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Abstract

On the basis of studies of the olfactory bulb of a rabbit Freeman suggested that in the rest state the

dynamics of this neural cluster is chaotic, but that when a familiar scent is presented the neural system

rapidly simplifies its behaviour and the dynamics becomes more orderly, more nearly periodic than

when in the rest state. This suggests an interesting model of recognition in biological neural systems.

To realise this in an artificial neural system, some form of control of the chaotic neural behaviour is

necessary to achieve periodic dynamical behaviour when a stimulus is presented.

In this thesis we first study the general problem of modelling smooth systems and introduce a

number of useful techniques relevant to the problem of modelling chaotic dynamics. After a pre-

liminary review of chaotic dynamical systems and their control, and discussing several examples of

neural chaos, we then construct a chaotic neural model. We show how this model can be successfully

controlled using several different parametric control methods. However, such methods of control are

externalto the network and we are interested in the control of higher dimensional networks using a

technique which isintrinsic to the neural dynamics.

Using a higher dimensional system we investigate several methods of control and conclude that

control usingdelayed feedbackis a feasible mechanism for producing the retrieval behaviour de-

scribed by Freeman. Delayed feedback provides a mechanism for stabilisation onto unstable periodic

behaviours. The particular unstable periodic orbit which is stabilised depends quite strongly on the

precise character of the applied stimulus. Thus the system can act as an associative memory in which

the act of recognition corresponds to stabilising onto an unstable periodic orbit which is character-

istic of the applied stimulus. The entire artificial system therefore exhibits an overall behaviour and

response to stimulus which precisely parallels the biological neural behaviour observed by Freeman.
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Chapter 1
Introduction

This work draws its inspiration from[Freeman 1991]. On the basis of studies of the olfactory bulb

of a rabbit Freeman suggested that in the ‘rest state’ the dynamics of this neural cluster is chaotic,

but that when a familiar scent is presented the neural system rapidly simplifies its behaviour and the

dynamics becomes more orderly, more nearly periodic than when in the rest state. We call this the

‘retrieval behaviour’ since it is analogous to the act of recognition . This suggests an interesting model

of recognition in biological neural systems which is quite different from earlier attempts to use neural

networks for pattern recognition or as associative memories. To create an artificial neural network

which behaves in the manner described by Freeman we have to investigate several fields of study

which at first sight are far removed from the conventional study of neural networks.

To construct such a system we have to consider how best to construct neural models which exhibit

chaotic dynamics. Neural network models which are dynamical systems are not (of course) new.

The classical example is the Hopfield network, for which the simplest case considers nodes whose

outputs are zero or one and where memories are associated with specified (preferably uncorrelated)

point attractors. However, such a model cannot meet our needs. The state space is finite, consisting

of fixed length vectors whose components are zero or one, and hence ‘chaos’ in the classical sense

of dynamical systems, with its infinitely rich variety of modalities will never be exhibited. Indeed for

a symmetric Hopfield network the dynamics are essentially trivial: starting from any initial state the

network will simply iterate to a fixed point.

In contrast if the dynamics are chaotic then unstable periodic orbits are dense on the chaotic attrac-

tor and there are infinitely many of them. Thus an associative memory such as described by Freeman,

for which the computations are performed to anarbitrary precision, could in principle accommodate

infinitely many memories. At any rate such a system is not subject to the conventional Hopfield upper

bound of0.15n, wheren is number of neurons[Amit et al. 1987]. Of course, for the Hopfield net

the situation is rather different. In the Hopfield model memories are associated with specified point

attractors, whereas in the Freeman paradigm memories would be associated with unstable periodic

behaviours which could not be specifiedab initio. However, another great attraction of the Freeman

approach is that it introduces the possibility of responding to stimuli over varyingtime scalesusing

behaviours with different periodicities.

Plainly we need to work with network models having continuous node outputs rather than the

discrete outputs of the classical Hopfield model.

One of the major developments of neural networks in the 1980’s was the introduction of backprop-

agation which enabled the construction of smooth non-linear input/output models using multilayer

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



18

feedforward neural networks. As we shall see in Chapter 3 it is possible to model a continuous dy-

namical system, which in the first instance may be defined by a system of differential equations, by a

smooth (non-linear) input/output model which over time generates new states of the system based on

a finite number of previous states. This observation is in fact a quite deep theorem due originally to

[Takens 1981].

Historically there have been several interesting models of neural systems which generate chaos

and in Chapter 5 we shall give a brief survey. An early example of such a study was the VCON

oscillator neuron of[Hoppensteadt 1989]. However, building on the existing knowledge of smooth

non-linear modelling techniques we choose to use an approach based on Takens theorem and construct

feedforward networks which can form accurate iterative models of any given system.

We therefore start in Chapter 2 by examining some recent developments in data analysis and mod-

elling under noise, the Gamma test[Končar 1997; Stef́anssonet al.1997], which help us to construct

smooth non-linear models with some degree of efficiency. Use of the Gamma test eliminates much

of the tiresome process of trial and error often associated with training a feedforward neural network.

In particular we study how much can be inferred about the required architecture for the feedforward

network directly from the training data.

In Chapter 3 we digress slightly and investigate other possible modelling techniques which might

provide alternative methods for prediction without the long training times often associated with feed-

forward neural network model building. These techniques are all based on estimating the correspond-

ing output of a hitherto unseen input using thelocal near neighbour information of the input signal in

the input space of the training data. Extraction of such local information is accomplished using a data

structure known as akd-tree. kd-trees are also basic to the Gamma test and are described in some detail

in Chapter 3. In Chapter 4, more examples of applications which require smooth data modelling are

given, as well as many essential pre-processing techniques introduced for improving the modelling.

Once we have developed diverse and relatively efficient techniques for modelling smooth non-

linear functions we are then able to meet the requirement of constructing feedforward networks that

approximate iterative chaotic maps with a very small mean-squared error (of the order of10−6).

Having seen how to exhibit neural chaos the next question becomes how to control it? We approach

this issue by considering a range of existing techniques which since 1989 have been used to control an

enormous range of different types of chaotic systems. Historically the first of these was a technique

due to Ott, Grebogi and Yorke, known as theOGY method[Ott et al. 1990] and we describe this

method in some detail in Chapter 5. The basic idea is that a chaotic system exhibits numerous unstable

periodic orbits and, having located one such behaviour, the OGY method seeks to stabilise this orbit

using small variations of some accessible system parameter.

Many such methods require careful and systematic analysis of the chaotic dynamical behaviour,

which is usually difficult and computationally expensive, before successful control can be achieved.

Moreover, such control techniques areexternalto the system being controlled, whereas for a neural

system to behave as described by[Freeman 1991] the control should beintrinsic to the neural dynam-

ics. Nevertheless, such preliminary studies serve as a useful starting point for studying the control of

neural chaos. In Chapter 6, many simple examples of controlling chaotic artificial neural networks are

given.

The dynamics of large neural ensembles are high-dimensional, and whilst the OGY technique is an

effective tool for the control of low dimensional chaos it needs further elaboration for effective control

of higher dimensional systems. Indeed, for higher dimensional systems it may be that other types
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of control procedures will prove far more effective. To investigate the control of higher dimensional

chaos as a starting point for the discussion of higher dimensional neural chaos we have chosen a

well studied dynamical system described by a modified form of the Euler equations, the so called

chaotic satellite attitude control problem. In Chapter 7 we apply various techniques to a variation of

the chaotic satellite attitude control problem and show that it is possible to stabilise the system in a

situation where five of the six sensors (three angular velocities and three attitude angles) and two of the

three thrusters are inoperative. It emerges from the work of this chapter that a remarkably simple and

effective method of stabilisation onto an unstable periodic behaviour can be effected by the application

of delayed feedback. Delayed feedback to controlcontinuousdynamical systems exhibiting chaos was

first suggested in[Pyragas 1992]. We use a modified version of this approach to stabilise an iterative

neural model (previously trained to generate chaotic behaviour in the ‘rest state’) in the presence of an

input stimulus. We determine that the response to a particular stimulus is remarkably robust in the face

of noise. A result which we found to be rather surprising whilst at the time extremely encouraging.

Little theoretical analysis is available for the Pyragas method of continuous delayed feedback con-

trol, let alone for the discrete form of the method used here. However, a discrete version of a variation

of Pyragas’ method has already successfully been applied to thesynchronisationof two identical iter-

ative chaotic maps in[Oliveira and Jones 1998]. The version used there forsynchronisationis similar

to but not identical to the method used here forstabilisation. [Oliveira and Jones 1998] also contained

a suggestive discussion of the local stability properties of the method used. For both the Hénon map

and the chaotic neural network used here it was shown that whilst the synchronisation control method

used by[Oliveira and Jones 1998] was not locally stable it was neverthelessprobabilistically locally

stable.

We provide a similar empirical analysis for the method of stabilisation proposed here in the case

where no external stimulus is present.

One of the attractions of delayed feedback stabilisation is that it has a very low computational

overhead and so is extremely easy to implement in hardware. It would also be very easy to implement

in biological neural circuitry and so offers one plausible mechanism whereby such stabilisation might

occur.

The particular unstable periodic orbit which is stabilised depends quite strongly on the precise

character of the applied stimulus. Thus the system can act as an associative memory in which the act

of recognition corresponds to stabilising onto an unstable periodic orbit which is characteristic of the

applied stimulus. The entire artificial system therefore exhibits an overall behaviour and response to

stimulus which precisely parallels the biological neural behaviour observed by Freeman.
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Chapter 2
Feedforward neural network modelling &
the Gamma test

Feedforward artificial neural networks (FANN for short) with a smooth sigmoidal have been com-

monly chosen as the choice for modelling smooth input-output systems. A suitable architecture for the

feedforward network and an effective learning algorithm can often be used to model data or predict

time series with good accuracy[Dracopoulos and Jones 1993]. In this chapter we sketch these funda-

mental results on the modelling capability of feedforward neural networks. An alternative graphical

explanation of feedforward networks based on ideas due to Lapedes[Lapedes and Farber 1988] is also

presented.

A data noise estimation technique called theGamma testis then presented and discussed in terms of

its usefulness and relevance to automating neural network construction for data modelling. Basically,

this is an introduction to the Gamma test which will be continuously used and exploited in the rest of

this work.

2.1 Feedforward neural network approximation

The theoretical basis for feedforward neural network approximation stems from the fact that standard

feedforward neural networks, with as few as one hidden layer, using (fixed) arbitrary sigmoidal func-

tions, can approximate to any desired degree of accuracy any continuous functionf : Rn → Rm over

a compact subset ofRn, provided sufficiently many hidden units are available[Hornik et al. 1989;

Cybenko 1989]. This is, of course, an existence theorem and gives no guarantee that any particu-

lar training method will converge to the required approximation, nor any indication of the number

of hidden units required. However, it is an important result. These results depend essentially on the

Stone-Weierstrass theoremwhich asserts that an algebraA of real continuous functions, that separates

points on a compact setK and does not vanish at any point ofK, isdensein the space of realcontinuous

functions onK.

In practice a second hidden layer can often be used to reduce the number of hidden units in a single

hidden layer network, so leading to a more efficient representation.

Here we present a simple theorem on feedforward neural network modelling to illustrate the idea

that a feedforward neural network can be viewed as an approximation function. In this example we
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show that any continuous function on a square inR2 can be approximated by a 3-layer1feedforward

neural network[Blum and Li 1991]. The result requires the use of a special case of the Stone-

Weierstrass theorem which says that any continuous function on such a square can be approximated

by a sum of cosine functions. Here is the theorem we need without the proof:

Theorem 2.1.1 (Stone-Weierstrass theorem special case).Let f : [0, π]2 → R be continuous. For

any givenε > 0, there isN ∈ N and constantsamn, with 0 ≤ m,n ≤ N, such that∣∣∣∣∣f(x, y)−
N∑

m,n=0

amn cos(mx) cos(ny)

∣∣∣∣∣ < ε (2.1)

for all (x, y) ∈ [0, π]2.

Stated in this form the result bears a strong resemblance to Fourier’s theorem, but we are not

interested here in performing Fourier analysis. Our plan is simply to prove an approximation theorem

for feedforward networks using threshold neurons. Define

step (x) = 1 if x ≥ 0, otherwise step (x) = 0. (2.2)

We first establish thatcos(t) can be uniformly approximated by a suitable linear combination of such

step functions, i.e.

Lemma 2.1.1. Let

γ(t) =
M∑
j=1

wjstep (t− θj) (2.3)

Givenδ ≥ 0 andX > 0, X ∈ N we can chooseM = M(δ,X), M ∈ N, sufficiently large and real

numberswj andθj (1 ≤ j ≤M) so that

|γ(t)− cos(t)| < δ for |t| ≤ 2Xπ (2.4)

Sketch proof.The idea is simply that we approximatecos(t) by a sequence ofM/2 small horizontal

line segments, where each line segment is composed from a pair of step functions. This process is

illustrated in Figure 2.1.

We can use this lemma to establish

Theorem 2.1.2.Let f : [0, π]2 → R be continuous. For any givenε > 0, there is a 3-layer feedfor-

ward neural network with McCulloch-Pitts neurons in the hidden layer and a linear output unit which

approximatesf on [0, π]2 to within ε.

Proof. According to Theorem 2.1.1 above, there isN and constantsamn, 0 ≤ m,n ≤ N , such that∣∣∣∣∣f(x, y)−
N∑

m,n=0

amn cos(mx) cos(ny)

∣∣∣∣∣ < ε

2
(2.5)

for all (x, y) ∈ [0, π]2. LetK = max |amn|. We express

cos(mx) cos(ny) =
cos(mx+ ny) + cos(mx− ny)

2
(2.6)

1This includes the input layer, one hidden layer and one output layer.
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Figure 2.1: cos(x) can be approximated byn line segments for which each line segment is composed

from a pair of step functions.

and also note that|mx± ny| ≤ 2Nπ for any(x, y) ∈ [0, π]2. Writing

h(x, y) =
N∑

m,n=0

amn
2

(cos(mx+ ny) + cos(mx− ny)) (2.7)

we have from (2.5)

|f(x, y)− h(x, y)| < ε

2
. (2.8)

We next use Lemma 2.1.1, takingδ = ε/(4(N + 1)2K), to approximate the sum of cosines and obtain∣∣∣∣∣h(x, y)−
∑
m,n

amn
2

(γ1(mx+ ny) + γ2(mx− ny))

∣∣∣∣∣
≤
∑
m,n

|amn|
(

ε

4(N + 1)2K
+

ε

4(N + 1)2K

)
<
∑
m,n

ε

2(N + 1)2
=
ε

2
.

(2.9)

If we now examine the feedforward network illustrated in Figure 2.2 we see that the outputg(x, y) of

the network is precisely a linear combination of step functions,

g(x, y) =
N∑

m,n=0

amn
2

(γ1(mx+ ny) + γ2(mx− ny))

=
N∑

m,n=0

amn
2

 M∑
j=1

ujstep(mx+ ny − µj) +
M∑
j=1

vjstep(mx− ny − νj)

 .

(2.10)

Inequalities (2.8) and (2.9) give

|f(x, y)− g(x, y)| ≤ |f(x, y)− h(x, y)|+ |h(x, y)− g(x, y)|

<
ε

2
+
ε

2
= ε

(2.11)

for (x, y) ∈ [0, π]2.

More detailed examples and more general theorems for different type of activation functions can

be found in[Hornik et al. 1989; Cybenko 1989]. The main point concluded from these results is

that multilayer feedforward networks are a class ofuniversal approximators. In general anyf ∈
C[S], the space of continuous real functions on a compact subset,S of Rn, can be arbitrarily closely

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



2.2 Graphical understanding of FANNs 23

m �

å

�������	��
 ��
��

�����

�����������

�

���

�  

!
"

n #

$�%�&�'�(*) +�,�-

.0/2143576

Figure 2.2: The 3-layer neural network implementingf to within ε. The network has(N+1)2×M+
(N + 1)2 ×M hidden neurons (doubly labelled bym, n, j). The two weights from the inputs to the
hidden neuron labelledm, n, j in the top half arem andn, whereas those to the hidden neuronm, n,
j in the bottom half arem and−n.

approximated in the uniform norm by a two-layer feedforward network with semi-linear hidden units

using a sigmoidal threshold function,g, and one linear output unit[Hornik et al.1989]. Thus

f(x) ≈ε
m∑
i=1

wig

 n∑
j=1

aijxj − ci

 (2.12)

where the weightswi andaij and thresholdsci are real numbers. The symbol≈ε denotes the approx-

imation with error≤ ε. The functiong is a monotone real function withg(z) → 0 asz → −∞ and

g(z)→ 1 asz →∞.

2.2 Graphical understanding of FANNs

For a clearer understanding of the functionality of a feedforward network, Lapedes[Lapedes and

Farber 1988] has opted for a graphical and modular approach to construct a feedforward network to

model a surface, i.e.f : [0, 1]2 → R.

Lapedes’ basic recipe will produce a ‘hill’ by constructing a network with 2 hidden layers of

sigmoidal nodes and a summing output layer. Here is a simple recipe for a neural unit of 2 inputs and

1 output to produce a hill:

1. Construct a ‘sigmoidal surface’ with a single node, see Figure 2.3. The weights set the orienta-

tion of the facing slope and the threshold value positions the slope on the input space.

2. Construct another ‘sigmoidal surface’ with another node with the same set of weights (i.e. the

same orientation) and a threshold with a suitable slight offset from the previous threshold value.

The difference of the outputs of the two nodes can produce a ‘ridge’ surface (Figure 2.4).

3. Similarly produce another ‘ridge’ perpendicular to the previous ‘ridge’ using the previous two

steps but with different set of weights and thresholds. The sum of the two ‘ridges’ will produce

a ‘gentle’ hill as shown in Figure 2.5.
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Figure 2.3: Single sigmoidal node (σ(20x +
20y+10) with T = 2) can produce a ‘sigmoidal
surface’ for this 2 inputs and 1 output system.

Figure 2.4: Adding another sigmoidal node
with suitable weights (σ(20x + 20y + 10) −
σ(20x + 20y + 20) with T = 2) can produce
a ridge.
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Figure 2.5: The intersection of two ‘ridges’
placed perpendicularly to each other forms a
gentle ‘hill’ surface.
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Figure 2.6: Suitable choice of weights, thresh-
olds for the final layer can smooth off the un-
wanted trailing ridges.

4. Passing the sum into another sigmoidal node to flatten the unwanted elevations to form a perfect

round hill surface, Figure 2.6.

Further hills on the same surface can be produced by constructing different units and then their outputs

can be passed through a summing node. One should note that the steepness of hills depends on the

temperatures,T (i.e. slopes) of the sigmoidal nodes.

Based on this recipe, we can produce a hill using the architecture shown in Figure 2.7. The sections

A andB correspond to the two ‘ridges’ described in step 1 and 2 of the recipe. The node atC is the

node which smoothes off the trailing ‘ridges’ of the intersection of the two ‘ridges’ as in step 4. The

final node atD is a sum node for summing all the hills together.

This graphical approach inspires an interesting idea, that of using the ‘slope’ estimate in the

Gamma test[Stef́anssonet al.1997] to construct suitable feedforward neural networks to model data of

input and output pairs. Early investigation shows how the second parameterA returned by the Gamma

test can be used to estimate the number of hidden nodes for a single hidden layer feedforward neural

network which are required to attain the best achievable performance.2 Without any further discussion

of this new idea which can be found later in the chapter, let us introduce the Gamma test.

2A joint investigation with Nenad Ǩoncar
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Figure 2.7: Connectivity of a unit to produce a hill. Add 4 more nodes to hidden layer 1 and one more
node to hidden layer 2 for each additional hill.

2.3 The Gamma test - an introduction

In a recent paper[Stef́anssonet al.1997] a simple test (theGamma test) which, in many situations, can

accurately estimate from the available input/output data the best achievable performance of a smooth

data model was developed. For non-linear modelling applications, and in particular for feedforward

neural networks trained by backpropagation, such a test is extremely useful because it enables us

to predict the best achievable performance of the model without the time consuming necessity of

estimating this empirically by creating, training and testing a number of networks.

The Gamma test is a data analysis routine, that (in an optimal implementation) runs in time

O(M logM) asM →∞, whereM is the number of sample data points, and which offers an estimate

of the best Mean Squared Error (MSE) that can be achieved by any continuous or smooth (bounded

first partial derivatives) data model constructed using the data without over-fitting. For completeness

we briefly describe the Gamma test but here we are interested in how the complexity of the modelling

task can be estimated rather than the best achievable MSE.

Let a data sample be represented by

((x1, x2, . . . , xd), y) = (x, y) (2.13)

in which we think of the vectorx = (x1, ..., xd) as the input, confined to a closed bounded setC,

and the scalary as the output. In the interests of simplicity the following explanation is presented for

a single scalar outputy which is assumed, whenevery is the output of a neural network, to lie in the

interval (0, 1). But the same algorithm can be applied to the situation wherey is a vector with very

little extra complication or time penalty.

We focus on the case where samples are generated by an unknown continuous functionf : C ⊆
Rd → R and

y = f(x1, x2, . . . , xd) + r (2.14)

wherer represents an indeterminable part, which may be due to real noise or might be due to lack of

functional determination in the posited input/output relationship i.e. an element of ‘one→many-ness’

present in the data. Over-training can eliminate the first of these for a particular training data set,

but no amount of over-training can eliminate the second. In the case of applications to a time series

s(t), when the datax might represent a numberd′ of successive samples (s(t − 1), . . . , s(t − d′)) in

time andy represents(t), the indeterminable quantityr may result from an insufficient embedding3

3An embedding is a technique for reconstructing dynamics using delay coordinates. Further discussion in Section 4.1.1.
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dimensiond′. For the present we treat the issue as a data processing problem in whichr is statistical

noise uncorrelated withx or y andMean(r) = 0.

In essence the Gamma test returns two numbers (Γ̄, A), in which Γ̄ is an estimate of the MSE of

an outputy, and in the case where the data is uniformly distributed in input spaceA is approximately
1
4 〈|∇f |

2〉 [Končar 1997], where the angle brackets denote expectation with respect to the sampling

distribution. Thus providedy ∈ [0, 1] (or some fixed bounded interval)A is a rough measure of the

complexity of the surface to be modelled. In constructing feedforward neural networks the ability to

quickly estimate from the training data the surface complexity we seek to model is useful because one

would expect such a measure to be correlated with the architecture of the required neural network.

In particular it can be used to give us some idea of how many hidden layer units are required for the

network to be capable of producing the MSE suggested by the Gamma test. Parsimony of hidden units

is important because we are seeking to interpolate thesimplesthigher dimensional surface which can

be generated by a feedforward neural network through the data set without over-fitting.

First a series of experiments are performed to investigate and/or validate the functionality of the

Gamma test. Then the rest of this chapter will discuss how the second parameter returned by the

Gamma test can be used to estimate the number of hidden nodes for a single hidden layer feedforward

neural network which are required to attain the best achievable performance. Other statistics might

easily be used to estimate surface complexity from the data, however a significant consideration here

is that whatever method is used the algorithm should have a reasonable run time if we expect to be

processing a large data set. Since the Gamma test runs inO(M logM) time and we already need

this algorithm to estimate the best achievable MSE without over-fitting it seemed natural to begin by

investigating how the slope parameterA is correlated with the required number of hidden units.

The later section will discuss a good correlation between the value ofA returned by the Gamma test

and the number of hidden layer neurons required to attain a good model of the data using a feedforward

neural network with one hidden layer. In order to enable simple visualisation we have restricted the

number of inputs in these experiments to 2 or 3 but the same principles can be applied regardless of the

number of inputs provided that sufficient data is available. The purpose here is to convince the reader

that the approach has some promise rather than to describe a precise formula for automated neural net

construction.

The results presented in Section 2.4 are preliminary but indicate that the method is quite practical.

The approach offers the possibility that the entire process of performance prediction and constructing

a feedforward neural network which attains the best achievable performance on the basis of given

training data can be automated with a fair degree of reliability.

For the Gamma test to be applicable the following assumptions are required. We assume that

training and testing data are different sample sets in which:

• Assumption A

1. the training set inputs are non-sparse in input-space.

2. Each output is determined from the inputs by a deterministic process which is the same for

both training and test sets.

3. Each output is subjected to statistical noise whose distribution may be different for different

outputs but which is the same in both training and test sets for corresponding outputs.

Given samples such as (2.13), in which the underlying continuous functionf is unknown, we

cannot hope to estimate the meanµ of r, since a non-zero mean will create a bias which could just
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as easily be incorporated into the data model by consideringf to be replaced byf + µ. We therefore

assume in what follows thatµ = 0.

In point of fact it is the variance ofr, Var(r), which is of real interest. For example, if we were

using a number of samples such as (2.13) to train a neural network thenVar(r) provides a lower bound

for the mean squared error of the outputy (i.e. the variance ofy−f(x)), beyond which, if the estimate

is accurate andAssumption A holds, any attempt to improve the neural network model by further

training would at best result in over-training. Indeed, this is true forany continuous or smooth data

modelling technique.

The Gamma test is a very simple method for estimatingVar(r). The most time consuming part of

the process is to compute near neighbour lists for each pointx, but assuming that a bounded number

of near neighbours are required (we found thatpmax = 20 or 30 near neighbours is typically ade-

quate) this can be done inO(M logM) time using kd-trees[Bentley 1975]. Suppose(x(i), y(i)) and

(x(j), y(j)), i 6= j, are two data samples. The basis of the idea is the observation that ifx(i) andx(j)
are near neighbours in input space andf is continuous theny(i) andy(j) should be near in the output

space. Thus, for example, we should not expect the test to work well ond-bit parity, where the input

vectors (being the vertices of and-cube) are sparse and the output values (1 or 0) are uncorrelated for

input-space near neighbours.

Suppose(x, y) is a data sample. Let(x′, y′) be a data sample such that|x′ − x| > 0 is minimal.

Here|·| denotes Euclidean distance and the minimum is taken over the set of all sample points different

fromx. Thusx′ is the nearest neighbour tox (in any ambiguous case we create a list of all equidistant

points and incorporate them into the averaging).

The Gamma test (or near neighbour technique) is based on the statistic

γ =
1

2M

M∑
i=1

(y′(i)− y(i))2
. (2.15)

Let δ be the mean-squared first near neighbour distance. One can show that under reasonable condi-

tions

lim
δ→0

γ = Var(r) (2.16)

where the convergence isconvergence in probability. For a finite set of data samples we cannot have

arbitrarily small nearest neighbour distances. However, in practice even the crude measure provided

by (2.15) often proves very useful.

If one is prepared to assume thatf is smooth with bounded first partial derivatives we can obtain a

more precise estimate than (2.15) by using a regression line fit on the statisticγ. Now given data sam-

ples(x(i), y(i)), wherex(i) = (x1(i), . . . , xm(i)), 1 ≤ i ≤M , letN [i, p] be the list of (equidistant)

pth nearest neighbours tox(i). We write

δ(p) =
1
M

M∑
i=1

1
L(N [i, p])

∑
j∈N [i,p]

|x(j)− x(i)|2 =
1
M

M∑
i=1

|x(N [i, p])− x(i)|2 (2.17)

whereL(N [i, p]) is the length of the listN [i, p]. Thusδ(p) is the mean square distance to thepth

nearest neighbour. We also write

γ(p) =
1

2M

M∑
i=1

1
L(N [i, p])

∑
j∈N [i,p]

(y(j)− y(i))2 (2.18)
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where they observations are subject to statistical noise assumed independent ofx and having bounded

variance.

Under reasonable conditions one can show that

γ ≈ Var(r) +Aδ + o(δ) as M →∞ (2.19)

where the convergence is in probability. From which it follows thatlim γ = Var(r) (in probability) as

δ → 0.

This Gamma test computes the mean-squaredpth nearest neighbour distancesδ(p) (1 ≤ p ≤ pmax,

typically pmax≈ 10) and the correspondingγ(p). The regression line of (δ(p), γ(p)) is computed and

the vertical intercept̄Γ is returned as the Gamma value. Effectively this is the limitlim γ asδ → 0
(i.e.M →∞) which in theory isVar(r).

The original version of the Gamma test in[Stef́anssonet al. 1997; Koňcar 1997] used smoothed

versions ofδ(p) andγ(p) given by

∆(p) =
1
p

p∑
h=1

1
M

M∑
i=1

|x(N [i, h])− x(i)|2 (2.20)

and

Γ(p) =
1
p

p∑
h=1

1
2M

M∑
i=1

(y(N [i, h])− y(i))2 (2.21)

The idea being that these equations rolled off the significance of more distant near neighbours. Thus

takingpmax large in such an implementation often does not significantly alter the resultingΓ̄ value. In-

deed all the values of̄Γ reported in this chapter (and the discussion of the Gamma-minimum-predictor

in Chapter 3) are based on the original version of the algorithm. However, later experience showed that

providedpmax is kept small the extra complication of computing∆(p) andΓ(p) is largely unnecessary

(although this form of the Gamma test can sometimes produce betterΓ̄ estimates whenM is small)

and the later implementations are based on equations (2.17) and (2.18).

An implementation of the Gamma test is given in Algorithm 2.1. The method used to construct the

near neighbour lists can beO(M2) orO(M logM) depending on the sophistication of the coding.

Procedure: Gamma Test(data)
{data is an array of points(x(i), y(i)), (1 ≤ i ≤ M), in whichx is a real vector of dimensiond
andy is a real scalar}
for i = 1 toM do
{computex nearest neighbours}
for p = 1 to pmax do
N [i, p] = t wherex(t) is thepth nearest neighbour tox(i).

end for
end for
for p = 1 to pmax do

compute∆(p) as in (2.20) for original version (or replaced with (2.17) for later version)
computeΓ(p) as in (2.21) for original version (or replaced with (2.18) for later version)

end for
Perform least squares fit on coordinate(∆(p),Γ(p)) (or replaced with(δ(p), γ(p)) for later version)
(1 ≤ p ≤ pmax) obtaining (say)y = Ax+ Γ̄
return (Γ̄,A)

Algorithm 2.1: The Gamma test algorithm.
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2.3.1 Some supporting analysis for the Gamma test

Since the full justification of the theoretical background of the Gamma test is not completely published

and available, we outline some supporting analysis and present two illustrative experiments.

Consider the term

1
2

(y′ − y)2 =
1
2

(f(x′) + r′ − f(x)− r)2

=
1
2

((r′ − r) + (f(x′)− f(x)))2
.

(2.22)

Using the smoothness hypothesis on the unknown functionf we can expand the term

f(x′)− f(x) = (x′ − x) · f ′(x) +O(|x′ − x|2) (2.23)

and substitute back into (2.22) to obtain

1
2

(y′ − y)2 =
1
2
(
(r′ − r) + (x′ − x) · f ′(x) +O(|x′ − x|2)

)2
=

1
2

(r′ − r)2︸ ︷︷ ︸
[a]

+ (r′ − r)(x′ − x) · f ′(x)︸ ︷︷ ︸
[b]

+
1
2

((x′ − x) · f ′(x))2︸ ︷︷ ︸
[c]

+ (r′ − r)O(|x′ − x|2)︸ ︷︷ ︸
[d]

+O(|x′ − x|3)

(2.24)

If we now average both sides over1 ≤ i ≤M we can consider each term separately. Let us write

A =

∣∣∣∣∣Var(r)− 1
2M

M∑
i=1

(r′i − ri)2

∣∣∣∣∣ , (2.25)

B =

∣∣∣∣∣ 1
M

M∑
i=1

(r′i − ri)(x′i − xi) · ∇fx=xi

∣∣∣∣∣ , (2.26)

C =

∣∣∣∣∣ 1
2M

M∑
i=1

((x′i − xi) · ∇fx=xi
)2

∣∣∣∣∣ (2.27)

and

D =

∣∣∣∣∣ 1
M

M∑
i=1

(r′i − ri)|x′i − xi|2
∣∣∣∣∣ . (2.28)

To justify (2.15) it is sufficient asM →∞ that each of these terms tends to zero. ForB, C andD
this is fairly clear by virtue of the assumption that there are no isolated points in thex-space sampling

distribution, i.e. that|x′ − x| → 0 asM →∞, and the fact that∇f is assumed bounded.

ThatA → 0 asM → ∞ follows from the assumption thatr′i andri are uncorrelated. In fact,

sinceMean(r) = 0, we would expect that, with probability oneA = O(M−1/2) asM →∞.

To establish (2.19) is more demanding. We have to show not only that these terms tend to zero but

that the termC, which corresponds to the termAδ in (2.19), does so moreslowly than the termsA , B
andD. In other words we could justify (2.19) if we could prove that

A = O(M−1/2) = o(C)
B = o(C)
D = o(C)

 as M →∞. (2.29)
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What should we expect for the order ofC? Heuristic considerations suggest that(x′
i − x) ≈

M−1/d asM → ∞, whered is the dimension of the support of the sampling distribution inx-space,

see for example[Melzak 1979] for more formal results. In which case we expect thatC ≈ M−2/d as

M → ∞. So thatA = o(C) provided1/2 > 2/d, i.e. d > 4. We should recognise that in seeking

to justify (2.19) by treating each of these terms separately we loose useful cancellation between error

terms. In practice the Gamma test based on (2.19) seems to work very well even ford = 1.

Now consider the requirement thatB = o(C). We regard the individual terms of the sum inB as

noiser′i − ri, which has mean zero, multiplied by terms(x′i − xi) · ∇f in which∇f is bounded

and(x′i − xi) ≈ M−1/d asM → ∞. We should therefore expectB to beO(M−(1/d+1/2)) with

probability one. ThusB = o(C) provided1/d+ 1/2 > 2/d, i.e.d > 2.

The final requirement is thatD = o(C). The individual terms|x′i − xi|2 of the sum inD are

similar in magnitude to those ofC except that each is multiplied by a noise termr′i−ri. The net effect

on the sum is to introduce cancellation. We should expect thatD = O(M−(2/d+1/2)) with probability

one asM →∞. ThusD = o(C) provided2/d+ 1/2 > 2/d, which is automatically satisfied.

We next give two simple experiments to check if these terms behave along the lines predicted. We

taked = 6 and use the function

f(x1, x2, x3, x4, x5, x6) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 (2.30)

with −1 ≤ xi ≤ 1 and a uniform sampling distribution inx-space. First we try with a uniform noise

distribution withVar(r) = 0.09. By increasingM we can repeatedly calculate the corresponding term

A and we can then perform a linear regression to fit a line to the plot oflogA againstlogM . The

gradient of this line is then the valueg of A ≈ Mg. Similarly this procedure can be repeated for the

termsB andC. We then plot the gradientsg of the “loglog” plots for the termsA, B andC against

M to check the asymptotic values ofg. The result for the uniformly distributed noise experiment is

shown in Figure 2.8. The asymptotic behaviour of the critical terms is approximatelyA ≈ M−0.57,

B ≈M−0.53, andC ≈M−0.39, so thatC is the dominant term as required.

The experiment is repeated for Gaussian noise with meanMean(r) = 0 and varianceVar(r) =
0.09. The corresponding result is shown in Figure 2.9. Here the asymptotic behaviour of the critical

terms is approximatelyA ≈ M−1.03, B ≈ M−1.11, andC ≈ M−0.39, so that once againC is

dominant.

In practice such large values ofM are not necessary when using the Gamma test on data generated
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Figure 2.8: Gradientsg of the “loglog” plots for the termsA,B andC against varyingM for uniformly
distributed random noise with variance about 0.09
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Figure 2.9: Gradientsg of the “loglog” plots for the termsA, B andC against varyingM for Gaussian
noise, with mean 0 andVar(r) = 0.09.

by such simple surfacesf .

2.3.2 Gamma test in higher-dimensional input space

A simple experiment is set up to investiage how the Gamma test (original form) behaves when the

input vectors are higher-dimensional. First define a function

f(x) =
d∑
i=1

Ψi sin2(aixi + bi), (2.31)

wherexi is theith component of vectorx with 0 ≤ xi ≤ 1, Ψi = cos2(i), ai = 0.5 cos2(i
√

2) and

bi = sin2(i
√

6), for generating sample data. The choice of these parameters was arbitrary, subject to

the requirement of maintaining model complexity. In fact, this is the underlying model to be implicitly

approximated by the Gamma test in order to measure the level of noise of the data. For each dimension

d, M data points are generated by this function and random noise, of 20% of the size of the output

range,|max f(x)−min f(x)|, of the functionf in (2.31), is then added to the outputs of the sampled

data.

