region contains no other point of the sample.

The probability that Bx(|x− y|) is empty is the probability that the remaining M − 2
points of the random sample X = (X1, . . . , XM) fall outside Bx(|x− y|).

Let Cx(r) denote the boundary of the ball Bx(r),

Cx(r) = {y ∈ C
∣∣ |x− y| = r} (4.41)

By (4.28) and (4.38) we see that ux(r) is the expected value of ξ(x, y) over Cx(r).
Writing this as

ux(r) = E
(
ξ(x, y)

∣∣ y ∈ Cx(r)
)

(4.42)

we thus obtain

σ(x) = (M − 1)

∫ c1

0

E
(
ξ(x, y)

∣∣ y ∈ Cx(r)
)
(1 − ωx(r))

M−2 dωx(r) (4.43)

For every y ∈ Cx(r) the probability that Bx(|x − y|) is empty is the probability that
Bx(r) is empty. Hence the probability that Xj takes a value outside Bx(r) is equal to
1 − ωx(r) so

P(Bx(|x− y|) is empty) = (1 − ωx(r))
M−2 for all y ∈ Cx(r) (4.44)

Let α(x, y) be the probability measure of Bx(|x− y|) ∪By(|x− y|), given by

α(x, y) =

∫

Bx(|x−y|)∪By(|x−y|)

φ(t) dt (4.45)

so that

P(Bx(|x− y|) ∪By(|x− y|) is empty) = (1 − α(x, y))M−2 (4.46)
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By (4.39) and (4.44) we obtain

ξ(x, y) =
(1 − α(x, y))M−2

(1 − ωx(r))M−2
for all y ∈ Cx(r) (4.47)

Since ωx(r) is constant over Cx(r), by (4.42) we have that

ux(r) =
E
(
(1 − α(x, y))M−2

∣∣ y ∈ Cx(r)
)

(1 − ωx(r))M−2
(4.48)

Hence by (4.43) it follows that

σ(x) = (M − 1)

∫ c1

0

vx(r) dωx(r) (4.49)

where

vx(r) = E
(
(1 − α(x, y))M−2

∣∣ y ∈ Cx(r)
)

(4.50)

and thus we seek to express vx(r) in terms of ωx(r).

4.5.4 The Lebesgue measure of a circle pair

The circle pair associated with a pair of points x, y ∈ Rm is defined to be the set
Bx(|x − y|) ∪ By(|x − y|) – this is the union of the ball centred at x having y on its
boundary and the ball centred at y having x on its boundary.

Let

η = η(m) =
µ
(
Bx(|x− y|) ∪By(|x− y|)

)

µ(Bx(|x− y|)) (4.51)

denote the Lebesgue measure of the circle pair Bx(|x− y|) ∪ By(|x − y|) expressed as
a proportion of the Lebesgue measure of Bx(|x − y|). Note that 1 < η < 2 provided
x 6= y. Simple geometric arguments lead to the following.

Lemma 4.6. For every x, y ∈ Rm,

µ(Bx(r) ∩By(r)) = 2Vm−1r
m

∫ π/3

0

sinm θ dθ (4.52)

where Vm−1 is the volume of the unit ball in Rm−1.

The value of η(m) is given by the following.

Lemma 4.7.

η = 2

(
1 − Γ(1 +m/2)√

πΓ(1/2 +m/2)

∫ π/3

0

sinm θ dθ

)
(4.53)
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Proof. Let x, y ∈ Rm and define r = |x− y| so that

η =
µ(Bx(r) ∪By(r))

µ(Bx(r))
(4.54)

Let Vm be the volume of the unit ball in Rm and consider

µ(Bx(r) ∪By(r)) = µ(Bx(r)) + µ(By(r)) − µ(Bx(r) ∩By(r)) (4.55)

Clearly, µ(Bx(r)) = µ(By(r)) = Vmr
m and by Lemma 4.6 we have that

µ(Bx(r) ∩By(r)) = 2Vm−1r
m

∫ π/3

0

sinm θ dθ (4.56)

Hence by (4.55) we obtain

µ(Bx(r) ∪By(r)) = 2Vmr
m

(
1 − Vm−1

Vm

∫ π/3

0

sinm θ dθ

)
(4.57)

and since µ(Bx(r)) = Vmr
m, the result follows by (4.54) and the formula Vm =

πm/2/Γ(1 +m/2).

We omit the proof of the following elementary result which facilitates direct computa-
tion of η from Lemma 4.7.

Lemma 4.8. If

Im =

∫ π/3

0

sinm θ dθ (4.58)

then

Im =

(
1 − 1

m

)
Im−2 −

1

2m

(√
3

2

)m−1

(4.59)

with I1 = 1/2 and I2 = π/6 −
√

3/8.

4.5.5 Theorem for uniform distributions

By Lemma 4.5 and (4.33) we can restrict our attention to the case where x ∈ A and
0 ≤ r ≤ δ in which case for every point y ∈ Cx(r) the region Bx(r)∪By(r) is completely
contained in C. If the points are selected from C according to a uniform distribution
it thus follows that

α(x, y) = ηωx(r) = ηVmr
m (4.60)
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Theorem 4.2. Let X = (X1, . . . , XM) be a random sample of independent and uni-
formly distributed random variables Xi taking values in the set C ⊂ Rm where µ(C) = 1
and C satisfies conditions C.1, C.2 and C.3 of Chapter 3. Let N be the number of
connected components in the first nearest neighbour graph of X. Then for every ρ > 0,

E(N) =
1

2
M

(
1

η
+O

(
1

M1/m−ρ

))
as M → ∞ (4.61)

Proof. We need to show that

P(Xi NNX ′
i) =

1

η
+O(δ) as M → ∞ (4.62)

where δ = 1/M 1/m−ρ.

Let A = C \ C(2δ) be the set of points in C whose distance from the boundary is at
least 2δ. By (4.33),

P(Xi NNX ′
i) =

∫

x∈A

σ(x)φ(x) dx+O(δ) as M → ∞ (4.63)

where

σ(x) = (M − 1)

∫ c1

0

vx(r) dωx(r) (4.64)

and

vx(r) = E
(
(1 − α(x, y))M−2

∣∣ y ∈ Cx(r)
)

(4.65)

Let x ∈ A. Then for every 0 ≤ r ≤ δ the circle pair Bx(r) ∪ By(r) is completely
contained in C so by (4.60) it follows that

α(x, y) = ηωx(r) for all y ∈ Cx(r) (4.66)

and since this is independent of any particular y ∈ Cx(r) we have that

vx(r) = (1 − ηωx(r))
M−2 for all 0 ≤ r ≤ δ (4.67)

Substituting this into (4.30) we get

σ(x) = (M − 1)

∫ c1

0

(1 − ηωx(r))
M−2 dωx(r) (4.68)

and changing the variable of integration from ωx(r) to ω we obtain

σ(x) = (M − 1)

∫ 1

0

(1 − ηω)M−2 dω (4.69)
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which we write as

σ(x) = −1

η

∫ 1

0

(M − 1)(1 − ηω)M−2(−η) dω (4.70)

Recognising the integrand as the derivative of (1−ηω)M−1 with respect to ω we evaluate
the integral to obtain

σ(x) =
1

η

(
1 − (1 − η)M−1

)
(4.71)

Since 1 < η < 2 it follows that |1 − η| < 1 so the (1 − η)M−1 term converges to zero
exponentially fast as M → ∞, i.e. for every β > 0,

σ(x) =
1

η
+O

(
1

Mβ

)
as M → ∞ (4.72)

Since this is independent of x then by uniformity we have by (4.63) that

P(Xi NNX ′
i) =

1

η
µ(A)O(δ) as M → ∞ (4.73)

Finally, since A = C \ B, µ(C) = 1 and µ(B) = O(δ) (condition C.3) we have that
µ(A) = 1 −O(δ) and hence

P(Xi NNX ′
i) =

1

η
+O(δ) as M → ∞ (4.74)

as required.

Using Lemma 4.7 and Lemma 4.8 we compute the first few values of η and η−1, shown
in the following table. These values have also been confirmed experimentally for each
1 ≤ m ≤ 10 by performing five experiments, each time generating M = 1000 points
uniformly at random in the unit hypercube in [0, 1]m and counting the number of
components in the associated first nearest neighbour graphs, then averaging over all
experiments. The results are shown in Table 4.1.

Table 4.1: Theoretical and experimental values of P(Xi NNX ′
i).

m 1 2 3 4 5 6 7 8 9 10
η 1.5 1.609 1.688 1.747 1.793 1.830 1.859 1.883 1.902 1.918
η−1 0.667 0.623 0.593 0.572 0.558 0.547 0.538 0.531 0.526 0.521
Expt 0.663 0.624 0.594 0.573 0.534 0.539 0.526 0.506 0.495 0.492
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4.5.6 Difficulties with the non–uniform case

In [Henze 1987] we find an analogue of Theorem 4.2 for point sets selected according
to non–uniform sampling distributions. However, the methods we have developed in
this section cannot be easily extended to encompass non–uniform distributions. Recall
that for the uniform case we have the exact expression

vx(r) = (1 − ηωx(r))
M−2 for all 0 ≤ r ≤ δ (4.75)

For the non–uniform case, using the mean value theorems of the integral and differential
calculus it can be shown that

α(x, y) = ηωx(r)(1 +O(r)) as r → 0 (4.76)

for every y ∈ Cx(r) and since this is independent of any particular y ∈ Cx(r) it follows
that

vx(r) = (1 − ηωx(r) +O(r))M−2 as r → 0 (4.77)

Furthermore, since we need only consider r in the range 0 ≤ r ≤ δ = 1/M ε, in contrast
to (4.67) we now have

vx(r) =

(
1 − ηωx(r) +O

(
1

M ε

))M−2

as M → ∞ (4.78)

From here we see that the error associated with this approximate expression for vx(r)
in terms of ωx(r) grows exponentially as the number of points M → ∞. This error
will therefore dominate the leading term in any (polynomial) asymptotic expansion of
σ(x), and consequently of P(Xi NNX ′

i), in terms of the number of points as M → ∞.

4.6 Summary

In this chapter we have developed an analysis of near neighbour graphs of which only
Theorem 4.1 is explicitly required for the proof of the Gamma test in Chapter 7. We
have also used the technique of ‘boundary shrinking’ developed in Chapter 3 to establish
an asymptotic formula for the expected number of components in a random first nearest
neighbour graph for which the points are sampled uniformly from a set C ⊂ Rm

satisfying conditions C.1,C.2 and C.3. This result is also confirmed experimentally.

In the next two chapters we turn our attention to establishing the required asymptotic
upper bounds on the variance of terms AM(k), BM(k) and CM(k) that arise from the
decomposition of γM(k) specified in Chapter 2.
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Chapter 5
L–dependent random variables

5.1 Introduction

In this chapter we establish some quite elegant statistical results that allow us to obtain
the required upper bounds on the variance of terms AM(k) and BM(k).

By hypothesis, each component variable Ri of the random noise sample R =
(R1, . . . , RM) is independent of every other Rj and also of the random point sam-
ple X = (X1, . . . , XM ). The terms (RN [i,k] − Ri)

2 of the sum AM(k) are therefore
statistically independent of one another unless they share a common subscript. By
Theorem 4.1 this means that any one term in the sum AM(k) can be statistically
dependent on at most some fixed number of other terms that is independent of the
sample size M . Consequently, it is relatively straightforward to obtain the required
upper bound on the variance of AM(k) and as we shall see in Chapter 7, similar notions
are sufficient to establish an adequate upper bound on the variance of BM(k).

5.2 A weak law of large numbers for independent

random variables

The weak law of large numbers for independent random variables is a result of classical
probability theory. Let Y = (Y1, . . . , YM) be a random sample of independent and
identically distributed random variables Yi, each defined on the probability space C
and having common mean and variance µ and σ2 respectively.

The sample mean of the random sample Y ∈ CM is defined by

ȲM =
1

M

M∑

i=1

Yi (5.1)
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and is itself a random variable on the sample space CM . Since the component variables
Yi are identically distributed, the expected value of ȲM over all random samples Y ∈ CM

is given by

E(ȲM) =
1

M

M∑

i=1

E(Yi) = µ (5.2)

The following lemma gives the variance of ȲM .

Lemma 5.1. Let Y = (Y1, . . . , YM) be a random sample of independent and identically
distributed random variables having common mean and variance µ and σ2 respectively.
Then

Var(ȲM) =
σ2

M
(5.3)

Proof. Without loss of generality suppose that µ = 0 so that Var(ȲM) = E(Ȳ 2
M), and

write this as

Var(ȲM) =
1

M2




M∑

i=1

E(Y 2
i ) +

M∑

i,j=1

i6=j

E(YiYj)


 (5.4)

Since the Yi are identically distributed, E(Y 2
i ) = σ2 for all 1 ≤ i ≤ M . Furthermore,

since the Yi are independent with E(Yi) = 0 it follows that E(YiYj) = E(Yi)E(Yj) = 0
for all 1 ≤ i 6= j ≤M . Hence Var(ȲM) = σ2/M as required.

Using Chebyshev’s inequality (Lemma 2.1) we obtain the following result of classical
probability theory, known as the the weak law of large numbers for independent and
identically distributed random variables.

Corollary 5.1. Let Y1, . . . , YM be a sample of independent and identically distributed
random variables having common mean and variance µ and σ2 respectively. Then for
every ε > 0,

P(|ȲM − µ| > ε) ≤ σ2

Mε2
(5.5)

and if σ2 <∞, the sample mean ȲM converges in probability to its expected value µ as
M → ∞.

Proof. Apply Chebyshev’s inequality to the random variable ȲM and apply the defini-
tion (2.21) of convergence in probability.

The following result quantifies the rate at which the sample mean ȲM converges in
probability to its expected value µ as M → ∞.
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Corollary 5.2. For every κ > 0,

ȲM = µ+O

(
1

M1/2−κ

)
(5.6)

with probability greater than 1 −O(1/M 2κ) as M → ∞.

Proof. Taking ε = 1/M 1/2−κ in Corollary 5.1,

P

(
|ȲM − µ| > 1

M1/2−κ

)
≤ σ2

M2κ
(5.7)

and hence

P

(
|ȲM − µ| ≤ 1

M1/2−κ

)
> 1 −O

(
1

M2κ

)
(5.8)

as required.

5.3 A weak law of large numbers for L–dependent

random variables

We now generalise the results of Section 5.2 to a class of dependent random samples
where for every component variable Yi, there exist some fixed number of other compo-
nent variables Yj such that Yi is independent of any subset of Y1, . . . , YM not containing
one or more of these Yj. More precisely, let L ≥ 1 be a fixed integer (independent of
M). A random sample Y = (Y1, . . . , YM) of identically distributed random variables is
said to be L–dependent if for every 1 ≤ i ≤ M , there exists a subset Vi ⊂ {1, . . . ,M}
of cardinality |Vi| ≤ L + 1 and which contains i, such that for every U ⊂ {1, . . . ,M}
with Vi ∩ U = ∅ we have that Yi is independent of {Yj : j ∈ U}. Note that the case
L = 0 corresponds to a random sample of independent random variables.

Lemma 5.2. Let Y = (Y1, . . . , YM) be a random sample of identically distributed L–
dependent random variables having common mean and variance µ and σ2 respectively
and define

ȲM =
1

M

M∑

i=1

Yi (5.9)

Then

Var(ȲM) ≤ (L+ 1)σ2

M
(5.10)

Proof. Without loss of generality suppose that µ = 0 and consider

Var(ȲM) = E(Ȳ 2
M) =

1

M2




M∑

i=1

E(Y 2
i ) +

M∑

i,j=1

i6=j

E(YiYj)


 (5.11)
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By definition of L–dependence, for any particular Yi there are at most L other Yj (with
i 6= j) such that E(YiYj) 6= E(Yi)E(Yj). Hence there are at most ML pairs Yi and Yj
(i 6= j) such that E(YiYj)−µ2 6= 0 and thus we see that there are at most ML non–zero
terms in the second sum of (5.11). Moreover, since Yi and Yj are identically distributed
and since ab ≤ 1

2
(a2 + b2) for any pair of real numbers a and b we have that

E(YiYj) ≤
1

2
(E(Y 2

i ) + E(Y 2
j )) = E(Y 2

i ) (5.12)

and hence

E(YiYj) − µ2 ≤ E(Y 2
i ) − µ2 = σ2 (5.13)

Thus the second sum in (5.11) is bounded above by MLσ2, and since the first sum in
(5.11) is equal to Mσ2 it follows that

Var(ȲM) ≤ (L+ 1)σ2

M
(5.14)

as required.

Using Chebyshev’s inequality we obtain the following corollary of Lemma 5.2. This
constitutes a weak law of large numbers for L–dependent random variables.