For eachd, we increaseM and measure the true variance of the noise,Var(r) and also calculatēΓ
for comparison.M is increased until approximately∣∣Γ̄−Var(r)

∣∣
Var(r)

< 0.05, (2.32)

i.e. the percentage error ofΓ̄ is less than 5 percent. This is done ford from 2 to 11.

Some of the results are shown in Figures 2.10–2.12. To achieve the desired 5% error, the Gamma

test only requires about 700 data ford = 3 whereas ford = 11, it requires over 10000 data. In fact, the

error still fluctuates after 10000 data ford = 11. Therefore it appears that for higherd, the largerM is

required to approximate the variance of noise. However, very much larger values ofM are required to

stabilise the gradientA.

Of course, this is foruniformly distributed input data. For many of the examples of interest the

support of the sampling distribution in input space has small Hausdoff dimension. In such cases far

fewer data samples are required to get an accurate estimate.

To summarise, if there are enough data available, the Gamma test can capture very well the variance

of noise,Var(r) as shown in Figures 2.10–2.12. To have a better estimate ofA for the same problem, a
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Figure 2.10: Gamma test experiment result ford = 3.
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Figure 2.11: High-dimensional Gamma test result ford = 9.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



2.4 Analysis of relationship betweenA and neural models 33

�

��� �����

	�
 ����


��� �����

��� �����

���������! �"�#%$�&�'�(*)�+�,�-/.10�2�3�46587�9�:�;6<>=@?�A�B6C1D�E�F�G6H1I�J�K�LNM!O�P�Q�R
SUT!VXWUY Z\[^] _�`ba

c�dfe gUh

ikj@lnmporq

sut@vxw

y

z�{ |�}�~

��� �����

��� �����

��� �����

�!�������@�����%������� ������� �8¡�¢�£�¤6¥§¦!¨�©�ª¬«§­!®�¯�°6±³²�´�µ�¶6·³¸�¹�º�»½¼�¾�¿�À�Á
ÂUÃ!ÄXÅUÆ Ç\ÈÊÉ Ë�ÌbÍ

ÎfÏ ÐÒÑÔÓÖÕ

×

Ø

Ù1Ú

Û1Ü

Ý�Þ

ß�à�á�â ã!ä�å�æ ç�è�é�ê ë�ì�í�î�ï1ð�ñ�ò�óõô8ö�÷�ø�ùûú§ü!ý�þ�ÿ����������	��

���
���
�������

��������� �! #" $
%'&

(*),+.-0/214365

Figure 2.12: High-dimensional Gamma test result ford = 11.

much largerM is required. For simpler surfaces the numberM required is much smaller. The practical

usefulness of an accurateA is discussed next.

2.4 Analysis of relationship betweenA and neural models

In what follows, we try to discuss the strong relationship between the data and the neural architecture

required to model the data, based on experimental observations. The main results and data from these

experiments have been presented in[Končar 1997], therefore we only provide brief descriptions and

general discussion.

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2

0.4
0.6

0.8
1

Figure 2.13: One hill (2-4-1).
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Figure 2.14: Six hills (2-10-1).

We try to demonstrate the correlation betweenA, calculated from a data set in which the underlying
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model was supposed unknown, and the ideal minimum number of hidden layer neurons required to

attain the best (neural) model possible without over-fitting the data. We assumeA is already accurately

estimated using largeM (the number of data for the Gamma test). Thus we first create a routine which

constructs a 2-h-1 neural network with an input/output surface for which the number of hills is pre-

specified. This is very simply done and is based on the ideas described in[Lapedes and Farber 1988] as

described in Section 2.2, but with only one hidden layer for ease of comparison with the neural network

architecture. By placingk ridges in parallel vertically and similarlyl ridges horizontally we can obtain

an input/output surface, withkl hills usingh = 2(k + l) hidden units, for which the output neuron

performs the flattening of unwanted elevations. This is a parsimonious use of hidden units to create

maximal surface complexity and represents in some sense a ‘worst case’ scenario. (See Figures 2.13 –

2.14)

The next step is to create an experimental input/output data set by selecting an input vector at

random and then propagating these inputs through the ideal network to obtain the associated output.

In this way we can generate as many points in our data set as we wish, so that we can perform the

Gamma test on these data to obtainA. Then the relationship between the number of hidden units of

the neural networks and the valueA for a fixed size of sampled data can be compared. We concluded

that there was a reasonably linear correlation between the slopeA and the number of hidden units.

Similarly, we also extend the experiment with 3 inputs and 1 output neural network. Instead of

using the neural network to construct surfaces, we construct 3D density field as illustrated in Fig-

ure 2.15, which employs both a grey scale and variations in point-size to indicate the variation of the

output. Again, we could see a near linear correlation betweenA and the number of hidden nodes.
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Figure 2.15: Discrete approximation to the 3D density field output of a 3-12-1 neural network.

We next define a class of surfaces for which a single parameter can be varied so as to increase or

decrease the complexity. This is easily done by writing

f(x, y) = 0.15 +
1 + sin(p(2x+ 3y))
3.5 + sin(p(x− y))

. (2.33)

Increasing the value ofp causes the surface to become progressively more complex. For each surface

generated by varyingp, 650 data points were sampled and then a fixed amount of additive noise (Gaus-

sian) with a variance of 0.0014 was added. We then performed the Gamma test to determineΓ̄ andA

for this particularp. Using the neural network training software from[Masters 1993], an implemen-

tation of conjugate gradient method training algorithm (see also Appendix D), with each node using

sigmoidal1/(1 + Exp(x)), and an architecture with one hidden layer and no cross connections, we
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trained the feedforward network on the 650 data points in an effort to determine the least number of

hidden units required so that the network error could be reduced to the correspondingΓ̄. Figure 2.16

and Figure 2.17 compare the original surface with that learnt by the neural network using the 650 data

points. Considering the added noise the surface shown in Figure 2.17 is a very good approximation to

the surface in Figure 2.16. From a number of such experiments, we also observed that there is a near

linear relationship betweenA and the number of hidden units in the ‘best’ neural network.
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Figure 2.16: f(x, y) whenp = 2.75.
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Figure 2.17: Trained neural network output on
noisy data forp = 2.75.

The potential application of these results to the automated construction of problem specific neural

networks is fairly plain. Firstly, if possible one ensures the accuracy of the Gamma test values (Γ̄, A)

by increasingM until these values asymptote to a stable value. Second, using the Gamma test valueΓ̄
enables one to predict beforehand a useful performance metric for the model, which may or may not

be a neural network. If a neural network is the chosen tool for constructing the non-linear input/output

model then usingA we can predict with fair accuracy how many hidden units will be needed in a

single hidden layer network. This is discussed further in the next section. Finally, we use theΓ̄ value

to indicate when backpropagation should cease. If the MSE obtained by backpropagation cannot be

reduced tōΓ then the number of hidden units should be increased.

The observed strong link between the Gamma test valueA and the architecture of the simplest

feedforward neural network, which accurately represents the data model, leads to an attempt to use

A to estimate the minimal neural network architecture required to model the data. Assuming that we

have a uniform distribution of thex data[Končar 1997], then approximately

A ≈ 1
4
〈
|∇f |2

〉
. (2.34)

In principle, we can choosef explicitly and compute|∇f |2 at any point and thus the average can be

evaluated by

1
|C|

∫
|∇f |2dx1 . . . dxm, (2.35)

where|C| is the volume of the closed bounded data set region.

The idea of usingA is to assume that the data will produce a smooth surface of hills and that there

is a real functionf : [0, 1]d → [0, 1] (with bounded output) describing this surface whose complexity

can be modified by varying a parameter.
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We can choose the functionf which is defined as follows:

f(x1, x2, . . . , xd) =
1
d

[
sin2(aπx1) + sin2(aπx2) + · · ·+ sin2(aπxd)

]
. (2.36)

Ford = 1, the function is

f(x) = sin2(aπx) (2.37)

which has one hill fora = 1. By increasinga, more hills can be produced (See Figure 2.18). In fact

the positive numbera is the number of hills within the range input domain[0, 1]. This is also true for

anyd > 1. If d = 2, this function describesa2 hills which are distributed evenly on this 2-dimensional

surface. (See Figure 2.19).
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Figure 2.18: f(x) with a = 4.

0
0.2

0.4
0.6

0.8
1

x�

0

0.2

0.4

0.6

0.8

1

 y

0
0.25
0.5

0.75
1

f(x,y)  
�

0
0.2

0.4
0.6

0.8
1

x�

Figure 2.19: Surface off(x, y), hills produced
by Sine.

By expressing the definition ofA explicitly with this functionf we get

A ≈ 1
4
〈
|∇f |2

〉
=

∫ 1

0

· · ·
∫ 1

0

[(
∂f

∂x1

)2

+ · · ·+
(
∂f

∂xd

)2
]
dx1 · · · dxd

4
∫ 1

0

∫ 1

0

dx1 · · · dxd

=
1
4

∫ 1

0

· · ·
∫ 1

0

[(
∂f

∂x1

)2

+ · · ·+
(
∂f

∂xd

)2
]
dx1 · · · dxd.

(2.38)

The partial derivatives are given by

∂f

∂xi
=
aπ

2
sin(2aπxi), (2.39)

and as a result we finally get the following equation

A ≈ a2π2

8d

(
1− sin(4aπ)

4aπ

)
. (2.40)

If a is an integer thensin(4aπ) = 0. From (2.40) we get

A ≈ a2π2

8d
or a ≈ 2

√
2

√
Ad

π
. (2.41)

For thed inputs case, the numbera gives usad hills. If we use the recipe for our previous experi-

ments, the number of hidden neurons (for our one hidden layer architecture) required for a given value

a is

n = D(2d)a ≈ 4
√

2Dd
π

√
Ad (2.42)
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from (2.41), whereD is a constant. This can also be used with Lapedes’ recipe of architecture for

hills [Lapedes and Farber 1988] and the required number of neurons is

n = D(2d+ 1)ad ≈ D(2d+ 1)

(
2
√

2

√
Ad

π

)d
. (2.43)
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Figure 2.20: Theoretical relationship between #hidden neurons andA.

However, one should notice that the practical results from the experiments do not necessarily match

the theoretical one shown in Figure 2.20. This is mainly caused by the choice of the hill function which

is not exactly the same as the hill generated by 2 neurons (in 1-dim case), therefore it only gives us

an approximation of the neural network architecture andA itself is only an approximation. There are

several limitations to this technique:

• The choice off as defined in (2.36) is arbitrary and one does not know which function should

be used.

• Every surface to be modelled is assumed to be regularly placed hills andA cannot give the true

nature of the surface.

• Although this can be used for higher dimensional input space, the resultinga, from (2.40),

degrades accordingly because of the assumption of regular distribution of hills.

However, these limitations can be overcome in certain situations. The choice off can be replaced

by a similar sine function with a higher power than 2 which may give us a stronger similarity with our

hill in the experiments. The surface can be assumed to be of some other form with a periodic nature but

it should be able to reflect the necessary number of neurons required for a neural network architecture

to model the data.

These results are only a preliminary presentation of this modelling technique. Whilst for outputs

normalised to[0, 1] (or bounded) the slopeA returned by the Gamma test gives an estimate of the

surface complexity, this value gives no idea how difficult it will be to approximate the surface by a

feedforward network using particular sigmoidals. Thus the number of hidden units actually required

depends on both surface complexity and the difficulty of approximating the surface using particular

sigmoidals. It might be interesting if some quantitative estimate for this second factor could be readily

derived from the data, as is the case with the slopeA.
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2.5 Automated neural network modelling strategy

Using the idea from the last section, on usingA from the Gamma test to estimate the complexity of

surfaces, Koňcar[Končar 1997] himself later further developed the application of adaptive feedforward

neural network construction to train the network to learn a particular surface based on a given set of

data. The technique is named theMetabackpropagationand is concisely summarised in Algorithm 2.2.

Procedure: Metabackpropagation(data)
{data is a list of training data, input-output pairs(x(i), y(i)), (1 ≤ i ≤ N), in whichx is a real
vector of dimensiond andy is a real scalar}
Perform initial Gamma test on data to calculateΓ̄ andA. {Assuming the format of the data will give
a good model - further discussion in the next chapter.}

SetΓ̄ as the training target MSE (mean squared error).
Create an initial feedforward neural network that has number of hills (using Lapedes’s recipe in
Section 2.2) specified byA using equation (2.43).

First randomise the weights of the whole network.

Initialise each hill by doing a few backpropagation training cycles on subset of the data. Subset
of points is chosen from the near neighbour list of the point (information that is required in the
Gamma test calculation and is now available) that give the largest error identified by feeding every
point through the network. Therefore each hill is trained on its own exclusive set so that each hill is
positioned in the right place in the input space.

Set flagdone = false.
while done 6= true do

Perform backpropagation training on the whole network until either a specified number of cycles
is reached or MSE is achieved by the training algorithm.
if MSE is achievedthen

Setdone = true.
else

Create an extra hill.
Initialise the new hill by backpropagation on subset of points which give the largest MSE.
Append the new hill into the network.

end if
end while
return the network

Algorithm 2.2: The Metabackpropagation neural network construction using the Gamma test.

2.6 Discussion

Together with the graphical explanation of the modelling capability of a feedforward neural network

[Lapedes and Farber 1988] and the Gamma test[Stef́anssonet al.1997], a new idea of using a heuris-

tic on the input data to estimate the necessary feedforward neural network architecture to model such

data is introduced. The results presented for this technique so far are preliminary but indicate that

the method is quite practical. The approach offers the possibility that the entire process of perfor-

mance prediction and constructing a feedforward neural network which attains the best achievable

performance on the basis of given training data can be automated with a fair degree of reliability.

It is essential to study the Gamma test to understand and improve theMetabackpropagationtool
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which constructs a neural network with given desired properties as well as in other data modelling

applications which are discussed later.
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Chapter 3
Smooth data modelling

As we have seen a significant disadvantage of using feedforward neural networks to construct global

models of smooth mappings is the often rather drawn out process of training. Whilst it is true that the

Gamma test and Metabackpropagation significantly help in this respect, it remains a fact that training

a neural network can be a time consuming and somewhat uncertain process. Moreover, it is difficult

to use a neural network fordynamicmodelling, for example in time series prediction we may wish to

incorporate newly arrived information into our predictive model. This is often not practical using a

neural network model because at every prediction step it requires an unquantifiable amount of time to

perform further backpropagation training before making the prediction.

Apart from neural networks there are a wealth of alternative non-linear modelling and prediction

techniques available. Putting to one side conventional parametric statistics, on the grounds that such

an approach requires we postulatea priori the nature of the model, many of the alternatives are based

on neighbourhood information elicited from the data.

In the case of time series, for example, we attempt to reconstruct the dynamics using an embed-

ding technique; then the neighbourhoods are neighbourhoods in embedding space. This predictive

technique is very intuitive and has an illustrious history in forecasting, Lorenz called it the ‘method of

analogies’. The idea is that we make a prediction based on historical evidence by asking ‘what hap-

pened in the past when we saw asimilar sequence of events’? To implement this idea efficiently we

simply recognise that finding sequences of historically similar events exactly corresponds to finding

near neighbours in the embedding space i.e. to the construction of a kd-tree.

The advantages of using kd-trees combined with somelocal prediction method are considerable.

We can build the kd-tree quite quickly and unlike neural network backpropagation we do not have to

worry about long training times, becoming trapped in a local minimum, or over-fitting. We can also

update the kd-tree with new information very rapidly. Moreover, once the current near neighbours are

known, techniques such as local linear regression can build accurate local models very quickly.

In this chapter we first examine geometrical surface reconstruction techniques, which can be very

effective when we are dealing with the low noise case. Here we will exploit the fact that there is no real

requirement for a global model. When making a prediction for aparticular data point it is sufficient

to perform a local reconstruction of the surface in the vicinity of the query point. Provided the density

of previously seen data points is high near the query point interpolative local reconstruction of the

surface can provide an accurate estimate of the output value. The point here is that whilst the scaling

properties of a higher dimensional geometrical reconstruction technique may be poor if one is seeking

a global reconstruction, the same algorithm applied on alocal basis may be very fast - sufficiently
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fast to do the reconstruction ‘on the fly’ for each query point as it is presented. If the response time

required for the final application permits this approach then it has considerable advantages: the set-up

(i.e. training) times are reduced to the construction of near neighbour lists and no large data structures

need to be retained.

Of course, if the density of data points near the query point is low the problem of producing

an accurate prediction becomes much harder. At one level it can be regarded as a problem ofin-

terpolation/extrapolation, alternatively we might argue that what is truly required is therecovery of

the underlying law/functionwhich governs the input-output relationship - only then can interpola-

tion/extrapolation by undertaken with any degree of confidence. Global models constructed from data,

such as neural networks or geometrical surface reconstructions, cannot make any great claim to handle

such situations effectively, although neural networks may on occasions perform better in this situation

than straightforward surface reconstruction. The ability of such data models togeneralisehas histor-

ically been approached most often by trying to provided some confidence measure associated with a

prediction. Indeed, such measures, if reliable, provide an extremely useful enhancement of a predictive

model, but in truth do not really address the basic issue of effective generalisation.

After a prior discussion of kd-trees we first examine the area of geometrical surface reconstruction

algorithms with particular reference to higher dimensional reconstruction and computational complex-

ity. We select the algorithm which seems most appropriate as a general purpose interpolative surface

reconstruction technique and implement it for comparison with alternative techniques designed explic-

itly to deal with higher noise levels.

To deal with noisy data we need to develop techniques which employ statistical cancellation in

some manner. Two rather obvious points need to be made. Firstly, if the data is modelled by

y = f(x1, . . . , xd) + r (3.1)

wheref is smooth andr is statistical noise withMean(r) = 0, then any particular prediction made

usingf is going to have an error statistically determined by the varianceVar(r). If Var(r) is large

then the expected error will be large, no matter how accuratelyf is known. Second, if despite this we

seek to extract an accurate approximation forf , then the only viable way to proceed is to attempt to

reconstructf by statistically cancelling the high noise level. Put plainly:

• High noise levels require more data.

One reason feedforward neural networks take a long time to train under high noise levels (in the data)

is that backpropagation only cancels noise as a by-product of the algorithm. Such cancellation is not

efficiently performed and becomes relatively less efficient as the complexity of the surface increases.

We shall examine one noise cancelling technique based directly on the Gamma test: the Gamma-

minimum-predictor. A detailed examination of the underlying rationale shows the Gamma-minimum-

predictor is effectively performing local linear regression on the squared distance of near neighbours.

Once this is appreciated it seems natural to ask: why do local linear regression of the squared distances

(and thereby throw away directional information in the input space) when one can almost as easily do

local linear regression on the data coordinates themselves? In retrospect this seems quite obvious, but

we include the work on the Gamma-minimum-predictor out of interest (since it performed surprisingly

well under the circumstances) and because it provides a useful comparison with the more general local

linear regression technique which we have found to be very useful.

Local linear regression, although well known, has no been much exploited in the neural network

community. This seems rather surprising since one might expect that it is the naturalcomputer science
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algorithm with which to compare a feedforward network - at least in terms of performance. For very

large data sets the kd-tree construction and extraction of near neighbours could easily be parallelised

(although in practice this is not usually necessary) so that neural networks offer little or no advantage

in that particular respect.

One intriguing possibility which emerges from this study is that, if one is determined to build a

neural network model under high noise levels, it might well be advantageous to pre-process the training

data using local linear regression to effect noise cancellation and hence generate new (much smoother)

training data for the network - thereby substantially reducing the training time.

3.1 Extracting local near neighbours information

In order to performlocal analysisof data in the vicinity of a particular query point, it is necessary

to first extract a list of near neighbours of the point. This enables us to examine the output values

associated with the neighbours, and other information such as the distances of the near neighbours

from the query point, and hence which neighbour is the nearest etc.

Finding such neighbours can be regarded as the computational geometry problem ofrange search-

ing. The typical way to solve this problem is to process the data into some type of data structure. One

of the first data structures for range searching was thequadtree[Finkel and Bentley 1974]. Shortly

after quadtrees,kd-trees[Bentley 1975; Finkelet al.1977] were developed as an improvement in terms

of worst-case behaviour. Later, another data structure, therange treewas discovered[Lueker 1978;

Bentley 1979; Lee and Wong 1980].

The kd-tree is the structure that has been implemented for the Gamma test and is used there to

extract lists of near neighbours. Since we probably want to examine our data using the Gamma test it

is natural to use the already created kd-tree as the basis for our local data modelling. Therefore, in what

follows we shall describe in some detail the construction and use of kd-trees and omit any discussion

of alternative methods, descriptions of which are readily available in the literature.

3.1.1 Fast nearest neighbours search using a kd-tree

The kd-tree is a data structure for storingM data points allowing for logarithmic expected time

searching for the nearest neighbours of the given query point from theseM points distributed in a

d-dimensional space[Bentley 1975; Finkelet al. 1977]. Originally the name kd-tree stood fork-

dimensional tree but we will instead used, in line with the rest of this work, to denote the dimension

of the input space. Our discussion and implementation of kd-tree construction and querying is based

on [Margetts 1996].

Building the kd-tree

Before we can find thepmax nearest neighbours of a query point, we first need to construct the kd-tree

from the set ofM input data points. The kd-tree can be built recursively. The data points are stored

at the leaves of the tree. Each leaf node, orbucketcan contain a maximum number (called thebucket

size) of points. The bucket size is used to determines whether or not to call the building procedure

recursively.

If the number of data points being processed at this instance is less than the bucket size, the data set

is simply returned to be a leaf node. If it is larger, we create an internal node by splitting this data set
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into two subsets and each will become a subtree for this node. The split is performed by determining

which component of the data points gives the largest “spread”, found by searching through all the

values of theith component of the data and recording the maximum and the minimum values for

1 ≤ i ≤ d. Then the median of the values for theith component which gives the largest spread is

extracted. We can then partition the data around this median value so that the data points will be

evenly distributed. This kind of fair splitting allows the tree to be constructed in timeO(M logM)
provided thatpmax remains bounded. Of course, ifpmax = O(M) the time complexity is unavoidably

O(M2).
The structure of the kd-tree can be formatted as follows

kd-tree ::= {component index, median value, kd-tree, kd-tree}
[{data point, identifier}, . . . ]

where the twokd-tree references in the definition are the left and right branches of the tree. We need

to give an identifier for each data point in order to distinguish them, because the order of the data

points will be disrupted by the tree building process. A summary of the building procedure is given in

Algorithm 3.1.

Procedure: buildkdTree(d, dataPoints)
{Assuming thatbucketsizeis set to a fixed value.}
if sizeof(dataPoints) ≤ bucketsizethen
{a leaf node}
return dataPoints

else
{a non-terminal node}
i = index of component ofdataPointswhich gives the largest spread
median= the median of theith component values of alldataPoints
if median== the lowest or the highestith components ofdataPointsthen
{repeated values exist, return data without splitting}
return dataPoints

end if
split dataPointsinto two sets,dataA (ith component< median) and dataB (ith component≥
median)

return {i, median, buildkdTree(d, dataA), buildkdTree(d, dataB) }
end if

Algorithm 3.1: Build kd-tree ofd-dimensional data recursively.

Searching for nearest neighbours

Once the kd-tree has been built, we can use it to find the nearest neighbours for any query point. The

simple search routine first searches through the tree to find the closest leaf node to the query, it then

repeatedly searches outward from this leaf node to the next nearest terminal node until the required

number of nearest neighbours is reached.

The searching routine is recursive and it relies on several important global variables used within

the searching procedure:

nearest A priority queue of the nearest neighbours found so far. It is basically a list of pairs containing

the data identifier and its corresponding distance from the query point. These pairs are sorted in
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increasing distance from the query point, so that the furthest near neighbour always lies at the

end of the list. Before calling the search procedure, all distances are initialised to∞;

lowerBounds This is a set ofd lower bounds currently defining thelower edges of the search region.

These bounds are set to−∞ before each nearest neighbour search;

upperBounds This is a set ofd upper bounds currently defining theupperedges of the search region.

These bounds are set to∞ before each nearest neighbour search.

It is also necessary to define a boolean test to determine if the search can terminate. This is

performed by checking if the geometric boundaries of the branch of the kd-tree under consideration

are closer than the furthest nearest neighbour found so far. The branch being considered can only

be ignored if the “spherical” region covered by the furthest nearest neighbour distance centred at

the query point does not overlap with the potential search region defined by thelowerBounds and

upperBounds. Otherwise, that branch has to be searched. This procedure is described by the pseudo

code in Algorithm 3.2. This ability to ignore sections of the tree allows us to perform the search in

time proportional toO(logM).

Procedure: boundsOverlapBall(d, query)
total = 0
for eachith component,i ≤ d do

if query[i] < lowerBounds[i] then
total = total + (query[i]− lowerBounds[i])2

if total> the square of the furthest distance innearest then
return FALSE

end if
else

if query[i] > upperBounds[i] then
total = total + (query[i]− upperBounds[i])2

if total> the square of the furthest distance innearest then
return FALSE

end if
end if

end if
end for
return TRUE

Algorithm 3.2: The nearest neighbours search termination boolean test.

The kd-tree search algorithm is divided into the case for handling the leaf node and the case for

the non-terminal node. Whenever a leaf node is encountered, the data points within it are added to

the priority queue,nearest, if their distances from the query node are less the current furthest nearest

neighbour. If the query node itself is encountered, we may or may not, depending on the user’s need,

include it in the list of nearest neighbours. If the node is non-terminal, we search the branch closer

to the query node. Then the further branch is searched on backtracking if it is required by using

boundsOverlapBallboolean test in Algorithm 3.2.

The searching routine is described in detail in Algorithm 3.3 which is similar to Bentley’s pseudo-

code[Bentley 1975]. The building and searching of the kd-tree is a frequently used and important

technique for extracting nearest neighbours of a given query from a set of points. This fast extraction of

local near neighbour information enables the Gamma test to run inO(M logM). The near neighbour

information from the kd-tree is the essential building element of various local modelling techniques

which are discussed in what follows.
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Procedure: searchkdTree(d, query, tree)
if tree is a terminal node/bucketthen

for each pointp at treedo
calculatedistanceof p from query
if distanceis less the distance of the last point ofnearest then

updatenearestwith p in increasing order of distances
end if

end for
else
{non-terminal node; refer to the main for its structure}
i = tree[1] {the indexi for splitting at this node}
median= tree[2] {median value for splitting at this node}
{recursive call on closer branch}
if query[i] < medianthen
t = upperBounds[i]
upperBounds[i] = median
searchkdTree(d, query, tree[3]){left branch}
upperBounds[i] = t

else
t = lowerBounds[i]
lowerBounds[i] = median
searchkdTree(d, query, tree[4]){right branch}
lowerBounds[i] = t

end if
{recursive call on further branch if necessary}
if query[i] < medianthen
t = lowerBounds[i]
lowerBounds[i] = median
if boundsOverlapBall(d, query) then

searchkdTree(d, query, tree[4]){right branch}
end if
lowerBounds[i] = t

else
t = upperBounds[i]
upperBounds[i] = median
if boundsOverlapBall(d, query) then

searchkdTree(d, query, tree[3]){left branch}
end if
upperBounds[i] = t

end if
end if

Algorithm 3.3: The nearest neighbours search recursive procedure.
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3.2 Geometrical local data modelling

We can think of modelling a section of some ‘surface’ as constructing a terrain, this is often en-

countered in computer flight simulation, geographical visualisation of the Earth’s surface and many

other 3-dimensional object modelling applications. Such aterrain is basically a 2-dimensional sur-

face in 3-dimensional space with the property that every vertical line intersects the surface at a point,

if it intersect it at all. Alternatively in mathematical language, the terrain is the graph of afunction

f : A ⊂ R2 → R that assigns a heightf(p) to every pointp in the domainA of the terrain. For

modelling purposes we only know the value of the functionf at a finite setP ⊂ A of sample points.

From the heights of the sample points we need to approximate the height at other points in the domain

in such a manner as to give a ‘smooth’ surface.

The technique already commonly used by 3D graphics programmers is to first determine atriangu-

lation of P , a planar subdivision whose bounded faces are triangles and whose vertices are the points

of P , assuming that the sample points are such that we can make the triangles cover the domain of

the terrain. We can then lift each sample point to its correct height, thereby mapping every triangle

in the triangulation to a triangle in 3-space. This results in apolyhedral terrain- a graph of a con-

tinuous function that is piecewise linear - as an approximation of the original terrain, as illustrated in

Figure 3.1. The remaining problem is, given only the heights of the sample points, to determine the

appropriate triangulation, such that the terrain looks ‘natural’.
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Figure 3.1: Reconstruction of a terrain with triangulation: (a) triangulation of 120 sample points on
thexy-plane; (b) the surfacez = sin(x) + cos(y) to be modelled; (c) the reconstructed terrain based
on the triangulation by lifting each sample point to its correct height.

It turns out that a triangulation that contains small angles is bad, because that means we are using

‘skinny’ triangles to give the approximation of the height of a point. For example, consider the point

q, as shown in Figure 3.2, determined by two points that are relatively far away. In fact the same point
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Figure 3.2: Difference of approximate height atq on a high ridge running from North to South by
flipping one edge: (a) a near approximation to the true height by two near sample points; (b) a bad
approximation of height by two sample points that are relatively far apart.

q can be better approximated by using two nearer sample points. Therefore we can rank triangulations

by comparing their smallest angles. If the minimum angles of two triangulations are identical, then

we can look at the second smallest angle and so on. Since there are only a finite number of different

triangulations of a given set of pointsP , this means that there must be a optimal triangulation - this

is the triangulation we seek and it maximises the minimum angle. This optimal triangulation is called

theDelaunay triangulationand we shall shortly discuss it in some detail.

3.2.1 Triangulations of point sets

Before we fully explain our geometrical approach to modelling and prediction, a brief but formal in-

troduction to some fundamentals of computational geometry is necessary. For simplicity we shall

introduce the ideas in the planar space of 2 dimensions and then extend the definitions to higher di-

mensions where necessary.

First, letP = {p1, p2, . . . , pn} be a set of points in the plane and define amaximal planar subdivi-

sionas a subdivisionS such that no edge connecting two vertices can be added toS without destroying

its planarity. So atriangulationof P is defined as a maximal planar subdivision whose vertex set isP .

Delaunay triangulation attempts to achieve small and approximately equilateral triangles. If we

then use the triangles as the basis for interpolating the height for an unknown point we can expect to

get better accuracy using the Delaunay triangulation than by simply selecting some arbitrary enclosing

small triangular region.

We next provide a more precise mathematical definition of Delaunay triangulation. Letn be the

number of triangles in a triangulation and consider the sequence of the angles of the triangulation,T

given as(α1, . . . , α3n), and sorted in order from the smallest to largest. Let a sequence of angles of

some other triangulationT ∗ be given as(α∗1, . . . , α
∗
3n). Then we can define the relationshipT ≥ T ∗,

between any two triangulations to indicate that the angle sequence ofT is lexicographically greater

than the angle sequence ofT ∗.

We then obtain the following theorem, stated here without proof (see[Edelsbrunner 1987]).

Theorem 3.2.1.TheDelaunay triangulationis maximalover all possible triangulations in the sense

thatT ≥ T ∗.
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Before we provide an alternative definition of the Delaunay triangulation let us introduce the

Voronoi diagram. Let P = {p1, p2, . . . , pn} be a set ofn distinct and not all collinear points in

the Euclidean plane, and let dist(pi, pj) be the Euclidean distance between pointpi andpj . Then

theVoronoi diagramVor(P ) of P is defined as the subdivision of the plane inton cells for eachsite

(point) in P , with the property that a pointq lies in the cell corresponding to a sitepi if and only if

dist(q,pi) < dist(q, pj) for eachpj ∈ P with j 6= i. Very often these cells are referred as theVoronoi

polygons.

Figure 3.3: Voronoi diagram with Voronoi polygons indicated by black connected lines and its dual
Delaunay triangulation indicated by grey/lighter connected lines.

Delaunay[Delaunay 1934] has shown that the dual of the Voronoi polygons is a triangulation

of then points. If we draw line segments between every two points inP whose Voronoi polygons

have a common border of length greater than zero, see Figure 3.3, then, under the assumption that no

four points are co-circular (as a result that all vertices of the Voronoi diagram have degree three), this

triangulation is the uniquely defined Delaunay triangulation.

Therefore, an alternative definition of a Delaunay triangulation is a triangulation where the circum-

scribed circle of any triangle contains no point ofP in its interior. Define a set of points to be ingeneral

positionif it contains no four points on a circle. Then the Delaunay triangulation ofP is uniqueif and

only if the resulting graph ofP is a triangulation, which is the case ifP is in general position. See

Figure 3.4 for an example. Without such uniqueness of the definition, we will start having problems

similar to Figure 3.2 due to the flipping of an edge in reconstructing the surfaces.

Several definitions are required. A set of pointsS is aconvex setif the line segment joining any

pair of points inS is wholly contained inS. Theconvex hullof a set of points is the smallest convex set

that contains the points. In ad-dimensional space,d non-collinear points define afacet. A d-simplex

is ad-polytope forming the convex hull ofd+ 1 affinely independent points. In fact, ad-simplex can

be thought of as a polytope constructed byd + 1 facets, with each facet defined byd points from the

set ofd + 1 points specifying the simplex. The points defining the simplex are called thevertices.

The boundary elements of a facet are called theridges. Each ridge is basically an element defined by

d− 1 points. A ridge in fact signifies the adjacency of two facets. In the spaceR3 generally, facets are

triangles and ridges are edges and therefore a 3-simplex is a tetrahedron. A Delaunay triangulation in
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Figure 3.4: An example of two different maximal triangulations of the same point set of four points
on a circle, therefore no unique Delaunay triangulation exists.

R3 is a therefore a subdivision of the space into tetrahedrons, as opposed to triangles, inR2.1

Thus the idea of a Delaunay triangulation of a set of points may be generalised for anyd-dimensional

real space.

Our requirement is for an accurate and correct Delaunay triangulation algorithm in higher dimen-

sions. In fact, triangulation in higher dimension is still an actively researched area. Most higher

dimensional Delaunay triangulation algorithms may occasionally lead to a triangulation which is not

quite the Delaunay triangulation - this can occur when almost collinear points are misclassified due to

fixed precision floating point calculations.

In our case, for data modelling, having a precise Delaunay triangulation of points in input space is

desirable but is not always essential. The triangulation will be used to infer the value we are trying to

predict. If the triangulation is not optimal it may have the effect of making the prediction slightly less

accurate, but in most cases the effect will be negligible. As long as the input sample points available

are dense and/or evenly distributed in some sense, this technique seems to perform very well even

without the assurance of a perfect Delaunay triangulation of points in the input space.

3.2.2 Computing the Delaunay triangulation

Because we interested in having Delaunay triangulation incorporated into our data modelling scheme,

we seek a readily available but efficient Delaunay triangulation algorithm. In this section, we give

a brief introduction to the computational geometry, without going into details for every algorithm

mentioned. However, we will provide a clear description of the algorithm finally selected to provide

the Delaunay triangulation module used in our data modelling.

There are many alternative Delaunay triangulation algorithms, but most of them are designed

specifically for 2D or 3D problems. However, for our purposes we need a quite general Delaunay

triangulation algorithm that can work in any dimensiond. It emerges that with this constraint the

choice is very limited. In fact finding such an efficient algorithm is still an actively researched area.

Su [Su 1994; Su and Drysdale 1997] has given an excellent survey of a variety of the standard

2D and 3D algorithms. Examples aredivide-and-conquermethods[Guibas and Stolfi 1985; Dwyer

1987] which use special data structures to break down the problem into smaller sub-problems and

then combine the sub-solutions to obtain the required solution; thesweepline algorithmby Fortune

[Fortune 1987]; incremental techniquesbased on adding sites to the diagram one by one and updating

the diagram after each site is added[Clarkson and Shor 1989; Guibas and Stolfi 1985; Guibaset al.