Corollary 5.3. Let Y = (Y1, . . . , YM) be a random sample of identically distributed L–
dependent random variables having common mean and variance µ and σ2 respectively.
Then for every ε > 0,

P(|ȲM − µ| > ε) ≤ (L+ 1)σ2

Mε2
(5.15)

and if σ2 <∞, the sample mean ȲM converges in probability to its expected value µ as
M → ∞.

5.4 Statistical dependence in the noise sample R

In Chapter 2, corresponding to any function g : R2 → R and any random point sample
X ∈ CM we defined a set of random variables (g1(R), . . . , gM(R)) on the space of
random noise samples RM by

gi(R) = g(Ri, RN [i,k]) 1 ≤ i ≤M, R ∈ R
M (5.16)

where N [i, k] is the index of the kth nearest neighbour of Xi in X. The indexing
structure N (X) inherited by a noise sample R from the associated point sample X
thus imposes a dependence structure on the random variables (g1(R), . . . , gM(R)), in
the sense that the value taken by a particular gi(R) = g(Ri, RN [i,k]) may depend on
the value taken by some other gj(R) = g(Rj, RN [j,k]) where i 6= j. Since each Ri is
independent and identically distributed, this can happen only if one of the following
occurs.
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• j = N [i, k]: Xj is the kth nearest neighbour of Xi

– by definition, this occurs for exactly one index j.

• N [j, k] = i: Xi is the kth nearest neighbour of Xj

– by Theorem 4.1 this can occur for at most kK(m) indices j.

• N [j, k] = N [i, k]: Xi and Xj have a common kth nearest neighbour

– by Theorem 4.1 this can occur for at most kK(m) indices j.

By Theorem 4.1, for any dependence structure imposed on the set (g1(R), . . . , gM(R))
by a point sample X the value taken by any particular gi(R) can therefore depend
on the value taken by at most 2kK(m) + 1 of the other gj(R), where K(m) is the
maximum kissing number in Rm.

Thus we have shown that (g1(R), . . . , gM(R)) is a set of L–dependent random variables
with L = 2kK(m) + 1 and applying Lemma 5.2 to (g1(R), . . . , gM(R)) we obtain the
following.

Theorem 5.1. Let X = (X1, . . . , XM) ∈ CM be a random sample of independent and
identically distributed random variables, let g : R2 → R be any function and define a
set of identically distributed random variables gi : Rm → R by

gi(R) = g(Ri, RN [i,k]) (5.17)

where N [i, k] is the index of the kth nearest neighbour of Xi in X. Let GM = GM(X,R)
denote their sample mean,

GM =
1

M

M∑

i=1

gi(R) (5.18)

Then

Var(GM) ≤ 2(kK(m) + 1) Var(gi(R))

M
(5.19)

where K(m) is the maximum kissing number in Rm, and this bound is independent of
any particular X ∈ CM .

Proof. By the definition of conditional variance (see [Feller 1971]) it is easily shown
that

Var(GM) = Var(E(GM |X)) + E(Var(GM |X)) (5.20)

Since the Ri are identically distributed, the expected value of GM is independent of
any particular X ∈ CM and hence the first term of (5.20) is zero. Furthermore, for any
X ∈ CM the random sample (g1(R), . . . , gM(R)) is a sequence of L–dependent random
variables with L = 2kK(m) + 1. Hence by Lemma 5.2 the second term of (5.20) is
bounded by (L+ 1)σ2/M where σ2 = Var(gi(R)), and the result follows.

For the proof of the Gamma test, Theorem 5.1 is all we need regarding L–dependent
random variables. We now digress to prove a Central Limit Theorem for this class of
dependent random variables.
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5.5 A Central Limit Theorem for L–dependent ran-

dom variables

A sequence of distribution functions FM is said to converge to some distribution func-
tion F as M → ∞ if FM(x) → F (x) as M → ∞ at each point of continuity of F .

Let YM and Y be random variables having distribution functions FM and F respectively.
Then FM → F as M → ∞ if

P(YM ≤ x) → P(Y ≤ x) as M → ∞ (5.21)

for every x such that P(Y = x) = 0, in which case we say that YM converges in
distribution to Y as M → ∞.

Let X1, X2, . . . be a sequence of random variables and consider the partial sums SM =∑M
i=1Xi. Letting E(SM) = µM and Var(SM) = σ2

M we define the normalised partial
sums S∗

M = (SM − µM)/σM so that E(S∗
M) = 0 and Var(S∗

M) = 1. The sequence
X1, X2, . . . is said to satisfy the Central Limit Theorem if the distribution of their
normalised partial sums S∗

M converges to the standard normal distribution Φ(x) as
M → ∞, i.e. for all x ∈ R,

P

(
SM − µM

σM
≤ x

)
→ Φ(x) as M → ∞ (5.22)

where

Φ(x) =
1√
2π

∫ x

−∞

e−t
2/2 dt (5.23)

5.5.1 A result of Baldi and Rinott

The following appears in [Baldi and Rinott 1989] (we change their terminology and
notation).

Theorem 5.2. Let X1, X2, . . . be a sequence of identically distributed random variables
with |Xi| ≤ B such that X = (X1, . . . , XM ) is a random sample of L–dependent random
variable for each M . Let SM =

∑M
i=1Xi and define µM = E(SM) and σ2

M = Var(SM).
Then

∣∣∣∣P
(
SM − µM

σM
≤ x

)
− Φ(x)

∣∣∣∣ ≤
32(1 +

√
6)(L+ 1)B3/2M1/2

σ
3/2
M

(5.24)

In [Baldi and Rinott 1989] the proof of Theorem 5.2 proceeds from a rather cumbersome
inequality of [Stein 1986], and the role played by L–dependence is somewhat obscure.
In Theorem 5.5 we present a more general result than that of Theorem 5.2 – instead of
requiring that the Xi are uniformly bounded, we need only that their absolute moments
are uniformly bounded. Our proof, in which the role played by L–dependence is clearly
illustrated, is based on an argument of [Noether 1970] and uses techniques that are very
close to those found in [Petrovskaya and Leontovich 1982].
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5.5.2 The method of moments

The next two results are well known theorems of classical probability theory. Their
proofs may be found in [Kendall and Stuart 1963] or [Billingsley 1979].

Theorem 5.3. Let X be a random variable with E(X r) < ∞ for all r = 1, 2, . . . and
suppose that

∞∑

r=1

E(Xr)

r!
xr <∞ for some x > 0 (5.25)

(i.e. the power series has a positive radius of convergence). Then X is the only random
variable with moments E(X), E(X2), . . ..

The distribution function of any random variable satisfying the conclusion of Lemma 5.3
is said to be uniquely determined by its moments.

Theorem 5.4 (The method of moments). Let XM be a sequence of random vari-
ables and suppose that each XM has moments of all orders. Let X be a random
variable whose distribution is uniquely determined by its moments and suppose that
E(Xr

M) → E(Xr) as M → ∞ for all r = 1, 2, . . .. Then the distribution of XM con-
verges to the distribution of X as M → ∞.

5.5.3 The standard normal distribution

The standard normal distribution is defined by

Φ(x) =
1√
2π

∫ x

−∞

e−t
2/2 dt (5.26)

Lemma 5.3. The moments of the standard normal distribution Φ(x) are given by

nr =

{
0 for r odd

(r − 1)(r − 3) . . . 3 for r even
(5.27)

Proof. By definition,

nr =

∫ ∞

−∞

xre−x
2/2 dx = −

∫ ∞

−∞

xr−1 d

dx

(
e−x

2/2
)
dx (5.28)

Integrating by parts,

nr = (r − 1)

∫ ∞

−∞

xr−2e−x
2/2 dx = (r − 1)nr−2 (5.29)

and since n1 = 0 and n2 = 1, the result follows by induction on r.
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Lemma 5.4. The standard normal distribution Φ(x) is uniquely determined by its
moments.

Proof. By Lemma 5.3, |nr| ≤ r! so

∞∑

r=1

nr
r!
xr ≤

∞∑

r=1

xr (5.30)

which is bounded for all 0 < x < 1. Hence by Theorem 5.3, Φ(x) is uniquely determined
by its moments.

Thus, in order to show that the distribution of some sequence SM converges to the
standard normal distribution Φ(x) as n → ∞, by Lemma 5.4 and Theorem 5.4 it is
sufficient to show that the rth moment of SM converges to the rth moment of Φ(x) as
M → ∞ for each r = 1, 2, . . ..

5.5.4 A Central Limit Theorem for triangular arrays of L–
dependent random variables

We extend Theorem 5.2 to encompass triangular arrays of random variables having
finite moments of all orders.

Theorem 5.5. For each M ∈ N let (XM,1, . . . , XM,M ) be a random sample of iden-
tically distributed L–dependent random variables and suppose that there exist finite
constants c1, c2, . . . such that for every XM,i, E(|XM,i|r) ≤ cr for all r ∈ N. Let

SM =
∑M

i=1XM,i and define µM = E(SM) and σ2
M = Var(SM). Then

P

(
SM − µM

σM
≤ x

)
→ Φ(x) as M → ∞ (5.31)

provided there exists some ε > 0 and some constant C > 0 such that

σ2
M ≥ CM 2/3(1+ε) (5.32)

Remark: Note that condition (5.32) can be expressed asM 1/2σ
−3/2
M = o(1) asM → ∞.

This is precisely the condition required to ensure that the right hand side of (5.24)
converges to zero as M → ∞
Proof. For each r ∈ N let

mr = E
((

SM − µM
σM

)r)
(5.33)

By Lemma 5.4 and Theorem 5.4 it is sufficient to prove that mr → nr as M → ∞
for each r ∈ N. Let Yi = XM,i − µM so that E(Yi) = 0 (for brevity, we suppress the
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dependence of Yi on M). By hypothesis there exist finite constants c1, c2, . . . such that
for every XM,i, E(|XM,i|r) ≤ cr for all r ∈ N. Hence for every Yi it follows that

E(|Yi|r) ≤ c′r =
∑

h=0

r

(
r

h

)
cjc

r−j
1 <∞ (5.34)

for all r ∈ N. Let TM = SM − µM =
∑M

i=1 Yi so that E(TM) = 0 and E(T 2
M) = σ2

M , and
define µr = E(T rM). We need to show that

µr/σ
r
M → nr as M → ∞ (5.35)

for each r ∈ N. Since µ1 = 0 and µ2 = σ2
M , by (5.27) we see that (5.35) is satisfied for

r = 1 and r = 2.

Since XM,1, . . . XM,M are L–dependent, the Y1, . . . , YM are also L–dependent. For each
1 ≤ i ≤M let Vi ⊂ {1, . . . ,M} denote the subset (whose cardinality satisfies Vi| ≤ L+1
and which contains i) such that for every U ⊂ {1, . . . ,M} with Vi ∩ U = ∅, Yi is
independent of {Yj : j ∈ U}. We consider the cases where r is odd and r is even
separately and to illustrate the method we look at the cases r = 3 and r = 4 in detail.

Special case 1: r = 3.

Consider

µ3 = E(T 3
M) =

∑

i,j,k

E(YiYjYk) (5.36)

If Yk is independent of {Yi, Yj} then E(YiYjYk) = E(YiYj)E(Yk), and since E(Yk) = 0
and E(YiYj) ≤ E(|YiYj|) ≤ E(Y 2

i ) ≤ c′2 <∞ it follows that E(YiYjYk) = 0 whenever Yk
is independent of both {Yi, Yj}. For brevity of notation let Yi 
 Yj indicate that Yi is
dependent on Yj. By symmetry on the indices we see that E(YiYjYk) is non-zero only
if one of the following holds.

(1) Yi 
 Yj and Yi 
 Yk

(2) Yi 
 Yj and Yj 
 Yk

(3) Yi 
 Yk and Yj 
 Yk

Since Y1, . . . , YM are L–dependent it follows that at most M(L+1)2 of the terms YiYjYk
satisfy (1). This is because for each fixed i we need that

• j ∈ Vi — there are at most L+ 1 such j

• k ∈ Vi — there are at most L+ 1 such k
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Thus it follows that there can be at most 3M(L+1)2 non–zero terms in (5.36). Since the
Yi are identically distributed it follows by the AM–GM inequality that E(|YiYjYk|) ≤
E(|Yi|3) and hence |E(YiYjYk)| ≤ c′3 <∞. Thus we see that

µ3 ≤ 3M(L+ 1)c′3 <∞ (5.37)

and by condition (5.32) it follows that

µ3

σ3
M

≤ 3(L+ 1)c′3
C3/2M ε

→ 0 as M → ∞ (5.38)

as required.

Special case 2: r = 4

Consider

µ4 = E(T 4
M) =

∑

i,j,k,l

E(YiYjYkYl) (5.39)

where the sum is taken over all 1 ≤ i, j, k, l ≤M . If Yl is independent of {Yi, Yj, Yk} then
E(YiYjYkYl) = E(YiYjYk)E(Yl), and since E(Yl) = 0 and E(YiYjYk) ≤ E(Y 3

i ) ≤ c′3 < ∞
it follows that E(YiYjYkYl) = 0 whenever Yl is independent of {Yi, Yj, Yk}. By symmetry
on the indices, if E(YiYjYkYl) 6= 0 then one of the following must hold.

(1) Yi 
 Yj , Yk 
 Yl

(2) Yi 
 Yk , Yj 
 Yl

(3) Yi 
 Yl , Yj 
 Yk

We show that the terms YiYjYkYl for which E(YiYjYkYl) 6= 0 are principally provided
by those that can be decomposed into two independent pairs of the form YiYj and
YkYl. Let {Yi, Yj} 6
 {Yk, Yl} indicate that {Yi, Yj} is independent of {Yk, Yl}. Any
term YiYjYkYl for which (1) holds must satisfy one of the following.

(a) Yi 
 Yj , Yk 
 Yl , {Yi, Yj} 6
 {Yk, Yl}

(b) Yi 
 Yj , Yk 
 Yl , Yi 
 Yk

(c) Yi 
 Yj , Yk 
 Yl , Yi 
 Yl

(d) Yi 
 Yj , Yk 
 Yl , Yj 
 Yk

(e) Yi 
 Yj , Yk 
 Yl , Yj 
 Yl

Among the M 4 terms YiYjYkYl, at most M 2(L + 1)2 of them can satisfy (a) because
for each i we require that
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• j ∈ Vi — there are at most L+ 1 such j

• k ∈ {1, . . . ,M} \ (Vi ∪ Vj) — there are at most M such k

• l ∈ Vk \ (Vi ∪ Vj) — there are at most L+ 1 such l

On the other hand, at most M(L + 1)3 of the YiYjYkYl satisfy (b) because for each i
we require that

• j ∈ Vi — there are at most L+ 1 such j

• k ∈ Vi — there are at most L+ 1 such k

• l ∈ Vk — there are at most L+ 1 such l

Thus at most 4M(L+ 1)3 of the terms YiYjYkYl satisfying (1) do not arise as a result
of two independent pairs of the form (Yi, Yj) and (Yk, Yl). These terms can therefore be
ignored when looking at the large M behaviour of (5.39), and since the above argument
also applies to the pairs {(Yi, Yk), (Yj, Yl)} and {(Yi, Yl), (Yj, Yk)} it follows that

µ4 ∼ 3
∑

i,j

E(YiYj)
∑

k,l

E(YkYl) as M → ∞ (5.40)

Thus, since σ2
M =

∑
i,j E(YiYj) we see that µ4 → 3σ4

M and hence µ4/σ
4
M → 3 as

M → ∞, as required.

General case 1: r odd.

For r odd, the sum

µr =
∑

i1,...ir

E(Yi1 . . . Yir) (5.41)

is dominated by (r− 3)/2 dependent pairs YiYj and one dependent triple YiYjYk. This
is because the number of such arrangements is asymptotically of greater order (in terms
of the number of points M) than the total number of other arrangements for which the
summand is non–zero (e.g. those having (r− 5)/2 dependent pairs and one dependent
quintuple). If C < ∞ is the number of ways of choosing (r − 3)/2 distinct pairs and
one triple from a set of r elements where r is odd then

µr ∼ C

(
∑

i,j

E(YiYj)

)(r−3)/2∑

i,j,k

E(YiYjYk) as M → ∞ (5.42)

and since σ2
M =

∑
i,j E(YiYj) and µ3 =

∑
i,j,k E(YiYjYk) we see that

µr ∼ Cσr−3
M µ3 as M → ∞ (5.43)

Thus µr/σ
r
M ∼ Cµ3/σ

3
M as M → ∞, and we have previously seen that µ3/σ

3
M → 0 as

M → ∞. Hence µr/σ
r
M → nr as M → ∞ for r odd, as required.
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General case 2: r even.