1992]; andgift wrappingalgorithms which start with a single Delaunay triangle and then incrementally

1However, regardless of the dimension we may still refer to such ad-simplex in a Delaunay triangulation as a triangle.
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discover valid Delaunay triangles one at a time[Dwyer 1991; Maus 1984]. We shall not discuss these

algorithms further.

Algorithms for calculating Voronoi diagrams can also be used. In fact, many Delaunay trian-

gulation algorithms to which we have referred are derived from the corresponding Voronoi diagram

algorithms. These algorithms were taking the advantage of the dual relationship between Delaunay

triangulation and the Voronoi diagram.

We have chosen to base the calculation technique on the use of a convex hull algorithm - the

Quickhull(sometimesQhull for short) by[Barberet al.1996]. This is described by Su[Su and Drys-

dale 1997] as a stable but relatively slow algorithm if used in planar Delaunay triangulation. Barber’s

Qhull, is essentially a combination of the classical 2-dimensional divide-and-conquer Quickhull algo-

rithm and the general dimensionBeneath-beyond algorithm(to be described shortly), an algorithm that

works in any dimension. Using Qhull we can construct a higher dimensional Delaunay triangulation

algorithm based on the following observation.

The Delaunay triangulation inRd may be computed from a convex hull inRd+1 [Brown 1979]. To

determine the Delaunay triangulation of a set of pointsx ∈ Rd, we first lift the points to a paraboloid

using the transformation

x = (x1, x2, . . . , xd) 7→ x′ = (x1, x2, . . . , xd, x
2
1 + x2

2 + · · ·+ x2
d) (3.2)

We then compute the convex hull of these transformed coordinatesx′ ∈ Rd+1. The set ofridgesof

the lower convex hullis the Delaunay triangulation of the original points inRd. This means that the

wealth of convex hull algorithms can be directly applied to compute Delaunay triangulations (as well

as high-dimensional Voronoi diagrams ).

3.2.3 Qhull - a convex hull algorithm

Quickhull (or Qhull for short and not to be confused with the classical quickhull in 2D) is the convex

hull algorithm[Barberet al.1996] selected as the basis of our method to compute Delaunay triangu-

lations. The motivations for this choice were: algorithmic stability, availability of source code library

[Barberet al.1996] and applicability in any number of dimensions.

This algorithm uses two main operations,oriented hyperplane throughd points - a hyperplane

represented by its outward-pointing (pointing away from the convex hull) unit normal and its offset

from the origin, andsigned distance to hyperplane- the ‘signed distance’ of a point to a hyperplane

is the inner product of the point and the normal plus the offset. The hyperplane defines a halfspace

of points that have distances from the hyperplane with an extra attachedsign. If the attached sign is

negativewe shall say the point isbelowthe hyperplane. If the sign ispositivewe shall say the point is

abovethe hyperplane. See Figure 3.5 for illustration.

Not unlike other randomised incremental algorithms, Qhull’s incremental processing technique is

based on the theorem by[Grünbaum 1961, Theorem 5.2.1]. It uses a simplified version given below.

Theorem 3.2.2 (Simplified Beneath-Beyond).LetH be a convex hull inRd and letp be a point in

Rd −H. ThenF is a facet of the convex hullconv (p ∪H) if and only if

1. F is a facet ofH andp is belowF ; or

2. F is not a facet ofH and the vertices ofF are p together with the vertices of a ridgeR of H,

such that there is one facet ofH which containsR (H is incident toR) lying belowp and all

other facets ofH containingR (i.e. facets incident toR) lie abovep (see Figure 3.6).
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An example of a change to the convex hull effected by introducing a new point is illustrated in

Figure 3.7. Efficiently determining the facets which arevisible from a point (the point isabovethe

facets) is the central problem of the Beneath-Beyond theorem. A clever technique which sets Qhull

apart from the other incremental algorithms is that after initialisation, it assigns each un-processed

point to anoutside setof a facet, or by definition, the corresponding facet is visible from the point.
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Figure 3.7: Incremental construction of a convex hull in 3D.

When Qhull constructs a cone of new facets, it uses apartitioning technique to build new outside

sets from the outside sets of the visible facets by locating a new visible facet for each point. If the

point is below all of the new facets, the point is inside the convex hull and can be removed. At the

same time, partitioning records the furthest point of each outside set. At initialisation, Qhull selects a

non-degenerate set of points, which if possible should be far apart, for the initial starting simplex. The

full outline of Qhull is given in Algorithm 3.4.

Thus Qhull algorithm works inRd and via the lower facets of the convex hull inRd+1 of the

transformedcoordinates, the Delaunay triangulation of the points in the input space can easily be

calculated.

Although Qhull cannot be described as a fast algorithm for low dimensional problems, it can

work in any dimensiond and produces results comparable with other similar algorithms. Now let

M be the number of input points inRd, r be the number of processed points (i.e. the number of the

randomly selected points used for the ‘cone’ construction process of the convex hull construction) and

fr = O(rbd/2c/bd/2c!) the maximum number of facets ofr vertices[Klee 1966]. We also define
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Procedure: Convex hull inRd

{Given a setP of M (M > d) data points.}
selectd+ 1 points to construct a starting simplexS
for each facetF of S do

for each unassigned pointp of P do
if p is aboveF then

assignp to F ’s outside set
end if

end for
end for
for each facetF with non-emptyoutside setdo

select furthest pointp of F ’s outside set
initialisevisible setV
assignF into visible setV
for all unvisited neighboursB of facets inV do

if p is aboveB then
addB into V

end if
end for
createH, a set of horizon ridges of boundary ofV
for each ridgeR in H do

create a new facet fromR andp
link the new facet to its neighbours

end for
for each newly created facetF ′ do

for each unassigned pointq in anoutside setof a facet inV do
if q is aboveF ′ then

assignq to F ′’s outside set
end if

end for
end for
remove the facets inV

end for

Algorithm 3.4: The Qhull algorithm for convex hull construction inRd
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Definition 3.2.1. An execution of Qhull isbalancedif

- the average number of new facets for thejth processed point isdfj/j and

- the average number of partitioned points for thejth processed point is(M − j)d/j.

Then if the balance condition holds, the worst-case complexity of Qhull isO(M log r) for d ≤ 3 and

O(Mfr/r) for d ≥ 4 [Barberet al. 1996]. If r = M and the balance conditions hold, the cost of

Qhull isO(M logM) for d ≤ 3 andO(fM ) otherwise. This is the same as the expected cost of the

randomised incremental algorithms[Clarksonet al.1993].

3.2.4 Query estimation using local Delaunay triangulation

Now that we have the Delaunay Triangulation of the input space of sample points we can easily model

a surface. The original problem of ‘terrain’ modelling is basically to model a functionf : R2 → R,

usually in a restricted closed bounded domainC ⊂ R2. Given an unseen data pointq = (x0, y0) ∈ C,
we can easily calculateq’s corresponding outputz0 (or height in the ‘terrain’ problem) by performing

linear interpolation using the 3 sample points, say,p1 = (x1, y1, z1), p2 = (x2, y2, z2) andp3 =
(x3, y3, z3) corresponding to the triangle which is calculated via Delaunay triangulation and which

enclosesthe query data in the input space as shown in Figure 3.8.
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Figure 3.8: Estimating the heightz0 at the query pointq = (x0, y0) by linear interpolation given that
the sample pointsp1, p2 andp3 form a triangular and enclosingq in 2D input space and a hyperplane
in 3D.

In effect, these 3 pointsp1, p2 and p3 define a triangular ‘linear’ surface which can be easily

determined by calculating its normal using these 3 points. Suppose the surface (or hyperplane in 3D)

is given by

n1x+ n2y + n3z = c, (3.3)

wheren = (n1, n2, n3) is the normal to this triangle inR3 andc is a constant. We can substitute

q = (x0, y0) into (3.3) to estimate the output by

z0 =
c− n1x0 − n2y0

n3
, (3.4)

which is a simple linear interpolation inR3.
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This whole calculation can be generalised for data modelling inRd. Given a set ofM (≥ d) sample

data points{{x1, y1}, {x2, y2}, . . . , {xM , yM}}, wherexi ∈ Rd andyi ∈ R, we can estimateyq for

the query pointxq as in Algorithm 3.5. We can refer this to belocal Delaunay triangulation modelling

or LDT for short.

1. From the set ofM sample pointsxi, find the firstpmax nearest neighbours of the queryxq by
constructing the kd-tree of theM sample points in the input space.

2. Perform Delaunay triangulation of thesepmax nearest neighbours in the input space using a
technique such as the one described earlier.

3. Locate the simplexS which encloses the queryxq in thed-dimensional input space.

4. Use thed+1 (d+1)-dimensional sample pointsXi = (xi, yi) defining the simplexS in d-space
to calculate the normaln = (n1, n2, . . . , nd+1) in the (d+ 1)-space and get the equation of this
hyperplane

X · n = n1x1 + n2x2 + · · ·+ ndxd + nd+1y = c, (3.5)

wherec is a constant.

5. Substitute the queryxq into (3.5), therefore

n1xq1 + n2xq2 + · · ·+ ndxqd + nd+1yq = c (3.6)

We can solve foryq, the only unknown in this equation.

Algorithm 3.5: Data modelling off : Rd → R using local linear interpolation via Delaunay triangu-
lation.

The most expensive step is the Delaunay triangulation of the sample points. Instead of processing

the whole set of points, we can calculate only the Delaunay triangulation of thepmax(> d+ 1) nearest

neighbours of the query point to improve the speed, because we know that such a simple local linear

interpolation step involves onlyd+ 1 nearsample data points.

The other time-consuming step is to locate the triangle/simplex which encloses the query point.

In computational geometry, a planar point location problem can be solved inO(logM) time, but

the optimal time for the point location problem in three and higher dimensions is still essentially an

open question. For a subdivision induced by a set ofM hyperplanes ind-dimensional space, it is

known to beΘ(Md) in the worst case[Edelsbrunner 1987]. However, many specific subdivisions

can lead to much more efficient point location, e.g. convex polytopes[Clarkson 1987; Matoǔsek and

Schwarzkopf 1993] and arrangements of triangles[de Berg and Schwarzkopf 1995] in low dimensions,

or rectangular subdivisions[Edelsbrunneret al. 1986; de Berget al. 1995] in higher dimensions. In

our case, since we have the nearest neighbour distance information about each point, and if we assume

that the triangle/simplex enclosing the query point must be formed bysomeselection ofpmax near

neighbours, then by labelling the simplices with their vertices of near neighbours and sorting those

simplices lexicographically in ascending order of the near neighbour distances defining the simplex,

the search time can be much improved. In many cases, the first simplex in the sorted list is usually the

required simplex.

During the linear interpolation step, the required normaln is a vector which is mutually orthogonal

to all vectors formed by the data points defining the simplex. One of the basic calculations is shown in

Appendix B.
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Figure 3.9: Surface of Equation (3.7) in the bounded input space[0, 1]2 ⊂ R2 for the modelling
experiments.

3.2.5 Some simple prediction experiments using local Delaunay triangulation

To demonstrate this predictor, we perform a simple surface reconstruction experiment. The surface to

be modelled is given by

f((x, y)) = sin2[4(x+ y)] (3.7)

with the bounded input space[0, 1]2 ⊂ R2, see Figure 3.9.

M = 200 data points are randomly sampled from input-space with a uniform distribution which

together with their correspondingy values provide a set of training data for the predictor. We then

define a test data set as ‘a grid of data’ equally spaced in the input space, i.e. a set of((x, y), f(x, y))
where0 ≤ x, y ≤ 1 and sampled at every 0.0625 along thex andy axes to have 256 (162) test data.

In this way a surface can be reconstructed from these test data.

The result of this experiment usingpmax = 12 is shown in Figure 3.10 with MSE of 0.0118274. In

this experiment, if the query point is not in any triangle, its nearest neighbour’s output is used as the

estimate for the query. The distribution of the squared error is shown in Figure 3.11. Note the high

concentration of error at the boundary of the convex hull of the input training data. The error is also

more pronounced in regions where the gradient of the surface is large. A more detailed illustration of

how this predictor copes with test data at the boundary is given in the next section.
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Figure 3.10: Reconstructed surface with
pmax = 12. MSE = 0.0118274.

Figure 3.11: Distribution of the squared errors
of the prediction.

3.2.6 Outside query prediction

When the convex hull of the sample points (training data) does not enclose the query point in the

input space, this means that the query is not contained in any one of the triangles from the Delaunay
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triangulation of the sample points. We call this anoutside query. As we discussed in the chapter

introduction performing (linear) interpolation to predict/estimate the output at an outside query is a

difficult issue (as the previous experiment illustrates for that particular modelling technique). We

examine several strategies which can sometimes improve the estimation in such cases, but the accuracy

of each technique depends heavily on the distribution of the sample points and howfar the query is

from theconvex hull of neighbouring sample pointsin the input space.

The following techniques rely on the availability of the local near distance information found by

the kd-tree. The simplest method (used above) is to take the output value of the closest near neighbour

point of the query as the output of the outside query point, e.g. pointB’s z value for the query atq in

Figure 3.12. This only works well if the near distance from the query point is relativelysmall.
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Figure 3.12: The difference of estimating the output valuez at q, an outside query point, between
using the hyperplane given by4ABD formed byq’s 3 nearest neighboursA,B andD and using the
hyperplane formed by4ABC. The hyperplane given by4ABC is in fact a better choice for this
estimation.

Another method is to take the firstd + 1 nearest neighbours and form a hyperplane which can be

extended to cover the outside query. Using this hyperplane, a linear interpolation can be performed to

estimate the output value. Although this seems to offer the opportunity of taking theslopeinformation

into account for the estimation, the chosen hyperplane is not necessarily the hyperplane in the ‘correct

direction’, as demonstrated in Figure 3.12. Moreover, sometimes these neighbours may not be the

vertices of a triangle which is given by the Delaunay triangulation of the sample points at all. This

approach also is dependent on the assumption that the query point is not too distant from the near

neighbours.

Instead of taking the hyperplane formed by the firstd+1 nearest neighbours and since the triangles

calculated are lexicographically sorted in the ascending order of nearest distances of their vertices, we

can take the first simplex for our hyperplane linear interpolation. This simplex is not necessarily the

hyperplane formed by thed+ 1 nearest distance neighbours. In general, this performs better than the

previous technique because it removes the assumption that the firstd + 1 nearest neighbours forms a

valid Delaunay triangle from thed-triangulation of the samples.

We can also take several nearest triangles, perform linear interpolation for each triangle, and then

average the results to estimate the output value. Our early experiments shows that there is not much

improvement taking averages, because if the local area to be modelled is very hilly the angles be-

tween those hyperplanes are large and will result a poor estimation which does not reflect the ‘slope’

information of the nearest triangle.

Finally we can combine several technique together for such outside query estimation to compen-
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Strategy No. Method MSE

1 Output value of the nearest neighbour 0.0118274

2 Hyperplane formed by the firstd+ 1 nearest neighbours 0.00625806

3 First simplex from sorted list 0.00541832

4 Averaging estimates from several (d) simplices 0.00408974

5 OQCS (ζ = 0.45) 0.00553535

Table 3.1: MSE of different outside query strategies used in the experiment.

sate for each technique’s limitations and exploit the available information reflecting near neighbour

distances from the query. We define a heuristic measure to estimate therelative closenessof the query

point from the cluster of thepmax near neighbours by looking at the ratio

ν =
δ1
δpmax

, (3.8)

whereδi is the distance of theith nearest neighbours from the query point. Ifν ≈ 1, this means the

query is very ‘far’ away from its nearest neighbour. On the other hand ifν is close to zero, this means

the query is near the cluster of near neighbours. Using this ratio we can define the following strategy:

if ν is small (say below some thresholdζ) we can pick the first triangle from the sorted list to perform

linear interpolation, ifν is large and close to one (ν > ζ), we do not perform any linear interpolation

but simply pick the first nearest neighbour’s output as the estimate. Surprisingly, this technique gives a

rather competitive performance compared with the other techniques, at least on the particular problems

examined, provided a suitable value of the thresholdζ is chosen (usually taken to be about 0.45 in the

experiments). We simply refer to this as theoutside query combined strategy(OQCS).

A comparison of the MSEs of the various strategies described is shown in Table 3.1. This com-

parison only provides a general guidance of usage for tackling the outside query problem. Some

strategies might perform better than others on different problems. Table 3.1 shows that the fourth strat-

egy performed best in this experiment. But from general experience, OQCS seems to be a more robust

practical choice, particularly if the data are sparsely and unevenly distributed in the input space.

3.2.7 Performance analysis

Intuitively, since this predictor is trying to reconstruct the surface based on the underlying geometrical

properties, it might be expected to degrade very rapidly in terms of performance under noisy data.

To investigate this issue we use the same experimental setup, but with normally distributed noise

r havingMean(r) = 0 added to the output of the test data. The predictor is set up withpmax = 12
and using OQCS for outside query. We then measure the MSE of the estimation on the test data for

varying variance of the added noiseVar(r) starting from 0.02 to 0.5 in steps of 0.02. A graph of MSE

againstVar(r) can then be plotted, as in Figure 3.13. As expected, the performance reduces as the

level of noise increases, although the graph shows that the predictor may still perform moderately well

at high noise levels.

These experiments are merely illustrative. In general, for a particular problem, we should need

to consider in far more detail the interrelationship between surface complexity, noise level and the

variation ofpmax which we shall discuss later.

The sizeM of the training data set obviously also plays an important role in the accuracy of the

final prediction. More training data can improve the estimation. Figure 3.14 is a graph of MSE against
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Figure 3.13: MSE error againstVar(r) of nor-
mally distributed noiser with Mean(r) = 0
added to the output.Var(r) goes from 0.02 to
0.5 in steps of 0.02, with OQCS (ζ = 0.45) and
pmax = 12.

Figure 3.14: MSE error of the test data against
the number of sample dataM used for the train-
ing, size from 100 to 200 in steps of 10 using
OQCS (ζ = 0.45) with pmax = 12.
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Figure 3.15: MSE againstpmax, the number of nearest neighbours, varying from 5 to 25 for the local
Delaunay triangulation and using OQCS (ζ = 0.45) without noise and with noiser (Mean(r) = 0,
Var(r) = 0.15).

M , with the same surface estimation experimental setup as before. We shall have more to say about

estimating the necessary size of a data set.

The accuracy of this predictor also depends onpmax, the number of nearest neighbours. Using the

same experiment setup (without noise and using OQCS), we increasepmax in the range from 5 to 25

and plot against the MSE on the testing data (see Figure 3.15).

By examining the distribution of training data in relation to the distribution of the squared errors of

the test data (see Figure 3.16) of the experiment withpmax = 12 and using OQCS (ζ = 0.45), we see

that even in some regions with a low concentration of training data, the errors are still small. The large

errors are along two ridges, where the generating surface has a large gradient combined with sparse

training data in the local region.

Having a largepmax, in the non-noisy output data case, certainly improves the chance of having

a ‘more correct’ local Delaunay triangulation, and hence a better local estimation. At the same time,

it is neither desirable nor necessary to havepmax too large, because the local triangulation eventually

will not change when more points further away are included. Also the estimation may degrade by

increasingpmax because the assumption of local linearity becomes less likely to be true over a larger

region, see for example Figure 3.15 at aboutpmax = 25. Of course, the distribution of the training data

can also affect our choice ofpmax, since a large concentration of data points in a small region may only

require a smallpmax to produce an accurate estimation.
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Figure 3.16: Distribution of the squared errors (contour plot) of the test data and the distribution of
the training data (point plot) in the input space of the local Delaunay triangulation surface modelling
experiment withpmax = 12 and using OQCS (ζ = 0.45).

On the other hand with noisy data, it is more desirable to have a smallpmax as illustrated in Fig-

ure 3.15. Small amounts of noise can significantly affect the true nature of the output surface, thereby,

reducing the accuracy of estimation using piecewise linear interpolation.

3.3 The Gamma predictor

One attractive idea might be to extend the Gamma test itself so that the underlying ideas could be

used formodellingrather than simply noise estimation. The suggestion is that since the Gamma test

estimates noise, maybe we can use a extension of the idea to choose a predicted value for a query point

x so as tominimisethe expected noise when the new data pair(x, y) is added to the training set. We

have called the resulting algorithm theGamma-minimum-predictor, or GMP for short. In this section

we describe the derivation which is based on the original Gamma test, give illustrative results, and

eventually explain why there is a well known and better technique for local modelling under noise.

3.3.1 Derivation of the Gamma-minimum-predictor

Suppose we are givenM points(x(i), y(i)), wherex(i) = (x1(i), . . . , xd(i)), 1 ≤ i ≤ M , and that

Γ̄ is computed as described in section 2.3. Now suppose that we are given a new point(x(M + 1), y)
for whichy = y(M + 1) is unknown. We want to choosey so that the recomputed value ofΓ̄ = Γ̄(y)
is minimal.

Consider now

∆(p) =
1
p

p∑
h=1

1
M

M∑
i=1

|x(N (i, h))− x(i)|2 (3.9)
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and

Γ(p) =
1
p

p∑
h=1

1
2M

M∑
i=1

(y(N (i, h))− y(i))2
. (3.10)

Notation: In this section we replace the previous used symbolΓ̄ by ΓR, since we wish to use

Γ̄ =
1
pmax

pmax∑
k=1

Γ(k). (3.11)

Similarly we write

∆̄ =
1
pmax

pmax∑
k=1

∆(k). (3.12)

The regression line formulates for computingΓR (theΓ-axis intercept) is

ΓR = Γ̄− S∆Γ

S∆
2 · ∆̄, (3.13)

where

S∆Γ =
1
pmax

pmax∑
p=1

(∆(p)− ∆̄)(Γ(p)− Γ̄), (3.14)

and

S∆
2 =

1
pmax

pmax∑
p=1

(∆(p)− ∆̄)2. (3.15)

We have to consider what happens when a new pointx(M + 1) is added. One effect is that the

neighbourhood structure in input-space changes. Computationally this is straightforward: we merely

have to add the new pointx(M + 1) to the kd-tree, a procedure that already exists and was used to

build the tree. (Of course, after the prediction is made we shall should also need to remove the new

point from the kd-tree if we plan to use it again. In practice, for data sets that are not too large, it is

often easiest to maintain a copy of the tree, add the new point to the copy, use the augmented tree for

the prediction and then replace it by the original copy!)

Let us assume that this has been done and that the new neighbourhood structure is described by

Nnew[i, p] (1 ≤ i ≤ M + 1, 1 ≤ p ≤ pmax). Corresponding to the new neighbourhood structure we

can use (3.9) and (3.10) to compute new values for∆(p) andΓ(p). Thus

∆new(p) =
1
p

p∑
h=1

1
M + 1

M+1∑
i=1

|x(N [i, h])− x(i)|2 (3.16)

and this is easily calculated and does not involvey. ForΓnew(p) we write

Γnew(p) = Γ(p, y) = U(p,M) +
1
p

p∑
h=1

1
2(M + 1)

(y(Nnew[i, h])− y)2 +
∑
i∈S(h)

(y − y(i))2

 ,
(3.17)

whereU(p,M) is independent ofy andS(h) = {i|Nnew[i, h] = M + 1} which is easily determined

from the new neighbourhood structure.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.3 The Gamma predictor 61

From (3.13) with∆(p) andΓ(p) replaced by their values we now have

ΓR(y) = Γ̄new−
S∆newΓnew

S∆new
2 · ∆̄new. (3.18)

In this expression only the first term and the term with subscriptΓnew involvesy. This equation will

determine the new value ofΓR.

If we apply the criterion then the value ofy is that the value which minimisesΓR(y). We proceed

by evaluating∂ΓR(y)/∂y. From (3.18) we have

∂

∂y
ΓR(y) =

∂

∂y
Γ̄new−

∆̄new

S2
∆new

∂

∂y
(S∆newΓnew). (3.19)

The next step is to evaluate the partial derivatives. For the last term in (3.19) we proceed as follows.

Note that the terms̄∆new andS∆new can be considered as known (i.e. they are easy to compute) and do

not involvey. Hence it remains to consider

∂

∂y
(S∆newΓnew) =

∂

∂y

(
1
pmax

pmax∑
p=1

(∆new(p)− ∆̄new)(Γ(p, y)− Γ̄new)

)

=
1
pmax

pmax∑
p=1

(∆new(p)− ∆̄new)
(
∂

∂y
Γ(p, y)− ∂

∂y
Γ̄new

)
(3.20)

=
1
pmax

pmax∑
p=1

C(p)
(
∂

∂y
Γ(p, y)− ∂

∂y
Γ̄new

)
,

where

C(p) = ∆new(p)− ∆̄new (3.21)

and these are readily computed.

We determine the first term in the sum of (3.20) and obtain

∂

∂y
Γ(p, y) =

1
p(M + 1)

p∑
h=1

y − y(N [M + 1, h]) +
∑
i∈S(h)

(y − y(i))


=

1
M + 1

[
1 +

1
p

p∑
h=1

|S(h)|

]
y − λ,

(3.22)

where

λ = λ(p,M) =
1

p(M + 1)

p∑
h=1

y(Nnew[M + 1, h]) +
∑
i∈S(h)

y(i)

 . (3.23)

The first term in (3.19), i.e.∂Γ̄new/∂y, is also the second term in the sum of (3.20). To evaluate

this we replaceΓ(h) by the new value in (3.17) and obtain from the updated version of (3.11),

∂

∂y
Γ̄new =

1
pmax

pmax∑
h=1

1
h

h∑
k=1

1
M + 1

−(y(Nnew[M + 1, k])− y) +
∑
i∈S(k)

(y − y(i))


=

1
pmax(M + 1)

pmax∑
h=1

1
h

h∑
k=1

y − y(Nnew[M + 1, k]) +
∑
i∈S(k)

(y − y(i))

 .
(3.24)
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Collecting together the terms iny we have

∂

∂y
Γ̄new =

1
M + 1

[
1 +

1
pmax

pmax∑
h=1

1
h

h∑
k=1

|S(k)|

]
y − µ (3.25)

where

µ = µ(M) =
1

pmax(M + 1)

pmax∑
h=1

i

h

h∑
k=1

y(Nnew[M + 1, k]) +
∑
i∈S(k)

y(i)


=

1
pmax

pmax∑
h=1

λ(h,M).

(3.26)

Hence

∂Γ(p, y)
∂y

− ∂Γ̄
∂y

=
1

M + 1

[
1
p

p∑
h=1

|S(h)| − 1
pmax

pmax∑
h=1

1
h

h∑
k=1

|S(k)|

]
y − λ(p,M) + µ. (3.27)

For 1 ≤ p ≤ pmax, let

A(p) =
1

M + 1

[
1
p

p∑
h=1

|S(h)| − 1
pmax

pmax∑
h=1

1
h

h∑
k=1

|S(k)|

]
(3.28)

and

B(p) = λ(p,M)− µ (3.29)

then

∂

∂y
(S∆newΓnew) =

1
pmax

pmax∑
p=1

C(p) (A(p)y −B(p)) . (3.30)

Finally let

ν =
1

M + 1

[
1 +

1
pmax

pmax∑
h=1

1
h

h∑
k=1

|S(k)|

]
. (3.31)

Then equating (3.19) to zero and solving fory we obtain

y =

µ− ∆̄new

S2
new

1
pmax

pmax∑
p=1

C(p)B(p)

ν − ∆̄new

S2
new

1
pmax

pmax∑
p=1

C(p)A(p)

. (3.32)

The final algorithm is given in Algorithm 3.6. But with careful examination, the whole process would

appear to be simply performing a local linear regression on the squared distances of the near neighbours

from the query point.

3.3.2 Performance analysis

To investigate the GMP, we perform a series of experiments based on the experimental setup for surface

modelling (defined by (3.7)) as described in Sections 3.2.5, 3.2.7). We first investigate how the number

of nearest neighbourspmax used for GMP affects the modelling, given the same set of test data. The
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Procedure: Gamma-minimum-predictor(kd-tree,x, pmax,M )
Add pointx to kd-tree to getNnew[i, p] (1 ≤ i ≤M + 1, 1 ≤ p ≤ pmax)
{i.e. new nearest neighbour list}
for p = 1 to pmax do

Compute∆new(p) from (3.16)
ComputeS(p) = {i|Nnew[i, p] = M + 1} {these sets are small}
Computeλ(p,M) from (3.23)

end for
for p = 1 to pmax do

ComputeA(p) from (3.28)
ComputeB(p) from (3.29)

end for
Compute∆̄new

for p = 1 to pmax do
ComputeC(p) from (3.21)

end for
ComputeS∆new

Computeµ from (3.26)
Computeν from (3.31)
Computey from (3.32)
Remove pointx from kd-tree{if not copied}
End

Algorithm 3.6: The Gamma-minimum-predictor given a new queryx to estimate outputy.
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Figure 3.17: MSE againstpmax, the number of nearest neighbours, varying from 5 to 25 for GMP
without noise and with noise (Mean(r) = 0, Var(r) = 0.15).
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result is shown in Figure 3.17 which indicates that the MSE of the estimation is optimal whenpmax =
14 when no noise is present. Not surprisingly ifpmax is taken too large, the performance of GMP

degrades. Notice that even at the optimal value, the MSE is still higher than the Delaunay triangulation

predictor, LDT. When noise is present, it is advisable to have a largepmax as shown in Figure 3.17.

We then examined how GMP copes with varying noisy data whenpmax = 12. Normally distributed

noiser with Mean(r) = 0 and varianceVar(r) from 0.02 to 0.5, increasing in steps of 0.02, is added

to the outputs of the training data. The MSE of the test data is then plotted against the noise variance

as shown in Figure 3.18. As expected, GMP degrades ‘gracefully’ as the level of noise increases.

This experiment also illustrates that the GMP can cope with noise well, unlike Delaunay triangulation

predictor, LDT.
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Figure 3.18: MSE against normal distributed
noiser with Var(r) from 0.02 to 0.5 in steps
of 0.02 and Mean(r) = 0 using GMP with
pmax = 12.

Figure 3.19: MSE against the number of sam-
ple data used,M for the training, from 100 to
200 in step of 10, of GMP withpmax = 12.
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Figure 3.20: Distribution of the test data squared error (by contour plot) forpmax = 12 and the distri-
bution of training data (points).

The MSEs of the test data are also measured for varying size of the set of training data with

pmax = 12, see Figure 3.19. The result shows that for this experiment the accuracy of estimation by

GMP depends onM , i.e.M >= M(ε) for given MSEε as expected. We then generate the result again

for the full set of training data, i.e.M = 200 and look at the distribution of the squared error of the test
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data in relation to the distribution of the training data in the input space. This is shown in Figure 3.20.

The MSE is 0.0126141. Some regions with low concentration of training data, especially at the lower

left corner of the plot, have much higher squared error. This plot essentially implies that for fixedM

the modelling can be improved if the training data are more evenly distributed in the input space.

In fact, the main determinant of model accuracy seems to be that the maximum nearest neighbour

distances approach zero asM becomes large; regions where nearest neighbour distances are large give

larger predictive errors. This should not be too surprising: it is intuitively obvious for any interpolation-

based technique and is, moreover, one of the fundamental assumptions behind the Gamma test itself.

In any event examination of the basic formula (3.32) for the GMP shows that, by a somewhat de-

vious route, we have eventually arrived at an algorithm which is effectively performing local linear

regression on the squared distances of nearest neighbours of the query points. But why just do local

linear regression on the squared distances? Why not do it on the data coordinates themselves? In the

next section we shall see that this simple approach works extremely well - especially at high noise lev-

els provided sufficient data is available. Once the kd-tree has been constructed, local linear regression

is very fast for any reasonable input dimension, certainly ford up to several hundred. Moreover, local

linear regression based on kd-trees can be done usingdynamic updating, i.e. new data can augment the

kd-tree as it becomes available and the next prediction can use this information. This is something that

is very difficult to accomplish with feedforward neural network modelling using backpropagation.

3.4 Prediction using local linear regression

Based on the local information given by the kd-tree, we can take thepmax nearest points to perform a

least squares fitto estimate the query point by assuming its underlying model is ‘locally linear’ and

we simply call thislocal linear regressionor LLR for short.

We first review the idea of ‘least-squares-fit’ and its relationship to the pseudoinverse of a matrix

as introduced by Penrose[Penrose 1955; 1956].

3.4.1 Least squares fit

The simpleleast squares fit(LSF) problem is defined by:

Definition 3.4.1 (Least squares fit).Given a set ofM data points

(yi, (xi1, xi2, . . . , xim)), (1 ≤ i ≤M) (3.33)

whereM is large andm is fixed, theleast squares fitis the point (A1, A2, . . . , Am) such that

FM (A1, A2, . . . , Am) =
M∑
i

(yi − (A1xi1 +A2xi2 + . . .+Amxim))2 (3.34)

is minimised.

The conventional LSF considersFM as a function of (A1, A2, . . . , Am), which (sinceFM ≥ 0
for all (A1, A2, . . . , Am) is minimised by the expedient of equating the partial derivatives to zero

and solving the corresponding equations. Treating (A1, A2, . . . , Am) as unknowns in these equations

the coefficients are therefore determined by theM data points (3.33). The amount of data to be

manipulated in solving these linear equations therefore becomes large withM .
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There are many algorithms already available for solving this problem[Presset al.1992] and also

there are many adaptive algorithms available, such as a recursive generalised-least-squares procedure

described in[Hastings-James and Sage 1969] and methods for updating pseudoinverse iteratively

[Maeda and Mutata 1984; Telfer and Casasent 1989] and for estimating the parameters which we

are not going to discuss. The idea of pseudoinverse will be described later. However we investigate

a simple iterative method (suggested by A.J. Jones in 1991) as a detailed illustration of how to solve

such LSF problem. Although an iterative step method is unnecessary for our local data modelling

when only a finite, fixed set of data is available, it could be useful in situation when the data set to be

modelled requires constant updating due to the arrival of new data.

3.4.2 Iterative least squares algorithm

In studying dynamical systems it is often necessary to approximate the dynamics or mapping by just

observing a small finite set of data. This is facilitated using LSF. Here we investigate an iterative

technique and how it can be used to improved to minimise computational cost without losing the

accuracy of the approximation, especially for real-time systems which requires constant updating due

to the constant arrival of new data.

The LSF algorithm described here involves, for fixedM , anm ×m matrix of numbersUij(M)
(1 ≤ i, j ≤ m) and a vector of elementsVi (1 ≤ i ≤ m) which, asM varies, satisfy the following

recursion relations

Uij(M + 1) = Uij(M) + x(M+1)ix(M+1)j (1 ≤ i, j ≤ m)

Vi(M + 1) = Vi(M) + yM+1x(M+1)i (1 ≤ i ≤ m) (3.35)

The point to note about these recursion relations is that them2 + 1 numbers forM + 1 only depend

on the new data point (
(x(M+1)1, x(M+1)2, . . . , x(M+1)m), yM+1

)
(3.36)

and so can be computed recursively as new data points are added.

Theorem 3.4.1. If Uij(1) = 0, Vi(1) = y1x1i and forM ≥ 1 the numbersUij(M) (1 ≤ i, j ≤ m),
Vi(M + 1) are defined by (3.35), then for any givenM the solutionA∗ = (A∗1, A

∗
2, . . . , A

∗
m) to the

LSF problem satisfies
U11 U12 · · · U1m

U21 U22 U2m

...
.. .

...

Um1 · · · Umm




A∗1

A∗2
...

A∗m

 =


V1

V2

...

Vm

 . (3.37)

Thus provided the distribution of data points is such that the matrix (Uij) is invertible, one inversion

of them×m matrix will solve the LSF problem for the given data points.

Proof. To minimiseFM we require

∂FM
∂Ak

= 0 for 1 ≤ k ≤ m. (3.38)

This gives

M∑
i

[−2(yi − (A1xi1 +A2xi2 + . . .+Amxim))xik] = 0 (3.39)
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or
M∑
i

(yixik)−A1

M∑
i

(xi1xik)− · · · −Am
M∑
i

(ximxik) = 0 (3.40)

for 0 ≤ k ≤ m. If we use the definitions

Ujk = Ujk(M) =
M∑
i

xijxik and Vj = Vj(M) =
M∑
i

yixij (3.41)

for 0 ≤ j, k ≤ m as in (3.35) we can then express (3.40) as
U11 U12 · · · U1m

U21 U22 U2m

...
. . .