For r even, the sum

µr =
∑

i1,...ir

E(Yi1 . . . Yir) (5.44)

is dominated by those arrangements consisting of r/2 dependent pairs YiYj. Again,
this is because the number of such arrangements is asymptotically of greater order (in
terms of the number of points M) than the total number of other arrangements for
which the summand is non–zero (e.g. those involving r/2− 2 dependent pairs and one
dependent quadruple). If r is even then there are (r − 1)(r − 3) . . . 3 ways of selecting
r/2 distinct pairs from r elements and we have that

µr ∼ (r − 1)(r − 3) . . . 3

(
∑

i,j

E(YiYj)

)r/2

as M → ∞ (5.45)

Thus, since σ2
M =

∑
i,j E(YiYj) we obtain

µr ∼ (r − 1)(r − 3) . . . 3σrM as M → ∞ (5.46)

an hence µr/σ
r
M ∼ (r − 1)(r − 3) . . . 3 as M → ∞ for r even, as required.

5.6 Summary

In this chapter we have established the theory of sums of what we have called L-
dependent random variables. While similar results have appeared scattered in the
literature, we have presented a reasonably coherent theory for this class of random
variables, of which only Theorem 5.1 is required for the proof of the Gamma test
presented in Chapter 7. We hope that our simple proof of the Central Limit Theorem
for L-dependent random variables serves to clarify the overall situation.

In the next chapter we address the more difficult issue of establishing an upper bound
on the variance of term CM(k), which cannot be handled by the notion of L-dependence.
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Chapter 6
Bounded functions of a point and its kth nearest
neighbour

6.1 Introduction

As we shall see in Chapter 7, the notion of L–dependence is sufficient to establish the
required upper bounds on the variance of terms AM(k) and BM(k). Recall that

CM(k) =
1

M

M∑

i=1

hi(X) (6.1)

where

hi(X) =
1

2
((XN [i,k] −Xi) · ∇f(Xi))

2 − A(M,k)|XN [i,k] −Xi|2 (6.2)

To obtain an upper bound on the variance of CM(k) we are not able to apply the
results of Chapter 5 because (h1(X), . . . , hM(X)) is not a set of L–dependent random
variables. To see this, suppose that M points are selected at random from the unit
square [0, 1]2 ⊂ R2, suppose that the point Xi is located near the upper right corner
of [0, 1]2 and suppose that the distance from Xi to its first nearest neighbour XN [i,1] is

close to
√

2. Then all points other than Xi must be located in the lower left corner
of [0, 1]2. Thus |XN [j,1] − Xj| is dependent on |XN [i,1] − Xi| for each j 6= i and since
statistical dependence is symmetric, it is clear that any one nearest neighbour distance
may be statistically dependent on all the others.

6.2 The point sample X

We need an upper bound on the variance of

HM =
1

M

M∑

i=1

hi(X) (6.3)
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Define h∗i (X) = hi(X) − E(hi(X)) and for brevity of notation write hi = hi(X) and
h∗i = h∗i (X). By definition

Var(HM) =
1

M2

M∑

i=1

E
(
h∗2i
)

+
1

M2

∑

i6=j

E
(
h∗ih

∗
j

)
(6.4)

and since the h∗i are identically distributed over CM it follows that

Var(HM) ≤ 1

M
|E(h∗21 )| + |E(h∗1h

∗
2)| (6.5)

Lemma 6.1.

|E(h∗21 )| ≤ 4||h||E(|h1|) (6.6)

where ||h|| = sup{|h(x, y)| : x, y ∈ C}.
Proof. Clearly,

|E(h∗21 )| ≤ E(|h∗1||h∗1|) (6.7)

and since h∗1 = h1 − E(h1) it follows that

|h∗1| ≤ |h1| + E(|h1|) ≤ 2||h|| (6.8)

Hence |E(h∗21 )| ≤ 2||h||E(|h∗1|) and since E(|h∗1|) ≤ 2E(|h1|) we obtain

|E(h∗21 )| ≤ 4||h||E(|h1|) (6.9)

as required.

By Lemma 6.1 and (6.5),

Var(HM) ≤ 4||h||
M

E(|h1|) + |E(h∗1h
∗
2)| (6.10)

In section 6.4 we obtain an asymptotic upper bound on |E(h∗
1h

∗
2)| of order O(1/M) as

M → ∞. Our approach is based on methods developed in [Bickel and Breiman 1983] for
any bounded function of a pointXi and its first nearest neighbour distance |XN [i,1]−Xi|.
We extend their treatment to encompass any bounded function h(Xi, XN [i,k]) of a point
Xi and its kth nearest neighbour XN [i,k].

6.3 The kth nearest neighbour ball

Let φ(x) denote the common density function of the Xi over C and denote the proba-
bility measure of any subset A ⊆ C by

µ(A) =

∫

A

φ(x) dx (6.11)

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



6.3 The kth nearest neighbour ball 113

For any random point sample X = (X1, . . . , XM) in CM , let d1 be the distance from X1

to its kth nearest neighbour XN [1,k] in X. We define the kth nearest neighbour ball of
X1 to be the ball B1 = B(X1, d1) centred at X1 and having the kth nearest neighbour
XN [1,k] of X1 on its boundary.

For every random sample X there is a corresponding kth nearest neighbour ball B1 =
Bx(|x − y|) where Xi takes the value x ∈ C and XN [1,k] takes the value y ∈ C. The
probability measure µ(B1) of the kth nearest neighbour ball of X1 is therefore a random
variable over the sample space CM and we seek to determine its distribution function
and compute its moments.

Suppose X1 is fixed at some value x ∈ C and consider the set of samples

{X ∈ CM : X1 = x , d1 ≤ r} (6.12)

for which the distance from X1 = x to its kth nearest neighbour XN [1,k] is at most
equal to some r > 0. For any such sample X the ball Bx(r) must contain at least k
points distinct from x so the conditional probability that d1 ≤ r given that X1 = x is
equal to

P(d1 ≤ r
∣∣X1 = x)

= P
(
Bx(r) contains at least k points distinct from x

)

= 1 −
k−1∑

j=0

P
(
Bx(r) contains exactly j points distinct from x

)

For any Xj with j 6= 1, the probability that Xj takes a value in the ball Bx(r) is equal
to the probability measure µ(Bx(r)). Similarly, the probability that Xj takes a value
in the complement of Bx(r) is equal to 1 − µ(Bx(r)). Noting that there are precisely(
M−1
j

)
different ways of selecting a set of j points from the remaining M − 1 points

X2, . . . , XM we obtain

P(d1 ≤ r
∣∣X1 = x) = 1 −

k−1∑

j=0

(
M−1

j

)
µ(Bx(r))

j(1 − µ(Bx(r)))
M−j−1 (6.13)

Clearly, if d1 ≤ r then Bx(d1) ⊆ Bx(r) and hence µ(Bx(d1)) ≤ µ(Bx(r)). Conversely,
if µ(Bx(d1)) ≤ µ(Bx(r)) then since the balls Bx(d1) and Bx(r) are concentric it follows
that Bx(d1) ⊆ Bx(r) and hence that d1 ≤ r. Thus

P
(
µ(Bx(d1)) ≤ µ(Bx(r))

∣∣X1 = x
)

= 1 −
k−1∑

j=0

(
M−1

j

)
µ(Bx(r))

j(1 − µ(Bx(r)))
M−j−1

(6.14)

Letting z = µ(Bx(r)) this becomes

P(µ(Bx(d1)) ≤ z
∣∣X1 = x) = 1 −

k−1∑

j=0

(
M−1

j

)
zj(1 − z)M−j−1 (6.15)
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and since this holds for all x ∈ C we obtain

P(µ(B1) ≤ z) = 1 −
k−1∑

j=0

(
M−1

j

)
zj(1 − z)M−j−1 (6.16)

Thus the distribution function of the probability measure µ(B1) of the kth nearest
neighbour ball B1 over the sample space CM is given by

F (z) = P(µ(B1) ≤ z) = 1 −
k−1∑

j=0

(
M−1

j

)
zj(1 − z)M−j−1 (6.17)

Although we shall need only the first two moments of µ(B1), it is convenient to compute
an expression for its general moment E(µ(B1)

α).

Lemma 6.2. For every integer α ≥ 1,

E(µ(B1)
α) =

(k + α− 1) . . . k

(M + α− 1) . . .M
(6.18)

Proof. Since µ is a probability measure we have that 0 ≤ µ(B1) ≤ 1 so integrating by
parts we get

E(µ(B1)
α) =

∫ 1

0

zαF ′(z) dz = 1 − α

∫ 1

0

zα−1F (z) dz (6.19)

where F (z) is the distribution function of µ(B1). By (6.17),

E(µ(B1)
α) =

k−1∑

j=0

(
M−1

j

)∫ 1

0

zj+α−1(1 − z)M−j−1 dz (6.20)

The integral in (6.20) is the Beta function

B(a, b) =

∫ 1

0

xa−1(1 − x)b−1 dx =
Γ(a)Γ(b)

Γ(a+ b)
(6.21)

with parameters a = j + α and b = M − j. Hence

E(µ(B1)
α) = α

k−1∑

j=0

(
M−1

j

)
Γ(j + α)Γ(M − j)

Γ(M + α)
(6.22)

and writing
(
M−1

j

)
=

Γ(M)

Γ(M − j)Γ(j + 1)
(6.23)

we see that

E(µ(B1)
α) = α

k−1∑

j=0

Γ(M)Γ(j + α)

Γ(M + α)Γ(j + 1)
=

Γ(M)Γ(k + α)

Γ(M + α)Γ(k)
(6.24)

and the result follows.
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6.4 An asymptotic upper bound on E(h∗1h
∗
2)

We aim to show that |E(h∗1h
∗
2)| ≤ c/M where c is a finite constant that is independent

of the number of points M .

Let P be the probability measure on the space of random point samples CM having the
property that each component variable Xi of the random sample X = (X1, . . . , XM ) is
independent and identically distributed in C with probability density φ. Let (a1, a2) ∈
C × C be a pair of fixed points and define S(a1, a2) ⊂ C to be the closed ball
B(a1, |a2 − a1|) centred at a1 and having radius |a2−a1| (so that a2 is on the boundary
of S(a1, a2)).

Let φS and φC\S be the conditional densities of the Xi on hypothesis that Xi ∈ S and
Xi ∈ C \ S respectively,

φS(x) =

{
φ(x)/µ(S) if x ∈ S

0 if x /∈ S
(6.25)

φC\S(x) =

{
φ(x)/µ(C \ S) if x ∈ C \ S

0 if x /∈ C \ S (6.26)

where µ(S) and µ(C \ S) are the probability measures of S and C \ S respectively as
defined in (6.11). Let Qk+1( ·

∣∣ (a1, a2)) be the probability measure on the sample space
CM such that

• X1, . . . , XM−k−1 are i.i.d. in C \ S according to φC\S

• XM−k, . . . , XM−2 are i.i.d. in S according to φS

• XM−1 = a1 and XM = a2

Let Y = (Y1, . . . , YM) be a random sample where each Yi takes values in C\S according
to the conditional density φC\S and similarly let Z = (Z1, . . . , ZM) be a random sample
where each Zi takes values in S according to the conditional density φS

For each random sample X = (X1, . . . , XM ) in CM consider the associated sample

X̃ = (X̃1, . . . , X̃M ) given by

X̃i =





Xi if Xi ∈ C \ S and 1 ≤ i ≤M − k − 1
Yi if Xi ∈ S and 1 ≤ i ≤M − k − 1
Zi for M − k ≤ i ≤M − 2
a1 for i = M − 1
a2 for i = M

(6.27)

When constructing the restricted sample X̃ associated with any particular X ∈ CM , if
any point Xi among the first M−k−1 components variables of X falls inside S(a1, a2),
it is replaced by the corresponding Yi which is guaranteed to be in the complement C\S.
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Each of the next k − 1 component variables are then replaced by the corresponding
points Zi (which are each guaranteed to be in S) and finally, the last two component
variables XM−1 and XM are replaced by the fixed points a1 and a2 respectively.

By construction, for every sample X̃ defined in this way the ball S(a1, a2) coincides

with the kth nearest neighbour ball of its component variable of X̃M−1 (which is fixed
at a1).

Recall that hi(X) = h(Xi, XN [i,k]) where XN [i,k] is the kth nearest neighbour of Xi in

the random sample X = (X1, . . . , XM). Let X̃Ñ [i,k] denote the kth nearest neighbour

of X̃i in the associated sample X̃ = (X̃1, . . . , X̃M), and write hi(X̃) = h(X̃i, X̃Ñ [i,k]).

Clearly, hi(X) 6= hi(X̃) only if either X̃i 6= Xi or X̃Ñ [i,k] 6= XN [i,k].

Let r = k + 1 and let N be the number of ‘changed’ points among the first M − r so
that N + r points have changed in total. Letting I denote the indicator function we
write this as

N =
M−r∑

i=1

I(X̃i 6= Xi) (6.28)

This number N is precisely the number of points Xi among the first M − k− 1 points
that fall in the set S and which are therefore replaced by the corresponding points Yi
in the complement of S. Its expected value is therefore given by E(N) = (M − r)µ(S)
where µ(S) = µ(S(a1, a2)) is the probability measure of S as defined in (6.11).

Suppose that X̃i = Xi. Then X̃Ñ [i,k] 6= XN [i,k] only if one of the following occurs,

• One of the first k nearest neighbours of Xi has been removed.

• One of the new points becomes one of the first k nearest neighbours of Xi

Let Xj 6= X̃j be one of the changed points. For each 1 ≤ u ≤ k, by Theorem 4.1 we
know that Xj can be the uth nearest neighbour of at most uK(m) other points Xi

in X = (X1, . . . , XM), where K(m) is the maximum kissing number in Rm. Thus it
follows that Xj could have been one of the kth nearest neighbours of at most β(m, k)
of the other points Xi where

β(m, k) =
k∑

u=1

uK(m) =
1

2
k(k + 1)K(m) (6.29)

Similarly, the new point X̃j can be the nearest neighbour of at most β(m, k) other

points X̃i in the modified sample X̃ = (X̃1, . . . , X̃M). Thus each of the N + r changed
points can affect at most 2β(m, k) = k(k + 1)K(m) of the kth nearest neighbour
relations so

M−r∑

i=1

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k]) ≤ k(k + 1)K(m)(N + r) (6.30)

where I denotes the indicator function. For the sceptical reader we rigourise this
argument in the following.
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Lemma 6.3.
M−r∑

i=1

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k]) ≤ k(k + 1)K(m)(N + r) (6.31)

where K(m) is the maximum kissing number in Rm.

Proof. For any 1 ≤ i ≤M − r,

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k])

≤
k∑

u=1

M∑

j,l=1

I
(
N [i, u] = j, Ñ [i, u] = l, Xj 6= X̃j or Xl 6= X̃l

)

≤
k∑

u=1

M∑

j,l=1

I(N [i, u] = j)I(Ñ [i, u] = l)I(Xj 6= X̃j)

+
k∑

u=1

M∑

j,l=1

I(N [i, u] = j)I(Ñ [i, u] = l)I(Xl 6= X̃l)

Hence
M−r∑

i=1

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k])

≤
k∑

u=1

M∑

i=1

M∑

j,l=1

I(N [i, u] = j)I(Ñ [i, u] = l)I(Xj 6= X̃j) (6.32)

+
k∑

u=1

M∑

i=1

M∑

j,l=1

I(N [i, u] = j)I(Ñ [i, u] = l)I(Xl 6= X̃l)

Let A denote the first sum in (6.32). Rearranging the order of summation, this is equal
to

A =
M∑

j=1

I(Xj 6= X̃j)
k∑

u=1

M∑

i=1

I(N [i, u] = j)
M∑

l=1

I(Ñ [i, u] = l) (6.33)

For fixed u and i, X̃i has precisely one uth nearest neighbour X̃Ñ [i,u] in the modified

sample X̃ so there exists exactly one index l in the range 1 ≤ l ≤ M with Ñ [i, u] = l.
Hence

A =
M∑

j=1

I(Xj 6= X̃j)
k∑

u=1

M∑

i=1

I(N [i, u] = j) (6.34)

Furthermore, for fixed j and u, by Theorem 4.1 it follows that Xj can be the uth
nearest neighbour of at most uK(m) points Xi, i.e. there are at most uK(m) indices i
in the range 1 ≤ i ≤M such that N [i, u] = j. Hence

A ≤
M∑

j=1

I(Xj 6= X̃j)
k∑

u=1

uK(m) (6.35)
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so that

A ≤ 1

2
k(k + 1)K(m)

M∑

j=1

I(Xj 6= X̃j) (6.36)

By definition of N we know that Xj 6= X̃j for exactly N + r indices j in the range
1 ≤ j ≤M so

A ≤ 1

2
k(k + 1)K(m)(N + r) (6.37)

Applying an identical argument to the second sum in (6.32) it thus follows that

M−r∑

i=1

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k]) ≤ k(k + 1)K(m)(N + r) (6.38)

as required

By construction, the samples {X̃ |X ∈ CM} are distributed in CM according to the
probability measureQk+1(·) = Qk+1( ·

∣∣ (a1, a2)). Let EQk+1
denote an expectation taken

with respect to the probability measure Qk+1(·). The following lemma quantifies the
difference between the expected value EQk+1

(h1) taken with respect to Qk+1 and the
expected value E(h1) taken with respect to the (unrestricted) probability measure P .
As we might expect, this difference depends both on k and on the set S = S(a1, a2).