...

Um1 · · · Umm




A1

A2

...

Am

 =


V1

V2

...

Vm

 (3.42)

which is (3.37).

Obviously by Theorem 3.4.1, this immediately demonstrates that for very largeM , the iterative

LSF problem (normally solvingM simultaneous equations) reduces to solvingm simultaneous equa-

tions.

Extension for more than oney

It would be interesting to know that similar recursion relations can be defined for the LSF problem

with more than oney in a data point. The original problem then becomes:

Given a set ofM data points

((xi1, xi2, . . . , xim), (yi1, yi2, . . . , yin)) (3.43)

for 1 ≤ i ≤M whereM is large andm andn are fixed, find the matrix

(Aij) =


A11 A12 · · · A1n

A21 A22 A2n

...
.. .

...

Am1 · · · Amn

 (3.44)

such that

FM ((Aij)) =
M∑
i

n∑
k

(yik − (A1kxi1 +A2kxi2 + . . .+Amkxim))2 (3.45)

is minimised.

In other words, we need to solve
y11 y12 · · · y1n

y21 y22 y2n

...
. ..

...

yM1 yM2 · · · yMn

 =


x11 x12 · · · x1m

x21 x22 x2m

...
. . .

...

xM1 xM2 · · · xMm




A11 A12 · · · A1n

A21 A22 A2n

...
.. .

...

Am1 Am2 · · · Amn

 (3.46)
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for (Aij) by mean of matrix algebra such as the pseudoinverse of a matrix (described later). This would

be a quite inefficient technique ifM were large. One approach to tackle this is to split up the problem

into smaller sub-problems. Therefore we can arrange the data points asn sets of data points

((xi1, xi2, . . . , xim), yik) (3.47)

and solve for (A1k, A2k, . . . , Amk) for 1 ≤ j ≤ n individually using recursion relations (3.35) de-

scribed above. Ideally we should seek an alternative iterative technique for solving this problem.

To derive a similar iterative LSF algorithm for this problem, we adhere closely to the proof of

Theorem 3.4.1. To minimiseFM , we require

∂FM
∂Ajk

= 0 for 1 ≤ j ≤ n, 1 ≤ k ≤ m. (3.48)

Now we consider (3.48) for a particulark and then we get a set of equations

∂FM
∂A1k

= 0 =
M∑
i

(xi1(yik −A1kxi1 −A2kxi2 − . . .−Amkxim))

∂FM
∂A2k

= 0 =
M∑
i

(xi2(yik −A1kxi1 −A2kxi2 − . . .−Amkxim))

... (3.49)

∂FM
∂Amk

= 0 =
M∑
i

(xim(yik −A1kxi1 −A2kxi2 − . . .−Amkxim))

and rearranging these equations (3.49) we get
∑M
i xi1yik∑M
i xi2yik

...∑M
i ximyik

 =


∑M
i xi1xi1

∑M
i xi1xi2 · · ·

∑M
i xi1xim∑M

i xi2xi1
∑M
i xi2xi2

∑M
i xi2xim

...
. . .

...∑M
i ximxi1

∑M
i ximxi2 · · ·

∑M
i ximxim




A1k

A2k

...

Amk

 (3.50)

For the otherk’s, equations similar to (3.50) can be derived and then can be gathered together and

formulated as
∑M
i xi1yi1

∑M
i xi1yi2 · · ·

∑M
i xi1yin∑M

i xi2yi1
∑M
i xi2yi2

∑M
i xi2yin

...
. ..

...∑M
i ximyi1

∑M
i xi1yi2 · · ·

∑M
i ximyin

 =


∑M
i xi1xi1

∑M
i xi1xi2 · · ·

∑M
i xi1xim∑M

i xi2xi1
∑M
i xi2xi2

∑M
i xi2xim

...
.. .

...∑M
i ximxi1

∑M
i ximxi2 · · ·

∑M
i ximxim



A11 A21 · · · Am1

A12 A22 Am2

...
.. .

...

A1n A2n · · · Amn

 (3.51)

Equation (3.51) forms the basis of our new relations which involves the two matricesV (m × n) and

U (m×m) and their components recursive relations are

Uij(M + 1) = Uij(M) + x(M+1)ix(M+1)j (1 ≤ i, j ≤ m)
Vij(M + 1) = Vij(M) + x(M+1)iy(M+1)j (1 ≤ i ≤ m, 1 ≤ j ≤ m)

(3.52)
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with Uij(0) = 0 andVij(0) = 0. Therefore the whole original problem, in terms of these matrices,

reduces to solving

V = U(Aij) (3.53)

and the solution (Aij) can be found by pre-multiplying both sides of (3.53) byU−1, the inverse matrix

of U if U is non-singular i.e.

(Aij) = U−1V (3.54)

The equation (3.53) is then a reduced form of the original LSF problem, commonly referred to as the

normal equation. In fact, if we formulate (3.46), the original problem equivalently into

Y = XA. (3.55)

In this simplified notation, its normal equation is simply given by

XTY = XTXA (3.56)

where superscriptT denotes the transpose of a matrix. Then the solution ofA is simply given by

A = (XTX)−1XTY. (3.57)

However, it is important to recognise such adaptive properties of the normal equation. Only a

simple inversion of a square matrix and a matrix multiplication are required to recalculate the LSF

whenever a new data point arrives, providing the recursive relationsUij andVi are kept. [One should

be aware that this is not necessarily the best or only adaptive algorithm and there are many alternative

algorithms already available[Hastings-James and Sage 1969; Telfer and Casasent 1989; Maeda and

Mutata 1984; Weigendet al.1990].] The other immediate advantage is that there is no need to calculate

the inverse of a large matrix ifM is large. In the case of singularU , the optimal solution of (3.53) is

given byU#V as stated in Theorem 3.4.2 in the next section, whereU# is the pseudoinverse ofU .

3.4.3 Pseudoinverse of a matrix

First we need to introduce the precise definition ofpseudoinverseof a matrix[Penrose 1955; 1956].

For any given matrixX ∈ Rm×n, the matrixX# ∈ Rn×m is said to be a pseudoinverse ofX if the

following conditions are satisfied:

1. XX#X = X,

2. X#XX# = X,

3. (XX#)T = XX#,

4. (X#X)T = X#X,

whereT denotes the transpose of the matrix. The termsgeneralised inverseor Moorse-Penrose inverse

are also commonly used for such anX#.

The pseudoinverse of a matrix is important in solving the LSF problem. The reason becomes

obvious with the following theorem[Penrose 1955].
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Theorem 3.4.2.LetX ∈ Rn×p andY ∈ Rm×p be given. ThenA = X#Y ∈ Rm×p is the unique

best approximate solution of the equationXA = Y .

One important property for the pseudoinverse which is implied by this theorem is that the pseudoin-

verse exists even for singularX ∈ Rp×p. Before demonstrating how this pseudoinverse can help to

solve the LSF, we first need to introduce some definitions. The phrasebest approximate solutionmeans

that the quantity‖XA− Y ‖F is minimised and it is further explained as follows.

Definition 3.4.2. The‖ · ‖F -norm onRm×n is defined by

‖X‖F = Trace(XTX) (3.58)

forX ∈ Rm×n, whereTrace(Y ) is the trace of the square matrixY . This norm is called theFrobenius

norm.

Lemma 3.4.1. For X ∈ Rm×n,XTXX# = XT .

Proof. We have

XT (XX#) = XT (XX#)T (by pseudoinverse condition 3) (3.59)

= ((XX#)X)T (3.60)

= XT (by pseudoinverse condition 1) (3.61)

as required.

Theorem 3.4.3.LetX ∈ Rn×p andY ∈ Rm×p be given. ThenA = X#Y is an element ofRm×n

which minimises the quantity‖XA− Y ‖F .

Proof. We have

‖XA− Y ‖2F = ‖X(A−X#Y ) + (XX# − Ip)Y ‖2F (3.62)

= ‖X(A−X#Y )‖2F + ‖(XX# − Ip)Y ‖2F
+2 Trace

(
(A−X#Y )TXT (XX# − Ip)Y

)
, (3.63)

whereIp ∈ Rp×p is the identity matrix. SinceXT (XX# − Ip) = 0 by Lemma 3.4.1, the last term

disappears and we get

‖XA− Y ‖2F = ‖X(A−X#Y )‖2F + ‖(XX# − Ip)Y ‖2F (3.64)

which achieves its minimum‖(XX# − Ip)Y ‖2F whenA = X#Y

The derivation of the calculation ofX# depends on the following proposition.

Proposition 3.4.1. For anyX ∈ Rn×p , thep× p matrixXTX is invertible if and only if the columns

ofX are linearly independent inRn.

Proof. Consider that the square matrixXTX is invertible if and only if the equationXTXv = 0 has

the unique solutionv = 0, v ∈ Rp.
Suppose that the columns ofX are linearly independent and thatXTXv = 0. Then it follows that

vTXTXv = 0 and soXv = 0, sincevTXTXv =
∑n
i=1(Xv)2

i = |Xv|2, the square of the Euclidean

length of then-dimensional vectorXv. SinceXv is also a linear combination of the columns of
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X, we can expressXv = v1x
(1) + v2x

(2) + · · · + vpx
(p), wherex(i) is the ith column ofX and

vi is theith component ofv. Because the columns ofX are linearly independent, thenXv = 0 =
v1x

(1) + v2x
(2) + · · · + vpx

(p) implies thatv1 = v2 = · · · = vp = 0, i.e. the vectorv = 0. Hence

XTX is invertible.

On the other hand, ifXTX is invertible, thenXv = 0 implies thatXTXv = 0 and sov = 0.

Hence the columns ofX are linearly independent.

GivenX ∈ Rm×n, thenX# can be computed using

Proposition 3.4.2. LetX ∈ Rm×n.

• If rankX = n, thenX# = (XTX)−1XT .

• If rankX = m, thenX# = XT (XXT )−1.

Proof. If rankX = n, thenX hasn linearly independent columns and we know that (from Propo-

sition 3.4.1) this implies thatXTX is invertible inRn×n. Then it is only a matter of verifying that

(XTX)−1XT satisfies the four defining properties of the pseudoinverse, which completes the first part

of the proof.

If rankX = n, we simply consider the transpose instead by lettingY = XT . Then rankY = m,

sinceX andXT have the same rank, and so by the argument above,Y # = (Y TY )−1Y T . However,

XT# = X#T , as is easily checked again from the defining conditions. Hence

X# = X#TT = (XT )#T (3.65)

= Y #T = Y (Y TY )−1 (3.66)

= XT (XXT )−1 (3.67)

which establishes the second part.

In practice, the computation ofX# is modestly demanding for large matrices. There are many

algorithms for approximating pseudoinverses[Kerr 1985; Penrose 1955]. The most common technique

involves performing theSingular Value Decomposition(SVD) of a matrix[Presset al. 1992; Golub

and Van Loan 1996], which is a computationally expensive but widely accepted technique for its

accuracy. A general discussion of pseudoinverse and SVD is given in Appendix A

For a LSF problem with largeM , the direct approach in solving it is to work out the pseudoinverse

of aM ×m matrix if M 6= m. However, by formulating the normal equation of the problem, we can

solve the same LSF problem equivalently by calculating the inverse of a squarem × m matrix if it

is non-singular or the pseudoinverse of a matrix if the matrix is singular. One interesting relationship

observed is that the optimal solution forA of the LSF problemXA = I (the identity matrix) is in fact

the pseudoinverse ofX.

3.4.4 Local linear regression

The local linear regression (LLR) algorithm is simply explained in Algorithm 3.7. The advantage

is that this statistical modelling is performed locally with a small amount of sample data, usually

within a small region in the input space, on the assumption of local linearity. The LSF technique is

a widely studied method with many efficient algorithms readily available. In fact this technique is

more statistically sound than the previously discussed geometrical modelling technique, which relies
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on many heuristic assumptions and suffers the problem of outside query, as opposed to the linear

regression technique which does not require extra computational analysis and effort for such outside

query prediction.

Given a set ofM sample data points(xi, yi) representing a mapping ofRd → R, estimate the output
valueyq of the queryxq.

1. Selectpmax the number of nearest neighbours used for the linear regression.

2. Use the input vectorsxi to construct a kd-tree.

3. Find thepmax nearest neighbours ofxq from the kd-tree.

4. Construct
x11 x12 · · · x1d

x21 x22 x2d

...
. . .

...
xpmax1 xpmax2 · · · xpmaxd



p1

p2

...
pd

 =


y1

y2

...
ypmax

 ⇐⇒ XpT = Y

via the iterative technique described earlier or simply letU = XTX andV = XTY to construct
the normal equation

UpT = V.

5. Perform a LSF to estimate the parametersp = (p1, p2, . . . , pd) by

pT = U#V

whereU# is the pseudoinverse ofU .

6. The outputyq is estimated byyq = xq · p

Algorithm 3.7: Data modelling using local linear regression

Basically Algorithm 3.7 as it stands assumes that the linearity is passing through the origin, i.e.

p1x1 + p2x2 + · · · + pdxd = y but in many cases it would be better to have an extra term to have an

affine model

p1x1 + p2x2 + · · ·+ pdxd + c = y, (3.68)

wherec is a constant. Therefore for the input of the algorithm, we can assume that the input vector

becomes (xi1, xi2, . . . , xid, 1) for estimating the parameters (p1, p2, . . . , pd, c).

The only problem with LLR is to decide the size ofpmax, the number of near neighbours to be

included for the local linear modelling. Although having more sample data points intuitively can

improve the estimation, at the same time this may have the effect of assuming, say, a ‘hilly’ surface to

be linear. Choosingpmax is usually a trial and error process as it depends heavily on the nature of the

underlying actual model and of courseM . Analysis of the choice ofpmax for linear regression is called

influence statistics. It examines how influential having extra near neighbours is on the accuracy of

the linear regression using methods, such as COVRATIO, which measures the effect on the variance-

covariance matrix of the parameter estimates[Rawlings 1988] or a method of simply studying the

MSE. We made some initial attempts to use influence statistics to make the choice ofpmax dynamically

adaptive, however, the results were poor and more in-depth study is needed. Nevertheless, we can
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always perform a increasing-near-neighbour-test by increasing the size ofpmax and study the error of

prediction on a set of test data (with known output values) to choose a ‘suitable’pmax, which minimises

the prediction error on the test data, before fixingpmax for further estimation.

3.4.5 Performance analysis

As before, we use the same experimental setup as in Section 3.2.7 to predict points on the surface

defined by (3.7) using the same set of training data, but this time we use LLR.
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0.01

0.02

0.03

0.04

0.05

0.06

MSE

noisy

non-noisy
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Figure 3.21: MSE againstpmax, the number of nearest neighbours, varying from 5 to 25 for the local
linear regression with affine model without noise and with noise (Mean(r) = 0, Var(r) = 0.15) and
M = 200.

We first demonstrate the surprising result of varying the sizepmax, the number of nearest neighbours

of the query point for LLR. Interestingly, by varyingpmax from 5 to 25 (using a affine model), the MSE

of the non-noisy test data seems to increase proportionally as shown in Figure 3.21, contrary to the

immediately intuitive idea that having more near neighbours should improve the prediction. Note in

this caseM is fixed so that, increasingpmax means that the assumed local linear region is larger. The

distributions of surface estimation squared error forpmax = 12 andpmax = 5 are shown in Figure 3.22

and Figure 3.24 respectively. Clearly, forpmax = 12 the error (MSE = 0.0198301) is much higher than

for pmax = 5 (MSE = 0.00550315). The estimated surface forpmax = 5 shown in Figure 3.23 looks

almost as smooth as the original surface which is surprising, considering so few nearest neighbours

are used for the local data modelling. Most errors are concentrated at places with large curvature

of the surface. This implicitly signifies that ifpmax is too large, the estimation at regions with fast

changes of gradient is much poorer, due to the fact that such regions are highly “non-linear”. Therefore,
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Figure 3.22: Distribution of squared error of surface estimation using LLR withpmax = 12 and affine
model with MSE = 0.0198301.
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having fewer near neighbours will in effect approximate a smaller region, so that the assumption of

local linearity is more likely to be valid. However, for data with added normally distributed noiser

(Mean(r) = 0, Var(r) = 0.15) the optimalpmax for minimum MSE is higher. Therefore the effect of

noise can be ‘ironed’ out as expected by taking biggerpmax as also shown in Figure 3.21. In general

this may required that we increaseM .
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Figure 3.23: Estimated surface using LLR with
pmax = 5 using affine model with MSE =
0.00550315.
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Figure 3.24: Distribution of squared error of
surface estimation withpmax = 5 and MSE =
0.00550315.

LLR is also tested for performance under noisy data. We then measure the MSE of the estimation

on the test data for varying varianceVar(r), of normally distributed noiser added to the output values

of the training data, starting from 0.02 to 0.5 in steps of 0.02 using the same experimental setup. The

result is shown in Figure 3.25. The noise does have a significant effect on the accuracy of estima-

tion, but in general LSF based LLR performs better than the Delaunay triangulation based technique

described earlier.
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Figure 3.25: MSE error against normal dis-
tributed noiser added to output withVar(r)
from 0.02 to 0.5 in steps of 0.02 and of
Mean(r) = 0 using LLR (pmax = 5, affine
model).

Figure 3.26: MSE of test data against the size
of training dataM from 100 to 200 in step of
10, using LLR (pmax = 5, affine model).

As in the experiment in Section 3.2.7, we also investigate how the size of training data set can affect

the MSE of the test data. The expected result is in Figure 3.26, showing that having a reasonably large

training data set is essential for better estimation. In fact, there seems to be an inversely proportional

relationship between the size of the training data set and the testing MSE.

The effect of the distribution of the training data input space on the prediction squared error of the

test data of the same experiment setup with affine LLR withpmax = 5 is shown in Figure 3.27. The

precise distribution of the training data seems not to be the main factor affecting the modelling perfor-

mance. However, less dense input data in regions with sharp changes of gradient at the ridges results

in slightly degraded estimations. In general, LLR works well with non-evenly distributed training data
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in the input space.
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Figure 3.27: Distribution of the squared errors (contour plot) of the test data and the distribution of
the training data (point plot) in the input space of LLR surface modelling experiment withpmax = 5
using an affine linear model.

3.5 Direct comparison

Using the experimental results from Sections 3.2.7, 3.3.2 and 3.4.5, we make a direct comparison

between each modelling technique described so far as a summary. We also discuss other aspects such

as the complexity of the underlying model etc. which may also affect the modelling process. Although

there are still many other possible factors indirectly determining the effectiveness of our modelling

techniques, we shall present only a short discussion.

Figure 3.28 and Figure 3.29 are the combination of Figures 3.15, 3.17 and 3.21 in both the non-

noisy and the noisy case respectively. In the non-noisy situation, we can see that having largepmax can

improve the modelling for both LDT and GMP. Though by careful examination, havingpmax too large

will cause both LDT and GMP to degrade in terms of the precision of estimation. On the other hand

for the LLR, it would be advisable to use smallpmax when there is no noise in the data.

However, in the presence of noise, having slightly largerpmax for LLR can improve the prediction.

In general, ifVar(r) increases, the normal procedure is to increase the number of local data (assuming

the size of local region is fixed) to obtain a better estimation. However, by increasingpmax, we are

basically including the number of data from the finite size of training data set for LSF as well as

implicitly increasing the size of the local region assumed to be linear. Eventually this will have an

adverse effect on the estimation, due to using linear approximation in a ‘larger’ local region as shown

in Figure 3.29.

As pmax increases in the noisy case, both LDT and LLR degrade very rapidly as expected (Fig-

ure 3.29). Surprisingly, having very largepmax for GMP can definitely improve the result and the MSE

seem to asymptotically approach to an optimal MSE value.
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Figure 3.28: MSE againstpmax on data without noise for LDT, GMP and LLR.
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Figure 3.29: MSE againstpmax on data with added noise for LDT, GMP and LLR.

Figure 3.30 is the combined result from Figures 3.13, 3.18 and 3.25. As the variance of noise

Var(r) increases all modelling degrades as expected, although LDT and LLR degrade at a much faster

rate, especially for LDT, due to the geometrical reconstruction of the surface using noisy output values

for prediction. GMP performs well in high levels of noise, perhaps because it is a regression of data

based on the distance rather than all the coordinates as used by LLR.

The collected results from Figures 3.14, 3.19 and 3.26, showing the changes of MSEs for each

modelling technique in earlier experiments against varyingM the number of training data without

noise, are shown in Figure 3.31 and demonstrate that having a largeM is necessary for accurate

prediction for all modelling techniques. Surprisingly, we observe that LLR, compared with the other

two, improves at a faster rate asM increases.

It would also be interesting to investigate how thecomplexityof the underlying model to be re-

constructed and the sparseness of the training data, in other words the size ofM , can affect the per-

formance of each modelling technique. This experiment is very similar to Sections 3.2.5 and 3.2.7 by

modelling the surface given some training data. The surface to be modelled is defined by

f((x, y), a) = sin2[a(x+ y)] (3.69)

with the bounded input space[0, 1]2 ⊂ R2, similar to (3.7). By varyinga we can increase the com-

plexity as shown in Figure 3.32.

For this experiment, we use the same sampling of the input space. The sample sizeM for the

training runs from 100 to 200 using a step size of 10. The complexity of the surface is also varied by

increasinga of (3.69) from 1 to 6 using a step size of 0.5. Then we use the trained model to reconstruct
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Figure 3.30: MSE againstVar(r) variance of added noiser for LDT, GMP and LLR.
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Figure 3.31: MSE againstM the number of training data for LDT, GMP and LLR.
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Figure 3.32: Surfaces defined by (3.69) for different valuesa.
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the surface, using the same set of testing data, and calculate the MSE for each model. We also add

normal distributed noiser (Mean(r) = 0, Var(r) = 0.15) to the output values of the training data for

comparison with the non-noisy case. This is applied to all three modelling technique.

For LDT modelling, we usepmax = 12 with OQCS (ζ = 0.45). For the GMP, we setpmax = 12
whereas for the LLR, we use an affine model withpmax = 5. These choices ofpmax etc. are chosen

for each modelling technique at optimal or near optimal performance without the presence of noise.

Althoughpmax can be varied, we believe that our choice should give a fair comparison between each

modelling technique since different modelling techniques have optimal performance at different values

of pmax which are very problem-dependent, especially when the data is noisy.
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Figure 3.33: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying modela and the number of training dataM for the LDT modelling experiment.
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Figure 3.34: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying modela and the size of train dataM for the GMP modelling experiment.
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Figure 3.35: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying modela and the size of train dataM for the LLR modelling experiment.

This result for LDT is shown in Figure 3.33. Without noise and even having higha, the modelling

is still fairly good. Of course, having largerM will improve the modelling for largea. In thenoisycase,
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having largeM and keepingpmax constant, as discussed earlier, reduces the quality of the prediction

for LDT significantly, especially whena is large.

For the GMP modelling as shown in Figure 3.34, largea increases the difficulty of the modelling

especially having fewer training data (i.e. smallerM ) in both noisy and non-noisy cases.

Figure 3.35 shows the result for LLR. Obviously, in the noisy case, the MSE is high due to the

choicepmax = 5 only. But in terms of the relationship betweena andM , this seems to perform

very badly whena is large withM small in contrast with LDT and GMP which perform better in the

same case with or without noise. In fact, as expected when the data is sparsely distributed, we would

expect that LDT will outperform LLR in non-noisy and complex surface situations. Unusually, GMP

performs better in the same case even though GMP is simply a variation of “LLR in squared distances”.

What we mean here is that the graphs for GMP are similar in terms of noisy and non-noisy situations,

unlike the case for LLR, the graph for the noisy case fluctuates by a large amount by just varyingM ,

especially when the surface is more complex. This implies that more data points are needed for the

training.

3.6 Discussion

Out of the three modelling techniques, LLR seems to be an efficient and practical method. In terms

of running speed, we have not performed any detailed analysis but here we would like to give a brief

and general discussion and a very crude estimation of time for the steps involved for the techniques,

especially the effect of the dimensiond of the input space on the query time.

The GMP and LLR are both fairly fast modelling techniques. They both require the construction

of a kd-tree which takesO(M logM) time. For the GMP, every query involves the restructuring of

the near neighbour relationship which in the worst case should take onlyO(M logM) but in practice,

the time taken is much less. The rest of the computation for the output value is therefore polynomial in

time with respect to the selectedpmax andM . It does not seem to be highly sensitive to the dimension

d of the input space in terms of running speed.

The LLR similarly requires the kd-tree to extract the local near neighbours but it does not re-

structure such relationships for each query. The most expensive calculation step is to calculate the

pseudoinverse and this will depend on the choice of technique for the computation. Using the SVD

technique the time involved for such query should be in the order ofO(pmaxd
2)+O(d3) (assuming we

calculate the SVD of apmax× d matrix, see Appendix A) plus the near neighbour query ofO(logM).
Therefore, the running time is highly dependent on the dimensiond but still polynomial. From our

experience, this method seems to be the most efficient of the three techniques discussed.

From our experiments, the LDT seems to be the worst performer in terms of speed. The main

drawback is due to the slow calculation of the Delaunay triangulation and the point location problem

of finding the correct Delaunay cell containing the query point. In general the computational theory of

Voronoi diagrams and the dual Delaunay triangulation is still not well understood, especially in high

dimensions, but Seidel[Seidel 1991] has estimated the tight upper bound of the number of cells of the

Voronoi (equivalently Delaunay) subdivision to beO(nb(d+1)/2c), for n givend-dimensional points.

To determine whether a point is in a convex polytope ind-dimensional space, i.e. outside or the inside

query, can take as much asΘ(nbd/2c) for convex polytopes defined by the intersection ofn half-spaces

[Edelsbrunner 1987].

Therefore, given that we havepmax d-dimensional near neighbours we would expect in the worst
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case, the query time would take aboutO(pb(d+1)/2c
max ) + Θ((d+ 1)b(d+1)/2c), plus the time calculating

the linear interpolation and the local near neighbours searching time. Of course, since we are using

Qhull and the simplices are sorted in the order of the nearest points defining the simplices, the query

should take less time. Nevertheless, the performance of LDT will suffer for a very larged. In particular,

the running time is exponential in time in terms ofd.

However, there is a method whichtranslatesthe whole problem of locating the Delaunay cell which

contains the query point into a problem of solving a linear programming problem[Fukuda 1998]. This

method became available very late in the present account and it has not been tested, but the detail is

explained in Appendix C. This technique, in general, exploits the relationship between the convex hull

in the “lifted space” and the Delaunay triangulation as explained earlier in Section 3.2.2 and it seems to

bypass many problems that have arisen in the calculation of high-dimensional Delaunay triangulations

and the point location problem. Although, the problem of having the query point outside the convex

hull of the set of training data points, our ‘outside query’ problem, remains.

In a recent article, Ekeland[Ekeland 1998] describes[Bombieriet al.1969]’s work on Bernstein’s

theorem dealing with functions whose graphs areminimal surfaces, i.e. the functionf(x1, . . . , xd)
for which the surfacey = f(x1, . . . , xd) minimises the area between all small closed curves drawn

on it. Must such functions be linear or must their graphs be hyperplanes? In fact, the answer is

yes if the underlying dimension is two, three and up to seven.[Bombieri et al. 1969] have proven

that it is no longer the case in dimension eight or higher. Although we are not directly interested in

differential geometry (but it may be a future research area), this result is very surprising and important

for modelling techniques which use hyperplanes.

Therefore, one should be careful in extending any new idea which works in low-dimensional space

into higher-dimensional space, e.g. applying a modelling technique assuming linearity in 8- and higher-

dimensional problems, may not be necessarily correct as one might assume intuitively. However, we

believe that using a small local region modelling technique, and assuming locally piecewise linearity,

the error accumulated from such an assumption would not be that high.[Bombieriet al.1969]’s result

indirectly implies that using neural network modelling techniques, we may achieve a more accurate

and general model for which no assumption of linearity is used within the model. Of course this still

suffers from potentially long neural network training times before it can start to predict.
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Chapter 4
Practical techniques & examples of modelling

We will present a series of examples of modelling on a few practical problems. These examples demon-

strate that the Gamma test has been an invaluable preprocessing tool to aid the model identification

process. Before we give these examples we first briefly discuss a few typical preprocessing techniques

which are important and necessary in any model construction, as a contrast to our approach in using

the Gamma test.

We shall also address the general problem of generating an iterative neural network which can

model a given chaotic dynamical system with a high degree of precision. This we do in Section 4.2.3,

where we apply the tools developed in the earlier parts of this chapter to produce a feedforward itera-

tive neural network which closely models the Mackey-Glass time series. Although first introduced by

means of a particular example, these techniques are quite general and allow is to construct a feedfor-

ward iterative network which can accurately model any (reasonable) chaotic dynamical system given

only a sufficiently long times series of a single scalar variable of the system. This enables us to produce

such networks extremely easily and in Chapter 8 we shall how such networks can be controlled.

4.1 Model identification and data preprocessing techniques

This section briefly introduces two basic but essential preprocessing techniques on given data before

passing the data onto the modelling stage.

4.1.1 Embedding

Instead of being given a full state description of the system and a output to be modelled as assumed

above, very often there is only one accessible state variable available in the system (especially in real

applications) and we are required to use the available past values of this particular variable to predict

the future state. In other words, we need to reconstruct the dynamics of the system from the available

time series in order to predict the unseen states.

If h is the observable variable this reconstruction is normally done by usingdelay coordinatesto

constructd-dimensional vectorξ = (h(t), h(t − τ), h(t − 2τ), . . . , h(t − (d − 1)τ)). If d is chosen

large enough and the underlying dynamics is finite dimensional, then there exists a dynamical system

describing the evolution ofξ which can be used for our modelling purpose. Assume that the actual
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system is described by

dx

dt
= F (x) (4.1)

wherex is, say,d′-dimensional. (Further discussion on dynamical systems is given in Chapter 5.)

Then the quantityh(t) may be regarded as a smooth function of the state variablex. Hence,ξ can be

related tox by some functionG, i.e.

ξ = G(x). (4.2)

The important issue now is to ensure thatξ should represent a dynamical system that evolves forward

in time such that ifx0 denotes a system state andξ0 = G(x0), then there is no statex′0 6= x0 satisfying

ξ0 = G(x′0). Thus given the delay coordinateξ0 = G(x0), the statex0 is uniquely determined and

can be evolved forward any amount in time by (4.1) to a new state, which can then be transformed

to theξ variable by the functionG. This basically defines a dynamical system evolvingξ forward in

time. Importantly the functionG must satisfy the condition thatx 6= x′ implies

G(x) 6= G(x′). (4.3)

If this is true, we can then say thatG is an embeddingof the d′-dimensionalx-space into thed-

dimensionalξ-space.

Takens[Takens 1981] studied this problem and obtained the result that generically

d ≥ 2d′ + 1 (4.4)

is sufficient to avoid the problem of intersections in the embedding space and we refer to this result as

the Takens’ embedding theorem.

Practically, we often construct thed-dimensionalembedding space vectorsas

ξn = (x(ntJ), x(ntJ + tD), x(ntJ + 2tD), . . . , x(ntJ + (d− 1)tD)) (4.5)

by sampling the time series of a system variablex, to represent the original dynamics. HeretD is the

delay time, which is the time period between successive components of each of the embedding space

vectors andtJ is thejump timewhich is the time interval between successive vectors. Careful choice

of the delay time is essential for a good reconstruction of the chaotic attractor. Many techniques for

constructing such embedding vector and determining the jump time and the delay time can be found in

[Otani and Jones 1997b; Rosensteinet al.1994]. Later in our experiments we show how the Gamma

test can determine a ‘good’ embedding to aid the construction of an accurate model.

4.1.2 Principal component analysis (PCA) and dimension reduction

GivenM data pointsxi ∈ Rn (1 ≤ i ≤ M ), theprincipal component analysis(PCA) is to find the

(n −m)-dimensional hyperplane that best represents the data points. Mathematically, the problem is

to find anm×n matrixA whose rows are orthonormal to each other and ann vectora that minimises∑
i ‖A(xi − a)‖2.

The whole process of PCA can be briefly summarised into the following steps:

1. Form then× n covariance matrix from then×M data matrix.

2. Extract the eigenvectors and eigenvalues from the covariance matrix.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



4.1 Model identification and data preprocessing techniques 83

3. The eigenvectors are theprincipal componentsand the eigenvalues are theirmagnitudes.

Using PCA, we can perform afeature selectionof the given set of data. It is a process that trams-

forms a “data space” into a “feature space”. It is designed so that the data may be represented by a

reduced number of “significant” and “effective” features which retain most of the intrinsic information

content of the data.

First we assume that the vectorx has zero mean:

E[x] = 0 (4.6)

whereE is the standard statistical expectation operator. (There is no loss of generalisation: if we have

a non-zero mean, we can subtract the mean from the data vectors before proceeding with the analysis.)

Let aM×M matrixR be thecorrelation matrixof the data, defined as the expectation of the outer

product of the vectorx with itself,

R = E[xxT ]. (4.7)

The whole problem of performing PCA is to solve for

Ru = λu (4.8)

a standardeigenvalue problem. The precise justification can be found in[Haykin 1994]. Let the

eigenvalues ofR be denoted byλ0, λ1, . . . , λM−1 and the associated eigenvectors be denoted by

u0,u1, . . . ,uM−1 respectively. We can then write

Rui = λiui, (0 ≤ i ≤M − 1), (4.9)

where we shall assume the eigenvalues are distinct. Let the corresponding eigenvalues be arranged in

decreasing order

λ0 > λ1 > · · · > λi > · · · > λM−1 (4.10)

so thatλ0 = λmax and let the associated eigenvectors be used to construct aM ×M matrix

U = [u0,u1, . . . ,ui, . . . ,uM−1]. (4.11)

We can write (4.9) as a single matrix equation

RU = UΛ (4.12)

whereΛ is a diagonal matrix defined by the eigenvalues of matrixR,

Λ = diag[λ0, λ1, . . . , λi, . . . , λM−1]. (4.13)

Note that theU is anorthogonal matrix(UT = U−1).

These vectorsui basically giveM possibleprojectionsof the data vectorx, i.e.

ai = x · ui, (0 ≤ i ≤M − 1) (4.14)

where theai are the projections ofx onto the principal directions represented by the unit vectorsui

and are called theprincipal components. We can combine the set of projections into a single vector by

a = [a0, a1, . . . , aM−1]T = UTx. (4.15)
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SinceU is orthogonal we also obtain

x = Ua =
M−1∑
i=0

aiui. (4.16)

If the vectorsui are linearly independent, they form abasisof the data space. (4.16) is in fact

a coordinate transformation, according to which a pointx in the data space is transformed into a

corresponding pointa in the feature space.

The main practical value of PCA is that it provides an effective technique fordimension reduction.

We may reduce the number of features needed for effective data representation by removing those

linear combinations in (4.16) that have small variances and retain only those terms that have large

variances[Oja 1983]. In fact the variance ofai is directly related to the correspondingλi. Thus to

perform dimensionality reduction on some input data, we can then project the data orthogonally onto

the subspace spanned by the eigenvectors (calculated from the correlation matrixR) belonging to the

largest eigenvalues. This technique is also referred to assubspace decomposition.

In our brief investigation, performing PCA with subspace decomposition on a local scale such as

for our local modelling techniques, involving the Gamma test, can only slightly improve the accuracy

of modelling but the result is not always necessarily significant. Perhaps, this is due to the fact that for

many problems, it is hard to determine whether a principal value is small enough to be removed for the

subspace decomposition step. In all our modelling examples, the Gamma test is always used to deter-

mine the best embedding in the data preprocessing stage and subsequent PCA on such processed data

does not seem to effect any significant improvement. We believe that using the Gamma test to choose

the best embedding has already taken care of picking up the significant ‘variables’, as if performing

the PCA dimensionality reduction. The result from our Gamma test approach is comparable with the

PCA technique, if not better.

4.2 Practical examples on data modelling and prediction

In this section, we apply our modelling techniques to some practical experiments. At the same time,

we introduce other practical techniques and ideas, involving the Gamma test, which help to perform

the prediction of time series. First we look at sunspot activity prediction and then we look at how the

modelling technique can be used for other applications.