Lemma 6.4. For any fixed 1 ≤ k ≤M − 1,

|EQk+1
(h1) − E(h1)| ≤ C0||h||

(
k + 1

M
+ µ(S)

)
(6.39)

where Qk+1( · ) = Qk+1( · | (a1, a2)), S = S(a1, a2) is the ball centred at a1 of radius
|a2 − a1| and

C0 = 4(1 + k(k + 1)K(m)) (6.40)

is a constant depending only on m and k.

Proof. Let r = k+ 1. Since the left hand side of (6.39) is bounded above by 2||h||, the
bound holds trivially for r ≥M/2 since C0 ≥ 4. Suppose therefore that r < M/2.

For each 1 ≤ i ≤M − r we have that EQr
(hi(X)) = E(hi(X̃)) so

|EQr
(hi(X)) − E(hi(X))| = |E(hi(X̃)) − E(hi(X))| (6.41)

Furthermore, since each Xi is identically distributed it follows that E(h1(X)) =

E(hi(X)) and E(h1(X̃)) = E(hi(X̃)) for each 1 ≤ i ≤M − r. Hence
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|EQr
(h1(X)) − E(h1(X))| =

1

M − r

M−r∑

i=1

|E(hi(X̃)) − E(hi(X))|

≤ 1

M − r
E
(
M−r∑

i=1

|hi(X̃) − hi(X)|
)

(6.42)

Now, hi(X) = h(Xi, XN [i,k]) and hi(X̃) = h(X̃i, X̃Ñ [i,k]) can be different only if one of
the following occurs,

• X̃i 6= Xi (Xi has changed).

• X̃i = Xi and X̃Ñ [i,k] 6= XN [i,k] (the kth nearest neighbour of Xi has changed).

and in each case, this difference cannot be greater than 2||h||. Hence, by (6.42) it
follows that

|EQr
(h1(X)) − E(h1(X))|

≤ 2||h||
M − r

E
(
M−r∑

i=1

(
I(X̃i 6= Xi) + I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k])

))
(6.43)

where I denotes the indicator function. Let N be the number of changed points among
the first M − r points, i.e.

N =
M−r∑

i=1

I(X̃i 6= Xi) (6.44)

By Lemma 6.3,

M−r∑

i=1

I(X̃i = Xi, X̃Ñ [i,k] 6= XN [i,k]) ≤ k(k + 1)K(m)(N + r) (6.45)

so by (6.43) we obtain

|EQr
(h1(X)) − E(h1(X))| ≤ 2||h||

M − r
E
(
(1 + k(k + 1)K(m))(N + r)

)

=
2||h||(1 + k(k + 1)K(m))

M − r
(E(N) + r) (6.46)

Writing E(N) = (M−r)µ(S) where µ(S) is the probability measure of the ball centred
at a1 having radius |a2 − a1| we obtain

|EQr
(h1(X)) − E(h1(X))| ≤ 2||h||(1 + k(k + 1)K(m))

(
r

M − r
+ µ(S)

)
(6.47)

Finally, since r < M/2 we have that r/(M − r) ≤ 2r/M so

|EQr
(h1) − E(h1)| ≤ 4||h||(1 + k(k + 1)K(m))

( r
M

+ µ(S)
)

(6.48)

and the result follows on taking C0 = 4(1 + k(k + 1)K(m)).
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Using Lemma 6.4 we can now compute an upper bound on the expected value of h∗
1h

∗
2

as follows.

Lemma 6.5 (The critical lemma).

|E(h∗1h
∗
2)| ≤ C1||h||

(
1

M
E(|h1|) + E(|h1µ(B1)|)

)
(6.49)

where B1 = B1(X) is the kth nearest neighbour ball of X1 and

C1 = (3k + 2)C0 = 4(3k + 2)(1 + k(k + 1)K(m)) (6.50)

is a constant depending only on m and k.

Proof. Consider

E(h∗1h
∗
2) =

∫

CM

h∗1h
∗
2 dP (6.51)

Writing h∗2 = h2 − E(h2) this becomes

E(h∗1h
∗
2) =

∫

CM

h∗1(h2 − E(h2)) dP

=

∫
h∗1h2 dP − E(h2)

∫
h∗1 dP (6.52)

For every pair (a1, a2) ∈ C2 define the subset C[a1, a2] of CM by

C[a1, a2] =
{
X ∈ CM : X1 = a1, XN [1,k] = a2

}
(6.53)

so that C[a1, a2] contains all those samples X ∈ CM where X1 takes the value a1 and
the kth nearest neighbour of X1 takes the value a2. This induces a partition of CM

given by

CM =
⋃

(a1,a2)∈C2

C[a1, a2] (6.54)

By Fubini’s theorem we may evaluate the first integral on the right hand side of (6.52)
by first integrating over each subset C[a1, a2] separately, then integrating over all pairs
(a1, a2) ∈ C2. Thus we have that

∫

CM

h∗1h2 dP =

∫

(a1,a2)∈C2

(∫

C[a1,a2]

h∗1h2 dP1

)
dP2 (6.55)

where P1 = P1(a1, a2) and P2 are the projections of the probability measure P onto
the subspaces C[a1, a2] and C2 respectively.

By construction, for each X ∈ C[a1, a2] both X1 and its kth nearest neighbour XN [1,k]

are fixed at a1 and a2 respectively so by definition, h∗1 = h∗1(X) = h∗(X1, XN [1,k]) is
equal to h∗(a1, a2) for all X ∈ C[a1, a2]. By (6.55) we thus have that

∫

CM

h∗1h2 dP =

∫

(a1,a2)∈C2

h∗(a1, a2)

(∫

C[a1,a2]

h2 dP1

)
dP2 (6.56)
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Since P1 is the projection of P onto C[a1, a2], the inner integral in (6.56) corresponds
to the conditional expectation of h2 = h2(X) on hypothesis that X1 is fixed at a1 and
and that its kth nearest neighbour XN [1,k] is fixed at a2. Hence

∫

CM

h∗1h2 dP =

∫

(a1,a2)∈C2

h∗(a1, a2)E(h2(X)
∣∣X1 = a1, XN [1,k] = a2) dP2 (6.57)

Furthermore, since
∫

C[a1,a2]

dP1 = 1 (6.58)

and since h∗(a1, a2)E(h2

∣∣X1 = a1, XN [1,k] = a2) depends only on a1 and a2 it follows
that

∫

CM

h∗1h2 dP

=

∫

(a1,a2)∈C2

h∗(a1, a2)E(h2(X)
∣∣X1 = a1, XN [1,k] = a2)

∫

C[a1,a2]

dP1 dP2

=

∫

(a1,a2)∈C2

∫

C[a1,a2]

h∗(a1, a2)E(h2(X)
∣∣X1 = a1, XN [1,k] = a2) dP1 dP2

=

∫

CM

h∗1(X)E(h2

∣∣X1, XN [1,k]) dP

Substituting this into (6.52) we obtain

E(h∗1h
∗
2) =

∫

CM

h∗1(X)
(
E(h2(X)

∣∣X1, XN [1,k]) − E(h2)
)
dP (6.59)

and hence

|E(h∗1h
∗
2)| ≤

∫

CM

|h∗1| |E(h2(X)
∣∣X1, XN [1,k]) − E(h2)| dP (6.60)

The point samplesX ∈ CM that are subject to the restrictionsX1 = a1 andXN [1,k] = a2

(i.e. those contained in C[a1, a2]) are distributed according to the probability measure
Qk+1( · | (a1, a2))

1, i.e.

E(h2(X)
∣∣X1, XN [1,k]) = EQk+1

(h2) (6.61)

so by (6.60) it follows that

|E(h∗1h
∗
2)| ≤

∫

CM

|h∗1| |EQk+1
(h2) − E(h2)| dP (6.62)

By Lemma 6.4 we have that

|EQk+1
(h2) − E(h2)| ≤ C0||h||

(
k + 1

M
+ µ(B1)

)
(6.63)

1Note that Qk+1 precisely corresponds to the projected measure P1.
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where B1 is the kth nearest neighbour ball of X1, so by (6.62) we obtain

|E(h∗1h
∗
2)| ≤ C0||h||

(
k + 1

M

∫

CM

|h∗1| dP +

∫

CM

|h∗1|µ(B1) dP

)
(6.64)

Now, since |h∗1| ≤ |h1| + E(|h1|) it follows that

∫

CM

|h∗1| dP ≤
∫

CM

|h1| + E(|h1|) dP = 2E(|h1|) (6.65)

and using the fact that 0 ≤ µ(B1) ≤ 1, this also implies that

∫
|h∗1|µ(B1) dP ≤

∫
|h1µ(B1)| dP + E(|h1|)

∫
µ(B1)dP (6.66)

i.e.
∫

|h∗1|µ(B1) dP ≤ E(|h1µ(B1)|) + E(|h1|)E(µ(B1)) (6.67)

Furthermore, taking α = 1 in Lemma 6.2 we know that E(µ(B1)) = k/M so (6.67)
becomes

∫

B

|h∗1|µ(B1) dP ≤ E(|h1µ(B1)|) +
k

M
E(|h1|) (6.68)

Finally, substituting (6.65) and (6.68) into (6.64) we obtain

|E(h∗1h
∗
2)| ≤ C0||h||

(
(3k + 2)

M
E(|h1|) + E(|h1µ(B1)|)

)
(6.69)

Hence

|E(h∗1h
∗
2)| ≤ (3k + 2)C0||h||

(
1

M
E(|h1|) + E(|h1µ(B1)|)

)
(6.70)

and the result follows on taking C1 = (3k + 2)C0.

6.5 An asymptotic upper bound on Var(HM)

Lemma 6.6. For all M ≥ 4,

|E(h∗1h
∗
2)| ≤

C2||h||
M

E(|h1|2)1/2 (6.71)

where

C2 = (k + 2)C1 = 4(k + 2)(3k + 2)(1 + k(k + 1)K(m)) (6.72)
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Proof. By the Cauchy–Schwarz inequality,

E(|h1µ(B1)|) ≤ E(|h1|2)1/2E(µ(B1)
2)1/2 (6.73)

Taking α = 2 in Lemma 6.2 we get

E(µ(B1)
2) =

k(k + 1)

M(M + 1)
≤
(
k + 1

M

)2

(6.74)

so by (6.73) it follows that

E(|h1µ(B1)|) ≤
k + 1

M
E(|h1|2)1/2 (6.75)

Furthermore, Var(|h1|) = E(|h1|2) − E(|h1|)2 ≥ 0 implies that E(|h1|) ≤ E(|h1|2)1/2 so
by Lemma 6.5,

|E(h∗1h
∗
2)| ≤ C1||h||

(
1

M
E(|h1|) + E(|h1µ(B1)|)

)

≤ C1||h||
(

1

M
E(|h1|2)1/2 +

k + 1

M
E(|h1|2)1/2

)

≤ C1(k + 2)||h||
M

E(|h1|2)1/2 (6.76)

and the result follows on taking C2 = (k + 2)C1.

Thus we obtain the main result of the present chapter as follows.

Theorem 6.1.

Var(HM) ≤ C3||h||
M

E(|h1|2)1/2 (6.77)

where

C3 = 4 + C2 = 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m))) (6.78)

Proof. Recall from (6.5) that

Var(HM) ≤ 1

M
|E(h∗21 )| + |E(h∗1h

∗
2)| (6.79)

By Lemma 6.1,

|E(h∗21 )| ≤ 4||h||E(|h1|) ≤ 4||h||E(|h1|2)1/2 (6.80)

and by Lemma 6.6,

|E(h∗1h
∗
2)| ≤

C2||h||
M

E(|h1|2)1/2 (6.81)

Hence

Var(HM) ≤ (C2 + 4)||h||
M

E(|h1|2)1/2 (6.82)

and the result follows on taking C3 = 4 + C2.
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6.6 A law of large numbers for δM(k)

Using Chebyshev’s inequality we obtain the following corollary of Theorem 6.1.

Corollary 6.1. For every ε > 0

P(|HM − E(HM)| > ε) ≤ C3||h||
Mε2

E(|h1|2)1/2 (6.83)

If ||h|| < ∞ then by Corollary 6.1 we see that the sample mean HM converges in
probability to its expected value as M → ∞. Thus we have shown that bounded
functions of a point and its kth nearest neighbour satisfy a weak law of large numbers .
In particular, δM(k) is the sample mean of the random variables hi(X) = |XN [i,k]−Xi|2
so by Corollary 6.1 it follows that δM satisfies the weak law of large numbers, i.e.

δM(k)

E(|XN [i,k] −Xi|2)
→ 1 in probability as M → ∞ (6.84)

To quantify the rate of the probabilistic convergence in Corollary 6.1 let κ > 0 and
define

ε =
E(|h1|2)1/4

M1/2−κ
(6.85)

By Corollary 6.1 we get

P

(
|HM − E(HM)| > E(|h1|2)1/4

M1/2−κ

)
≤ C3||h||

M2κ
(6.86)

and since C3 and ||h|| are bounded independently of M it follows that

HM = E(HM) +O

(E(|h1|2)1/4

M1/2−κ

)
(6.87)

with probability greater than 1 − O(1/M 2κ) as M → ∞. Since E(|h1|2)1/4 ≤ ||h||1/2
this implies that

HM = E(HM) +O

(
1

M1/2−κ

)
(6.88)

with probability greater than 1 −O(1/M 2κ) as M → ∞.

However, if the function h is such that the expected value of |hi| = |h(Xi, XN [i,k])|
converges to zero as M → ∞, then (6.87) incorporates this to give a faster probabilistic
rate of convergence of the sample mean HM to its expected value E(HM) as M → ∞.
In particular, if the random sample X = (X1, . . . , XM) satisfies the conditions of
Theorem 3.2 then

δM(k) = E(|XN [i,k] −Xi|2) +O

(
1

M1/2+1/m−κ

)
(6.89)

with probability greater than 1 −O(1/M 2κ) as M → ∞.
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6.7 An asymptotic lower bound for the Travelling

Salesman Problem

The kth nearest neighbour graph of a point set X1, . . . , XM is defined to be the graph
obtained by including an edge between each point Xi and its kth nearest neighbour
XN [i,k]. Taking α = 1 in Theorem 3.2 provides an interesting asymptotic expression for
the expected length LM(Nk) of the kth nearest neighbour graph of M points selected
from C ⊂ Rm according to some sampling distribution function whose density φ is
smooth and strictly positive over C.

Corollary 6.2. Subject to the conditions of Theorem 3.2 we have

E(LM(Nk))

M1−1/m
→ c(m, k, φ) (6.90)

in probability as M → ∞, where

c(m, k, φ) = V −1/m
m

Γ(k + 1/m)

Γ(k)

∫

C

φ(x)1−1/m dx (6.91)

is a constant not depending on M .

By Corollary 6.1 it follows that LM(Nk)/E(LM(Nk)) → 1 in probability as M → ∞
and hence

LM(Nk)

M1−1/m
→ c(m, k, φ) (6.92)

in probability as M → ∞. For a uniform distribution with m = 2 and k = 1 this gives

LM(N1)√
M

∼ 0.5 (6.93)

in probability as M → ∞. This provides an interesting asymptotic lower bound for
the minimal tour length of the random geometric Travelling Salesman Problem (TSP)
on the unit square. If φ is uniform then [Beardwood et al. 1959] prove that the optimal
tour length LM(T ) of a set of independently distributed points in [0, 1]m satisfies

LM(T )

M1−1/m
∼ β as M → ∞ (6.94)

for some constant β > 0, where the convergence is with probability one. For m = 2 the
early estimate by [Stein 1977] of β = 0.765, derived empirically for relatively small TSP
problems, was found to be too large (see [Valenzuela and Jones 1997]), and [Johnson
et al. 1996] estimate β = 0.7124.

Since LM(T ) ≥ LM(N ) then (6.93) shows that β ≥ 0.5. While this is not particularly
good as an estimate for the minimal tour length of the TSP on the unit square, it is
interesting to observe that the method of proof is quite different from that presented in
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[Beardwood et al. 1959]. Furthermore, it indicates that the optimal tour in a random
geometric TSP is likely to contain a high proportion of edges that are not first nearest
neighbour links.

Experimental evidence for the random geometric TSP suggests that a near–optimal
tour can be constructed with with edges chosen from the associated kth nearest neigh-
bour graphs for 1 ≤ k ≤ 20. These results raise interesting questions regarding the
distribution of the maximum value of such k, and may suggest new heuristics for the
random geometric TSP which use only sets of kM edges (1 ≤ k ≤ 20), rather than the
complete set of M 2 edges.

6.8 The asymptotic length of the k-nearest neigh-

bours graph

In [Yukich 1998] the k-nearest neighbours graph of a point set X1, . . . , XM is defined
to be the graph obtained by including an edge between each point Xi and its first
k nearest neighbours XN [i,1], . . . , XN [i,k]. Theorem 8.3 of [Yukich 1998] states that if
X1, . . . , XM are independent and identically distributed random variables with values
in [0, 1]m for m ≥ 2, and if N(k;X1, . . . , XM) is the length of the k-nearest neighbours
graph of X1, . . . , XM , then

lim
M→∞

N(k;X1, . . . , XM )/M (m−1)/m = c(m, k)

∫

[0,1]m
φ(x)(m−1)/m dx (6.95)

where c(k,m) is a constant not depending on M the convergence is complete(see [Yu-
kich 1998]). The method of proof used in [Yukich 1998] is based on techniques first
used in [Beardwood et al. 1959] and later extended by [Steele 1981]. We now show that
(6.95) can also be obtained using the methods developed in this thesis.

By definition,

N(k;X1, . . . , XM) =
k∑

j=1

M∑

i=1

|XN [i,j] −Xi| (6.96)

Taking hi(X) = |XN [i,j] −Xi| in (6.87),

1

M

M∑

i=1

|XN [i,j] −Xi| = E(|XN [i,j] −Xi|) +O

(E(|XN [i,j] −Xi|2)1/4

M1/2−κ

)
(6.97)

Taking α = 1 and α = 2 in Theorem 3.2, for every ρ > 0 we have that

E(|XN [i,j] −Xi|) =
c′(m, j)

M1/m
+O

(
1

M2/m−ρ

)
as M → ∞ (6.98)

E(|XN [i,j] −Xi|2) = O

(
1

M2/m

)
as M → ∞ (6.99)
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where

c′(m, j) = V −1/m
m

Γ(j + 1/m)

Γ(j)

∫

[0,1]m
φ(x)(m−1)/m dx (6.100)

By (6.97) it thus follows that for all κ > 0,

1

M

M∑

i=1

|XN [i,j] −Xi| =
c′(m, j)

M1/m
+O

(
1

M1/2+1/2m−κ

)
as M → ∞ (6.101)

and multiplying both sides of (6.101) by M 1/m we obtain

1

M (m−1)/m

M∑

i=1

|XN [i,j] −Xi| = c′(m, j) +O

(
1

M1/2−1/2m−κ

)
as M → ∞ (6.102)

Hence by (6.96) and (6.100) we obtain

N(k;X1, . . . , XM)/M (m−1)/m = c(m, k)

∫

[0,1]m
φ(x)(m−1)/m dx

+O

(
1

M1/2−1/2m−κ

)
as M → ∞

(6.103)

where

c(m, k) = V −1/m
m

k∑

j=1

Γ(j + 1/m)/Γ(j) (6.104)

For all m ≥ 2 we have therefore shown that

lim
M→∞

N(k;X1, . . . , XM )/M (m−1)/m = c(m, k)

∫

[0,1]m
φ(x)(m−1)/m dx (6.105)

where the convergence is in probability. Although convergence in probability is weaker
than the complete convergence of Theorem 8.3 of [Yukich 1998], our result has the
advantage of providing an explicit value for the constant c(m, k). Furthermore, our
result provides the asymptotic order of magnitude of the error term and hence the rate
at which N(k;X1, . . . , XM )/M (m−1)/m converges as M → ∞.

6.9 Summary

In this chapter we have extended the ideas of [Bickel and Breiman 1983] to deal with
sums involving bounded functions hi(X) = h(XN [i,k], Xi) of a point and its kth nearest
neighbour. In Theorem 6.1 we have established an upper bound on the variance of
such sums – this will be required for the proof of the Gamma test in Chapter 7. We
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have then used this result to show that the mean squared distance δM(k) between kth
nearest neighbours in a set of M points satisfies the (weak) law of large numbers as
M → ∞.

With considerable further effort it may be possible to develop a Central Limit theorem
for sums of such functions, again following the ideas of [Bickel and Breiman 1983].
Furthermore, one could no doubt develop a similar theory for sums of bounded functions
of the form hi(X) = h(XN [i,k], XN [i,k−1], . . . , Xi).

All the required tools for a proof of the Gamma test have now been assembled, and in
the next chapter we shall put these results together.
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Chapter 7
Proof of the Gamma test

7.1 Introduction

We now proceed to the proofs of Theorems 1.1, 1.2 and 1.3. Recall (2.20) which states
that

γM(k) = Var(r) + A(M,k)δM (k) + o(δM(k)) + AM(k) +BM(k) + CM(k) (7.1)

To prove Theorem 1.1 we must show that

γM(k) = Var(r) + A(M,k)δM(k) + o(δM(k)) +O

(
1

M1/2−κ

)
(7.2)

in probability as M → ∞.

In Lemma 2.4 we have shown that the expected value of each of the terms AM(k),
BM(k) and CM(k) is zero. To make use of Chebyshev’s inequality we now apply
Theorem 5.1 and Theorem 6.1 to obtain (probabilistic) upper bounds on AM(k), BM(k)
and CM(k) in terms of the number of points M .

7.2 Upper bounds on variance

Lemma 7.1 (The noise term). The variance of term AM(k) satisfies

Var(AM(k)) ≤ (kK(m) + 1)(E(r4) + Var(r)2)

M
(7.3)

where K(m) is the maximum kissing number in Rm.
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Proof. Define the random variables

gi(R) =
1

2
(RN [i,k] −Ri)

2 − Var(r) (7.4)

on the space of random noise samples RM so that

AM(k) =
1

M

M∑

i=1

gi(R) (7.5)

By Theorem 4.1, (g1(R), . . . , gM(R)) is a random sample of identically distributed L–
dependent random variables with L = 2kK(m) + 1. By Theorem 5.1 it thus follows
that

Var(AM(k)) ≤ 2(kK(m) + 1) Var(gi)

M
(7.6)

By hypothesis, Ri and RN [i,k] are independent and identically distributed having ex-
pected value zero so

E((RN [i,k] −Ri)
2) = E(R2

N [i,k]) − 2E(RN [i,k])E(Ri) + E(R2
i ) = 2E(R2

i ) = 2 Var(r) (7.7)

and hence E(gi) = 0. Thus it follows that Var(gi) = E(g2
i ) which we write as

Var(gi) = E
(

1

4
(RN [i,k] −Ri)

4 − (RN [i,k] −Ri)
2 Var(r) + Var(r)2

)

= E
(

1

4
(RN [i,k] −Ri)

4

)
− Var(r)2

=
1

4
E
(
R4
N [i,k] − 4R3

N [i,k]Ri + 6R2
N [i,k]R

2
i − 4RN [i,k]R

3
i +R4

i

)
− Var(r)2

(7.8)

By hypothesis, E(Ri) = 0, E(R3
i ) <∞ and Ri and RN [i,k] are independent so

E(R3
N [i,k]Ri) = E(R3

N [i,k])E(Ri) = 0

E(RN [i,k]R
3
i ) = E(RN [i,k])E(R3

i ) = 0
(7.9)

Furthermore, since Ri and RN [i,k] are independent and identically distributed we have
that

E(R2
N [i,k]R

2
i ) = E(R2

N [i,k])E(R2
i ) = Var(r)2 (7.10)

Thus, since E(R4
N [i,k]) = E(R4

i ) = E(r4) we obtain

Var(gi) =
1

2
(E(r4) + Var(r)2) <∞ (7.11)

and by (7.6) it follows that

Var(AM(k)) ≤ (kK(m) + 1)(E(r4) + Var(r)2)

M
(7.12)

as required.
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Lemma 7.2 (The mixed term). The variance of term BM(k) satisfies

Var(BM(k)) ≤ 4(kK(m) + 1) Var(r)c21(b1 + c1b2)
2

M
(7.13)

where K(m) is the maximum kissing number in Rm.

Proof. Define the random variables

gi(R) = RN [i,k] −Ri (7.14)

hi(X) = (XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k]) (7.15)

on RM and CM respectively so that

BM(k) =
1

M

M∑

i=1

gi(R)hi(X) (7.16)

By Lemma 2.4 we have that E(BM(k)) = 0 so Var(BM(k)) = E(BM(k)2). Taking the
expectation of BM(k)2 over all pairs (X,R) ∈ CM × RM we obtain

E(BM(k)2) =
1

M2

M∑

i,j=1

E(hi(X)hj(X)gi(R)gj(R)) (7.17)

By hypothesis both hi(X) and hj(X) are completely independent of R, while gi(R)
and gj(R) may depend on X. Thus we write

E(BM(k)2) =
1

M2

M∑

i,j=1

Eφ
(
hi(X)hj(X)Eψ(gi(R)gj(R)

∣∣X)
)

(7.18)

By Theorem 4.1 and the discussion contained in Chapter 2, for any X ∈ CM the
random variables g1(R), . . . , gM(R) are L–dependent with L = 2(kK(m) + 1) where
K(m) is the maximum kissing number in Rm. Hence, for any fixed i it follows that
Eψ(gi(R)gj(R)

∣∣X) 6= 0 for at most L indices j. Furthermore, since |ab| ≤ 1
2
(a2 + b2) for

any pair of real numbers a and b and since gi(R) and gj(R) are identically distributed
we have that

|Eψ(gi(R)gj(R)
∣∣X)| ≤ Eψ(|gi(R)gj(R)|

∣∣X) ≤ Eψ(g2
i (R)

∣∣X) = 2 Var(r) <∞ (7.19)

and since |hi(X)| ≤ c1b1 + c21b2 <∞ for each X ∈ CM it thus follows that

E(BM(k)2) ≤ 4(kK(m) + 1)c21(b1 + c1b2)
2 Var(r)

M
(7.20)

as required.
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Lemma 7.3 (The distance term). The variance of term CM(k) satisfies

Var(CM(k)) ≤ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))c41b
4
1

M
(7.21)

where K(m) is the maximum kissing number in Rm.

Proof. Define the random variable

hi(X) =
1

2

(
(XN [i,k −Xi) · ∇f(Xi)

)2 − A(M,k)|XN [i,k] −Xi|2 (7.22)

on the space of random point samples CM where

A(M,k) =
Eφ
((

(XN [i,k] −Xi) · ∇f(Xi)
)2)

2Eφ(|XN [i,k] −Xi|2)
(7.23)

so that

CM(k) =
1

M

M∑

i=1

hi(X) (7.24)

Since

|(XN [i,k] −Xi) · ∇f(Xi)|2 ≤ |XN [i,k] −Xi|2|∇f(Xi)|2 ≤ |XN [i,k] −Xi|2b21 (7.25)

it follows by (7.23) that 0 ≤ A(M,k) ≤ 1
2
b21 so

|hi(X)| ≤ 1

2
c21b

2
1 +

1

2
c21b

2
1 = c21b

2
1 for all X ∈ CM (7.26)

Hence

||h|| = sup
{
|hi(X)| : X ∈ CM

}
≤ c21b

2
1 <∞ (7.27)

and we can thus apply Theorem 6.1 to CM(k) so that

Var(CM(k)) ≤ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))c21b
2
1

M
(E(|h1|2))1/2 (7.28)

where K(m) is the maximum kissing number in Rm. Finally, since |h1|2 ≤ c41b
4
1 it

follows that E(|h1|2) ≤ c41b
4
1 and hence (E(|h1|2))1/2 ≤ c21b

2
1 so we conclude that

Var(CM(k)) ≤ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))c41b
4
1

M
(7.29)

as required.
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7.3 Probabilistic upper bounds on AM(k), BM(k) and

CM(k)

Since the expected value of AM(k), BM(k) and CM(k) is zero then by Lemma 7.1,
Lemma 7.2, Lemma 7.3 and Chebyshev’s inequality we obtain the following.

Corollary 7.1. For every ε > 0,

P(|AM(k)| > ε) ≤ λA
Mε2

P(|BM(k)| > ε) ≤ λB
Mε2

P(|CM(k)| > ε) ≤ λC
Mε2

where

λA = (kK(m) + 1)(E(r4) + Var(r)2)

λB = 4(kK(m) + 1) Var(r)c21(b1 + c1b2)
2

λC = 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))c41b
4
1

are finite constants not depending on M .

7.4 Proof of Theorem 1.1

The following result enables us to assemble the results of Corollary 7.1 into a proof of
Theorem 1.1.

Lemma 7.4 (The transitive lemma). Let X and Y be two random variables and
suppose for every ε1, ε2 > 0 there exist η1, η2 > 0 such that

P(|X| > ε1) < η1 and P(|Y | > ε2) < η2 (7.30)

where η1, η2 → 0 as ε1, ε2 → 0. Then

P(|X ± Y | > ε1 + ε2) < η1 + η2 (7.31)

Proof. Denote the events |X| > ε1 and |Y | > ε2 by A and B respectively so that
P(A) < η1 and P(B) < η2. Note that we do not assume the events A and B to be
independent. Let C(A) and C(B) denote the complement of A and B respectively and
consider the mutually exclusive and exhaustive set of events A∩B, C(A)∩B, A∩C(B)
and C(A) ∩ C(B) illustrated in Figure 7.1.

First of all,

P(A ∩B) + P(C(A) ∩B) + P(A ∩ C(B)) + P(C(A) ∩ C(B)) = 1 (7.32)
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A B

A C(B)

C(A)

C(B)

A

B
C(A) B

C(A) C(B)

Figure 7.1: If C(A) and C(B) are highly probable then so is C(A) ∩ C(B), even if these
events are not independent.

and by hypothesis we have that

P(A ∩B) + P(A ∩ C(B)) = P(A) < η1 (7.33)

P(A ∩B) + P(C(A) ∩B) = P(B) < η2 (7.34)

Thus

P(C(A) ∩ C(B)) = 1 − P(A ∩ C(B)) − P(C(A) ∩B) − P(A ∩B)

= 1 − P(A) − P(B) + P(A ∩B)

≥ 1 − η1 − η2

(7.35)

By the triangle inequality, the event C(A) ∩ C(B) implies the event D defined by
|X ± Y | ≤ ε1 + ε2. From (7.35) it thus follows that P(D) ≥ 1 − η1 − η2 and hence
P(C(D)) < η1 + η2, i.e.

P(|X ± Y | > ε1 + ε2) < η1 + η2 (7.36)

as required.

Lemma 7.5. For any ε > 0,

P(|AM(k) +BM(k) + CM(k)| > ε) ≤ λ

Mε2
(7.37)

where

λ = 9(λA + λB + λC) (7.38)

is a finite constant not depending on M .

Proof. Replacing ε by ε/3 in Corollary 7.1 and applying Lemma 7.4 to the pair AM(k)
and BM(k), we obtain

P
(
|AM(k) +BM(k)| > ε

3
+
ε

3

)
≤ λA
M(ε/3)2

+
λB

M(ε/3)2
(7.39)
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which is equivalent to

P

(
|AM(k) +BM(k)| > 2ε

3

)
≤ 9(λA + λB)

Mε2
(7.40)

A further application of Lemma 7.4 to the pair AM(k) +BM(k) and CM(k) then leads
to

P(|AM(k) +BM(k) + CM(k)| > ε) ≤ 9(λA + λB + λC)

Mε2
(7.41)

as required.

By Lemma 7.5 we obtain the following

Corollary 7.2. For any ε > 0,

P(
∣∣γM(k) −

(
Var(r) + A(M,k)δM(k) + o(δM(k))

)∣∣ > ε) ≤ λ

Mε2
(7.42)

as M → ∞ where λ is a finite constant not depending on M .

Proof. By (2.20),

γM(k) −
(
Var(r) + A(M,k)δM (k) + o(δM(k))

)
= AM(k) +BM(k) + CM(k) (7.43)

and the result follows by Lemma 7.5

Proof of Theorem 1.1

Proof. Let κ > 0 and apply Corollary 7.2 with

ε =
1

M1/2−κ
(7.44)

Then

P

(∣∣γM(k) −
(
Var(r) + A(M,k)δM(k) + o(δM(k))

)∣∣ > 1

M1/2−κ

)
≤ λ

M2κ
(7.45)

and hence

P

(∣∣γM(k) −
(
Var(r) + A(M,k)δM(k) + o(δM(k))

)∣∣ < 1

M1/2−κ

)
≥ 1 − λ

M2κ
(7.46)

Thus, for every κ > 0

γM(k) = Var(r) + A(M,k)δM(k)) + o(δM(k)) +O

(
1

M1/2−κ

)
(7.47)

with probability greater than 1 −O(1/M 2κ) as M → ∞, as required.
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7.5 Proof of Theorem 1.2

Before addressing the proof of Algorithm 1 we first consider whether or not the gradi-
ents A(M,k) are independent of the near neighbour index k. If not, then at first sight
the linear regression technique employed by Algorithm 1 is not justified.