4.2.1 Modelling of sunspot activity and prediction

The data used in this experiment consists of 280 points representing sunspot activity from over the pe-

riod 1700 – 1979 shown in Figure 4.1. This was used and described in[Weigendet al.1990]. The data

was available from the ftp address:ftp.santafe.edu in the directory/pub/Time-Series/

data/ . The data has been scaled to[0, 1] range and the variance is estimated to be 0.0410558.

In order to model such time series data, we need to construct the model by choosing an embedding

to establish an input-output relationship. Basically, an embedding of a time series is a selection of past

values which are used to predict the current value forming a ‘mapping’ relationship. The choice of a

good embedding can produce a good model for quality prediction of future values. We can of course

make use of Takens’ embedding theorem as introduced in the last section. In our case of the sunspot

activity time series, we do not know the exact dimensionality of the sunspot activity dynamics. So
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Figure 4.1: Time series of sunspot activity from over the period 1700 – 1979.

we turn to an alternative technique provided by the Gamma test to choose a suitable embedding and

dimensionality.

First we define the notion of amask. A mask of, say length 5, is a string of 0’s and 1’s with length 5.

Each binary digit represents one particular past value of a time seriesx. The rightmost digit represent

the most recent value. A “1” indicates to include that value for the embedding and “0” indicates not to

include it. Therefore 11111 means that we have an embedding ofx(t − 1), x(t − 2), x(t − 3), x(t −
4), x(t−5) whereas 11001 represents an three-dimensional embedding ofx(t−1), x(t−4), x(t−5).
This last type of embedding is calledirregular or non-uniform. Non-uniform embedings were also

considered by[Judd and Mees 1998], a paper which we only became aware of in the final phases of

present work.

We can run the Gamma test on each different embedding to choose the one which gives us the

gamma valuēΓ closest to zero. If the embedding dimension ism, then we have2m − 1 embeddings

to consider. Ifm is large, performing the Gamma test on all such embeddings is time consuming and

sometimes impractical. Very often, we take at most 20 past data points for such an embedding search

or use some heuristic searching techniques such as standard hill-climbing. The main reason why we

can obtain a different̄Γ value using an irregular embedding is that in effect we are changing the near

neighbour relationships between each data point in input-space. Leaving out one particular variable

and obtaining a lower̄Γ is an indication this variable is either irrelevant or subject to a great deal of

measurement noise. Therefore, that variable should not be included for our model reconstruction.

By doing a search on the possible best embedding using 15 past values, using 9 nearest neigh-

bours for the Gamma test, the 8-dimensional embedding 001000100111111 was found withΓ̄ =
0.0083971616, A = 0.13698427. It is interesting to note that this embedding uses all past years for

half an 11-year cycle and supplements this information with samples approximately bracketing a full

cycle. Of course, there might possibly be a better embedding with lowerΓ̄ on using a different value

of pmax. Also using 15 past values for embedding search arises because we have a very limited size

data set which may not be enough for accurate estimation of the true noiser from the data (or for data

modelling).

One method to estimate the number of training data required is by theM-test. This is simply a

series of Gamma tests varyingM . If M is sufficiently large,̄Γ should be a close estimate of the true

value ofVar(r). In other words,M such data points should allow us reconstruct an accurate model.

Using the above embedding, anM -test was performed on the sunspot data. Starting fromM = 15
toM = 265 in steps of 5,M data were randomly chosen from the data set and the Gamma test was

performed. This was repeated 5 times and then the average ofΓ̄ was taken and plotted againstM . Due

to the high dimension of the embedding and a small data set, we would not expect thatΓ̄ stabilises as
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Figure 4.2: M -test on the sunspot embedding data.

shown in the resulting Figure 4.2. Hence, all available data are needed for testingΓ̄.

Using this embedding, we obtain 267 data points and the first 208 data are used for training the

model and the remaining 59 data points are used as test data. Various results using different modelling

are shown in Table 4.1. Using LDT, the MSEs are high as expected due to few and sparse noisy

training data. In fact, for the same reason it is not a good idea to use any clever heuristic techniques for

the outside query problem and just taking the first near neighbour value for the outside query (strategy

1) can produce better result. Taking higherpmax is also helpful.

Model technique Options pmax MSE

LDT strategy 1 40 0.015547

LDT strategy 5,ζ = 0.35 20 0.0192818

GMP – 21 0.0146605

GMP – 25 0.0148654

LLR affine 59 0.007649749

LLR non-affine 54 0.005806554

Neural Net 8-10-10-1 (train MSE = 0.0084) – 0.013834

Table 4.1: Test data MSEs of various modellings of sunspot activity.
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Figure 4.3: Sunspot prediction on test data using LLR with non-affine model withpmax = 54.

For the GMP, we can obtain a better result by just having a largerpmax. In fact, it is a much faster

computation because for LDT, a higherpmax is needed which means performing the time consuming

process of Delaunay triangulation of about 40 8-dimensional data. A surprisingly good result can be
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Figure 4.4: MSE againstpmax for affine and non-affine LLR modellings on the sunspot activity.

produced by using LLR which is efficient and powerful in the way it can reduce the MSE to about

5× 10−3. The non-affine model performed better than the affine model and this was unexpected. The

actual result for the non-affine LLR usingpmax = 54 is shown in Figure 4.3. The non-affine model

seems to be a better model for this particular time series as shown in Figure 4.4. In general, other

techniques suffer poor prediction for the last two big peaks around year 1958 and 1968 resulting the

overall large MSE of the test data whereas LLR can predict it fairly accurately.

As a comparison, we trained a feedforward neural net on the same set of training data until the

training MSE reached about 0.0084, theΓ̄ of the data set. The network uses the sigmoidal function

f(x) = sF (2/(1 + e−xT )− 1), where the temperatureT = 1.2 and the scale factorsF = 1.5, as the

activation function and it is trained by using the BFGS algorithm (see Appendix D). As indicated by

theM -test, we would not expect the network to perform well. However, the MSE on the test data is

rather pleasing and closely matches the MSEs for many modelling techniques studied, but it is still not

as good as the LLR as shown in Table 4.1. In this small problem, the training time required is not long

but for a larger data set, this would not be chosen as the ideal technique for a ‘quick’ answer.

We then tried a dimension reduction approach based on the idea of dimension reduction via PCA

in a local scale for the LLR modelling technique as an improvement method. The idea is to take

advantages of the calculation of the inverting matrix stage. To solve for a best solution forA in

XA = Y , as shown in Section 3.4 typically, we need to calculate the pseudoinverseX# of the matrix

X, say it is am × n matrix, so to obtainA = X#Y . Computationally,X# can be calculated using

the Singular Value Decomposition (SVD) of the matrixX by expressing

X = UDV T (4.17)

whereU ∈ Rm×m, V ∈ Rn×n are orthogonal matrices.D ∈ Rm×n is a diagonal matrix with entries

Dii = wi, 1 ≤ i ≤ r, w1 ≥ w2 ≥ · · · ≥ wr > 0, wherer = rankX and all the other entries are

zeroes. Further discussion of SVD is in Appendix A. Then

X# = V

[
W−1 0

0 0

]
︸ ︷︷ ︸

n×m

UT . (4.18)

whereW is ar × r diagonal matrix ofwi. The inverseW−1 is then a diagonal matrix of1/wi.
We now define a tolerance valueTr, so that a thresholdTthr = Tr×w1 is defined, i.e. the threshold

Tthr is a percentage of the largestwi. If wi < Tthr then1/wi is set to zero in (4.18) for the calculation

of the pseudoinverseX#. Setting1/wi to zero for smallwi is in fact important for practical numerical
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computation since it reduces any floating point arithmetic accumulated error due to the reciprocal of

smallwi, as well as removes the ‘least important’ information, e.g. noise, from our input data. This is

the same as removing some of the basis set of vectors in the matrixU spanning the subspace.

Notice thatU = XXT is the correlation matrix ofX (see Section 4.1.2). The squares of the entries

wi are in fact the non-zero eigenvalues ofXXT , in order words, the magnitude of the principal vectors

of the PCA ofX. Zeroing the entries corresponding to smallwi effectively removes those principal

components with small variances, although the data in the above case is not expressed in the feature

space. Therefore this technique is not exactly a PCA dimension reduction. The relationship of SVD

and PCA is studied and further demonstrated in[Gerbrands 1981].

We then apply our simple but ‘crude’ dimension reduction technique, by setting a suitable valueTr,

on thepmax local data points before linear regression, with the same embedding and non-affine model

usingpmax = 54. However, this does not improve the model in a significant way and occasionally,

the modelling seems to be worse. The main difficulty in applying this technique is to determine the

threshold value for removing unwanted spurious and insignificant components. As a control experi-

ment, we used the full embedding 1111111111111 using non-affine LLR withpmax = 54 and varied

threshold valueTr to compare the test MSEs. The results are in Table 4.2. From these results, it seems

that the Gamma test modelling approach for choosing a suitable embedding is comparable to using

the locally dimensionality reduction technique for LLR modelling, but the Gamma test has provided a

deterministic way to aid the modelling process, whereas this dimension reduction technique requires

the careful choice ofTr. Too large a value ofTr could render the local linear regression inaccurate.

Tr pmax MSE

0.1 54 0.012119

0.05 54 0.007819

0.005 54 0.0088599

1× 10−6 54 0.0088599

Table 4.2: MSEs of test data on non-affine LLR sunspot modelling usingpmax = 54 with variousTr
for component removal.

Usefulness of the Gamma test embedding search

From the above example, we can clearly see that having anirregular embedding as opposed to the

standard approach taking regular past time lags, as suggested by Takens, a good model can be recon-

structed from a finite set of time series data.

To explicitly demonstrate the usefulness of this Gamma test approach for identifying the ‘depend-

able’ past lags, we construct a chaotic map for which the current system state does not depend on

the immediately previous two states but directly depends on the values of the further past states. We

construct the following system,

xn = −1.4x2
n−5 + 0.05xn−6, (4.19)

in a form similar to the H́enon map

xn = −1.4x2
n−1 + 0.3xn−2, (4.20)
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Figure 4.5: Chaotic attractor of the modified
the map defined in (4.19).

Figure 4.6: Chaotic attractor of the original
Hénon map in (4.20).

but instead depending on the system’s fifth and sixth lagged values. The chaotic attractor from (4.19)

is shown in Figure 4.5, which is very different from the original Hénon map attractor as shown in

Figure 4.6. If we use the standard embedding technique, we could take the embedding 111111 so as

to include the fifth and the sixth delayed states. However, this would presumably pick up unnecessary

values, the first delayed state, the second delayed state etc., for the system reconstruction. Very likely,

the extra values may behave as noise in the dynamic reconstruction.

Using (4.19) we generate a time series of 6000 samples for this experiment. By having a fixed

length of 10 lags, we can construct210 different embedding vector data sets. For each data set, we

can perform the Gamma test on the embedding vectors. By comparing the returnedΓ̄ values, we can

obtain the best embedding which gives the least|Γ̄|. Table 4.3 show the 10 best embeddings from this

full search. Of course, other searching techniques such as using genetic algorithm or hill-climbing

can approximate a best embedding without needing to computeΓ̄ for all embeddings. In fact, simply

having increasing embeddings and computing theΓ̄ values is good enough for a fast solution.

Order Γ̄ A Embedding

1 6.879299× 10−6 0.338208 0100110001

2 7.484070× 10−6 0.314507 0101111001

3 1.521949× 10−5 0.174325 1001111010

4 −1.821650× 10−5 0.379670 0000110000

5 1.848148× 10−5 0.287325 0011110010

6 1.891623× 10−5 0.426509 1000110000

7 −2.002271× 10−5 0.276795 0000111011

8 2.034062× 10−5 0.541767 0000110000

9 −2.106169× 10−5 0.343622 0000110011

10 2.990317× 10−5 0.381624 0001110100

Table 4.3: A list of ‘good’ embeddings sorted in ascending order of|Γ̄|.

As seen in the result in Table 4.3, some of theΓ̄ values are negative which is probably caused by

statistical noise, especially when theΓ̄ are small and close to zero. We could simply ignore those em-

beddings which give negativēΓ, but if the asymptotic̄Γ is sufficiently small the resulting embeddings

should produce a good model. As expected, the embedding 0000110000 is in the list, because this is

the recurrence relationship used to define the system (4.19). Surprisingly, there are five better embed-
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dings with positivēΓ values. Indeed, such embeddings often produce better models. Note that the fifth

and the sixth past lag states also appear in those five better embeddings. This experiment demonstrates

that the Gamma test can easily help us to determine an appropriate embedding constructed from a

reasonably sized set of time series data.

4.2.2 Detecting a message buried in a chaotic carrier

This section is basically a summary report on the joint mini-project with Ana Oliveira who is inter-

ested in secure communication via synchronisation of chaos. This experiment is to use our modelling

technique in an attempt to model a digitised chaotic signal to detect and retrieve hidden binary mes-

sages within such a carrier signal, i.e. another demonstration of the usefulness of this simple modelling

scheme (See[Oliveiraet al.1999] for the main result).

Using synchronisation to secure communication has been an actively researched area[Cuomo and

Oppenheim 1993; Oketani and Ushio 1996; Parlitzet al.1992; Pecoraet al.1997]. The method used is

to assume that we have two identical chaotic systems, one in the transmitter and one in the receiver and

select one of the chaotic system variables of the transmitter as a carrier for the transmitted message.

Using a suitable synchronisation technique, the message can then be decoded from the chaotic carrier.1

We are interested in decoding the message without using any synchronisation techniques and no

knowledge of the dynamical system used to generate the carrier. There have been several attempts

such as a forecasting approaching (one-step predictor) involving filtering in the frequency domain in

[Short 1994] and a technique without filtering in the frequency domain in[Short 1997]. Nevertheless,

our method appears to be simpler, using the combined Gamma test and LLR strategy. By modelling

the carrier and using a one-step predictive model, the binary message should appear as noise or a large

error signal when a model prediction is compared with the received signal. We have tried the method

on two different message encoding schemes, a binary message masked by adding it to a chaotic carrier

and a binary message modulated in one of the system bifurcation parameters.

Masked message

First we masked a binary message as a square wave signal as in Figure 4.8 into they variable (Fig-

ure 4.7) of the Chua circuit which is defined as
ẋ = α(y − x− f(x))
ẏ = x− y + z

ż = −βy
, (4.21)

where

f(x) = bx+
1
2

(a− b)(|x+ 1| − |x− 1|) (4.22)

andα, β, a, b are constants and set to be:α = 10, β = 14.87, a = −1.27, b = −0.68. One digit of the

binary message is a ‘square’ peak for a duration of 0.8 time unit. The message is completely hidden

by masking as in Figure 4.9.

As before the Gamma test was used to find a good embedding for the modelling of the time series

of y sampled at every 0.01 second (see Figure 4.9). The embedding 0011110001 was found with

Γ̄ = 1.8219 × 10−6 andA = 0.29044 using about 10000 data points. As suggested by theM -test,

1The detail of the synchronisation is omitted here - see[Oliveiraet al.1999].
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Figure 4.7: y of the Chua cir-
cuit defined in (4.21).

Figure 4.8: Binary message to
be encoded/masked.

Figure 4.9: y signal contain-
ing the binary message in Fig-
ure 4.8.

3000 training data were taken for the affine LLR model construction. Withpmax = 8, we obtain a MSE

of 3.3338× 10−5 on the test data. The result is shown in Figure 4.10. The retrieved message appears

as patterns on the error time series. The ‘0’ and ‘1’ of the message appear as pairs of ‘blips’ as in

Figure 4.11 and Figure 4.12 respectively on the error time series. Therefore we can fairly easily detect

‘blips’ using our technique, but how well it can be used for distinguishing the difference between a ‘0’

and a ‘1’ signal, i.e. a recognition problem, requires further future investigation.
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Figure 4.10: The result of the affine LLR model on the test data of the chaotic carrier with masked
binary message of they variable of the Chua circuit.
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Figure 4.11: A ‘0’ signal on the error time se-
ries.

Figure 4.12: A ‘1’ signal on the error time se-
ries.

Similarly, we tried the same problem but with the binary digit encoded as a single ‘flash’ blip signal

(duration of 0.01 second for each digit) and successfully retrieved the masked message. Also, noise

was added to the carrier to increase the difficulty of the modelling but we could again successfully

retrieve the message up to certain amount of noise.
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Modulated message

Next we tried the same technique on binary message modulated into one of the system parameter. The

Lorenz system defined by 
ẋ = σ(y − x)
ẏ = rx− y − xz
ż = −bz + xy

, (4.23)

whereσ, r andb are constants, was used for the modulation scheme by using the parameterr as in

[John and Amritkar 1994]. σ = 10 and b = 8/3. A ‘1’ corresponds to a positive change in the

parameter and if after a time intervalδt = 20 no change occurs then a ‘0’ is encoded. Each binary

digit was encoded at evenly spaced time interval. We variedr betweenr = 28.0 andr = 30.0 for the

encoding and we can decode the message from the carrier without much difficulty. Smaller changeδr

was tried but were not successful.

The binary message to be modulated, 10011010, is as Figure 4.13 and the message was modulated

into r of the system. Figure 4.14 shows and Figure 4.15 shows the time series ofy with and without

the modulation with both starting at the same initial conditions.y from the modulated system clearly

appears as another chaotic time series.
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Figure 4.13: The binary mes-
sage 10011010 is encoded as a
variation ofr of the Lorenz sys-
tem.

Figure 4.14: The original time
series ofy without modulation.

Figure 4.15: The time series of
y starting at same initial condi-
tions but with message modu-
lated.

Using the same modelling procedure again, a embedding 1001110001 was found using 10000

data points, for the time seriesy of the system, i.e. the carrier, sampled at every 0.01 second. The

corresponding Gamma value isΓ̄ = 4.0067 × 10−5 andA = 0.21089. The number of training data

used isM = 6000 as estimated by theM -test. The model was created and tested and we obtained

MSE of4.5525× 10−4 on the test data. This MSE value, relative to the other experiments, is not very

small. One possible reason being that the Lorenz system is slightly harder to model. Nevertheless, the

model result is shown in Figure 4.16 and the binary ‘1’ can still be located by observing the pattern in

Figure 4.17 on the errors.

This illustrates how simple and powerful this modelling strategy of combining the Gamma test

and LLR really is. Further details on the application to eavesdropping a chaotic carrier are reported in

[Oliveiraet al.1999].

4.2.3 Modelling a chaotic process by a neural network

Constructing a neural network from a chaotic map has been an interesting and significant area for

the investigation of neural dynamics[Welstead 1991; Tsui and Jones 1997]. The typical method of

constructing such a network is to choose a chaotic map and use a set of input and output data from
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Figure 4.16: The predicted model result for they time series. Figure 4.17: A ‘1’ signal on
the error time series.

this map to train a feedforward neural network. Then the outputs of the network are immediately fed

back to the inputs to form a recurrent network. This is the approach used in our early experiment in

studying chaos control in neural network as shown later and described in[Tsui and Jones 1997].

In practice, this is a rather difficult process due to the fact that the current state alone does not

always contain the necessary information to predict the next state. In this section we apply the Gamma

test modelling approach which can simplify the construction process, as well as introduce a new type

of neural model which can capture the essential dynamical features of a given chaotic time series.

To capture the chaotic dynamics given by a time series of a system variable, we first use a sequence

of Gamma tests to determine a best embedding (i.e. an embedding which minimises|Γ̄|) so as to select

the best set of inputs for the model dynamicsF : Rd → R. The dimensiond is given accordingly by

the best embedding.

As an example, we look at the Mackey-Glass equation defined by

d

dt
x(t) = −0.1x(t) +

0.2x(t− τ)
1− (x(t− τ))10

, (4.24)

whereτ = 30 > 17 is the time delay. We then generate a time series of 800 points sampled at intervals

of ∆t = 10. Using a six dimensional embedding 111111, we reformatted the data into 794 data

points which were then put to a sequence of Gamma tests to find the best embedding. The embedding

111100, which gavēΓ = 0.00093817 andA = 0.30222, was obtained. It is interesting to note that

the full embedding search obtained the best model by omittingx(t− 1 ·∆t) andx(t− 2 ·∆t). Why

is this? In the original time delay equation the valuex(t) depends on the valuex(t− 30). The values

x(t− 10) andx(t− 20) are not needed at all, as the software discovered. This illustrates the utility of
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Figure 4.18: A recurrent neural net with delayed inputs, suggested by the embedding found by the
Gamma test, for modelling a chaotic time series.
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the Gamma test in finding the best embedding in a dynamical system with lags.

TheM -test suggested that a minimum of around 500 data points were required for the model. In

fact we chose to use 550 data points to train a feedforward neural network with the architecture 4-8-

8-1 until the training MSE was about 0.000936. The feedforward neural network was trained using

the BFGS algorithm, a quasi-Newton method (described in Appendix D), with an output function

f(x) = 1.5(2/(1+e−1.2x)−1), wherex is the usual activation function, as used in the earlier sunspots

experiment. The remaining 293 data points were tested, giving MSE of 0.001623. As suggested by

the embedding 111100, we can feed the output of the system back into the input to construct an

iterative network having delay feedback lines. An example of the architecture for this embedding is

illustrated in Figure 4.18. Delay buffers are used on the feedback lines to give past values so that a

mapF : R4 → R can be correctly represented.

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

���

� �����

0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

PSfrag replacements

���

�������

Figure 4.19: Mackey-Glass attractor from the
sampled time series.

Figure 4.20: Chaotic attractor of the trained
neural network.

The true attractor plotted from the sampled time series of this system and the trained neural net

attractor are in Figure 4.19 and Figure 4.20 respectively, showing the similarity between them.

This idea of using suitably chosen time delayed feedback lines in an iterative neural network to

obtain a feedforward neural model of a chaotic dynamic system specified by a single time series is an

important step towards our ultimate goal. We shall return to this topic in Chapter 8. However, we note

that this method is really an innovative application of Takens theorem to neural network modelling.

4.3 Discussion

We have presented several examples in which the Gamma test is used as a means of model identi-

fication to determine a ‘good’ embedding from which an iterative model of the time series can be

constructed. Usingirregular embeddings very often a better model than that provided by a literal in-

terpretation of Takens theorem can be obtained. This is illustrated in our construction of a model for

sunspot activity and by the detection of a message buried in a chaotic carrier.

The determination of the significant delayed components of the Mackey-Glass time series detected

by the Gamma test also helped us in constructing a chaotic neural network which models this dynamics.

By incorporating several suitable delay buffers, based on a good embedding, and using these feed-

backs to the inputs, a chaotic time series can easily be modelled. Previously training such an iterative

neural network (to model a given chaotic system) was considerably harder and contained some ele-

ment of ‘hit-and-miss’. The techniques provided here have enabled us to construct a wealth of chaotic

neural systems (only one of which is presented in this thesis) which can then be used as the basis for

experiments in control and synchronisation[Oliveira 1999].
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However, before we can construct our chaotic neural stimulus-response model, we need to study

the nature ofchaosand the techniques which have been used to control it.
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Chapter 5
Chaotic Dynamics & Control of Chaos

This chapter attempts to give a concise description of the basic idea of dynamical systems and chaos,

and introduces the terminologies used throughout the remainder of the thesis. Essential tools and

techniques for studying chaotic dynamical systems are presented. Some further examples of chaotic

neural dynamics are also given.

Finally we begin to explore the basic ideas required to effectcontrol of a chaotic system. Several

chaos control strategies will be described and illustrated with simple experiments.

5.1 Dynamical systems

The subject ofDynamical systemsis a mathematical attempt to understand processes which evolve in

time. A dynamical system may be defined as a deterministic mathematical prescription for evolving

the state of a system forward in time. Time here either may be a continuous variable, or else it may be

a discrete integer-valued variable. A typical continuous dynamical system is defined as:

dx(t)
dt

= F [x(t)] (5.1)

wherex(t) is and-dimensional vector (x1, . . . , xd) representing a state of the system and it may be

thought of as a point in a suitably defined space – which we shall callphase spaceor state space. For

any initial statex(0) of the system (5.1), we can in principle solve the equations to obtain the future

system statex(t) for t > 0. The path in state space followed by the system as it evolves with time

is referred to as anorbit or trajectory. A trajectory therefore displays the history of the states of the

system.

We describe here some terminology regarding dynamics of the trajectories. Alimit set is a set of

points in state space that a trajectory repeatedly visits, and it is defined only for discrete or continuous

autonomous1 systems. Alimit cycle is a periodic solution of the system. The limit set isstableif all

nearby trajectories remain nearby and it isunstableif no nearby trajectory, except those lying on the

limit set, remain nearby. Sometimes the trajectory in state space will head for some final attracting

region which might be a point, curve, area and so on. Such an attracting object is called theattractor

of the system, since a number of distinct trajectories will be attracted to this set of points in the state

space. The set of all initial conditions leading to trajectories that approach a given attractor is called

thebasin of attractionfor that attractor.

1Time t is implicit to anautonomoussystem, i.e.x(t) = f(t) for a continuous system. Otherwise if timet is explicit in the
system, then such system isnon-autonomous.
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5.2 Chaos

Before we can give a formal definition of chaos, it is necessary to introduce some mathematical defi-

nitions:

Definition 5.2.1. LetX be a metric space and letY ⊂ X, thenY is densein X if ∀x ∈ X, ∃y ∈ Y
arbitrary close tox.

Definition 5.2.2. A dynamical system istransitiveif for any pairx, y and anyε > 0, there exists az

within ε of x whose orbit comes withinε of y.

Definition 5.2.3. A dynamical systemF depends sensitively on initial conditionsif ∃β > 0 such that

for anyx and anyε > 0, there is ay within ε of x and at such thatd [F (x(t)) , F (y(t))] ≥ β where

d is a metric.

Informally a chaotic dynamical system is a system which may superficially appear to behave ran-

domly but when the system starts off at the same initial point, it always produces the same orbit. There

does not seem to be an universally agreed definition of chaos between mathematicians. Here is one

formal definition of chaotic dynamical system from Devaney[Devaney 1992].

Definition 5.2.4. A dynamical systemF is chaoticif

• The set of periodic points is dense,

• F is transitive,

• F depends sensitively on initial conditions.

It is a characteristic of chaotic dynamics that the resulting attractors often have a much more in-

tricate geometrical structure in the state space than those ofregularly behavingdynamical systems.

The dimension2 of these attractors is not an integer. Such geometrical objects are fractals[Mandelbrot

1982]. When an attractor isfractal, it is called achaotic attractoror astrange attractor[Ruelle and

Takens 1971].

5.3 Essential tools

Some (but not all) essential mathematical tools for studying chaotic dynamical systems are introduced

here. They are briefly explained and interested readers should be able to find them in any standard

dynamical system books, e.g.[Devaney 1992; Hilborn 1994].

5.3.1 Bifurcation diagram

A non-linear dynamical system, sayFr(x) wherer is a system parameter, could change suddenly in

terms of qualitative and quantitative behaviour as a result of a small change in some control parameter

r, e.g. from order to chaos.Bifurcationis the word for describing such a sudden change in the nature of

system as a control parameter is varied. To understand bifurcation behaviour, it is often helpful to look

2The standard definition of dimension is thebox-counting dimensionor thecapacity dimension. We can imagine covering
the space by a grid ofN -dimensional cubes of edge length ofε. We then count the number of cubesM(ε) needed to cover the
set. We do this for successively smallerε values. Then the dimension is defined byD0 = limε→0 lnM(ε)/ln(1/ε).
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at thebifurcation diagram. This is a picture in ther, x-plane of the relevant fixed and periodic points

as functions ofr. Therefore it is a plot of the periodic points for each parameter valuer. An example

of a bifurcation diagram is shown in Figure 5.4. The way to generate such diagrams is described in

Algorithm 5.1.

Assume the system isFr(x) wherer is a parameterr0 ≤ r ≤ rs andx is a state of the system.

1. Set parameterr = r0 initial parameter value.

2. Setx0 = system initial state.

3. Iterate the mapFr, say, 500 times (or more to remove transient states).

4. Iterate the mapFr another 1000 times (starting fromx500) and plot the resulting values ofx.

5. Increaser by a small amount,r → r + ε (The size ofε depends on the range of the parameter
r), andif r > rs stopping parameter valuethenexit elsereturn to step 2.

Algorithm 5.1: Generate bifurcation diagram of a dynamical system.

5.3.2 Poincaŕe section

A Poincaŕe section(or a Poincaŕe map) is a device invented by Henri Poincaré as a means of simpli-

fying the analysis of a continuous dynamical system (or ‘flow’),dx/dt = F (x(t)), F : Rd → Rd, to

a discrete map.

Consideringd first-order autonomous ordinary differential equations, the Poincaré section repre-

sents a reduction of thed-dimensional flow to an (d−1)-dimensional map by choosing some appropri-

ate (d− 1)-dimensional surfaceΣ (a global cross section) in thed-dimensional phase space satisfying

• every orbit ofF meetsΣ for arbitrarily large positive and negative time and;

• if x ∈ Σ then the flow atx is not tangent toΣ.

Let x0 = x0(t) ∈ Σ and defineτF : Σ → R+ such thatτF (x0) = τ > 0 is the least time for which

x(t+ τ) ∈ Σ. The Poincaŕe section of the flow throughΣ is defined as

P = {x(t+ τF (x0))|∀x0 ∈ Σ} (5.2)

i.e. each point onΣ is evolved forward in time until the trajectory intersectsΣ. The set of all such

re-intersections is the Poincaré section.

5.3.3 Lyapunov exponent

TheLyapunov exponentof a map may be used to obtain a measure of the sensitive dependence upon

initial conditions that is characteristic of chaotic behaviour. For a one-dimensional iterative map,

xn+1 = f(xn), the system is allowed to evolve from two slightly differing initial states,x andx + ε,

then aftern iterations their divergence may be characterised approximately as

ε(n) ≈ εenµ (5.3)

where the Lyapunov exponentµ gives the average rate of divergence. The difference between two

initially nearby states after thenth step is written as

fn(x+ ε)− fn(x) ≈ εenµ. (5.4)
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Figure 5.1: A two dimensional example of the calculation of Lyapunov exponents - the evolution of a
sphere of initial points to an ellipsoid.

For smallε, using the chain rule for the derivative of thenth iterate and taking the limit asn tends

to infinity, we can derive

µ = lim
n→∞

1
n

n−1∑
i=0

loge |f ′(xi)| , (5.5)

wheref ′ is the first derivative of functionf , and this illustrates the general idea behind the Lyapunov

exponents.

For continuous time systems,

dxi
dt

= gi(x1, . . . , xd, pi), (i = 1, . . . , d), (5.6)

there are two aspects of the time evolution which are of particular interest. The first aspect relates to

the evolution of volume elements in state space. For a continuous time system described by a system

of differential equations such as (5.6) an element of volumeV will evolve over time according to the

divergence equation

1
V

dV

dt
=

d∑
i=1

∂g

∂xi
≡ divg (5.7)

see for example[Hilborn 1994].

We first note that, ifJ can be written in diagonal form, divg = TraceJ , whereJ is the Jacobian

matrix of the system. Thus if the average over time ofTraceJ < 0, then the volume elements will

contract and the system will bedissipative, whereas if the average over time ofTraceJ = 0 the system

is ‘conservative’ in the sense that it is measure preserving in phase space. Now

TraceJ =
d∑
i=1

λi (5.8)

where theλi are the eigenvalues ofJ . Thus the dissipative or preservative properties of a system in

the phase space are determined by the average over time of the sum of the eigenvalues ofJ .

We are primarily interested in dissipative systems which are chaotic, so that the second aspect of

time evolution which concerns us is whether nearby trajectories have a tendency to diverge exponen-

tially on average.

For continuous systems, Lyapunov exponents provide a coordinate-independent measure of the

asymptotic local stability of properties of a trajectory. The concept is very geometrical. Imagine a

small infinitesimal ball of radiusε(0) centred on a pointx(0) in state space. Under the action of the

dynamics the centre of the ball may move, and the ball becomes distorted, see Figure 5.1. Since the

ball is infinitesimal, this distortion is governed by the linear part of the flow. The ball thus remains
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an ellipsoid. Suppose the principal axes of the ellipsoid at timet are of lengthεi(t). The spectrum of

Lyapunov exponents for the trajectoryx(t) is defined as

µi = lim
t→∞

lim
ε(0)→0

{
1
t

log
[
εi(t)
ε(0)

]}
, (1 ≤ i ≤ d). (5.9)

Note the Lyapunov exponents depend on the trajectoryx(t). Their values are the same for any

state on the same trajectory, but may be different for states on different trajectories. The trajectories of

a d-dimensional state space haved Lyapunov exponents. This is often called theLyapunov spectrum.

It is conventional to order them according to size. The qualitative features of the asymptotic local

stability properties can be summarised by the sign of each Lyapunov exponent; a positive Lyapunov

exponent indicating an unstable direction, and a negative exponent indicating a stable direction. The

motion will be dissipative if

d∑
i=1

µi < 0 (5.10)

and chaotic if at least oneµi > 0.

Trajectories’ divergence properties can also be expressed in terms of the eigenvalues ofJ , since the

eigenvalues will determine the form of the solution to the locally linear differential equations which

determine the trajectory at any particular point of the phase space. In general terms these locally linear

solutions for thexi will be of the form

A1e
λ1t +A2e

λ2t + . . .+Ade
λdt. (5.11)

If for a particular trajectory we write the time average

lim
T→∞

∫ T

t=0

ln
∣∣∣eλi(t)

∣∣∣ dt, (1 ≤ i ≤ d), (5.12)

[Otani and Jones 1997b] conjecture that this provides an alternative route to the Lyapunov exponents.

For an high-dimensional iterative map functionX(n) = F (X(n−1)), whereF = (F1, . . . , Fd),

with Jacobian

J =
(
∂Fi
∂xj

)
, (1 ≤ i, j ≤ d). (5.13)

Volume elements will locally contract or diverge according as|detJ | is less than or greater than 1,

respectively. Thus in this case the condition for a dissipative system depends on the average of|detJ |,
rather thanTraceJ as in the continuous case.

We can still speak of an average rate of divergence: if the system is allowed to evolve from two

slightly differing initial statesX = (x1, . . . , xd) andX+ ε aftern iterations the divergence of the two

points may be characterised as

ε(n) = (ε(0)enµ1 , . . . , ε(0)enµd) (5.14)

where the Lyapunov exponentsµi give the average rate of divergence/convergence over a large number

of iterations. For smallε we can express this as

µi = lim
n→∞

1
n

n∑
k=1

ln
∣∣∣∣∂Fi∂xi

∣∣∣∣
X=X(k)

, (1 ≤ i ≤ d). (5.15)
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Figure 5.2: At t0 an orthonormal set of vectors from the centre of the sphere evolves by stretching and
contracting along the axes of the developing ellipsoid. Att1 a new set of vectors generated such that
one of the new vectors is parallel to the previous stretching direction.

which is analogous to (5.9) for a continuous system.

The Lyapunov exponents are essential for investigating chaos, convergence and divergence dynam-

ics of any system, therefore a good numerical estimating technique is required. Two such algorithms

are described here.

The first algorithm is based on the description from[Baker and Gollub 1990; Parker and Chua

1992] and is best used when the full mathematical description of the dynamics is available. The ba-

sic idea of the of the calculation of the Lyapunov exponents is same as the definition shown above.

However, it is impractical to perform the actual calculation, because the initially close phase points

would soon diverge from each other by distances approaching the size of the chaotic attractor, and the

computation would then fail to capture the local contracting and diverging rates. Therefore, vectors

connecting the surface of the ellipsoid to the centre must be reduced in size periodically orrenor-

malised, to ensure that the size of the ellipsoid remains small and that the surface points correspond

to trajectories near that of the centre point. The renormalisation is shown in Figure 5.2 and can be

achieved by the linear algebra technique of Gram-Schmidt orthonormalisation. The Lyapunov expo-

nents are taken to be theaveragesof those obtained over many segments of the central trajectory.

There are three main inputs - the numerical integration3 time step,T , the maximum number of

iterations of numerical integration,kmax andx[], the current state of thenth-order system. The pseudo-

code of this algorithm is shown in Algorithm 5.2.