However, subject to a fairly weak condition on the asymptotic behaviour of nearest
neighbour distances we show that any k–dependence regarding the A(M,k) can be
tolerated by proving that the intercept Γ computed by the Gamma test is approximately
equal to Var(r) with an error that converges to zero as M → ∞.

We aim to prove Theorem 1.2 which states that, subject to the condition that for some
fixed p ≥ 1 there exists a positive constant c < 1 with

δM(1) ≤ cδM(p) for all M ≥ 1 (7.48)

then the number Γ returned by Algorithm 1 converges in probability to Var(r) as
M → ∞.

In order to justify the linear regression technique employed by Algorithm 1, some
spread of the points δM(1), . . . , δM(p) is clearly required. Condition (7.48) is a weak
requirement in this direction – it ensures that δM(p) − δM(1) ≥ (1/c− 1)δM(1) where
(1/c − 1) > 0. In particular, if there exists some p > 1 such that the mean squared
distance to the pth nearest neighbour is at least twice the mean squared distance to
the first nearest neighbour, then (7.48) is satisfied with c = 1/2. In fact, it is difficult
to imagine a set of points that are distributed in such a way that some p having this
property does not exist.

Note that if (7.48) fails, we can still use Theorem 1.1 to estimate Var(r) by performing
the crude Gamma test algorithm on (δM(1), γM(1)) for increasing M .

In order to prove Theorem 1.2 we need the following lemma.

Lemma 7.6. For 1 ≤ k ≤ p let Yk = v + akXk + ∆k where 0 < X1 ≤ . . . ≤ Xp are
such that X1 < Xp, and let Y = d + cX be the least squares regression line for the
points (Xk, Yk). Then

|d− v| ≤ p(p− 1)(AmaxXp + ∆max)

(
Xp

Xp −X1

)
(7.49)

where Amax = max |ak| and ∆max = max |∆k| for 1 ≤ k ≤ p.

Proof. The values c and d are defined to be those that minimise the function

F (c, d) =

p∑

k=1

((d+ cXk) − (v + akXk + ∆k))
2 (7.50)
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Setting the partial derivatives of F (c, d) to zero leads to

2

p∑

k=1

(
(d+ cXk) − (v + akXk + ∆k)

)
Xk = 0

2

p∑

k=1

(
(d+ cXk) − (v + akXk + ∆k)

)
= 0

(7.51)

from which we obtain

c

p∑

k=1

X2
k + d

p∑

k=1

Xk =

p∑

k=1

(v + akXk + ∆k)Xk

c

p∑

k=1

Xk + d

p∑

k=1

1 =

p∑

k=1

(v + akXk + ∆k)

(7.52)

Let S =
∑p

k=1Xk and T =
∑p

k=1X
2
k so that

cT + dS = vS +

p∑

k=1

(akXk + ∆k)Xk

cS + dp = vp+

p∑

k=1

(akXk + ∆k)

(7.53)

Solving for d we obtain

d(S2 − pT ) = v(S2 − pT ) + S

p∑

k=1

(akXk + ∆k)Xk − T

p∑

k=1

(akXk + ∆k) (7.54)

and hence

(d− v)(S2 − pT ) = S

p∑

j=1

(ajXj + ∆j)Xj − T

p∑

j=1

(ajXj + ∆j) (7.55)

Substituting for S and T ,

(d− v)
∑

i,j

Xi(Xi −Xj) =
∑

i,j

Xi(Xi −Xj)(ajXj + ∆j) (7.56)

and since
∑

i,j

Xi(Xi −Xj) =
∑

i<j

Xi(Xi −Xj) +
∑

i>j

Xi(Xi −Xj)

=
∑

i<j

Xi(Xi −Xj) +
∑

i<j

Xj(Xj −Xi)

=
∑

i<j

(X2
i − 2XiXj +X2

j )

=
∑

i<j

(Xi −Xj)
2

(7.57)
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it follows that

d− v =

∑
i,j Xi(Xi −Xj)(ajXj + ∆j)∑

i<j(Xi −Xj)2
(7.58)

The denominator is the sum of positive terms and is therefore at least as large as its
largest term (Xp−X1)

2. By hypothesis, this term is strictly positive so the denominator
is bounded below by (Xp −X1)

2 > 0. Using the triangle inequality on the numerator
we replace each term Xi(Xi −Xj) by the maximum Xp(Xp −X1) of such terms, and
each |ajXj +∆j| by (AmaxXp+∆max). Since there are at most p(p−1) non–zero terms
in the numerator, the result follows on cancelling a factor of Xp −X1.

Proof of Theorem 1.2

Proof. By Theorem 1.1 we have that

γM(k) = Var(r) + A(M,k)δM(k) + o(δM(k)) +O

(
1

M1/2−κ

)
(7.59)

with probability greater than 1 − O(1/M 2κ) as M → ∞. Furthermore, by condition
(7.48) it follows that δM(1) < δM(p). Hence the conditions of Lemma 7.6 are satisfied by
the pairs (Xk, Yk) = (δM(k), γM(k)) with ak = A(M,k), ∆k = o(δM(k))+O(1/M 1/2−κ),
v = Var(r) and d = Γ so

|Γ − Var(r)| ≤ p(p− 1)(AδM(p) + ∆)

(
δM(p)

δM(p) − δM(1)

)
(7.60)

where A = maxk(A(M,k)) and ∆ = o(δM(p)) +O(1/M 1/2−κ).

By condition (7.48), δM(p) − δM(1) ≥ (1 − c)δM(p) for some constant c > 0 so

δM(p)

δM(p) − δM(1)
= O(1) as M → ∞ (7.61)

Furthermore, since |A(M,k)| ≤ 1
2
b21 < ∞ for every 1 ≤ k ≤ p we also have AδM(p) =

O(δM(p)) as M → ∞ so

|Γ − Var(r)| = O(δM(p)) +O(1/M 1/2−κ) (7.62)

with probability greater than 1 −O(1/M 2κ) as M → ∞. Thus we conclude that

Γ → Var(r) in probability as M → ∞ (7.63)

as required.
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7.6 Proof of Theorem 1.3

We obtain a proof of Theorem 1.3 by showing that condition (7.48) holds for sampling
distributions which satisfy the conditions of Theorem 3.2.

Proof. Taking α = 2 in Theorem 3.2, the expected value of δM(k) is given by

E(δM(k)) =
c(m, k, φ)

M2/m
(7.64)

to first order in M , where

c(m, k, φ) = V −2/m
m

Γ(k + 2/m)

Γ(k)

∫

C

φ(x)1−2/m dx (7.65)

Hence for all m > 0 we have that

δM(1)

δM(p)
∼ Γ(1 + 2/m)Γ(p)

Γ(p+ 2/m)
< 1 as M → ∞ (7.66)

and the result follows by Theorem 1.2.

7.7 The gradient A(M,k) of the asymptotic linearity

relation

The approximate asymptotic linearity relation between γM(k) and δM(k) is expressed
in Theorem 1.1 as

γM(k) ∼ Var(r) + A(M,k)δM (k) as M → ∞ (7.67)

where the convergence is in probability and A(M,k) is defined by

A(M,k) =
Eφ
((

(XN [i,k] −Xi) · ∇f(Xi)
)2)

2Eφ(|XN [i,k] −Xi|2)
<∞ (7.68)

Let θi denote the angle between the vectors ∇f(Xi) and XN [i,k] −Xi so that

(
(XN [i,k] −Xi) · ∇f(Xi)

)2
= |XN [i,k] −Xi|2|∇f(Xi)|2 cos2 θi (7.69)

By (7.68) we see that A(M,k) depends on the expectation Eφ (|∇f(Xi)|2 cos2 θi) and
also on the degree of dependence between |XN [i,k] −Xi| and |∇f(Xi)|2 cos2 θi.

Since the vector XN [i,k]−Xi depends only on the sampling distribution it is reasonable
to suppose that its direction and magnitude are independent of the function f , in which
case

A(M,k) =
1

2
Eφ(|∇f(Xi)|2 cos2 θi) (7.70)
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Whether or not this is true depends on the directional properties of the sampling
density φ about the points of C. If φ results in an isotropic distribution of density
in local neighbourhoods of the points of C then the near neighbour distances and the
near neighbour directions are independent and (7.70) holds.

Consider the case where C is of positive measure in Rm and the sampling density
φ is smooth and strictly positive on C. As the number of points M becomes large
the neighbourhoods about each interior point shrink and the local density becomes
essentially constant and hence isotropic. Provided the boundary of C forms a set
of measure zero then no problems arise. In this case the distribution of the θi is
independent of k so givenM sufficiently large, (7.70) is independent of k for all bounded
k. In the case where C is a chaotic attractor of zero measure in Rm then again, if the
local density is isotropic at all sufficiently small scales of measurement there are no
problems. However, this cannot be assumed for an arbitrary chaotic attractor.

In addition to (7.70), suppose further that |∇f(Xi)|2 is independent of cos2 θi so that

A(M,k) =
1

2
Eφ(|∇f(Xi)|2)Eφ(cos2 θi) (7.71)

If m = 1 then θi takes only the values 0 and π and hence Eφ(cos2 θi) = 1. If m ≥ 2
then one might assume that the θi are uniformly distributed over [−π, π], in which case
Eφ(cos2 θi) = 1/2. Asymptotically we then have

A(M,k) =





1
2
Eφ(|∇f(Xi)|2) if m = 1

1
4
Eφ(|∇f(Xi)|2) if m ≥ 2

(7.72)

Under these circumstances the slope of the regression line computed by the Gamma
test provides an estimate of the mean squared gradient of the unknown function f
(relative to the sampling distribution) and may thus be considered as a crude indicator
of the complexity of the surface defined by f .

7.8 Experimental results

7.8.1 The pth nearest neighbour condition

We examine whether condition (7.48) is likely to hold. To establish the validity of
Algorithm 1 we need to show that the ratio δM(1)/δM(p) is strictly less than 1 for all
sufficiently large M .

Taking p = 10 we compute the ratios δM(1)/δM(p) as M increases from 1000 to 100000
for a uniform distribution and from 1000 to 200000 for the Hénon map (3.165) with
a = 1.4 and b = 0.3, both in steps of 1000. Figures 7.2 and 7.3 show the plots of
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Figure 7.2: Ratio of δM (1)/δM (p) as M
increases for the uniform case (p = 10).
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Figure 7.3: Ratio of δM (1)/δM (p) as M
increases for the Hénon Map (p = 10).

δM(1)/δM(p) against M for the uniform distribution and the Hénon map respectively.
The graphs suggest that the ratio δM(1)/δM(p) remains bounded away from 1 in both
cases.

If the sampling distribution Φ satisfies the conditions of Theorem 3.2, then taking
α = 2 in Theorem 3.2 and applying Corollary 6.1 we see that for all m ≥ 1,

δM(1)

δM(p)
∼ Γ(1 + 2/m)Γ(p)

Γ(p+ 2/m)
< 1 (7.73)

with probability approaching one as M → ∞. This ensures that (7.48) holds with
probability approaching one as M → ∞, and a further application of Lemma 7.4 in
the proof of Theorem 1.2 then ensures that the conclusion of Theorem 1.2 holds under
these conditions.

Taking m = 2 and p = 10 in (7.73) we see that δM(1)/δM(p) in the uniform case should
be asymptotically equal to 0.1 as M → ∞, shown as a dashed line in Figure 7.2.
It is interesting to note that although we have not been able to prove a version of
Theorem 3.2 for sets of non–integral dimension, taking m = 1.26 for the Hénon map
(which is approximately equal to the fractal dimension of its attractor) the theoretical
value of δM(1)/δM(p) for p = 10 as determined by (7.73) is equal to 0.035. This is close
the experimental values shown in Figure 7.3.

7.8.2 Directional distributions

We now investigate whether we can replace the general definition of A(M,k) given
in (1.46) by the simpler definitions (7.70) or (7.72). If the direction of the nearest
neighbour vectors are uniformly distributed then we may conclude that (7.72) holds.

For a set of M = 100000 points, first for a uniform distribution and secondly for the
Hénon map (3.165) with a = 1.4 and b = 0.3, we compute the angle ωi (−π < ωi ≤ π)
between the kth nearest neighbour vector xN [i,k] − xi and the horizontal axis, then
plot a histogram of the angle probabilities using 100 bins. The histograms for k = 1
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Figure 7.4: Angle histogram for the uni-
form distribution.
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Figure 7.5: Angle histogram for the
Hénon Map.

are shown in Figures 7.4 and 7.5 respectively. For k = 2 to 10 the histograms were
virtually identical.

In the uniform case we see that the direction of the nearest neighbour vectors are
approximately uniformly distributed in the range [−π, π] and hence the (local) density
is isotropic.

Figure 7.5 illustrates that the distribution of near neighbour directions on the Hénon
map is anisotropic. There are two strongly preferred directions at ω ≈ −7.2◦ and
ω ≈ 172.8◦ respectively, each with probabilities of approximately 0.058. There are also
two subsidiary preferred directions at ω ≈ −176.4◦ and ω ≈ 3.6◦ respectively, each
with probabilities of approximately 0.028. If this experiment is repeated with data
localised to a small region of the attractor, the histogram can be markedly different
although remaining anisotropic. Thus although anisotropy appears to be ubiquitous
over the Hénon attractor, its precise nature is not scale invariant.

7.8.3 The gradients A(M,k)

We define the function f : R2 → R to be f(x, y) = x2 + y2 so that ∇f = (2x, 2y),
and generate values of A(M,k) according to (1.46), substituting empirical means for
expectations.

Figure 7.6: Graph of A(M, k) as M in-
creases for the uniform distribution.

Figure 7.7: Graph of A(M, k) as M in-
creases for the Hénon Map.
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For k in the range 1 ≤ k ≤ 10 we compute A(M,k) as M increases from 2000 to 100000
in steps of 2000. Figures 7.6 and 7.7 show plots of A(M,k) against M for the uniform
distribution and the Hénon map with a = 1.4 and b = 0.3 respectively.

In the uniform case the gradients A(M,k) appear to be independent of k and converge
to a stable value of approximately 0.67 as M increases. Note that

∫ 1

0

∫ 1

0

|∇(f(x, y))|2 dx dy =
8

3
(7.74)

so in this case the asymptotic value of the A(M,k) is approximately equal to the
expected value 1

4
Eφ(|∇f |2) over the input space [0, 1]2, which agrees with (7.72).

In the case of the Hénon map we see that the gradients A(M,k) do indeed depend on
k. We remark that each one appears to converge to a stable value as M increases.

7.9 Summary

The main goal of this work has now been accomplished. We have assembled the results
developed in Chapters 3, 4, 5 and 6 to generate a proof of the Gamma test. As it
stands this proof covers the case of a smooth positive sampling density over a compact
convex body in Rm, which should be adequate for many practical applications. We
should note that the decomposition strategy of the proof means that we are unable to
take account of cancellation of errors which may occur between the various sums. Thus
the error terms in (7.62) represent a ‘worst case’ analysis that is often pessimistic in
practical applications, for which the convergence may be much faster (see [Tsui 1999]).

It seems remarkable that such a simple and useful algorithm should require so much
mathematical machinery in order to provide a formal justification but given the com-
plexities one is forced to confront, it also seems unlikely that a very much simpler
analysis can be established. On the contrary, one might regard this work as an initial
foray into what promises to be a rich and complex set of questions as one seeks to fur-
ther generalise the formal justification to cover the applications to chaotic dynamical
systems. However, such work must be left for the future.

Fortunately there are now many interesting results which we can readily derive from
the techniques so far developed. In the next chapter we shall apply these ideas to prove
a potentially useful generalisation of the Gamma test first described in [Durrant 2001].
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Chapter 8
The Extended Gamma test

8.1 Introduction

The Gamma test is a technique for estimating the second moment E(r2) of the noise
distribution Ψ. We now show that under the hypothesis of a symmetric noise distribu-
tion (i.e. where all odd moments are zero), similar ideas may be applied to estimate the
higher order moments of the noise distribution. In some circumstances these estimates
may be used to reconstruct the noise distribution itself.

The most computationally expensive aspect of the Gamma test algorithm is to compute
the nearest neighbour lists of the input points, which can be achieved in a time of order
O(M logM). As we shall see, the statistics used to estimate the higher order moments
of the noise distribution are also defined relative to the nearest neighbour lists so
computing these higher order estimates involves very little extra computational cost.

Let mj = E(rj) denote the jth moment of the noise distribution and suppose that
m1 = 0 so that m2 = Var(r). Our aim is to estimate mj for j = 2, 3, . . ..

Let h ≥ 2 be an even integer and define

Gh = E
(

1

2
(rN [i,k] − ri)

h

)
(8.1)

which we write as

Gh =
1

2

h∑

j=0

(
h

j

)
mh−jmj (8.2)
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Since m1 = 0 the first few values of Gh are given by

G0 = 1
G2 = m2

G4 = m4 + 3m2
2

G6 = m6 + 15m4m2 − 10m2
3

G8 = m8 + 28m6m2 − 56m5m3 + 35m2
4

G10 = m10 + 45m8m2 − 120m7m3 + 210m6m4 − 126m2
5

G12 = m12 + 66m10m2 − 220m9m3 + 495m8m4 − 792m7m5 + 924m2
6

(8.3)

Using techniques analogous to those employed by the Gamma test we seek to estimate
Gh for h = 2, 4, . . . and then use (8.3) to compute the corresponding estimates of mj

for j = 2, 3, . . ..

We immediately see that there are more unknown variables mj in (8.3) than there are
equations. However, if we make the assumption that the noise distribution is symmetric
then mj = 0 for all j odd in which case (8.3) becomes

G0 = 1
G2 = m2

G4 = m4 + 3m2
2

G6 = m6 + 15m4m2

G8 = m8 + 28m6m2 + 35m2
4

G10 = m10 + 45m8m2 + 210m6m4

G12 = m12 + 66m10m2 + 495m8m4 + 924m2
6

(8.4)

If we can estimate Gh for h = 2, 4, . . . then using (8.4) we can successively compute
estimates for the moments mj of symmetric noise distributions.

We call equations (8.3) and (8.4) the constraining equations. These equations were
first developed and experimentally tested in [Durrant 2001]. In this chapter we use the
techniques developed in the preceding chapters to provide a formal justification for the
application of the Extended Gamma test and the constraining equations to symmetric
noise reconstruction.

8.2 Statement of the theorem

The following theorem is a generalisation of Theorem 1.1 and shows that we can use
linear regression to estimate Gh for h = 2, 4, . . ..

Theorem 8.1. Let the conditions of Theorem 1.1 be satisfied and suppose further that
the noise distribution Ψ is symmetric so that mj = 0 for j odd. Let h ≥ 2 be an even
integer and suppose that mj <∞ for all j ≤ 2h. Define

γM(k, h) =
1

2M

M∑

i=1

|yN [i,k] − yi|h (8.5)
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and

δM(k) =
1

M

M∑

i=1

|xN [i,k] − xi|2 (8.6)

Then for every κ > 0,

γM(k, h) = Gh +Gh−2A(M,k, h)δM (k) + o(δM(k)) +O

(
1

M1/2−κ

)
(8.7)

with probability greater than 1 −O(1/M 2κ) as M → ∞ where

A(M,k, h) =
h(h− 1)Eφ

((
(XN [i,k] −Xi) · ∇f(Xi)

)2)

2Eφ(|XN [i,k] −Xi|2)
(8.8)

which satisfies

0 ≤ A(M,k, h) ≤ 1

2
h(h− 1)b21 <∞ (8.9)

where b1 is the upper bound on ∇f over C.

8.3 Decomposition of the problem

As in Chapter 2 we write

δM(k) =
1

M

M∑

i=1

|XN [i,k] −Xi|2 (8.10)

γM(k, h) =
1

2M

M∑

i=1

(YN [i,k] − Yi)
h (8.11)

where X and Y are random samples on the probability spaces CM and CM × RM

respectively and consider

1

2
(YN [i,k] − Yi)

h =
1

2

(
(RN [i,k] −Ri) + (f(XN [i,k]) − f(Xi))

)h
(8.12)

Writing ∆i = f(XN [i,k])− f(Xi) and expanding the right hand side of (8.12) we obtain

1

2
(YN [i,k] − Yi)

h =
1

2

h∑

j=0

(
h

k

)
(RN [i,k] −Ri)

h−j∆j
i (8.13)

Following Chapter 2 we apply the second mean value theorem to f so that

∆i = (XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k]) (8.14)
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where

Tf (Xi, XN [i,k]) = (XN [i,k] −Xi)
THf(Ξi)(XN [i,k] −Xi) (8.15)

for some point Ξi on the line segment joining XN [i,k] and Xi. As before we note that
the value of Hf(Ξi) is uniquely determined by the points XN [i,k] and Xi, even though
the intermediate point Ξi may not be.

We write

∆j
i =

j∑

l=0

(
j

l

)(
(XN [i,k] −Xi) · ∇f(Xi)

)j−l
Tf (Xi, XN [i,k])

l (8.16)

and substitute this into (8.13). Since |∇f(Xi)| ≤ b1 and |Hf(Ξi)| ≤ b2 we see that
with the exception of the cases where (h, j) = (0, 0), (1, 0), (1, 1) and (2, 0) all terms in
the resulting expression are of order O(|XN [i,k] −Xi|3) as M → ∞.

Summing both sides of the resulting expression over 1 ≤ i ≤ M then dividing by M ,
we thus arrive at an expression for γM(k) given by

γM(k, h) = ÃM(k, h) +BM(k, h) + C̃M(k, h) + o(δM(k)) as M → ∞ (8.17)

where

ÃM(k, h) =
1

M

M∑

i=1

1

2

(
RN [i,k] −Ri

)h
(8.18)

BM(k, h) =
1

M

M∑

i=1

1

2
h
(
RN [i,k] −Ri

)h−1
∆j
i (8.19)

C̃M(k, h) =
1

M

M∑

i=1

1

4
h(h− 1)

(
RN [i,k] −Ri

)h−1 (
(XN [i,k] −Xi) · ∇f(Xi)

)2
(8.20)

Next we define

AM(k, h) =
1

M

M∑

i=1

(
1

2

(
RN [i,k] −Ri

)h −Gh

)
(8.21)

CM(k, h) =
1

M

M∑

i=1

(
1

4
h(h− 1)

(
RN [i,k] −Ri

)h−1 (
(XN [i,k] −Xi) · ∇f(Xi)

)2

−Gh−2A(M,k, h)|XN [i,k] −Xi|2
)

(8.22)

where

A(M,k, h) =
h(h− 1)Eφ

((
(XN [i,k] −Xi) · ∇f(Xi)

)2)

2Eφ(|XN [i,k] −Xi|2)
(8.23)
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so that ÃM(k, h) = AM(k, h) +Gh and C̃M(k) = CM(k) +Gh−2A(M,k, h)δM (k). Sub-
stituting these into (8.17) we obtain

γM(k, h) = Gh +Gh−2A(M,k, h)δM (k) + o(δM(k))

+ AM(k, h) +BM(k, h) + CM(k, h)
(8.24)

and we think of AM(k, h), BM(k, h) and CM(k, h) as random variables on the product
space CM × RM .

8.4 Expected value of AM(k, h), BM(k, h) and CM(k, h)

Provided E(rj) <∞ for all 0 ≤ j ≤ h then by construction the expected value of both
AM(k, h) and CM(k, h) is zero.

Consider

E(BM(k, h)) =
1

M

M∑

i=1

1

2
hEψ

((
RN [i,k] −Ri

)h−1
)
Eφ (∆i) (8.25)

Since RN [i,k] and Ri are independent for i 6= N [i, k] the first expectation in (8.25) can
be written as

E((RN [i,k] −Ri)
h−1) =

h−1∑

j=0

(
h− 1

j

)
E(Rj

N [i,k])E(Rh−j−1
i ) (8.26)

We need this expected value to be identically zero and the only way to ensure this is
to require that the distribution Ψ of the noise variables Ri is symmetric, so that all of
its odd moments are zero.

If the odd moments of Ri are all zero then since h even it follows that h− j − 1 is odd
whenever j is even. Hence for each 0 ≤ j ≤ h−1 it follows that at least one of E(Rj

N [i,k])

and E(Rh−j−1
i ) is equal to zero and provided E(Rj

N [i,k]) < ∞ for all 0 ≤ j ≤ h − 1 we

thus have that E((RN [i,k] −Ri)
h−1) = 0.

By hypothesis, |(XN [i,k] − Xi) · ∇f(Xi)| ≤ c1b1 and |Tf (Xi, XN [i,k])| ≤ c21b2 for any
random sample X ∈ CM so the second expectation in (8.25) is uniformly bounded and
it follows that E(BM(k, h)) = 0 provided Ψ is symmetric.

8.5 Upper bounds on variance

Lemma 8.1. The variance of term AM(k, h) satisfies

Var(AM(k, h)) ≤
1

2
(kK(m) + 1)(G2h − 4G2

h)

M
(8.27)

where K(m) is the maximum kissing number in Rm.
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Proof. Define the random variables

gi(R) =
1

2
(RN [i,k] −Ri)

h −Gh (8.28)

on the space of random noise samples RM so that

AM(k, h) =
1

M

M∑

i=1

gi(R) (8.29)

By Theorem 4.1, for any indexing structure imposed by some X ∈ CM we have that
(g1, . . . , gM) is a random sample of identically distributed L–dependent random vari-
ables with L = 2kK(m) + 1. By Theorem 5.1 it thus follows that

Var(AM(k, h)) ≤ 2(kK(m) + 1) Var(gi)

M
(8.30)

By definition of Gh we have that E(gi) = 0 so Var(gi) = E(g2
i ). Hence

Var(gi) = E
((

1

2
(RN [i,k] −Ri)

h −Gh

)2
)

= E
(

1

4
(RN [i,k] −Ri)

2h −Gh(RN [i,k] −Ri)
h +G2

h

)

= E
(

1

4
G2h −G2

h

)
(8.31)

so by (8.30) we obtain

Var(AM(k, h)) ≤
1

2
(kK(m) + 1)(G2h − 4G2

h)

M
(8.32)

as required.

Lemma 8.2. The variance of term BM(k, h) satisfies

Var(BM(k, h)) ≤ (kK(m) + 1)h2c21(b1 + c1b2)
2G2h−2

M
(8.33)

where K(m) is the maximum kissing number in Rm.

Proof. Define the random variables

gi(R) =
1

2
h(RN [i,k] −Ri)

h−1 (8.34)

hi(X) = (XN [i,k] −Xi) · ∇f(Xi) + Tf (Xi, XN [i,k]) (8.35)

on RM and CM respectively so that

BM(k, h) =
1

M

M∑

i=1

gi(R)hi(X) (8.36)
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Since E(BM(k, h)) = 0 we have that Var(BM(k, h)) = E(BM(k, h)2) and computing
this over all pairs (X,R) ∈ CM × RM we obtain

Var(BM(k, h)) =
1

M2

M∑

i,j=1

E(hi(X)hj(X)gi(R)gj(R)) (8.37)

which we write as

Var(BM(k, h)) =
1

M2

M∑

i,j=1

Eφ
(
hi(X)hj(X)Eψ(gi(R)gj(R)

∣∣X)
)

(8.38)

Clearly,

Var(BM(k, h)) ≤ 1

M2

M∑

i,j=1

∣∣Eφ
(
hi(X)hj(X)Eψ(gi(R)gj(R)

∣∣X)
)∣∣

≤ 1

M2

M∑

i,j=1

Eφ
(
|hi(X)| |hj(X)| |Eψ(gi(R)gj(R)

∣∣X)|
)

(8.39)

By Theorem 4.1, for any X ∈ CM the g1(R), . . . , gM(R) are identically distributed
L–dependent random variables with L = 2(kK(m) + 1) where K(m) is the maximum
kissing number in Rm. Hence, for any fixed i it follows that Eψ(gi(R)gj(R)

∣∣X) 6= 0 for
at most L indices j. Furthermore, since |ab| ≤ 1

2
(a2 + b2) for any pair of real numbers

a and b and since gi(R) and gj(R) are identically distributed, we have that

|Eψ(gi(R)gj(R)
∣∣X)| ≤ Eψ(|gi(R)gj(R)|

∣∣X) ≤ Eψ(g2
i (R)

∣∣X) (8.40)

Thus, since

Eψ(g2
i

∣∣X) = Eψ
(

1

4
h2(RN [i,k] −Ri)

2h−2

)
=

1

2
hG2h−2 <∞ (8.41)

and since |hi(X)| ≤ c1b1 + c21b2 for all X ∈ CM it follows by (8.39) that

Var(BM(k, h)) ≤ (kK(m) + 1)h2c21(b1 + c1b2)
2G2h−2

M
(8.42)

as required.

Lemma 8.3 (The CM(k, h) term). The variance of term CM(k, h) satisfies

Var(CM(k, h)) ≤ λC
M

(8.43)

where

λC =
1

4
h2(h− 1)2c41b

4
1

(
(kK(m) + 1)G2h−4

+ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))G2
h−2

) (8.44)

and K(m) is the maximum kissing number in Rm.
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Proof. Define the random variables

Si(X,R) =
1

4
h(h− 1)(RN [i,k] −Ri)

h−2
(
(XN [i,k −Xi) · ∇f(Xi)

)2
(8.45)

Ti(X) = Gh−2A(M,k, h)|XN [i,k] −Xi|2 (8.46)

on CM × RM and CM respectively where

A(M,k, h) =
h(h− 1)Eφ

((
(XN [i,k] −Xi) · ∇f(Xi)

)2)

2Eφ(|XN [i,k] −Xi|2)
(8.47)

so that

CM(k, h) =
1

M

M∑

i=1

(Si − Ti) (8.48)

By definition of A(M,k, h) we have that E(CM(k, h)) = 0. Thus Var(CM(k, h)) =
E(CM(k, h)2) and we write

Var(CM(k, h)) =
1

M2

M∑

i,j=1

E
(
(Si − Ti)(Sj − Tj)

)

=
1

M2

M∑

i,j=1

E(SiSj + TiTj − 2SiTj)

=
1

M2

M∑

i,j=1

(
E(SiSj) + E(TiTj) − 2E(SiTj)

)
(8.49)

Since h is even and h ≥ 2 it follows that Si ≥ 0 and Ti ≥ 0 for every X ∈ CM

and R ∈ RM . Furthermore, since |(XN [i,k] − Xi) · ∇f(Xi)|2 ≤ |XN [i,k − Xi)|2b21 we
have that A(M,k, h) ≤ 1

2
h(h − 1)b21 and since |XN [i,k] − Xi| ≤ c1 it follows that Ti ≤

1
2
h(h− 1)Gh−2c

2
1b

2
1.

Thus we obtain

0 ≤ E(SiTj) ≤
1

2
h(h− 1)Gh−2c

2
1b

2
1E(Si) (8.50)

and since

0 ≤ E(Si) ≤
1

2
h(h− 1)E

(
1

2
(RN [i,k] −Ri)

h−2

)
c21b

2
1 (8.51)

then by definition of Gh−2 we see that

0 ≤ E(SiTj) ≤
1

4
h2(h− 1)2G2

h−2c
4
1b

4
1 <∞ (8.52)
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Hence by (8.49) it follows that

Var(CM(k, h)) ≤ 1

M2

M∑

i,j=1

(
E(SiSj) + E(TiTj)

)
(8.53)

We define

S̄M =
1

M

M∑

i=1

Si and T̄M =
1

M

M∑

i=1

Ti (8.54)

so that

Var(CM(k, h)) ≤ Var(S̄M) + Var(T̄M) (8.55)

and consider each term separately. Regarding the first term on the right hand side of
(8.55) we define the random variables

gi(R) =
1

2
(RN [i,k] −Ri)

h−2 (8.56)

hi(X) =
1

2
h(h− 1)((XN [i,k] −Xi) · ∇f(Xi))

2 (8.57)

on RM and CM respectively so that

S̄M =
1

M

M∑

i=1

gi(R)hi(X) (8.58)

Although the expected value of S̄M is not zero it is certainly true that Var(S̄M) ≤ E(S̄2
M)

so we have that

Var(S̄M) ≤ 1

M2

M∑

i=1

E((gi(R)gj(R))(hi(X)hj(X))) (8.59)

where the expectation is taken over all X ∈ CM and R ∈ RM . By hypothesis both hi
and hj are completely independent of R while gi and gj may depend on X. Thus we
write

Var(S̄M) =
1

M2

M∑

i,j=1

Eφ
(
hi(X)hj(X)Eψ(gi(R)gj(R)

∣∣X)
)

(8.60)

from which it follows easily that

Var(S̄M) ≤ 1

M2

M∑

i,j=1

Eφ
(
|hi(X)| |hj(X)| |Eψ(gi(R)gj(R)

∣∣X)|
)

(8.61)

By Theorem 4.1, for any X ∈ CM the g1(R), . . . , gM(R) are identically distributed
L–dependent random variables with L = 2(kK(m) + 1) where K(m) is the maximum
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kissing number in Rm. Hence, for any fixed i it follows that Eψ(gi(R)gj(R)
∣∣X) 6= 0 for

at most L indices j. Furthermore, since |ab| ≤ 1
2
(a2 + b2) for any pair of real numbers

a and b and since gi(R) and gj(R) are identically distributed, we have that

|Eψ(gi(R)gj(R)
∣∣X)| ≤ Eψ(|gi(R)gj(R)|

∣∣X) ≤ Eψ(g2
i (R)

∣∣X) (8.62)

Thus, since

Eψ(g2
i (R)

∣∣X) = Eψ
(

1

4
(RN [i,k] −Ri)

2h−4

)
=

1

2
G2h−4 (8.63)

and since |hi| ≤ 1
2
h(h− 1)c21b

2
1 for every X ∈ CM it follows by (8.61) that

Var(S̄M) ≤
1

4
(kK(m) + 1)h2(h− 1)2c41b

4
1G2h−4

M
(8.64)

Turning our attention to the second term on the right hand side of (8.55) we define
the random variable

hi(X) = Gh−2A(M,k, h)|XN [i,k] −Xi|2 (8.65)

on CM so that

T̄M =
1

M

M∑

i=1

hi(X) (8.66)

Since 0 ≤ A(M,k, h) ≤ 1
2
h(h− 1)b21 and |XN [i,k] −Xi| ≤ c1 it follows that

||h|| = sup
{
|hi(X)| : X ∈ CM

}
≤ 1

2
Gh−2h(h− 1)c21b

2
1 <∞ (8.67)

Thus we may apply Theorem 6.1 to the sample mean T̄M of the hi so we have that

Var(T̄M) ≤ 2(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))Gh−2h(h− 1)c21b
2
1

M
(E(|h1|2))1/2

(8.68)

where K(m) is the maximum kissing number in Rm.