These are some important notes for using this algorithm:

• The single square brackets[] indicate a vector and the double[][] indicates a matrix. Also,[i][]
means theith row of the matrix and[][j] means thejth column of the matrix.

• u[][] is the orthonormalised perturbation matrix with initial value ofI, the identity matrix.

• 〈x, y〉 denotes the inner product of the vectorsx andy.

• φT (x[]) is the solution of the differential equations, i.e. the current state of the system.

• ΦT (x[]) is the solution of thevariational equationof a matrix-valued time-varying linear dif-

ferential equation. It is the linearisation of the vector field along the trajectoryφT , or in other

word, it is the Jacobian at the current point on the trajectory. This can be solved numerically at

the same time of solvingφT with initial valueΦ = I at t0.

3Here we use fourth order Runge-Kutta method as a reasonable compromise between computer speed and accuracy of
solution.
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Procedure: Lyapunov exponents( T , kmax, x[] )
{T size of time step for numerical integration.}
{kmax the maximum number of steps of numerical integration.}
{x[] is the current state of the system.}
u[][] = I {identity matrix}
for i = 1 to n do
µ[i] = 0
sum[i] = 0

end for
k = 0
repeat
k = k + 1
if k == kmax then

exit - no convergence
end if
{changes due to the local dynamicsΦT atx[]}
δx[][] = ΦT (x[])u[][]
{next numerical integrated state with time step T}
x[] = φT (x[])
for i = 1 to n do
v[][i] = δx[][i]
{renormalisation}
for j = 1 to (i− 1) do
v[][i] = v[][i]− 〈v[][i], u[][i]〉u[][j]

end for
u[][i] = v[][i]/|v[][i]|
{accumulate the average divergent/convergent rates}
sum[i] = sum[i] + ln |v[][i]|
µ[i] = sum[i]/kT

end for
until convergence
returnµ[] the Lyapunov exponents

Algorithm 5.2: An algorithm for estimating Lyapunov exponents.
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• A modified Gram-Schmidt orthonormalisation procedure is used here[Noble and Daniel 1979].

In practice, the choice ofT in this algorithm plays an important role in the success of finding the

Lyapunov exponents. Too small a value could result in excessive orthonormalisation and generally

lead to inaccuracy of the Lyapunov exponents. Too large a value could lead to numerical overflow

which happened quite easily in experiments.

In most cases for the experiments, neural systems are available but it would be difficult to obtain

the precise mathematical description to obtain the solution of the variational equations,ΦT or the Jaco-

bian describing the local flow, which is essential for calculating the local divergence and convergence

rates. Since the neural systems are available, close-by points are randomly generated near the point

of trajectory concerned and iterated, so that a least squares fit can be performed to estimate the local

Jacobian. Generally this worked very well but this brought in another problem of choosing the size of

local region for estimating the local flow.

The second technique is very similar to the one just discussed, but the spectrum of Lyapunov

exponents is estimated by calculation from the observed time series of a single scalar variable,x of the

system[Sano and Sawada 1985]. For the single variable case, one can reconstruct the dynamics by the

use of delay coordinates[Takens 1981], i.e.

xi = (x(iτ), . . . , x(iτ + (d− 1)tD)) (5.16)

wheretD is the delay time andd is the reconstructed dimension. However, as shown in a later experi-

ment, if it is available the time series of system states may also be used for better accuracy without the

‘hidden’ problem from delay coordinates. The procedure is shown in Algorithm 5.3.

In this method, since a time series of state vectors,xi (i = 1, 2, . . . ,M ) measured at discrete time

interval is available, we do not need to perform numerical integration as shown in the first method. The

local flow, the JacobianJ , at each statexj in the time series is estimated firstly by collecting points

{xki} from {xi} within a hypersphere centred at the pointxj with radiusε, i.e. forming the set

{yi} = {xki − xj | |xki − xj | ≤ ε} , (5.17)

whereyi is the displacement vector betweenxki andxj . | · | is the usual Euclidean norm.

The displacement vectorsyi = xki − xj is mapped to

{zi} = {xki+1 − xj+1 | |xki − xj | ≤ ε} . (5.18)

If the radiusε is small enough for the displacement vectorsyi andzi to be regarded as good approx-

imation of tangent vectors in the tangent space, then the evolution ofyi to zi can be represented by

some matrixMj , as

zi = Mjyi. (5.19)

In this case theMj which minimises the average of the squared error norm betweenzi andyi with

respect to all components of the matrixMj , that is

Mj
min

1
N

N∑
i=1

|zi −Mjyi|2, (5.20)

is the optimal estimation of the linearised flow map from the data setsyi andzi or the JacobianJ

at xj . Finding the solution of this problem is basically a standard least squares fit problem and an
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Lyapunov exponents(ts, T , ε,maxN )
{ ts list of time series of state vectors;T time step between each state vector.}
{ ε radius of the hypersphere for including local points to estimate local flow.}
{maxN maximum number of points to be included for estimating local flow.}
n = dimension of the vector ints; u[][] = I {identity matrix}
for i = 1 to n do
µ[i] = 0; sum[i] = 0

end for
for k = 1 to (length(ts) - 1) do
xk[] = kth vector ofts; xk+1[] = (k + 1)th vector ofts
A = {}; B = {} { empty lists}
for j = 1 to length(ts) do
xj [] = jth vector ofts
if ‖xk[]− xj []‖ < ε then
{ order of the vectors in the lists are important}
append displacement vector (xk[]− xj []) toA
xj+1[] = (j + 1)th vector ofts
append displacement vector (xk+1[]− xj+1[]) toB

end if
end for
{if not enough points for estimating local flow, skip to the next state vector}
if length(A) > n then

if length(A) > maxN then
A = list of the firstmaxN vectors fromA
B = list of the firstmaxN vectors fromB

end if
formA′[][] with eachjth columnA′[][j] = jth vector from listA
formB′[][] with eachjth columnB′[][j] = jth vector from listB
J [][] = B′[][] pseudoinverse(A′[][]) {least squares fit onA andB}
δx[][] = J [][]u[][]
for i = 1 to n do
v[][i] = δx[][i]
{ renormalisation}
for j = 1 to (i− 1) do
v[][i] = v[][i]− 〈v[][i], u[][i]〉u[][j]

end for
u[][i] = v[][i]/‖v[][i]‖
{ accumulate the average divergent/convergent rates}
sum[i] = sum[i] + ln〈v[][i]〉
µ[i] = sum[i]/kT

end for
end if

end for
returnµ[] the Lyapunov exponents

Algorithm 5.3: Lyapunov exponents for trajectories of a continuous systems estimate from a finite
time series.
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interesting way of solving this problem is shown in the next section. The remainder of this Lyapunov

exponents estimation technique is same as in the previous technique.

This second method is possible only if the time series represents the dynamics of a chaotic attractor

and thus has theergodicproperty which ensures there are enough nearby points which can be collected

for estimating local flow at each orbit point. The ergodic property relates the time average of a function

to its average over phase space. This relationship, which is fundamental in statistical mechanics, was

first conjectured by W. Gibbs prior to the invention of the Lebesgue integral. For Gibbs this was

singularly unfortunate since without the Lebesgue integral it is impossible to express the idea precisely.

Suppose that, except for a set of measure zero, the attractorS of a dynamical system is transformed

into itself by an elementT of a group of measure preserving transformationsT ,4 where without loss

of generality we may suppose the measureµm(S) = 1. Supposef is a measurable function and

sufficiently well behaved (e.g.f ∈ L1), then Birkoff proved that forT ∈ T

lim
N→∞

1
N

N∑
n=0

f(T n(x0)) =
∫
f(x)dµm(x), (5.21)

except for a set of values ofx0 of zero measure. IfT represents translations in time then this equation

asserts that for almost all initial conditions the time average off is equal to its measure-weighted phase

average. Anf with this property is calledergodicwith respect to the transformationT .

However, if sufficient samples of the time series are not available, or more generally such that

the rank of the matrixA formed from these column vectors is less than the dimension of the local

flow n, then a linear approximation to the local flow cannot be estimated; in which case the algorithm

just ignores the current point and moves to the next point. Providing this skipping of points does not

happen too often, this technique will still give very good estimation of the Lyapunov exponents. In

practice, one would like to avoid computing the rank ofA at each step. To this end we use the number

of samples of the time series as an approximate guide. If this number is greater thann we perform

the estimate and use the pseudoinverse (discussed in Section 3.4.3) rather than the inverse to cover

the eventuality that the matrix may be possibly be singular. Whilst not ideal, this comprise seems to

result in a faster algorithm without a significant loss of accuracy. Also, in Algorithm 5.3, there is an

upper limit,maxN of the number of local points used in estimating the Jacobian in order to reduce

the computation time. Results of using these techniques will be shown later in later experiments.

5.4 Neural networks as dynamical systems

The evolution of the state of a neural network can be considered from a rigorous mathematical point of

view as a dynamical system. Many dynamical behaviours, such as attracting or repelling fixed points

and limit cycles, can be observed in non-linear artificial neural networks[Babcock and Westervelt

1986; Hirsch 1989; Marcus and Westervelt 1989]. Chaotic dynamics have also been observed in many

artificial neural systems, either in continuous-time systems[Kürten and Clark 1986] or discrete-time

systems[Wang 1991]. In this section, some simple chaotic neural models are briefly described. There

are many chaotic biological and artificial neural models waiting to be discovered.

4We can think ofT as the translation group onR
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Figure 5.3: The rotation numberR against
ω/µ.

Figure 5.4: A bifurcation diagram of a VCON.

5.4.1 Chaos at the neuronal level

Science has long been modelling the biological neuron using mathematical descriptions. Here we

examine thevoltage-controlled oscillator neuronor VCON [Hoppensteadt 1989]. This model, in

contrast to all-or-none neuron models, generates voltage spikes that phase-lock to oscillatory stimu-

lation, similar to the phase-locking of action potentials to oscillatory voltage stimulation observed in

Hodgkin-Huxley preparations of squid axons[Hodgkin and Huxley 1952].

The VCON model of a single neuron (cell body potentialcosx with phasex) stimulated through a

synapse on the cell body (presynaptic potentialcos y with phasey) is

dx

dt
= ω + C cos+(x(t)) cos+(y(t)), (5.22)

where the constantC describes the polarity of the synapse (+ for excitatory,− for inhibitory) and its

strength|C|. V+ denotes the super-threshold part of a voltageV soV+ = V if V ≥ 0, but it is 0

otherwise. Thus,cos+ x describes action potentials generated by the VCON. Finally,ω is the mean

firing rate in the absence of interaction. Ify has fixed frequencyµ, then the model becomes

dx

dt
= ω + C cos+(x) cos+(µt). (5.23)

One interesting aspect of this simple model is that it is chaotic. To illustrate the chaotic nature,

we can look at the frequency encoding and processing which can be partly described in terms of the

output/input phase ratio

R = lim
t→∞

x(t)
y(t)

. (5.24)

We can calculatex(100π) and plotx(100π)/(100πµ) againstω/µ. The results appear in Fig-

ure 5.3 which is similar to thedevil’s staircasefor the circle map5. Each plateau in this plot indicates

an interval of phase locking. Irregular firing is observed for certain applied frequencies. We can de-

scribe these chaotic dynamics by using the bifurcation diagram6 shown in Figure 5.4 withω/µ as the

varying parameter value. Parameter values for which iterates are widely scattered are ones for which

there is a high periodic orbit or an ergodic solution. We can refer to these responses as being chaotic.

However, this chaotic aspect of a network of VCONs still has not been studied in detail or exploited

in a practical way.

5See any standard text book on dynamical system and chaos, e.g.[Ott 1993], for further information.
6An initial point x = ξ is selected and iterated 1000 times underP : x(0) = ξ → x(2π/µ) (mod 2π), Poincaŕe’s

mapping. Then the interval[0, 2π) is partitioned into 200 equal subintervals and a pixel is plotted if its support cell is hit during
the iteration. (Ignore the first 10 iterates to suppress transients.)
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5.4.2 Chaos at the network level

The dynamics of a collection of neurons can also shift from a orderly behaviour into chaos by a simple

system parameter change. A very small network consisting of only two neurons can possess a chaotic

attractor and a particular simple chaotic network has already been studied and proven to be chaotic by

Wang[Wang 1991]. The details of this are discussed in Section 6.1.1.

Another network model that was examined is the Tsuda net[Tsuda 1992]. This network provides

a model of dynamic link memory in terms of a self-organised chaotic transition in non-equilibrium

neural networks. The network itself consists of a symmetrically coupled network which is defined

in relation to a memory storage and an asymmetrically coupled network, which has no relation to a

memory but causes the overall system be in a non-equilibrium state. The memories are stored on the

transition states of the dynamics of the network. The chaotic transition blocks pin onfalsememories

and thereby allow a successive retrieval of true memory. This combination of symmetric and asym-

metric couplings give rise to a special kind of chaotic dynamics which allows neural networks to be

temporarily unstable, keepingstability due to convergent dynamics. Tsuda suggests that the cortical

chaos may serve for dynamically linking true memory as well as a memory search. The original paper

gives a thorough explanation of this special kind of network and its dynamics.

A simple feedforward neural network can, in fact, learn the behaviour of a chaotic attractor/chaotic

dynamics of a known chaotic system so that the network can behave chaotically[Welstead 1991].

That this can be done is due to the fact that multilayer feedforward neural networks areuniversal

approximators[Hornik et al.1989].

5.5 Controlling Chaos - Strategies

Chaos was historically considered unreliable, uncontrollable and unusable. For these reasons, engi-

neers typically avoided it. However, in recent years, scientists have demonstrated that chaos is man-

ageable, exploitable and many even consider it to be valuable[Ditto and Pencora 1993]. This progress

in using chaotic systems is principally due to a control technique developed in 1990 by Ott, Grebogi

and Yorke (OGY)[Ott et al.1990]. Since the original paper a number of variations of the OGY con-

trol method and other chaotic control techniques have been published. The details of applying the

OGY method are introduced to illustrate the basic idea of chaotic control. This chapter tries to give

a ‘snapshot’ of some of the ideas ofbringing order into chaosand therefore, a selection of methods

to control chaotic dynamics are introduced. There are still many techniques waiting to be discovered,

implemented and investigated.

The key idea behind most control methods takes advantage of the behaviour of the underlying

chaotic (or strange) attractors. A chaotic attractor can be viewed as a dense set of unstable periodic

orbits[Grebogiet al.1988] and the principle on which the OGY control method is based is to exploit

the already existing (unstable) periodic orbits. The word periodic here is used very loosely. We sayx

is a point on a(k, ε)-periodic orbit of a discrete systemF if |F (n+k)(x) − x| ≤ ε for all n ≥ N and

someε > 0, where| · | denotes the Euclidean norm. The periodic orbits of interest in this context do

not satisfy this definition because they are unstable, the periodic behaviour is displayed intermittently,

and we shall return to this discussion if and when a formal definition is required for our particular

purposes.

In general, the control strategies can be divided into two main groups - controlling viaparameter

perturbation, e.g. the OGY method, and controlling viasystem variable perturbationsuch as continu-
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ous delayed feedback control[Pyragas 1992].

The aim of any parameter perturbation control method such as the OGY method is to obtain de-

sired performance, i.e. a desired attracting time-periodic motion by making onlysmalltime-dependent

perturbations in anaccessiblesystem parameter. The typical approach is briefly described as follows:

• Determine some of the low-period unstable periodic orbits embedded in the chaotic attractor.

• Examine these orbits and choose one which yields desired system performance.

• Construct a rule for suitably small parameter perturbations which stabilises this already existing

unstable periodic orbit.

The variable perturbation control technique has an almost identical approach except a control signal

is added to the state variables of the system so that the system dynamics can be perturbed onto some

periodic orbits embedded in the chaotic attractor.

5.6 Controlling via system parameter perturbation

In this section, the OGY method is presented with a simple experiment to reinforce the idea of con-

trolling chaos via system parameter variation. Other direct variations of the OGY method are also

introduced. Some parameter variation control methods are also demonstrated.

5.6.1 The original OGY control law

Assume the dynamical equations describing the system are not known, but that an experimental time

series of some scalar dependent variablez(t) is available. We define anembeddingof the system using

time delay coordinates[Packardet al.1980] by

ξ(y) = (z(t), z(t+ τ), . . . , z(t+ (d− 1)τ)) (5.25)

and we can then get a surface of section or a Poincaré section. As a result a continuous-time-periodic

orbit appears as a discrete-time orbit cycling through a finite set of points.7

For i ≥ 1, let

δp = p− p0 and δξi+1(pi) = ξi+1(pi)− ξF (p0) (5.26)

whereξF is an unstable fixed point of the attractor. Suitable fixed points, which become candidate

targets for control, are extracted from experimental data using relatively simple numerical search tech-

niques (See[Otani and Jones 1997b]).

Suppose the iteration on this section is described by

ξi+1 = F (ξi, p) (5.27)

wherep ∈ (p0 − δpmax, p0 + δpmax) is a control parameter, with maximum perturbationδpmax, and

p0 is the control parameter nominal value for which the dynamics generates a chaotic attractor. In the

vicinity of the fixed pointξF , the behaviour ofF can be described by the first order approximation

δξi+1(pi) ≈ Jδξi(pi−1) + uδpi (5.28)

7Comment: Choosing the various parameters which enable a good reconstruction of the high-dimensional dynamics is a
non-trivial issue. Efficient techniques for accomplishing this are discussed in[Otani and Jones 1997b].
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Figure 5.5: Intervals for which the variables are defined.

whereJ is thed× d Jacobian matrix:

J =
[
D�F (ξp)

]
�=�F ,p=p0

(5.29)

andu is and-dimensional column vector

u =
∂F

∂pi
(ξF , p0). (5.30)

Thisu is also called thesensitivity vectorof the OGY method. SinceξF is embedded in a chaotic

attractor, the linearisationJ is composed of stable eigenvectorses and unstable eigenvectorseu with

their corresponding stable and unstable eigenvaluesλs andλu respectively, so that|λs| < 1 and

|λu| > 1. One estimatesJ , es, eu, λs, λu using linear regression based on observational data.

With this information about the local mapF , one can derive the OGY control law. However, we

first observe the following lemma which has been proved in[Otani and Jones 1997b].

Lemma 5.6.1. Suppose thed × d matrix J hasd linearly independent eigenvectorse1, . . . , ed with

real eigenvaluesλ1, . . . , λd. Thus we assume the eigenvectors form a basis inRd. Construct the dual

basisf1, . . . , fd defined by

ei · f j =

{
1 if i = j

0 if i 6= j
. (5.31)

Then for anyx ∈ Rd

fu · Jx = λufu · x. (5.32)

The control law seeks to ensure thatξi+1 falls on the local stable manifold of the fixed point, so

that on the next iterationξi+1 will move closer toξF (p0). This can be formulated as

fu · δξi+1 = 0 (5.33)

which together with (5.32),yields thecontrol formulafor the new value of the control parameterpi =
p0 + δpi,

δpi = −λu
fu · δξi(pi−1)

fu · u
. (5.34)

The version of this control law seems different from the one in the original paper[Ott et al.1990]

stated as follows:

δpi =
λu

λu − 1
fu · δξi(p)
fu · g

. (5.35)

This is because the sensitivity vectorg in the original OGY paper is defined in terms of the shift of

the fixed pointξF with respect to the change inp, whereas in Dressler and Nitsche version[Dressler
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Figure 5.6: Comparison of the sensitivity vectorsg andu.

and Nitsche 1992], u is defined as the shift inξi+1 with respect to the change inp, see Figure 5.6.

Whereasg is defined as

g =
[
∂ξF
∂p

]
p0

= lim
p→p0

ξF (p)− ξF (p0)
p− p0

. (5.36)

However, this difference is explained by the relationship

u = (I − J)g (5.37)

demonstrated in[Otani and Jones 1997b], whereI is thed × d identity matrix (see also Figure 5.6).

To illustrate this relationship, first consider that in the original OGY method, the Jacobian matrixJ is

defined to be the changes inξi relative to theshiftedfixed point, i.e.

ξi+1(p)− ξF (p) ≈ J (ξi(p)− ξF (p)) (5.38)

where from (5.36)

ξF ≈ ξF (p0) + (p− p0)g. (5.39)

Then from these last two equations we have in the OGY notation

ξi+1(p)− ξF (p0) ≈ J (ξi(p)− ξF (p0)) + (p− p0)(I − J)g. (5.40)

By direct comparison with (5.40) and the corresponding equation in the Dressler and Nitsche notation,

ξi+1(p)− ξF (p0) ≈ J (ξi(p)− ξF (p0)) + (p− p0)u (5.41)

(which are both first order identities inp) yields the relationship in (5.37).

In fact using (5.34) makes more sense: it is much easier to measureu from observations than to

measureg.

5.6.2 OGY with the use of delay coordinates

It has been shown by Dressler and Nitsche[Dressler and Nitsche 1992] that with the use of delay

coordinates from experimental data it can be beneficial to modify the original OGY method. They

argue that in the case of activated control (i.e. switching the parameter frompi−1 to pi at time ti)

the experimental surface of section mapF depends not only the new actual valuepi but also on the

preceding valuepi−1, i.e.

ξi+1 = F (ξi, pi−1, pi). (5.42)
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Figure 5.7: The combined effect ofJ in combination withδpi−1 andδpi.

Using the previous argument for the derivation of the original OGY control law, we can then replace

(5.26) by

δp = p− p0 and δξi+1(pi−1, pi) = ξi+1(pi−1, pi)− ξF (p0, p0). (5.43)

The linearisation which one has to consider now is given by

δξi+1(pi−1, pi) ≈ Jδξi(pi−2, pi−1) + vδpi−1 + uδpi (5.44)

where

v =
[
∂ξi+1

∂pi−1

]
(p0,p0)

and u =
[
∂ξi+1

∂pi

]
(p0,p0)

. (5.45)

The combined effect ofJ , v andu is shown in Figure 5.7.

With the consideration of the requirement for placingξi+2 onto a stable manifold, i.e.

fu · δξi+2 = 0 (5.46)

and the constraint to preventδp from becoming large, i.e.

δpi+1 = 0 (5.47)

and using the linearisation (5.44) we have the new first order control law

δpi =
−λ2

u

λufu · u+ fu · v
fu · δξi(pi−2, pi−1)− λufu · v

λufu · u+ fu · v
δpi−1. (5.48)

The proof of this can be found in[Otani and Jones 1997b].

5.6.3 Applying OGY and OGY-derived variation

The OGY method was first implemented for an experiment by[Ditto et al.1990]. The set-up requires

a magnetostrictive metallic ribbon, whose stiffness can be changed by applying a magnetic field. The

bottom end of the ribbon is clamped to a base; the top flops over to the left or right. When the ribbon is

exposed to a field whose strength is varied periodically at a rate around one cycle per second, the ribbon

buckles chaotically. A second magnetic field of small field strength served as the control parameter.

Following the original report, a sudden surge of analyses and experimental results were published

using the OGY method. The OGY method has been applied to control chaos in an electronic cir-

cuit [Hunt 1991], a chaotic multimode laser[Roy et al. 1992], and even biological systems - car-

diac arrhythmias in rabbit ventricle[Garfinkel et al. 1992] and rat brain[Moss 1994], etc. Varia-

tions of the OGY method have been used for synchronisation of chaos[Carroll and Pecora 1993;
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Figure 5.8: A chaotic attractor of the Hnon map
with a = 1.4 andb = 0.3.
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Figure 5.9: Chaotic signalx of the Hnon map
with a = 1.4 andb = 0.3.

Roy and Thornbur 1994; Lai and Grebogi 1994] which allow the exploitation of chaos in communica-

tion.

There are also many improvements to the original OGY method, including control of higher peri-

odic orbits[Hunt 1991; Auerbachet al.1992], control of Hamiltonian chaotic systems[Lai et al.1993],

use of the past values of the control parameter[Dressler and Nitsche 1992], creation of non-existing

periodic orbits[Hunt 1991] and tracking of unstable orbits[Schwartz and Triandaf 1994].

One noticeable problem with the OGY method is that a large amount of time may be wasted as

the control system waits for the dynamical system to approach the desired orbit in the chaotic attractor

[Ditto and Pencora 1993] in order to switch on the control. Shinbrot[Shinbrotet al. 1992] provided

a technique that rapidly moves the chaotic states to the desired orbit of an attractor from an arbitrary

initial state.

5.6.4 A simple experiment using OGY control

The OGY method has been being studied and investigated using simulation techniques in the software

MathematicaTM . It has been applied to a simple chaotic system, the Hénon map[Hénon 1976]. The

aim of our early experiments was to implement the OGY method and study how to stabilise the system

onto a ‘fixed’ point.

The two-dimensional H́enon map[Hénon 1976] was the main test bed for applying the OGY

method. The reason for using the Hénon map is that this map is discrete and simple and the theo-

retical details, such as the Jacobian, eigenvalues and eigenvectors, etc., can be easily calculated for

comparison with the experimental approximations. This dynamical system is defined as follows:{
xn+1 = a+ byn − x2

n

yn+1 = xn
(5.49)

wherea and b are non-zero constants. For different values ofa and b, this map can produce all

types of dynamic regular and irregular behaviours including different types of limit cycles and chaotic

attractors. With the valuesa = 1.4, b = 0.3, this map produces a chaotic attractor as shown in

Figure 5.8. By looking at the chaotic signalx of the H́enon map, shown in Figure 5.9, one can see that

this system is very chaotic.

Due to the fact that system is known and it is discrete, the phase portrait of this system may

be treated as the ‘return map’ and the OGY method can be applied directly. The parametera, e.g.

p0 = a = 1.4, was chosen as the control parameter. A fixed pointξF = (xF , yF ) at (0.883397,

0.876596) was located by looking at 20000 successive iterations of the system with radius distance of

0.01 and this point was then chosen as the control point.
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Figure 5.10: Controlled H́enon map with signalx stabilised onto the ‘fixed’ point under 50 time steps
and controlled parametera with values slightly less than 1.4, the initial parameter value.

The local dynamics of the control point were approximated by the estimated Jacobian matrix. This

was done by collecting 200 points within radius distance of 0.045 from the fixed point and their next

iteration and then performing standard least squares fit on these data to obtain the matrix:

J ≈
[
−1.772920 0.302421
1.007215 0.000780

]
(5.50)

which was very close approximation to the theoretical Jacobian matrix

J =

[
−2xF b

1 0

]
=

[
−1.766 0.3

1 0

]
(5.51)

obtained from (5.49). The theoretical unstable and stable eigenvectors areeu = (−0.887191, 0.461402)

andes = (−0.154156,−0.988046) respectively with corresponding theoretical unstable and stable

eigenvaluesλu = −1.92282, λs = 0.156021 respectively. From this approximate Jacobian matrix the

unstable and stable eigenvectors were found to beeu = (−0.886675,0.462394) andes = (−0.154695,

−0.987962) respectively. The approximate unstable and stable eigenvalues wereλu = −1.93063,

λs = 0.15849 respectively. Therefore, the approximate values were very close to the theoretical ones.

The sensitivity vector was estimated by starting the system sufficiently close to the fixed point and

then the control parameter,p, was changed fromp0 to some random value within the allowed range

1.25 ≤ p ≤ 1.55. The vector was then estimated to be the difference between the starting point and

the next data point. This is done several times and then an average was taken to obtain the sensitivity

vectoru = (0.926197, 0.152898)
The control result is shown in Figure 5.10. Other control parameters and fixed points were tested

with the same procedure just described, and the OGY method seems to be very successful in the

simulation. However, during this experiment several critical issues emerged:

• The sensitivity vector is the key value in the control, and it can be very hard to obtain a good

approximation.

• A poor approximation of the Jacobian matrix or the local linear map may not reflect the true

nature of the dynamics near the point to be stabilised. In some cases poor approximation will

incorrectly give us two stable or two unstable directions so that the OGY control method cannot

be applied.

• Sometimes the system takes quite a long time to fall within the control region around the selected

fixed point to be able to apply the control.
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More examples, experimental results and discussion on using the OGY method to control chaotic

neural systems are demonstrated in Chapter 6.

5.6.5 A brute force control law – Otani-Jones control

This Otani-Jones control, or OJ control for short, is based on an idea proposed in[Otani and Jones

1997b] and it has been successfully applied in many examples[Oliveira and Jones 1997; Oliveiraet al.

1997; Otani and Jones 1997a]. This technique is an attempt to overcome some of the possible problems

in the application of the OGY control method. This control method is based on the assumption that

an effective short term (fast) predicting functionξi+1 = P (ξi), whereξi is a state of ad-dimensional

iterative mapF : ξi → ξi+1 or a state on a Poincaré section of a continuous system, is available for

the system and is accurate over the large part of the state space. This does not cause any difficulty if

we were seeking to control an iterated feedforward neural network, e.g. Section 6.1.2 and Tsui’s[Tsui

and Jones 1997], where outputs are fed back to inputs, and which exhibits dynamical chaos. This is

because the neural network can be iterated once without applying control to give an exact prediction of

the next system state very rapidly. Therefore, the network is effectively its own Jacobian at every point

in the state space. As demonstrated in[Dracopoulos and Jones 1993; Welstead 1991] for a dynamical

system, a feedforward neural network trained on a single trajectory of the system can form an accurate

short term predictor capable of generalising to other trajectories of the system.

The immediate benefit of the OJ control is that it does not require the computation of eitherfu

or λu because a short term predictor functionP is available, although it is still necessary to perform

sensitivity analysis for the variations of the control parameters. The method first assumes there is

a short term predictor functionξi+1 = P (ξi) is available. Suppose that control parameter(s)p =
(p1, . . . , pn) are available, with nominal valuep0 = (p10, . . . , pn0) and that it is required to control

the system about a fixed pointξF . The situation can be described as follows,

δξn+1 = ξn+1(p)− ξF (p0) = P (ξn(p0))− ξF (p0) + δp1s1 + · · ·+ δplsl (5.52)

wheres1, . . . , sl are the sensitivity vectors with respect to each control parameter, i.e.

si =
(
∂F

∂pi

)
�=�F ,p=pi

(1 ≤ i ≤ l). (5.53)

As with the OGY control, we first estimates1, . . . , sl by collecting statistics from observations of the

system state nearξF under small parameter variations. SinceP is known, if sufficient observations

are available,s1, . . . , sl can be estimated via (5.52) using a least squares fit method, or equivalently a

fast pseudoinverse algorithm. We assume that the choice of control parameters is such thats1, . . . , sl

are linearly independent, since there would seem to be no advantage in having a linearly dependent set

of sensitivity vectors.

The essence of the OJ control law for any pointξn nearξF is to choosep = (p1, . . . , pl) so as to

minimise the squared Euclidean distance∣∣ξi+1(p)− ξF (p)
∣∣2 (5.54)

with the knowns1, . . . , sl, i.e. we choosep so as to minimise

|P (ξi(p0))− ξF (p0) + δp1s1 + · · ·+ δplsl|2 . (5.55)

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



5.7 Controlling via system variable perturbation 115

LetS be the matrix with column vectorss1, . . . , sl, then the solution of this minimisation problem

is given by

p− p0 = −S−1 [P (ξn(p0))− ξF (p0)] (5.56)

whereS−1 is the inverse of the matrixS if l = d and the pseudoinverse ofS otherwise. Ifp is outside

its maximum allowed range of perturbation, thenp = p0, i.e. without any perturbation applied to the

system, alternatively we could setp = pmax or pmin appropriately.

In fact, a similar technique has already been implemented by Reyl[Reylet al.1993] who calls this

the minimal expected deviation method. The OJ control method is basically a practical extension for

cases with more than one available control parameters. In contrast to the OGY method, the OJ control

method is brutally direct and seeks only to minimise the distance of the next iteration from the target

unstable fixed point. Therefore, we might expect that the control perturbation needs to be applied at

every step. The OJ control method has been successfully applied to synchronisation on chaotic systems

- the H́enon map[Oliveira and Jones 1997], and has been demonstrated to be relatively robust in noisy

systems. Experimental use of this technique is demonstrated in Chapters 6 and 7.

5.7 Controlling via system variable perturbation

The most typical technique for variable perturbation is to have some kind of feedback connection to

the ‘inputs’ as thedelayed feedback control[Pyragas 1992]. However, another technique - theGM

control - uses a fixed amount of perturbation[Mat́ıas and G̈uémez 1994]. In most cases, systematic

analysis such as local dynamics estimation, sensitivity analysis, etc. associated with parameter pertur-

bation techniques is not required. Here the two types of system variable perturbation techniques just

mentioned are described and some initial experiments will be reported.

5.7.1 Continuous delayed feedback control

Pyragas’ continuous-time control technique[Pyragas 1992] deals with a chaotic system which can be

represented by a set of ordinary differential equations

dy

dt
= P (y,x) + F (t),

dx

dt
= Q(y,x). (5.57)

Herey is the observed variable and the vectorx describes the remaining state variables of the dynamic

system which are not available. The control signalF (t) disturbs only the first equation, corresponding

to the observed variable. We suppose that without a control signal the system being considered has a

chaotic attractor.

The idea behind this method is to construct this perturbationF (t) in such a way that it vanishes,

or at least becomes very small, when the system moves along the desired unstable periodic orbit. One

approach suggested by Pyragas[Pyragas 1992] is to use

F (t) = −k [y(t)− y(t− τ)] = −kD(t), (5.58)

wherek > 0 (see Figure 5.11). Hereτ is a delay time andy(t − τ) is the delayed value of the

observed variable. Therefore the magnitude of the control signal is proportional to the difference

D(t) = y(t) − y(t − τ). If this time τ coincides with the period of the unstable periodic orbit

(i.e. τ = T ) then the control perturbation becomes small for the solution of the system (5.57), i.e.
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Figure 5.11: Delayed feedback control.

y(t) = y(t − T ). To ensure small values of the control perturbation at all times and to avoid multi-

stability of the same control as a consequence of a large control signal, the control signal can be

restricted in the following manner,

F (t) =


−F0, −kD(t) ≤ −F0

−kD(t), −F0 < −kD(t) < F0

F0, −kD(t) ≥ F0

(5.59)

whereF0 is a saturating value of the control.

Stabilisation of the system can be achieved by choosing an appropriate weightk so that a negative

feedback is achieved. Though Qu[Qu et al. 1993] argued that in some cases, a positive feedback

is needed. Therefore there are two variables,k andτ that can be adjusted in the experiment. The

delayτ is expected to be the period of the stabilised orbit from the controlled chaotic system if the

system eventually stabilises. Some experimental results can be found in[Pyragas 1993; Pyragas and

Tamǎsevǐcius 1993; Celka 1994; Cooper and Schöll 1995].

The following experiment demonstrates this control technique. The Rössler attractor[Rössler

1976] was chosen for this experiment, defined as

ẋ = −z − y

ẏ = x+ ay (5.60)

ż = b+ z(x− c)

wherea = 0.2, b = 0.2 andc = 5.7 in the experiment. Without control being applied, this system is

chaotic (see Figure 5.12).

A delayed feedback was applied toy with k = 0.2 andτ = 17.5 as in

ẋ = −z − y

ẏ = x+ ay − 0.2(y − y(t− 17.5)) (5.61)

ż = b+ z(x− c).

With the same starting conditions as in the unperturbed system, the system eventually stabilised into

an orbit as shown in Figure 5.13. Here no restriction on the size of the perturbation was used.

The immediate conclusion is that this method does work, but is not always successful. If it is

successful, the chaotic system can be stabilised very quickly. The drawback of this method is that

although the choice ofk andτ is important there are no specific guidelines for choosing these pa-

rameters. Moreover, unlike the OGY method which does have a systematic derivation, there is no

adequate theoretical explanation of the mechanism of this control method. Qu[Qu et al. 1993] tried
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Figure 5.12: Chaotic R̈ossler attractor witha =
b = 0.2 andc = 5.7.
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Figure 5.13: Stabilised orbit from the chaotic
Rössler attractor.

to demonstrate the technique numerically and analytically by applying such feedback to a two dimen-

sional artificial dynamical system model. They showed that the stability of the system is sensitive to

the choice ofk. The success of control depends on the choice ofk, which in turn depends on the

other system parameters. In fact, as shown in[Pyragas 1992], varyingk changes the size of the largest

Lyapunov exponent of the controlled system. By reducing this Lyapunov exponent below zero, the

system will then be stabilised.