Since E(|h1(X)|2)1/2 ≤ 1
2
Gh−2h(h− 1)c21b

2
1 for every X ∈ CM it thus follows that

Var(T̄M) ≤ (1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))G2
h−2h

2(h− 1)2c41b
4
1

M
(8.69)

and finally, substituting (8.64) and (8.69) into (8.55) we obtain

Var(CM(k, h)) ≤ λC
M

(8.70)

where

λC =
1

4
h2(h− 1)2c41b

4
1

(
(kK(m) + 1)G2h−4

+ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))G2
h−2

) (8.71)

as required.
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8.6 Probabilistic upper bounds on AM(k, h), BM(k, h)

and CM(k, h)

Since the expected values of AM(k, h), BM(k, h) and CM(k, h) are zero, by Lemma 8.1,
Lemma 8.2, Lemma 8.3 and Chebyshev’s inequality we obtain the following.

Corollary 8.1. For every ε > 0,

P(|AM(k, h)| > ε) ≤ λA
Mε2

P(|BM(k, h)| > ε) ≤ λB
Mε2

P(|CM(k, h)| > ε) ≤ λC
Mε2

where

λA =
1

2
(kK(m) + 1)(G2h − 4G2

h)

λB = (kK(m) + 1)h2c21(b1 + c1b2)
2G2h−2

λC =
1

4
h2(h− 1)2c41b

4
1

(
(kK(m) + 1)G2h−4

+ 4(1 + (k + 2)(3k + 2)(1 + k(k + 1)K(m)))G2
h−2

)

are finite constants not depending on M .

8.7 Proof of Theorem 8.1

Applying Lemma 7.4 to the results of Corollary 8.1 we obtain the following.

Lemma 8.4. For any ε > 0,

P(|AM(k, h) +BM(k, h) + CM(k, h)| > ε) ≤ λ

Mε2
(8.72)

where

λ = 9(λA + λB + λC) (8.73)

is a finite constant not depending on M .

Corollary 8.2. For any ε > 0,

P(
∣∣γM(k, h) −

(
Gh +Gh−2A(M,k, h)δM (k) + o(δM(k))

)∣∣ > ε) ≤ λ

Mε2
(8.74)

as M → ∞ where λ is a finite constant not depending on M .

Proof. By (8.24) we have that

AM(k, h) +BM(k, h) + CM(k, h)

= γM(k, h) −
(
Gh +Gh−2A(M,k, h)δM (k) + o(δM(k))

)
(8.75)

and the result follows by Lemma 8.4.
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Proof of Theorem 8.1

Proof. Let κ > 0 and apply Corollary 8.2 with

ε =
1

M1/2−κ
(8.76)

Then

P

(∣∣γM(k, h) −
(
Gh +Gh−2A(M,k, h)δM (k) + o(δM(k))

)∣∣ > 1

M1/2−κ

)
≤ λ

M2κ

(8.77)

so that

P

(∣∣γM(k, h) −
(
Gh +Gh−2A(M,k, h)δM (k) + o(δM(k))

)∣∣ ≤ 1

M1/2−κ

)
> 1 − λ

M2κ

(8.78)

Hence, for every κ > 0

γM(k, h) = Gh +Gh−2A(M,k, h)δM (k) + o(δM(k)) +O

(
1

M1/2−κ

)
(8.79)

with probability greater than 1 −O(1/M 2κ) as M → ∞, as required.

8.8 The extended algorithm for symmetric noise

distributions

The extended Gamma test algorithm for symmetric noise distributions is shown in
Algorithm 2.

8.9 Proof of the extended Gamma test algorithm

We use Theorem 8.1 to show that the numbers Γh returned by Algorithm 2 converge
in probability to Gh as M → ∞.

Theorem 8.2. Subject to the condition that for some fixed p ≥ 1 there exists a positive
constant c = c(m) < 1 such that

δM(1) ≤ cδM(p) (8.80)

for all sufficiently large M , the number Γh returned by Algorithm 2 converges in prob-
ability to Gh as M → ∞.
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Procedure Extended Gamma Test (data)
{data is an array of points (xi, yi), (1 ≤ i ≤M) where x ∈ Rm and y ∈ R}
for i = 1 to M do

for k = 1 to p do
compute N [i, k] where xN [i,k] is the kth nearest neighbour of xi.

end for
end for
{If multiple outputs do the remainder for each output}
for k = 1 to p do

compute δM(k) as in (1.40)
end for
for h = 2 to 2q, h = h+ 2 do

for k = 1 to p do
Compute γM(k, h) as in (8.5)

end for
Perform linear regression on {(δM(k), γM(k, h)), 1 ≤ k ≤ p}
Record the intercept Γh

end for
Compute successive estimates for m2,m4, . . . ,m2q according to equations (8.4), re-
placing Gh by Γh.

Algorithm 2: The extended Gamma test algorithm.

Proof. By Theorem 8.1 we have that for every κ > 0,

γM(k, h) = Gh +Gh−2A(M,k, h)δM (k) + o(δM(k)) +O

(
1

M1/2−κ

)
(8.81)

with probability greater than 1 − O(1/M 2κ) as M → ∞. Furthermore, by condition
(8.80) it follows that δM(1) < δM(p). Hence the conditions of Lemma 7.6 are satisfied
by the pairs (Xk, Yk) = (δM(k), γM(k, h)) with ak = Gh−2A(M,k, h), ∆k = o(δM(k)) +
O(1/M 1/2−κ), v = Gh and d = Γh so

|Γh −Gh| ≤ p(p− 1)(AδM(p) + ∆)

(
δM(p)

δM(p) − δM(1)

)
(8.82)

where A = maxk(Gh−2A(M,k, h)) and ∆ = o(δM(p))+O(1/M 1/2−κ). Condition (8.80)
implies that δM(p) − δM(1) ≥ (1 − c)δM(p) for some constant c > 0 so

δM(p)

δM(p) − δM(1)
= O(1) as M → ∞ (8.83)

Furthermore, since Gh−2 <∞ and 0 ≤ A(M,k) ≤ 1
2
h(h−1)b21 <∞ for every 1 ≤ k ≤ p

we also have AδM(p) = O(δM(p)) as M → ∞. Hence

|Γh −Gh| = O(δM(p)) +O(1/M 1/2−κ) (8.84)

with probability greater than 1 −O(1/M 2κ) as M → ∞ and we conclude that

Γh → Gh in probability as M → ∞ (8.85)

as required.
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Theorem 8.3. Let C be a compact convex body in Rm and let φ be a smooth positive
sampling density on C. Then the number Γh returned by Algorithm 2 converges in
probability to Gh as M → ∞.

Proof. Using an identical argument to that used in the proof Theorem 1.3, since δM(1)
and δM(p) satisfy (8.80) the result follows immediately by Theorem 8.2.

8.10 Summary

In this chapter we have provided a formal justification for the method of symmetric
noise distribution reconstruction illustrated in [Durrant 2001]. The idea that a per-
fect model is one for which the output error distribution on unknown input data is
identical to the noise distribution was (to our knowledge) first proposed in [Durrant
2001]. If there were a way to reconstruct the noise distribution then knowledge of
this distribution could conceivably be used in model construction. Instead of training
the non-parametric model to achieve an error variance equal to the noise variance one
could aim to develop training methods such that some measure of the difference be-
tween the error distribution and the noise distribution was minimised. Hence the idea
of reconstructing the noise distribution may eventually lead to interesting practical
applications for non-parametric model construction.

Data Derived Estimates of Noise for Smooth Models Dafydd Evans



158

Chapter 9
Conclusion

9.1 The significance of the Gamma test proof

The proof of the Gamma test established in this thesis covers the case of a smooth pos-
itive sampling density over a compact convex body in Rm, which is sufficient to include
many practical applications. From a purely theoretical standpoint the proof is of value
since it assures us that the basic methodology is sound. Moreover, the techniques and
theorems we have developed for the analysis of near neighbour relationships may well
find other interesting applications.

However, it must said that in particular applications of the Gamma test, where often
no theoretical analysis exists, the extent to which theoretical preconditions are satis-
fied may be unverifiable. In practice it is often the case that the easiest method of
determining the utility of the Gamma test is simply to try it!

Thus we should be aware that the degree to which models discovered by tools such as
the Gamma test are truly scientific depends on the context. In such situations we may
be motivated by purely pragmatic considerations:

“A model is ‘good’ just as long as it is predicting well. When it stops
predicting well, we just try to build another model.” [Jones et al. 2001]

9.2 Generalising the proof

We have remarked that the applicability of Gamma test seems much wider than the
class of situations considered here. In particular, it is often effective when applied to
chaotic dynamical systems based on smooth underlying relationships, and it is natural
to ask which aspects of the proof might possibly be generalised to cover these other
cases of interest.
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With regard to the work of Chapter 3, results such as Conjecture 3.2 seem to raise
several quite difficult issues related to Hausdorff measures. However, examination of the
proof structure shown in Figure 1.9 reveals that the critical application of Theorem 3.2
is to establish condition (7.48) - a fact that became apparent only some time after the
work of Chapter 3 had been completed. Nevertheless, generalisations of Theorem 3.2
based on Conjecture 3.2 may be one way to prove condition (7.48) for the ergodic
sampling of a chaotic attractor.

Condition (7.48) has every appearance of being a purely geometrical constraint and
might possibly be proved to hold for any bounded sequence of sampling points. A first
step in eliminating the arguments of Chapter 3 from a proof of the Gamma test might
therefore be to address the following problem.

Conjecture 9.1. There exists some integer q(m) such that for any sequence of points
x1,x2, . . . in Rm and for every p > q(m),

lim sup
M→∞

δM(1)

δM(p)
< 1 (9.1)

If this conjecture could be proved then the work of Chapter 3 would not be required in
a proof of the Gamma test, even though it is of considerable interest in its own right.

Suppose that condition (7.48) could be established in some alternative manner. Then
we ask which other parts of the proof would carry through to more general classes of
sampling distributions? Certainly the work of Chapter 5 on L-dependent variables is
independent of the particular method of sampling, because its application to the proof
of the Gamma test hinges on Theorem 4.1 which is a purely geometric result. It is
less obvious how much of Chapter 6 can be carried through to the more general case
because the integrals involving the sampling density would have to be carefully defined
in terms of an appropriate Hausdorff measure. However, it is quite conceivable that
this work could be done.

Yet another area of generalisation relates to the type of convergence for which the
various results may be shown to hold. We have focused on the relatively weak notion
of convergence in probability. It is certainly possible that this could be generalised to
the stronger notion of ‘convergence with probability one’, and perhaps even further.

9.3 Implications for further work

9.3.1 The gradient A(M,k)

Based on the discussion of section 7.7 and the experimental results presented in 7.8.3,
we make the following conjectures regarding the asymptotic behaviour of the gradient
A(M,k) as M → ∞.
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Conjecture 9.2. If the input points Xi are identically distributed according to a sam-
pling distribution that satisfies the conditions of Theorem 3.2, there exists some finite
constant A > 0, independent of M and k, such that

A(M,k) → A in probability as M → ∞ (9.2)

Conjecture 9.3. For some more general class of sampling distributions than those
satisfying the conditions of Theorem 3.2, there exists some finite constant A(k) > 0,
independent of M , such that

A(M,k) → A(k) in probability as M → ∞ (9.3)

9.3.2 Near neighbour distance distributions

In Chapter 3 we determined the asymptotic behaviour of the moments of the kth
nearest neighbour distance distribution of M points using the technique of ‘boundary
shrinking’ first suggested by W.M. Schmidt. It would be of some interest to further
characterise this distribution. This work may have some interesting consequences in
the theoretical study of point processes and also in more practical applications – for
example, estimates based on near neighbour distances have been employed in tests of
uniformity.

9.3.3 Questions relating to near neighbour geometry

In Chapter 4 we examined some theoretical questions relating to near neighbour geom-
etry and the result of Theorem 4.1 has clear relevance to coding theory. As a further
illustration of the ‘boundary shrinking’ technique we also calculated the expected num-
ber of connected components in the first nearest neighbour graph of a uniform sampling
distribution. It might be useful to have explicit formulae for the probabilities that any
point is the kth nearest neighbor of exactly 0, 1, 2, . . . other points. This question is
addressed by [Henze 1987].

9.3.4 L-dependent random variables

In Chapter 5 we have given a simple and coherent theory for an interesting class of
dependent variables and concluded with a simple proof of the associated Central Limit
theorem. What is probably of most interest here is the conceptual framework, which
can easily be identified for particular applications.

9.3.5 Functions of a point and its k nearest neighbours

The work of Chapter 6 generalises the earlier work of [Bickel and Breiman 1983] on
functions of a point and the distance to its first nearest neighbour. This quite tech-
nically demanding analysis seemed unavoidable and owes much to their work. It is
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clearly capable of further generalisation to a similar theory (and central limit theorem)
for sums of bounded functions of the form hi(X) = h(XN [i,k], XN [i,k−1] . . . , Xi), but such
specialised and demanding work seems only worthwhile if prompted by a significant
application.

In [Penrose and Yukich 2001] a central limit theorem is proved for functionals of var-
ious types of random point sets, including sets obtained by selecting points uniformly
at random from a fixed set in Rm. The functionals in question must be strongly sta-
bilising, satisfy a uniform bounded moments condition and be polynomially bounded
(see [Penrose and Yukich 2001] for details). It is not clear whether these conditions
would impose any further conditions on our (unknown) smooth function f , beyond
those given in (1.4).

9.3.6 Noise reconstruction

In Chapter 8 we provide a theoretical analysis which justifies using a combination of
an extension of the Gamma test and certain constraining equations to estimate the
even moments of a symmetric noise distribution, a technique first described and tested
experimentally in [Durrant 2001]. It is not clear how this analysis could be extended
to encompass non–symmetric noise distributions.

9.4 Final conclusions

The Gamma test has been in the public domain since 1995 and many illustrations of its
utility in non-linear modelling have been published by the Cardiff group. A software
tool winGammaTM based on the the technique has been commercially available1 since
1998. Nevertheless, despite the huge amount of empirical work on non-linear modelling
currently being produced, apart from that mentioned almost none to date has used the
Gamma test. Exceptions are a group at Glamorgan University interested in property
price prediction, and a group at the Naval Research Laboratory, Washington working
on chaotic dynamics.

Given the demonstrated effectiveness of the Gamma test, for example in feature selec-
tion and signal processing, we find the lack of interest in the method rather puzzling,
particularly given the dearth of alternative techniques. If linear regression cannot be
applied to the problem at hand, the Gamma test seems to represent the best approach
to true non-linear regression currently available. Thus we entertain the hope that the
work of this thesis, when eventually published in papers and book form, will serve to
commend the Gamma test to the wider non-linear modelling and statistical community.

1Under license from Cardiff University.
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