In fact, by careful examination of the controlled examples we quickly discover that the progression

towards the fixed point, or unstable periodic orbit, is by no means monotone. At particular points of

the phase space the local eigenvalues of the Jacobian of the controlled system may have modulus much

larger than one, and so the system is often certainlynot stablein the classical sense. However, provided

k andτ are chosen suitably, indisputably the technique of delayed feedback does indeed work in the

many examples we have examined. Why is this so?

In fact it is not necessary for the effect of delayed feedback to be contractive towards the fixed

point, or unstable periodic orbit, atevery step. It is only necessary that the effect be contractive

on average. In [Oliveira and Jones 1998] this idea ofprobabilistic local stabilityis studied for an

example ofsynchronisationof both the iterative H́enon map and the chaotic Ikeda iterative neural

network introduced in Section 6.1.2. In the next section we give a similar empirical analysis for

delayed feedback control applied to the control ofcontinuousRössler system.

Analysis of stabilised R̈ossler attractor

Using suitable parameters ofk andτ for the delayed feedback on the right choice of system variable,

the R̈ossler attractor can be stabilised onto a periodic orbit. Consider the setup for controlling the

Rössler system

ẋ = −z − y

ẏ = x+ 0.2y + k(y(t− τ)− y(t)) (5.62)

ż = 0.2 + z(x− 5.7)

with k = 0.2 andτ = 5.9 and without restriction on the size of perturbation. The system stabilises

onto a periodic orbit with period length about 5.9, allowing for intrinsic error caused by numerical

integration, which is (as expected) equal to the valueτ .

We generate random initial starting points near the Rössler attractor , and numerically integrate the

controlled system using these points as the initial conditions. Next we examine the distance between

each trajectory at timet and the closest point on the periodic orbit, i.e. the minimum distance between
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a trajectory at timet and the periodic orbit, denoted asνt. Thereafter, we can define the ratio

ρt =
νt
ν0

(5.63)

whereν0 is the minimum distance from the periodic orbit to the initial starting state of the trajectory.

The quantityρt provides a measure of the system contraction towards the periodic orbit. We then plot

histograms of all theρt for different timest. The result is shown in Figure 5.14. As timet increases,

the probability thatρt is less than 1 becomes large. In fact it appears thatρt tends to zero in probability,

i.e.∀ε > 0

P [ρt < ε]→ 1 (5.64)

ast→∞. Thus in this case the controlled system is probabilistically locally stable, although it is also

clear from the histograms that the system is not stable in the classical sense.

Indeed careful examination shows that the control feedback signal does not necessarily remain at

0 once the system has been stabilised, it fluctuates in small quantity so as to keep the system stabilised

onto the unstable periodic orbit.
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Figure 5.14: Histograms ofρt for Rössler attractor att = 11.8 and 53.1.

A similar justification of delayed feedback control is also used later in Section 8.3. Note that in

order to have confidence in the minimum distance estimate of the current state from the target unsta-

ble periodic orbit the sampling of points on the orbit must be sufficiently fine-grained. For complex

target orbits it might be necessary to build a kd-tree for the sample points in order to facilitate rapid

calculation of the minimum distance.

5.7.2 Periodic perturbation control (GM)

This periodic perturbation control technique is proposed by Güémez and Matı́as[Güémez and Matı́as

1993; Mat́ıas and G̈uémez 1994; 1996]. The application of this technique (GM) is very simple and it

works by applying instantaneous periodic kicks to the system variables, that amount to changes that

are proportional to their current values, and that take the form

xi = xi (1 + γiδ(t− jτ)) , (5.65)

wherexi represents theith variable of the system at a given instant of time,γi regulates the intensity

of the perturbation applied to theith variable,δ is Dirac’sδ function, andj runs over natural numbers,

implying that the perturbations are applied at intervals that are uniformly spaced byτ . The proportional

perturbations can be applied to all or only to some of the system variables.
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Figure 5.15: Chaotic H́enon time series of vari-
abley.

Figure 5.16: Controlledy with the same start-
ing state.

As originally described the GM method is suitable for system with discrete variables. However, it

can be applied to a continuous system if a Poincaré section is used, as in the example of controlling

Rössler system described in[Mat́ıas and G̈uémez 1996] (More demonstrations can be found in the

same paper). The following is a simple experiment on using this method on the Hénon map as is

defined in (5.49).

In the experiment, the variabley was perturbed withγ = −0.7 and τ = 2. The controlled

result is shown in Figure 5.16. Figure 5.15 shows the system with the same initial conditions but

without control. The system can be seen to quickly stabilise into a 2-cycle,{(1.682359,−0.471538)

→ (−0.471538, 1.682359)}.
Similarly to the delayed feedback control, there are two parametersγ andτ associated with this

control law. The correct choice of these parameters governs the success of the application of control.

Again there does not seem to be any theoretical proof to explain the validity of the control technique.

From an engineering point of view, this is a very quick and simple control technique if correct choices

of the parameters are made. Further discussion of this can be found in later chapters after more exper-

iments.

5.8 Discussion

This chapter has introduced some of the basic ideas of dynamical systems and chaotic dynamics, and

of the control techniques used to bring chaotic motion into some type of orderly behaviour. Several

chaos control methods have been described. They each have their advantages and disadvantages but

are all capable of controlling low dimensional chaotic systems. However, further investigation and

experiments are needed to study their effect on high-dimensional chaotic systems, as most neural

systems are likely to be high dimensional.
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Chapter 6
Controlling chaotic neural networks

Chaotic dynamics within the biological system seems to aid neural information processing as observed

by Freeman (see Chapter 1). In order to take advantage of this idea in practical applications, it is

necessary to study how chaotic neural systems can be encouraged to follow particular unstable periodic

orbits. In this chapter, we demonstrate the feasibility of controlling a standard-model neuron, recurrent,

artificial neural network; whose dynamical behaviour displays chaos, by using the control methods

reviewed earlier.

6.1 Control with the OGY method

6.1.1 Controlling a simple chaotic neural network

The simple neural network that is used in this section for studying the OGY method applied to a chaotic

neural net consists of only two neurons. This network was first studied by Wang whoprovedthat there

exists period-doubling to chaos and chaotic attractors in the network using ahomeomorphism1from

the network to a known dynamical system having these properties[Wang 1991].

The architecture of this simple network is shown in Figure 6.1. It consists of only two neurons

with thresholds set to zero. The weight matrix is:

W =

[
a ka

b kb

]
(6.1)

for some non-zero numbersa, b, k ∈ R. The states of the two neurons are denoted asx andy re-

spectively, whose values range in the intervalI = [0, 1], and a state of the network is denoted as a

vector(x, y) in the state spaceI2. We consider that the neural network updates its state in discrete

time t = 0, 1, 2, . . . , according to the following dynamics:

(x(t+ 1), y(t+ 1)) = FT (x(t), y(t)) (6.2)

where

FT (x(t), y(t)) = (σT (ax+ kay), σT (bx+ kby)) (6.3)

1Two mapsF : X → X andG : Y → Y are said to betopologically conjugateif there exists ahomeomorphism(i.e., a
one-to-one and continuous map with a continuous inverse)H : X → Y such thatG = H ◦ F ◦H−1. The homeomorphism
H is called a topological conjugacy ofF andG. It is known that ifF andG are topologically conjugate, then they have the
same dynamical behaviour, i.e. the same orbit structure and stability[Devaney 1992].
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Figure 6.1: A simple network with outputs be-
ing fed back into inputs as a discrete dynamical
system.
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Figure 6.2: The attractor in networkFT with
parametersa = −5, b = −25, k = −1 and
T = 1/4.
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Figure 6.3: Bifurcation diagrams inx andy for the network with parametersa = −5, b = −25,
k = −1.

and

σT (z) =
1

1 + e−z/T
(6.4)

The neuron activation functionσT (z) is sigmoidal with a parameterT > 0.

With the parametersa = −5,b = −25, k = −1 andT = 1/4, this system possesses a chaotic

attractor shown in Figure 6.2. Theproof that this network is chaotic derived from the bifurcation

diagrams inx andy for the network in Figure 6.3.

Using the same OGY control mechanism as in the experiment on controlling the Hénon map (see

Chapter 5), this system was stabilised onto the fixed point (0.896853, 0.999980), usingT as the con-

trolling parameter with initial value ofT = 1/4. The local linear map near this fixed point was

approximated by the Jacobian matrix

J =

[
−1.96322 2.08867
−0.00755664 0.00893465

]
(6.5)

where the unstable and stable eigenvectors were found to beeu = (−0.999993,−0.00384731) andes
= (−0.728493,−0.685053) respectively. The unstable and stable eigenvalues wereλu = −1.95519,

λs = 0.000898838 respectively. The approximate sensitivity vector was found to be (0.0516806,

0.00197867). The control result is shown in Figure 6.4 and Figure 6.5.

During this experiment, it was very difficult to approximate the sensitivity vector to obtain the

desired control result. The difficulty was due to the unusualshapeof the chaotic attractor which is thin

and narrow. It might also be due to the fact that the stable eigenvalue of the local linear map was very

small. This problem is reflected in the fact that this Jacobian has very small determinant. Different

adjustments were made in order to achieve the control by:
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Figure 6.4: Changes of the control parameterT during the OGY control on the simple chaotic net-
work.
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Figure 6.5: The simple chaotic network is stabilised onto the fixed point in under 10 time steps.

• increasing the allowed range of the control parameter;

• including more points near the fixed point for approximating the Jacobian matrix;

• resizing the local region near the fixed point to get a better estimate of the local linear map.

This experiment illustrates some potential problems which may arise in applying the OGY control

method. This control technique is very sensitive to the quality of the required approximation.

6.1.2 Controlling a trained chaotic neural network

In the next experiment we trained a feedforward network on the Ikeda map[Hammelet al.1985] and

then by feeding the outputs back into the inputs empirically produced a neural network with chaotic

attractor[Welstead 1991; Dracopoulos and Jones 1993] as shown in Figure 6.6. The training was done

by the modified training software from Master’s2[Masters 1993].

The Ikeda map is defined by

g(z) = γ +Rz exp

[
i

(
κ− α

1 + |z|2

)]
(6.6)

wherez is a complexvariable, of the formx + iy, andi2 = −1. We can identifyx + iy with the

point (x, y) on the complex plane so thatg can also thought of as a mapping ofR2 → R2. The

dynamical system is then defined byzn+1 = g(zn). For parameter valuesα = 5.5, γ = 0.85, κ = 0.4
andR = 0.9, this mapping has a chaotic attractor illustrated in Figure 6.7. With only 4000 training

2The software uses the conjugate gradient method training algorithm (see Appendix D) which is very efficient. The dis-
advantage is that it requires to read all the training data into memory. This causes a problem in running the software under
MS-DOS(tm) when training with a large set of data. It was necessary to modify the software for running under an environment
without ‘memory restriction’.
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Figure 6.6: Feedforward network as a dynamical system.
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Figure 6.7: The Ikeda chaotic attractor, for pa-
rameter valuesα = 5.5, γ = 0.85, κ = 0.4 and
R = 0.9.

0.5 0.6 0.7 0.8 0.9
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

Figure 6.8: Attractor for chaotic network with
architecture 2-10-10-2 (with inputs and outputs
rescaled to [0,1]).

pairs (re-scaled into the range [0,1]) and training MSE error of about9.9× 10−5, the network already

produces an attractor shown in Figure 6.8 with features similar to the original Ikeda map chaotic

attractor.

Using the first Lyapunov exponent estimation algorithm with 10000 iterations the Lyapunov expo-

nents of this neural system are estimated to be{0.368973, -0.769616}. For comparison, the second

algorithm was performed on a time series of 10000 data points from this network and the estimated

Lyapunov exponents were{0.367997, -0.660926}. Both techniques give a positive Lyapunov exponent

and a negative Lyapunov exponent which indicates that this network dynamics is definitely chaotic.

We use this network as the basis for the initial control experiments, the objective being to determine

which parameters or system variables are most effective in stabilising the system onto an unstable

periodic attractor.

The OGY control method was applied to control the chaotic neural network described above. An

unstable fixed pointξF = (0.626870, 0.553256) was located by examining successive iterations of the

system and was used as the unstable periodic point to be stabilised. The Jacobian at this point was

J =

[
−1.26617 −1.03629
−0.564996 −1.06779

]
(6.7)

with eigenvaluesλs = −0.395399 and λu = −1.93857, and stable eigenvectores = (0.7656,

−0.643317) and unstable eigenvectoreu = (−0.838887,−0.544306).
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Figure 6.9: Bifurcation diagram for outputx
obtained by varying parameterT simultane-
ously in all nodes.
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Figure 6.10: Bifurcation diagram for outputy
obtained by varying parameterT simultane-
ously in all nodes.
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Figure 6.11: Bifurcation diagramx obtained by
varyingT in the output layer only.
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Figure 6.12: Bifurcation diagramy obtained by
varyingT in the output layer only.

UsingT as a control parameter

The first attempt usedT (i.e. effectively the slope of the sigmoidal in (6.4)) as a control parameter

with T = 1 being the nominal value, as this was the value used in training. In these initial experi-

mentsT was varied in all nodes of the network simultaneously. These attempts to effect control were

unsuccessful.

By examining the bifurcation diagrams Figure 6.9 and Figure 6.10 we conclude that the possible

explanation is that the chaotic region aroundT = 1 is small. Slight changes ofT will result in changes

in dynamics from chaos to stability. Therefore the system looses the original ‘not-perturbed’ dynamics

rapidly due to high sensitivity to this parameter change (i.e. even small variations ofT change the

nature of the attractor).

The next attempts were made by varyingT of nodes in a particular layer of the network and here

the OGY control method worked better. It seems that by varyingT in only one particular layer the

chaotic regions of the bifurcation diagrams become broader (see Figure 6.11 and Figure 6.12) and so

control becomes easier with small variations ofT . The variations ofT and the controlled result are

illustrated in Figure 6.13.

Using variation of the inputs

The results of using an external signal feeding into one of the inputs as a control parameter, whose

nominal value is set to zero, were significantly more interesting. The bifurcation diagrams forx(t)
are given in Figure 6.14 and Figure 6.15. We use the same fixed point as before, so the Jacobian and

associated eigenvectors and eigenvalues remain unchanged.
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Figure 6.13: Control results of usingT in the output layer as the control parameter.
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Figure 6.14: Bifurcation diagram for the output
x(t+ 1) using an external variable added to the
inputx(t).
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Figure 6.15: Bifurcation diagram for the output
y(t+ 1) using an external variable added to the
inputx(t).

Using an external signal feeding into inputx (as shown in Figure 6.6), the sensitivity vectorux =
(−1.076260, −0.675875) was approximated. After applying the OGY control for less than 25 time

steps the system rapidly stabilised onto the unstable fixed point as illustrated in Figure 6.16.

The bifurcation diagrams for the outputsx(t + 1) andy(t + 1) using an external variable with

nominal value zero added to the inputy(t) are given in Figure 6.17 and Figure 6.18. Similarly, an

external signal feeding into inputy (c.f. Figure 6.6) was used as the control parameter with sensitivity

vectoruy = (−1.204806,−1.062638). The controlled result is shown in Figure 6.19.

In these experiments, an improved technique due to[Otani and Jones 1997b] was actually used

to estimate the sensitivity vectorsu. The Jacobian is used to obtain a prediction of where the system

would be at the next iteration if no control were applied. However, in the case of a neural network

this is unnecessary sincethe neural network is effectively its own Jacobian at every point. We can

therefore obtain an exact prediction of the next system state by simply iterating the network without

control. This resulted in much more accurate estimations of the sensitivity vectors, which itself made

control of the system using the OGY method much easier.

6.1.3 Experiment summary

The OGY method can be applied to the control of conventional feedforward networks whose behaviour

under iterated feedback has been trained to be chaotic. Whilst the method is computationally expensive
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Figure 6.16: Controlled results of the network using external signal perturbation to inputx.
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Figure 6.17: Bifurcation diagram for the output
x(t+ 1) using an external variable added to the
inputy(t).
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Figure 6.18: Bifurcation diagram for the output
y(t+ 1) using an external variable added to the
inputy(t).
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Figure 6.19: Controlled results of the network using external signal perturbation to inputy.

and, in its original form subject to a number of limitations (for example inaccuracies in estimating the

Jacobian or sensitivity vectors can make control difficult if not impossible), nevertheless we see that

stabilisation of unstable fixed points is perfectly feasible. However, this relaxation onto a fixed point is

achieved by a control external to the network itself rather than as an implicit consequence of network

function.

It is interesting to observe that control by variation of a global slope parameter is not easy to

achieve, but becomes easier when the control variations are applied to a single layer rather than to the

whole network. It is notable that control becomes very much easier when the controlling parameter

is a small signal applied to one of the inputs. This may be closer to being a biological analogy than

control of behaviour through global or selective slope control.

Quite how easy it would be to extend such control to networks with many outputs being fed back

to many inputs remains to be determined. It also remains to be determined whether it is practical to

control high dimensional networks to follow unstable periodic orbits rather than fixed points. It is

likely that more sophisticated variations of the OGY technique or some completely different control

method would be required to accomplish this goal.

6.2 Otani-Jones control on a trained chaotic neural network

Similarly, we also tried the OJ method on the trained chaotic neural network described in the last

section. The unstable fixed point (0.630579, 0.551984) was found for this experiment. First we tried

usingT of all the nodes in any particular layer of the network, but this was not successful. Instead

we chose to use external signal perturbation to the two inputsx andy as in the earlier experiment.

We estimated the sensitivity vectorsux =(-1.37770, -0.602572) anduy =(-1.08691, -1.06530), again

for the external signal tox and external signal toy respectively. The predictor used in this case is the

feedforward network itself because the neural network can be iterated without control to give an exact

prediction of the next system state very rapidly.
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Figure 6.20: OJ controlledx andy of the chaotic neural network.
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Figure 6.21: Control signals tox andy during the OJ control on the chaotic neural network.

The results of applying the OJ control are shown in Figure 6.20. The system was stabilised very

rapidly by the control in less than 20 time steps. The external perturbation control signals tox andy

are shown in Figure 6.21 and the perturbations were very small and were applied continuously during

the control.

Certainly, this method seems to be very effective. However, the problems of this control method

are

• unstable fixed points/orbits have to be located before applying the control;

• a predictor is required and

• it still requires sensitivity analysis on parameter changes.

Therefore, it does not seem to be biological plausible and it is very unlikely to be the control method

required for constructing a chaotic neural memory system.

6.3 Proportional delayed feedback control on a chaotic neural

network

The original delayed feedback control is a continuous control method for controlling continuous

chaotic systems (see Section 5.7.1). However, we applied the same idea but modified the method

to control the chaotic discrete neural network which was trained on the Ikeda map described in the last

section.

We applied a delayed perturbation to the inputy of the form

F (t) = −kD(t) = −k(y(t)− y(t− τ)) (6.8)
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Figure 6.22: Controlled results of the chaotic neural net using the delayed feedback technique. The
control signal was switched on att = 50.
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Figure 6.23: Perturbation signal during control.
(Signal does not go to zero, as shown in zoomed
view.)

which is added to the inputy when the control was switched on, wherek = 0.687263 andτ = 5. These

parameters were chosen by trial and error. There was no restriction on the size of the perturbation

during the control. Note thaty here is updated discretely. The initial state of this system was chosen

atx = 0.329222 andy = 0.996373. The controlled results are shown in Figure 6.22.

After the control was switched on att = 50, the system immediately started converging to a near-

periodic-four cycle at{(0.631890, 0.294159)→ (0.587467, 0.647057)→ (0.621878, 0.436043)→
(0.746626, 0.620744)}. This method required a very small perturbation signal as shown in Figure 6.23.

Closer examination of the graph reveals that a small perturbation was continuously applied to the

system to maintain this near periodic behaviour. This technique was tried for various different initial

condition and different values ofk andτ . In most cases, the system stabilised onto thesameor different

periodic orbits. It occasionally seemed to be the case that the initial starting point determined the basin

of attraction.

However, choosingk and τ is a random process and therefore it is still ablack boxtechnique.

Nevertheless, this method does not require any estimation and pre-calculations, as with the OGY

method. The idea of this control method is also biologically sound: having a feedback in a neural

system in order to stabilise the system dynamics. Babloyantz’s group[Sepulchre and Babloyantz 1993;

Lourenço and Babloyantz 1994; Babloyantzet al. 1995] have succeeded in controlling a network of

oscillator neurons using this technique. This method might form the basic ingredient for constructing

a chaotic memory system as also proposed by Hoff[Hoff 1994]. By having many delay lines within a

neural network external stimulation can be fed into the system as the variation of signals of the values

k andτ .
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Figure 6.24: Applying GM perturbation to nodei only
of a fully connected network ofm neurons.

6.4 Periodic perturbation control method on discrete neural net-

works

Here we also tried using the periodic perturbation control[Güémez and Matı́as 1993] (or GM for short)

on discrete neural networks as in[Soĺe and de la Prida 1995]. The details of this method can be found

in Section 5.7.2. In this experiment, we used anm-neuron fully connected network defined as

xi(n+ 1) = σT

 m∑
j=1

wijxj(n)

 , (6.9)

with i = 1, . . . ,m, which is basically am-dimensional mapXn+1 = FT (Xn), whereX ∈ Rm.

HereσT (z) is as defined in (6.4). (wij) is the connectivity matrix. With suitable connectivity, this

system can generate deterministic chaos[Wang 1991].

In the experiment, we applied the GM method on a single neuron of them-network (see Fig-

ure 6.24), therefore we have the system

xi(n+ 1) =σT

 m∑
j=1

wijxj(n)

 (1 + γδ(n− pτ)) , (6.10)

xk(n+ 1) =σT

 m∑
j=1

wkjxj(n)

 , (1 ≤ k ≤ m, k 6= i), (6.11)

as described in (5.65) andp is any natural number. A fixed perturbationγ is applied at intervals that

are uniformly spaced byτ .

First we tried the control on the systemm = 3 with T = 1/4 and the connectivity matrix[Wang

1991]

(wij) =

 −5 5 −2
−25 25 −2
−2 2 −2

 . (6.12)

The chaotic attractor of this system is shown in Figure 6.25.

Settingτ = 4 andγ = −0.1, the neural system quickly stabilised into a period-4 orbit{(0.449371,

0.499302, 0.499301)→ (0.0476165, 0.7308, 0.0267278)→ (0.999999, 1, 0.994788)→ (0.000349632,

0.000349673, 0.000349626)}, as shown in Figure 6.26. It is very interesting that by applying a fixed

amount of periodic perturbation to one of the nodes the whole system stabilises.

Similarly we performed the same experiment on a system withm = 4, T = 1/4 and the connec-
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Figure 6.25: Chaotic attractor for the neural

network withm = 3.
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Figure 6.26: Controlled result of node 3 of the
neural system. Control switched on att = 101
and switched off att = 300.
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Figure 6.27: A projection of the chaotic attrac-

tor for the system withm = 4.
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Figure 6.28: Signal from node 3 of the system
withm = 4 with control switched on att = 101
and switched off att = 300.

tivity matrix

(wij) =


−5 5 −2 0.1
−25 25 −2 0.1
−25 25 −2 0.1
−0.1 0.1 0.1 0.1

 . (6.13)

A projection of this 4-dimensional chaotic attractor is shown in Figure 6.27. With the valuesτ = 2
andγ = −0.7 for the control, this chaotic system stabilised onto a period-6 orbit,{(0.000135249,

0.000451377, 0.000451377, 0.667242)→ (0.566997, 0.573195, 0.573195, 0.566406)→ (0.0042818,

0.0232216, 0.0232216, 0.612616)→ (0.607799, 0.875801, 0.875801, 0.565106)→ (0.0583833, 1, 1,

0.664534)→ (0.999985, 1, 1, 0.739324)} shown in Figure 6.28, similar to the results from[Soĺe and

de la Prida 1995].

This method is similar to the delayed feedback control. It suffers from a similar drawback that the

choice of the critical valuesτ andγ is important and there are no specific guidelines to choose these

values. There is also no formal theoretical explanation to support the success of this control technique.
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6.5 Discussion

Many control methods have been tried on some neural networks exhibiting chaotic dynamics. It has

been shown that stabilisation of unstable fixed points is perfectly feasible. However, this relaxation

onto a fixed point, with methods such as the OGY and the OJ techniques, is achieved by a control

external to the network itself rather than as an implicit consequence of network function. Also it seems

to be that the choice of the control parameter in such control techniques plays an important role in

successfully controlling chaotic neural networks. The experiments suggest that a small external signal

applying to the system inputs can control such a neural system fairly easily. This is also supported

by the GM control method and the delayed feedback control, which can successfully control a chaotic

neural system by employing perturbations to the system variables.

In fact, delayed feedback control can easily be imagined in a real biological neural network for

controlling its chaotic dynamics. Having feedbacks in neural systems is already known to enrich the

neural dynamics, by increasing the range of achievable periods in a network of oscillators as observed

by Baldi and Atiya[Baldi and Atiya 1994]. However, Baldi and Atiya did not consider chaotic dynam-

ics in their neural models. Therefore delayed feedback control might well be the only technique for

realising a chaotic neural memory system with the behaviour observed by Freeman[Freeman 1991].

However, further understanding of this control technique is required.
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Chapter 7
Higher Dimensional Chaos Control

There is now an extensive literature demonstrating experiments on controlling low (usually 2 or 3)

dimensional chaotic physical systems using the original chaos control techniques, such as the OGY

method or similar variants. Most of these control methods, as introduced in the last chapter, are de-

signed for (or restricted to) low dimensional chaotic systems. We are interested in applying chaos

control techniques to higher dimensional chaotic systems. Using simulations, we apply several higher

dimensional chaos control techniques in an attempt to extract much moreregular motionfrom a tum-

bling satellite. The chaotic behaviour of the satellite in our experiments uses linear feedback of the

angular velocities based on the original suggestion in[Leipnik and Newton 1981]. However, if only

this type of perturbation is used the attitude angles are essentially decoupled from the other equations.

To ensure that the system really does illustrate higher dimensional chaos we have introduced additional

non-linear perturbation terms dependent on the attitude angles.

First, a continuous delayed feedback control, is applied to the same chaotic satellite. Then we

implement the OJ control technique as introduced earlier. Finally, we experiment with the higher

dimensional control technique proposed in[Ding et al.1996], which we shall refer to as the DYIDSG

method. This method assumes that there is only a times series of a single scalar variable available,

and the control strategy is similar to the original OGY method but extended for higher dimensional

chaotic systems. We present experimental results on the chaotic attitude control problem and compare

the difficulties and merits of each of these techniques.

The OJ method and the DYIDSG higher dimensional OGY method are both formulated for dis-

cretely updated systems. For the OJ method there are two possibilities: one can work with the full state

description at discrete steps or one can work with a single scalar variable and perform a reconstruction

of the dynamics using an embedding. The DYIDSG method, on the other hand, bases the control on

the assumption that only a single time series variable is available.

In addition both these methods of control require specification of an unstable fixed point which

will act as the target of the control method. In order to locate an unstable fixed point one first needs to

select a suitable jump time. However, for the purpose of comparison of these techniques, we should

try to apply the techniques to control onto thesamestabilised behaviour.

For illustrative purposes we apply the OJ method using the first option, i.e. a discretely updated vec-

tor which consists of the full state description, and the DYIDSG method using a suitably constructed

embedding vector.

First we apply the continuous feedback control to achieve a periodic motion. If the feedback control

signal vanishes on the stabilised orbit then this stabilised periodic motion is known to be an embedded
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unstable orbit of the original chaotic attractor[Pyragas 1993; Pyragas and Tamaševǐcius 1993] and we

shall ensure that this is indeed the case. Having thus located an unstable orbit of the original system

(which in practice by other techniques is not actually that easy) we shall then use the same orbit again

in the other two control experiments, in order to compare the results. Based on this stabilised orbit, we

can construct the corresponding fixed point in some form of discrete motion for the OJ method using

a full state description, and also in an embedding of a single variable for the DYSDSG control. In this

way we ensure that the same periodic motion is being controlled by all three control methods.

There are a number of available techniques for obtaining fixed points and their associated jump

times, which we can broadly classify into two types. First, if the equations which govern the dynam-

ics are known we can employ iterative approximation methods using the equations[Sparrow 1982;

Sepulchre and Babloyantz 1993]. Alternatively we may not know the equations and therefore have

to examine time series information and possibly construct an embedding. Given that the jump time

and/or delay time have been determined from the time series the method described in[Schmelcher

and Diakonos 1997] could be used to determine one or more fixed points. In fact in the case of the

chaotic satellite we know the equations and can easily determine an approximate unstable fixed point

by iterative refinement. However, the technique described in[Schmelcher and Diakonos 1997] is of

particular interest because it would appear to be closely related to the control method based on delayed

feedback[Pyragas 1992], and we shall discuss this relationship at the end of the experiments.

7.1 Satellite with chaotic dynamics

The dynamical system we seek to control is the rotation of a rigid body with external perturbing forces

chosen so that the resulting system exhibits chaotic behaviour. A similar stylised version of a real

satellite attitude control problem subjected to chaotic perturbation has been studied using a variety of

adaptive control techniques, see for example[Dracopoulos and Jones 1997; Končar and Jones 1995].

We first briefly outline the dynamical equations which describe the system.

We imagine a satellite controlled by three pairs of thrusters on the mutually orthogonal principal

axes. This system is described by the Euler equations with additional terms to account for the effects

of the control torques, and we follow the notation of[Crouch 1984]. The system consists ofkinematic

equations relating the attitude angles with the angular velocities, anddynamicequations describing the

evolution of the angular velocities[Crouch 1984; Meyer 1966].

The orientation of the satellite at a given point can be locally described in terms of three anglesφ,

θ andψ, which are successive clockwise rotations about inertial axesI, J andK respectively. The

corresponding rotation matrices are

Mx(φ) =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 , My(θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , (7.1)

Mz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .

respectively. These successive rotations transform the inertially fixed set of orthonormal axesI, J

andK (regarded as initially instantaneously coincident with the body axes) into the axesi, j andk

fixed in the body. The angular position (the combined effect of the three rotation matrices (7.1)) can
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be described by a single orthogonal rotation matrix

A = MzMyMx

(
AAT = I

)
(7.2)

and for some purposes it is more convenient to work with this global representation. The evolution of

A may be expressed as

Ȧ = S(ω)A (7.3)

whereω = (ωx, ωy, ωz) are the angular velocities of the satellite andS(ω) is the matrix defined by

S(ω) =

 0 ωz −ωy
−ωz 0 ωx

ωy −ωx 0

 . (7.4)

Equation (7.3) is thekinematicequation of the satellite. Alternatively this can be represented
[Crouch 1984] as ωx

ωy
ωz

 =

 φ̇
0
0

+

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 0
θ̇
0


+

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 0
0
ψ̇

 (7.5)

and on collecting terms and inverting we get the following form φ̇

θ̇

ψ̇

 =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


 ωx

ωy

ωz

 (7.6)

which, provided one uses an adaptive integration algorithm that can deal with isolated singularities, is

in some respects a more suitable form for solving by numerical integration, and this is the approach

adopted here. In general, numerical integration algorithms, such as Runge-Kutta, applied directly to

chaotic systems often lead to significant cumulative errors. Recent studies of conservation algorithms

for the dynamics of Hamiltonian systems on Lie groups using the technique commonly calledsympletic

integration [De Vogelaere 1956] could be applied to the problem of an accurate integration of (7.3)

subject to the constraintAAT = I. The basic idea of sympletic integration algorithms is to design

into the procedure the constraints on the system which one knows in advance must apply, e.g. energy-

momentum conservation. If this is done carefully the resulting procedure will be much more accurate

than a conventional numerical integrator, see for example[Lewis and Simo 1994].

Thedynamicalequations are

Ixω̇x = (Iy − Iz)ωyωz +Gx +Hx

Iyω̇y = (Iz − Ix)ωzωx +Gy +Hy (7.7)

Izω̇z = (Ix − Iy)ωxωy +Gz +Hz

whereIx, Iy andIz are the principal moments of inertia with respect to body axes;Gx, Gy andGz
are the three control torques produced by the thrusters; andHx,Hy andHz are the perturbing torques

which can be chosen so as to force the uncontrolled satellite into chaotic motion.
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Figure 7.1: Chaotic attractor: phase portrait of
the angular velocities.

Figure 7.2: Chaotic attractor: phase portrait of
the attitude angles.
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Figure 7.3: Chaotic attractor: angular velocities
ωy againstωx.

Figure 7.4: Chaotic attractor: angular velocities
ωz againstωy

Earlier papers[Dracopoulos and Jones 1997; Končar and Jones 1995] have takenIx = 3, Iy = 2
andIz = 1 with the perturbing torques defined by Hx

Hy

Hz

 =

 −1.2 0
√

6
2

0 0.35 0
−
√

6 0 −0.4


 ωx

ωy

ωz

 (7.8)

(a linear feedback matrix with suitable elements). These torques are chosen to be sufficiently large

to induce chaotic motion and are comparable in magnitude with the available thruster torques. The

dynamics of the satellite will then exhibit chaotic motion[Leipnik and Newton 1981].

However, by examining the dynamical equations in (7.7) and (7.8) one can see that these only

involve the angular velocities. Therefore these equations can be integrated without reference to the

attitude angles. To achieve a truly higher dimensional problem, and thereby obtain a more challenging

control problem, we introduce extra terms involving the attitude anglesφ, θ andψ into the perturbation: Hx

Hy

Hz

 =

 −1.2 0
√

6
2

0 0.35 0
−
√

6 0 −0.4


 ωx

ωy

ωz

+

 cos θ sinψ
cosφ sin θ
cosψ sinφ

 . (7.9)

The chaotic attractor of the system defined by (7.7) and (7.9) is shown in Figure 7.1 and Figure 7.2,

which show the phase portrait of the angular velocities for time duration oft = 500, and the phase

portrait of the attitude angles (modulus2π) for time duration oft = 200, respectively. Figure 7.3

and Figure 7.4 show the cross sections of the attractor in Figure 7.1. We estimate the Lyapunov
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exponents using the technique described in[Parker and Chua 1992 p.80], with initial conditions of

ωx = 2, ωy = 4.1, ωz = 3, φ = θ = ψ = 0 and 50,000 integration time steps of size 0.01. In this

way the Lyapunov exponents for the systemξ = (ωx, ωy, ωz, φ, θ, ψ) are estimated to be{0.3629,

0.1313, 0.0174,−0.0077,−0.0721,−0.7509} to 4 decimal places. Having both positive and negative

Lyapunov exponents indicates that the dynamical system is indeed chaotic.

7.2 Continuous delayed feedback control

The continuous delayed feedback control technique described in[Pyragas 1992] and also in Sec-

tion 5.7.1 was tested on this satellite dynamical system. We chose the angular velocityωz as the

feedback control variable and no restriction was applied to the magnitude of the control variable, i.e.

F0 = ∞, although the range of the resulting control torques was relatively small (see Figure 7.14).

Under this control regime the dynamic equations (7.7) become

ω̇x =
(Iy − Iz)ωyωz

Ix
+
Hx

Ix
+
Gx
Ix

ω̇y =
(Iz − Ix)ωzωx

Iy
+
Hy

Iy
+
Gy
Iy

(7.10)

ω̇z =
(Ix − Iy)ωxωy

Iz
+
Hz

Iz
+
Gz
Iz
− k (ωz − ωz(t− τ))

whereHx, Hy andHz are as defined in (7.8) andτ is a delay time. Since nominallyGx = Gy =
Gz = 0, we can translate these delayed feedback perturbation equations into

ω̇x =
(Iy − Iz)ωyωz

Ix
+
Hx

Ix

ω̇y =
(Iz − Ix)ωzωx

Iy
+
Hy

Iy
(7.11)

ω̇z =
(Ix − Iy)ωxωy

Iz
+
Hz

Iz
− k (ωz − ωz(t− τ)) .

Hence the thrusterGz control is defined to be

Gz = −Izk (ωz − ωz(t− τ)) . (7.12)

In the experiment the control parameters are set tok = 0.5 and delayτ = 2.12, which leads to

the unstable periodic motion described in Figure 7.5 and Figure 7.6. In fact, many other values of

k andτ could also achieve periodic, or nearly periodic, motions. However finding such parameter

combinations is mainly a trial and error exercise. At present this is the principal weakness of this

control method. We would stress that the delayτ chosen in the control does not necessarily always

give a stabilised periodic orbit with time periodτ (as suggested in the original paper[Pyragas 1992])

because sometimes the stabilised period can be a multiple ofτ .

The results are shown in Figure 7.5 – Figure 7.15. Figure 7.7 shows the position of the controlled

orbit in relation to the chaotic attractor in the (ωy, ωx) state space. In this case, the stabilised motion is

≈ 2.12 second, i.e. close to the original set-up value ofτ = 2.12. As we shall see, in comparison with

the OJ and DYIDSG experiments these results are very impressive:

• The only information regarding the state of the system used in the control calculation is the

angular velocityωz (i.e. five of the six possible state variables are ignored).
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Figure 7.5: Phase portrait of angular velocities
of delayed feedback controlled motion.

Figure 7.6: Phase portrait of attitude angles
(modulo 2π) of delayed feedback controlled
motion.
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Figure 7.7: The desired periodic orbit in relationship with the chaotic attractor on the (ωy, ωx) state
space.
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Figure 7.8: Angular velocityωx (delayed feed-
back control).

Figure 7.9: Angular velocityωy (delayed feed-
back control).
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Figure 7.10: Angular velocity ωz (delayed
feedback control).

Figure 7.11: Stabilised attitude angleφ (de-
layed feedback control).
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Figure 7.12: Stabilised attitude angleθ (de-
layed feedback control).

Figure 7.13: Stabilised attitude angleψ (de-
layed feedback control).
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Figure 7.14: Change of control torqueGz. Figure 7.15: Control torqueGz when satellite
is stabilised betweent = 800 and 1200.

• Control is easily achieved using only one of the three thrusters.

• In contrast to the OJ and DYIDSG experiments no prior calculation and very little real-time

calculation is required.

• The system is easily stabilised into a periodic motion for which the control thruster adjustments

are very small, i.e. the energy cost of maintaining this behaviour is small as observed in Fig-

ure 7.14 – 7.15.

7.3 Direct Otani-Jones control

TheOtani-Jonescontrol method (OJ control)[Otani and Jones 1997a] appears to be a feasible control

technique for controlling high-dimensional chaotic systems and in this section we present some results

of applying the OJ method to the chaotic satellite system.

All six state variables, the angular velocities and the attitude angles, were used for the system state

ξ = (ωx, ωy, ωz, φ, θ, ψ) and the control parameters were the thruster torquesGx,Gy andGz.

The OJ method is designed for discretely updated systems, so the first step is to discretise the

system in a suitable way to ensure that controlling the corresponding unstable fixed point/orbit of the

discrete system is equivalent to controlling the original fixed point/orbit of the continuous system.

Normally we could generate data for analysis by numerically integrating the dynamical equations and

collecting observational data, say for 20,000 points in time steps of 0.1 second. However, in our case

we just sample the stabilised periodic orbit achieved from the continuous delayed feedback control

to obtain the target unstable periodic orbit of the discrete system. In our experience, it is easier to

achieve successful control if we sample the system in a small time steps. At the start of control we

find the sampled point of the target orbit which is closest to the current system state. At each step
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we then choose the control solution which minimises the distance between the next system state and

the corresponding next sampled state of the target orbit. The whole process is basically tracking an

unstable orbit[Carroll et al.1992; Gillset al.1992].

We thus need to modify the original OJ method to accommodate this orbit tracking strategy. The

control strategy in (5.55) can be re-written as minimise∣∣P (ξn−1(p0)
)
− ξtarget

n (p0) + δp1,n−1s1,n + · · ·+ δpl,n−1sl,n
∣∣2 . (7.13)

whereξtarget
n is the target next state on the unstable periodic orbit, andsi,n is the sensitivity vector for

theith parameterpi,n−1 at timen− 1.

Notice that now instead of using the original sensitivity vector, which normally is the change of

the fixed pointξtarget
n due to the variation of the control parameterpi at timen, we use the sensitivity

vectors

si,n =

(
∂P
(
ξn−1, p1,n−1, . . . , pl,n−1

)
∂pi,n−1

)
(1 ≤ i ≤ l), (7.14)

This is the change of the predicted next state ofξn−1 at timen, due to the variation of the parameters

applied at timen − 1, from the predicted state with all the parameters at their nominal values. Thus

a final variation of the OJ method for tracking in this way is that the predictor functionP is now

dependent on both the current system state as well as the system control parameter values.

In situations where the iterated mapF is unknown we could imagine constructing a fast predictive

functionP by training a neural network. However, in the present case, where we assume the equations

are known and the objective is to demonstrate the technique, there is no virtue in training such a

network and we shall therefore calculateP usingF (i.e. by simply integrating the equations over the

jump time).

The unstable orbit in this experiment has a periodicity ofT = 2.12, which we divide into 120 target

states. In this way we can ensure that at every control step relatively small parameter perturbations are

required. Of course, using such small time steps, together with appropriate control variations, the

satellite could be forced to any desired orbit, whether this orbit is an embedded unstable periodic orbit

in the original chaotic attractor or not. But the point here is to achieve the particular target, which

corresponds to an unstable periodic orbit of the original system, withsmallcontrol perturbations.

In our experiment, the results indicated that using if the target periodic orbit is estimated inaccu-

rately then even with small time steps, it was very difficult to control the system without using large

parameter perturbations.

Because the sensitivity vectors in (7.14) are now dependent on the current system state, they have

to be correctly estimated and recalculated at every time step. One way to achieve this for a real time

application is to use a neural network as demonstrated in[Oliveira et al. 1997], where the trained

neural network is used to calculate the sensitivity vectors for synchronisation of the chaotic systems

using OJ control. To get the information necessary to train such a network we would in practice use

the predictorP to analyse how the next (predicted) state changes with small variations in the control

parameters. However, for this experiment we simply collect data by making small variations of the

control parametersp at timen − 1 and then integrate the system forward to timen. This is repeated

about 50 times and then least squares fit is used on the data so collected to estimate the sensitivity

vectors.

Finally the required control perturbation at timen− 1 is calculated according to (7.13). However,

the attitude anglesφ, θ andψ ( mod 2π) are not continuous and this would pose a problem for the least
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Figure 7.16: Phase portrait of angular velocities
of OJ controlled motion.

Figure 7.17: Phase portrait of attitude angles
(modulo2π) of OJ controlled motion.

10.6 21.2 31.8 42.4 53. 63.6

-7.5

-5

-2.5

2.5

5

7.5

PSfrag replacements

���

� 10.6 21.2 31.8 42.4 53. 63.6

-4

-2

2

PSfrag replacements

���

�

Figure 7.18: Changes of control torqueGx dur-
ing OJ control.

Figure 7.19: Changes of control torqueGy dur-
ing OJ control.

squares fit step needed to calculate the required control perturbation. Therefore for the minimisation

step of the OJ method we replace the state description in terms of angular velocities and attitude

angles by a description using the orthogonal rotation matrix defined in (7.2). The state description

then becomes

(ωx, ωy, ωz, a11, a12, a13, a21, a22, a23, a31, a32, a33) (7.15)

whereaij is an element of the rotation matrixA as in (7.2).

The results appear in Figure 7.16 – 7.17 showing that under control the satellite follows the desired

unstable orbit. Note the close similarity to the results in Figure 7.5 – 7.6 for the delayed feedback

control. Figure 7.18 – Figure 7.20 show the control thruster torquesGx,Gy andGz and Figure 7.21 –
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Figure 7.20: Changes of control torqueGz dur-
ing OJ control.

Figure 7.21: Changes of perturbing torqueHx

during OJ control.
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Figure 7.22: Changes of perturbing torqueHy

during OJ control.
Figure 7.23: Changes of perturbing torqueHz

during OJ control.

Figure 7.23 show the perturbing torquesHx,Hy andHz acting on the satellite during the OJ control.

The control thruster torques are for the most part relatively small, compared to the perturbing

torques, which is in line with the original objective. Occasionally, there is a ‘burst’ of larger control

signals which we believe occurs because the ‘natural period’ of the controlled orbit does not quite align

with the periodτ = 2.12 of the target, the ‘burst’ serving the function of bringing the two back into

phase for a while.

If the target orbit is not a very close approximation to an embedded unstable periodic orbit of

the original chaotic attractor, i.e. the target orbit has been estimated inaccurately, the control torques

required to achieve stabilisation are much larger. In our earlier attempts these varied in the range from

−10 to 10. However, in comparison with delayed feedback control, this method does require slightly

higher torques to control the satellite with a higher computational cost, in terms of constructing the

one-step predictor and the estimation of the sensitivity vectors.

7.4 DYIDSG control

In this section we first describe the DYIDSG method in its original form[Ding et al. 1996] and then

report on our attempt to control the six-dimensional chaotic satellite system using only one thruster.

This is designed to enable us to contrast the method with the continuous delayed feedback experiment,

which also only used one thruster to achieve control.

In fact, despite all our efforts, the result of the DYIDSG experiment was not very successful and

we shall discuss some possible reasons after presenting the details. Perhaps one should not be too

surprised: in the original description of the DYIDSG method, only one control variable is used, but

this control is applied in discrete steps and so is held constant for variable periods. It might be that this

method could be effective if it were further extended to incorporate more control parameters.

The basic idea of the DYIDSG method[Ding et al.1996] is to apply a sequence of small parameter

variations so as to force the system at the next several iterates into the stable subspace associated with

the unstable fixed point or unstable periodic orbit. It is therefore a natural extension of the classic

OGY method. One essential ingredient of this method is to incorporate dependence of past parameter

variations in the control scheme, an extension first described by Dressler and Nitsche[Dressler and

Nitsche 1992] for the original OGY method. The derivation of the control law is rather complicated

so we attempt only a summary below, see[Ding et al.1996] for full explanation.

First assume that the original dynamical system can be described by ak-dimensional state variable

X. In experimental studies of chaotic dynamical systems, especially high-dimensional ones, it is

often the case that the only accessible information is a time series of some scalar functionxn =
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h(X(n)). However, as shown by[Takens 1981], employing delay coordinates with a suitable delay

time, the high-dimensional dynamics from the time series(xn) can be reconstructed using the vector

zn assigned as

zn =
(
z(1)
n , z(2)

n , . . . , z(m)
n

)T def= (xn−m+1, xn−m+2, . . . , xn)T (7.16)

wherem is the dimension of the reconstructed state space. For suitably largem, zn is generically a

global one-to-one representation of the system variableX(n).
Then the discrete map forzn is

zn+1 = R(zn, pn−m+1, pn−m+2, . . . , pn) (7.17)

whereR generally depends on all the parameter variations effective during the time intervaln−m+1 ≤
t ≤ n spanned by the delay vectorzt [Dressler and Nitsche 1992].

Assume there is an unstable fixed pointX(p) in the original attractor forp = p. 1 This is reflected

in the delay coordinates by

z(p) = R(z(p), p, p, . . . , p) (7.18)

wherez(p) = [x(p), x(p), . . . , x(p)]T , T denoting the matrix transpose, andx(p) = h(X(p)).
The linear dynamics (without parameter changes) at the fixed pointz(p) can be described by the

m×m Jacobian matrix

J = [DznR(zn, pn−m+1, pn−m+2, . . . , pn)]zn=z(p),pn−m+1=pn−m+2=···=pn=p (7.19)

whereDzn denotes the Jacobian matrix operator of partial derivatives. We denote the partial deriva-

tives due to the variations of the parameter (and the past values) by

B(m) =
[
Dpn−m+1R(zn, pn−m+1, . . . , pn)

]
zn=z(p),pn−m+1=···=pn=p

,

B(m− 1) =
[
Dpn−m+2R(zn, pn−m+1, . . . , pn)

]
zn=z(p),pn−m+1=···=pn=p

,

...

B(1) = [DpnR(zn, pn−m+1, . . . , pn)]zn=z(p),pn−m+1=···=pn=p . (7.20)

Therefore, the local linear flow near the unstable fixed point is described by

zn+1 − z(p) = J(zn − z(p)) + (pn−m+1 − p)B(m)

+ (pn−m+2 − p)B(m− 1) + · · ·+ (pn − p)B(1). (7.21)

Because we are using delay coordinates from (7.16) the next iteratezn+1 = (z(1)
n , . . . , z

(m+1)
n ) and

we can therefore write (7.17) in component form as

zn+1 =
(
z

(1)
n+1, z

(2)
n+1, . . . , z

(m−1)
n+1 , z

(m)
n+1

)T
=(

z(2)
n , z(3)

n , . . . , z(m)
n , r(zn, pn−m+1, pn−m+2, . . . , pn)

)T
(7.22)

1Only a fixed point - ‘period 1’ orbit - is being discussed here. The technique can be extended and generalised for stabilising

a period-N orbit [Ding et al.1996].
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wherer is an appropriate function. We then see that most of the entries in the matrixJ and the vectors

B are zero. Explicitly,

J =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
a(m) a(m− 1) a(m− 2) · · · a(1)


m×m

(7.23)

and

B(i) = (0, . . . , 0, b(i))T1×m (1 ≤ i ≤ m) (7.24)

The estimation ofa(i) andb(i) is discussed in the experiment.

Now assume thatJ in (7.23) hasu unstable directions ands stable directions (s + u = m) with

eigenvaluesλi satisfying|λ1| > |λ2| > · · · > |λu| > 1 > |λu+1| > |λu+2| > · · · > |λm|. Let

ei denote the corresponding eigenvectors. Then a possible control approach is to push the trajectory

zn+1 into the stable subspace spanned by the stable directionsei, (u + 1 ≤ i ≤ m), by suitable

parameter variations according to (7.21). Instead the DYIDSG method expands the original state space

as suggested in[So and Ott 1995], to a(2m− 1)-dimensional space whose extended vectors are given

by

Y n =
(
zTn , pn−m+1, pn−m+2, . . . , pn−1

)T
1×(2m−1)

(7.25)

which includeszn and all the previousm − 1 variations of the parameterp. The equivalent unstable

fixed point in the extended system then becomes become

Y =
(
z(p)T , p, p, . . . , p

)T
1×(2m−1)

(7.26)

and the linear dynamics near the fixed point will be

Y n+1 − Y = J̃(Y n − Y ) + (pn − p)B̃ (7.27)

where

J̃ =



J B(m) B(m− 1) B(m− 2) · · · B(2)
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

...

0 0 0 1 · · · 1
0 0 0 0 · · · 0


(2m−1)×(2m−1)

(7.28)

with 0 anm-dimensional row vector of 0’s and

B̃ =
(
B(1)T , 0, . . . , 0, 1

)T
1×(2m−1)

. (7.29)

Now the eigenvalues ofJ are also eigenvalues of̃J with corresponding eigenvectors

ki =
(
eTi , 0, . . . , 0, 0

)T
(1 ≤ i ≤ m) (7.30)
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in the(2m−1)-dimensional space. Suppose that the eigenvectorseu+1, . . . , em of J corresponding to

the stable subspace are linearly independent. Then we can extend the set ofs = m−u (stable) vectors

ku+1, . . . ,km by adding vectorskm+1, . . . ,k2m−1 so as to construct a basis for the(2m − 1 − u)-
dimensional stable subspace analogueEs(Y ) of J̃ . We note in passing that them vectors of (7.30) are

insufficient to span the(2m − 1)-dimensional expanded state space but the additionalm − 1 linearly

independent vectors required to span the full state space are fairly easily found, as shown in[Ding

et al.1996].

At this stage the idea of the DYIDSG control method becomes very similar to the original OGY

method. Suppose that at timen the system trajectory falls in the neighbourhood ofY called the

control region. To stabilise the subsequent motion around this fixed point withu unstable directions,u

successive small parameter perturbationsδpn, δpn+1, . . . , δpn+(u−1) in such a way that the deviation

δY n+u = Y n+u − Y (7.31)

lies entirely in the stable subspaceEs(Y ). For a short period the natural dynamics should then cause

the orbit to relax onto the fixed point. The parameter can be set back to its nominal valuep until further

parameter adjustments are required.

Without going into details, we should note that bothJ̃ andJ̃T have the same eigenvalue spectrum.

In fact, the contravariant unstable eigenvectorsvi determined by

J̃Tvi = λivi (7.32)

for 1 ≤ i ≤ u have the property that they are orthogonal to the stable subspaceEs(Y ) of J̃ , i.e.

vTi kj = 0 for j = u+ 1, u+ 2, . . . ,m,m+ 1, . . . , 2m− 1. Then the control perturbations required

are simply obtained by solving

vT1 δY n+u = 0,

vT2 δY n+u = 0,

...

vTu δY n+u = 0,

(7.33)

for pn, pn+1, . . . , pn+(u−1). Although the solution gives us the nextu perturbation values together

with pn at timen, in practice, it is preferable to computepn at every iteraten to avoid the problem of

system noise.

7.4.1 Experimental description and results

In our experiment using the DYIDSG technique the thrusterGz is chosen as the control parameter with

the nominal valueGz = Gz = 0. We adhere closely to the method described in the original paper.

First we need to choose a hyperplane to create a Poincaré section to reconstruct a discretised

dynamics of this autonomous system. Unlike the original description of choosing a fixed point from

the reconstructed dynamics on the Poincaré section for the control, we want to control the dynamics

onto the same unstable periodic orbit used earlier in the continuous delayed feedback experiment.

Therefore we have to choose a hyperplane which cuts the trajectory of this target orbit to obtain a

corresponding unstable fixed point on this Poincaré section. The hyperplaneωz = 0.3 was chosen

and the original unstable periodic orbit is approximately atξ = (1.30484, 2.59193, 0.30000, 1.23980,

0.57523, 3.63385) on this hyperplane.
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First we generated about 75000 data on this Poincaré section whenever the trajectory cut this

hyperplane. These data were then used for our dynamic reconstruction and data analysis for the control.

Two different strategies for the reconstruction of the dynamics were tried with this experiment: the

interspike intervalsreconstruction as introduced in[Ding et al.1996] and the simple method of using

a single system variable on the Poincaré section to reconstruct the dynamics.

The interspikeinterval is the time intervalIn, required for the trajectory to return to a point on the

Poincaŕe section entering from the opposite halfspace to that from which it left. The interspike interval

is then used as the basis for an embedding for the purpose of reconstructing the system dynamics.

[Ding et al. 1996] demonstrated thatIn, the time between the (n − 1)th and thenth crossings of the

section, is uniquely determined by the original system dynamics and corresponds to a Poincaré map.

With interspike sampling the target orbit then becomes the fixed point(IF , . . . , IF ) , whereIF = 2.12
is the estimated period of the orbit stabilised by the delayed feedback control.

We reconstructed the dynamics with an embedding of dimension 8. The first problem noticed

was that estimating the local linear dynamics was difficult. For example, slightly increasing the local

region, or equivalently including a few more ‘close’ data point for linear approximation, caused the re-

sulting Jacobian to vary significantly, for example to have a different number of unstable eigenvectors.

We followed the DYIDSG method to control the satellite using initial conditions close to the un-

stable fixed point. The sensitivity vectors were estimated as described in the original paper. The result

is shown in Figure 7.24, which shows the variation of the interspike interval (if control had been suc-

cessful this should be approximately constant), and Figure 7.25, which shows the control signalGz.

The control signal rapidly becomes zero, but this is because after initial control is lost the system does

not make a close return to the target state in the interspike interval space within the time period ob-

served. For a close return in interspike embedding space to occur the trajectory in the original state

space would have to make 8 successive close returns, which seems relatively unlikely. Unfortunately,

a smaller embedding space does not seem to capture the original dynamics very well.

Figure 7.26 shows the evolution of the angular velocityωy againstωx from the time control was

initiated for approximately 10 interspike intervals. If control were successful this graph should be that

of a simple closed curve.

As we can see, this experiment was not very successful although at the first 10 steps or so (See

Figure 7.26), the dynamics was under control. Later, once control was lost, the system came back only

in an occasional fashion, with control switched on for just a few steps. By reducing the maximum

allowed perturbation, the control could only produce a ‘trapped’ periodic behaviour which was not the

desired orbit. Having a larger allowed perturbation can lead to a ‘bifurcation change’ on the attractor

and in many cases, the trajectory does not then come back to the Poincaré section for several thousand

seconds. Many alternative settings were tried, such as changing the reconstruction dimension of the

embedding, refining the approximation technique for the estimation of the Jacobian and the sensitivity

vectors, and incorporating the fixed point tracking adaptive technique as reported in[Gluckmanet al.

1997; Dinget al.1997], but despite these efforts we were unable to achieve satisfactory control of the

system.

We next tried to reconstruct the dynamics by observing the system variableωx on the Poincaŕe

section. The valueωx = 1.3048 was then used as our fixed point value for constructing a delay

coordinate with an embedding, corresponding to the original unstable periodic orbit. We could not

achieve any successful control and similar problems arose. In comparison with the interspike interval

technique, this approach seemed to be performing less well - but since both attempts were essentially
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Figure 7.24: Interspike time intervalIn against
n during DYIDSG control.

Figure 7.25: ChangesGz against n during
DYIDSG control.

0.9 1.1 1.2 1.3 1.4

2.5

2.6

2.7

2.8

2.9

PSfrag replacements

���

���

Figure 7.26: The dynamics gradually moves away from the desired orbit being under control pertur-
bations.

unsuccessful this does not say a great deal.

Even without successful control, we have learnt that there are many problems which seem to affect

this control method when applied to higher dimensional chaotic systems. The first problem is that for

higher dimensional systems the local linear dynamics is not necessarily easy to estimate even with a

reasonably large observed data set. Similarly, performing an accurate sensitivity analysis is difficult,

due in part to the fact that it is not obvious how to determine the size of local region which defines

which embedding vectors (from the observed data set) to include as ‘close’ points.

By examining the cross sections of the angular velocities in Figure 7.3 – 7.4 and Figure 7.7, es-

pecially in the region where our desired periodic orbit is situated, we can see how difficult it is to

estimate the local dynamics (with suitable linearisation) using a finite set of data (the calculation of

the sensitivity vectors was extremely time consuming). Examining Figure 7.7 closely shows the dy-

namics, corresponding to the next 10 iterates on the Poincaré section has discontinuities. This graph

is plotted based on the information of the actual state on the Poincaré section and the return time, then

the dynamics is numerically integrated from each initial condition for a period corresponding to the

‘return time’. The gaps clearly indicate the problem of tracking the point at which the trajectory hits

the hyperplane. Therefore, a combination of inaccurate estimates for the eigenvectors and sensitivity

vectors, and the cumulative small inaccuracies of numerical integrations due to floating point errors

for the chaotic dynamics, contributed to the difficulty of this experiment. In other words, the DYIDSG

method seems to be highly sensitive to the accuracy of the eigenvectors and the sensitivity vectors.

Intuitively, we could reasonably ask: how can we expect a single control parameter, fixed for the (vari-

able) period of each control step, to effectively perturb a (say) 10-dimensional chaotic system onto a

stable behaviour?

The DYIDSG method may be effective in controlling systems with dimension higher than two or

three (which is the limit of the original OGY) by using a slightly higher dimensional embedding. How-
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ever, this does not mean that the current form of the method can be used successfully on problems with

a much higher dimension which, very often in practice, may require several parameter perturbations.

In our example more thrusters could be used, but without a reformulation of the method there is no

effective way to incorporate this fact into the control.

7.5 Summary of experiment results

Both the OJ and DYIDSG methods require considerable observation and calculations prior to imple-

menting the control method. In practice, both methods require the location of an unstable fixed point

from observational data. For higher dimensional systems (even without embedding) we are likely to

need a very long sequence of observations in order to derive suitable delay and jump times and extract

an unstable fixed point. If an embedding technique is used on a sequence of observations of a single

system variable then we need to employ efficient techniques for the choice of delay and jump times.

For both the OJ and DYIDSG methods we also need to perform a sensitivity analysis from observations

of the system under small control parameter variations. All this analysis is required before control can

be turned on. The real-time computational requirements of the OJ method are a fast pseudoinverse cal-

culation, whereas the overhead of the DYIDSG is comparable to the OGY calculation, i.e. relatively

low.

However, we have seen that DYIDSG control seems to be ineffective against our high-dimensional

problem. This is due in part to the fact that only one control parameter perturbation is allowed, as

opposed to using all three thrusters for the OJ method. Also in DYIDSG control the single thruster

produces a fixed torque for a much longer period of time, where each time length depends on the return

time for the trajectory to the Poincaré section. In contrast, the successful result of the Pyragas’ delayed

feedback method relies on the small, continuous variation of a single control thruster.

Numerous experiments on low dimensional systems have been reported using Pyragas’ delayed

feedback method[Cooper and Scḧoll 1995; Namaj̄unaset al. 1995; Quet al. 1993] or its discrete

equivalent, i.e. applied on a Poincaré section rather than in continuous time, see[Oliveira and Jones

1998; Tsui and Jones 1999b]. In the second case if the system is described by a mapξn+1 = F (ξn)
and the controlled dynamics by

ξn+1 = ξn + Λ (F (ξn)− ξn) (7.34)

whereΛ is a matrix defining the feedback constant, e.g. in the case of our satellite experiment if we

just consider the angular velocities

Λ =

 0 0 0
0 0 0
0 0 k

 , (7.35)

then if the method is successful the control perturbation(s) approach zero. In this case the system

dynamics stabilises onto an unstable fixed point of the original (uncontrolled) system. Thus one could

also consider the technique as a method of finding unstable fixed points, provided one has already de-

termined a suitable jump time. In essence this is the technique described in[Schmelcher and Diakonos

1997] for determining unstable fixed points.

In [Schmelcher and Diakonos 1997] the matrixΛ is required to be invertible with sufficiently small

components. Ifd is the dimension of the system then thed × d matrix Λ is chosen so thatΛ = λC,
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with 1 � λ > 0, where in practiceC is chosen from a set ofd!2d matrices which correspond to

special reflections in space and have components in{0,±1}. Each matrixC stabilises a whole class

of unstable periodic orbits, rather than a single fixed point.

Thus the method described in[Schmelcher and Diakonos 1997] to locate unstable periodic orbits

can be viewed as a discrete equivalent of Pyragas’ control method, but with much stronger restrictions

on the matricesΛ. Since we know that Pyragas’ method works in many cases without such restrictions

it seems likely that what is important here is that the effect ofΛ is contractive, or at least contractive on

average. When the method of Pyragas stabilises the original system it might be because the Lyapunov

exponents along the trajectory of the extended system are all negative, but in practice it is often the

case that the trajectory converges rapidly to the fixed point and remains there.

Thus the important theoretical issue becomes for which systems and under what constraints on

Λ can trajectories of the extended system be proved to either have negative Lyapunov exponents or

stabilise to a fixed point. A satisfactory answer to this question would provide both a theoretical basis

for a very effective control method and simultaneously offer an elegant method of locating unstable

fixed points or periodic orbits, thereby extending our understanding of[Schmelcher and Diakonos

1997]. A possible approach is indicated in[Oliveira and Jones 1998; Tsui and Jones 1999b] as well as

in the next chapter, which discusses the relevance ofprobabilistic local stability.

In this chapter we have compared three methods of controlling a six dimensional chaotic system.

Both the OJ and the DYIDSG method require prior observations and computation, in particular the

location of a suitable unstable fixed point, and both require a detailed sensitivity analysis. In each case

the real-time computational overhead is reasonable but significant. The results for the OJ stabilisation

were more satisfactory than those for the DYIDSG method (with which we were not able to achieve

effective control).

We have also illustrated the Pyragas’ method in its original continuous-time form using a single

delayed feedback variable applied to the same system. The advantage of Pyragas’ method is that no

prior calculations of any kind are required and the real-time computational overhead is trivial. It seems

remarkable that:

• The only information regarding the state of the system used in the control calculation is the

angular velocityωz (i.e. five of the six possible state variables are ignored).

• Control is achieved using only one of the three thrusters.

7.6 Discussion

The results of the control of the chaotic satellite provide a better understanding of the problems of

control of a higher dimensional chaotic system. The conclusion of these experiments have already

been discussed in Section 7.5. In summary, these experiments suggest that a rigorous analysis of

Pyragas’s method is long overdue.

We have tried to provide an analysis of the delayed feedback control technique in Section 5.7.1

on a simple system. (We also attempted to provided a similar analysis on the satellite but the result

is not conclusive and unsatisfactory, due to the fact that stabilised motion is complicated. The basin

of attraction of this particular stabilised orbit analysed also is small and therefore, it was difficult

to study how arbitrary orbits stabilise onto this orbit with random initial starting states.) Although

preliminary, this has enabled us to better understand this control method and leads us into the idea
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that the delayed feedback control technique may be the essential building ingredient for constructing a

stimulus-response neural system based on chaos control. Having such delayed feedback connections

within a biological neural system is not hard to imagine.
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Chapter 8
An Artificial Chaotic Neural
Stimulus-Response System

On the basis of studies of the olfactory bulb of a rabbit[Freeman 1991] Freeman has suggested an

interesting model of recognition in biological neural systems via stabilisation of neural chaotic dy-

namics as discussed in Chapter 1. In this chapter we propose a chaotic iterative neural system which

does produce stimulus-response behaviour similar to that observed by Freeman in a biological system.

Our proposed system is based on the delayed feedback control idea which has proven very valuable in

chaos control applications.

8.1 Construction strategy - an introduction

To construct such a neural system, we require some form of chaos control. There is now an exten-

sive literature demonstrating experiments on controlling chaotic physical systems using the original

chaos control techniques, such as the OGY method[Ott et al. 1990] or its similar variants as also

described and investigated in earlier sections of this work. Many such methods require careful and

systematic analysis of the chaotic dynamical behaviour, such as the OGY method, OJ method and the

high-dimensional DYIDSG control, which is usually difficult and computationally expensive, before

successful control can be achieved. Moreover, such control techniques areexternalto the system be-

ing controlled, whereas for a neural system to behave as described by Freeman the control should be

intrinsic to the neural dynamics.

Therefore for constructing an iterative neural model, we implement a much simpler delayed feed-

back control, similar to Pyragas’ original continuous delayed feedback[Pyragas 1992]. One of the

attractions of this method is that it has a very low computational overhead, shown in Section 7.2 on

the control of a chaotic satellite for the continuous case, and so is extremely easy to implement in

hardware. It would also be very easy to implement in biological neural circuitry and so offers one

plausible mechanism whereby such stabilisation might occur.

We use the chaotic neural network described in Section 6.1.2 for out chaotic iterative neural net-

work. Delayed feedback is then introduced into the model and this provides a mechanism for stabil-

isation onto unstable periodic behaviours. The particular unstable periodic orbit which is stabilised

depends quite strongly on the precise character of the applied stimulus. Thus the system can act as an

associative memory in which the act of recognition corresponds to stabilising onto an unstable peri-
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Figure 8.1: Delayed feedback on chaotic neural net.

odic orbit which is characteristic of the applied stimulus. The entire artificial system therefore will then

exhibit an overall behaviour and response to stimulus which precisely parallels the biological neural

behaviour observed by Freeman.

8.2 Delayed feedback applied to the chaotic neural net

A simple delayed feedback, similar to the Pyragas’ delayed feedback, can be added to the chaotic

neural net to control the chaotic behaviour with a careful choice of the parametersk andτ . The basic

control setup of the neural model is shown in Figure 8.1. Here the trained chaotic feedforward neural

net described earlier in Section 6.1.2 is now equipped with extra delayed feedback control circuitry,

which is activated on presentation of an external stimulus. The delayed feedback is added to the state

variableyn to effect the control. External stimulation is performed by feeding signals into input linexn

of the network. LetFF be the feedforward network mapping such thatFF [(xn, yn)] = (xn+1, yn+1)
then the controlled system with external stimulationsn at timen is described by

(xn+1, yn+1) = FF [(xn + sn, yn + pn)] (8.1)

wherepn = k(yn−τ − yn) is the delayed feedback control signal.

After some initial investigation we fixedk = 0.5 andτ = 6 for the experiments. These values

stabilised the system with control switched on but with no external stimulus present. Other values of

k andτ can also stabilise the system(xn, yn) successfully.

We imagine that the presence of an external stimulus excites (activates) the control circuitry which

is otherwise inhibited. Thus to achieve a stabilised dynamical regime in response to a stimulus the

control is switched on at the same time as the external signal is fed into the input linexn. By varying

the external signal in small steps and holding the new setting fixed long enough for the system to

stabilise we can observe the response of the network to small changes in stimulus.

In Figure 8.2 the system is iterated for 100 cycles to eliminate any initial transients. Next an

external constant stimulussn = s is applied for 400 steps. In Figure 8.2 the stimulus is varied in steps

of 0.025 over the interval [0, 1] every 400 network iterations. We can see that the system exhibits

a fairly ‘smooth’ transition of stabilised behaviour from one stimulus to the next. For the most part

in this case the response is a 1-period behaviour but a 2-period behaviour is also exhibited after the
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Figure 8.2: Responses ofxn andyn and the size of delayed feedback control signalpn due to external
constant stimulation of[0, 1] varying in steps of 0.025. The stimulus changes at 400 iteration steps
after an initial 100 iterations to eliminate transients. The control parameters werek = 0.5 andτ = 6.
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Figure 8.3: Responses ofxn andyn to presentation and removal of stimulus 0.2 with and without
control. Intervals labelled ‘s’ indicate the presence of the stimulus, intervals labelled ‘c’ indicate con-
trol is switched on, a label ‘sc’ indicates both, and no label indicates no stimulus and no control. The
particular regime is changed every 200 iterations after 100 iterations have been allowed for transient
removal.k = 0.5 andτ = 6.
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Figure 8.4: Bifurcation diagrams for the outputsxn+1 andyn+1 using an external variables added to
the inputxn.

strength of the external signal crosses a threshold at around 0.8 which is therefore abifurcation point.

For a stimulussn = s with s > 0.2 the delayed feedback control signal quickly becomes small, which

indicates that the system has stabilised onto one of its own unstable periodic behaviours. However, for

a stimulussn = s with s < 0.2 a large feedback control signalpn often seems to create some new

periodic behaviour.

We can study the response of the system as the stimulus 0.2 is applied and removed and as control

is turned on and off. This is shown in Figure 8.3. In general terms the system stabilises after about

50 iterations. If the stimulus is applied without control the dynamical regime seems not to correspond

to an unstable periodic behaviour of the original network, but with control switched on the dynamics

quickly stabilises to a 1-period corresponding to an unstable periodic behaviour of the iterated network.

Note that in the transition sc→ s of Figure 8.3, in which control is removed but the stimulus

remains, surprisingly the system shifts from a 1-period to a 2-period, rather than reverting to the more

chaotic regime illustrated in the first 400 step interval, where the same stimulus without control proved

unable to stabilise the system.

In some cases, the external stimulation signal is enough to stabilise the system without switching

on the control module. The explanation of this might be that when such an external signal is strong

enough, or it is a particular kind of signal, it may shift the underlying dynamics from a chaotic region

into a periodic region in the bifurcation diagrams, as shown in Figure 8.4. This figure originally

appeared in[Tsui and Jones 1997] which studied the same feedforward neural network.

Apart from a constant external stimulation signal applied to one of the inputs, other forms ofsn

can also be used. Low period square waves can also result in stabilised periodic responses as shown in

Figure 8.5.

A completely different way of applying a stimulus was suggested in[Hoff 1994]. The stimulus can

be applied directly to the control variablek. In this way different behaviours can be achieved by using

the external signalsn to directly modifyk. Some results of this type of control applied to our system

are illustrated in Figure 8.6.

These experiments are merely illustrative and many variations are possible. For example, delayed

feedback control could equally be applied to several (or all) of the network outputs. With the sameτ

and multiple feedbacks it should be easier to achieve stabilisation compared to the case where feedback

is applied to just one variable. However, if delayed feedback on different network outputs also had

differing τ then the outcome is less predictable. There remain many possibilities for exploring this
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Figure 8.5: Responses ofxn andyn and the size of delayed feedback control signalpn due to the peri-
odic stimulationsn = {j, 0, j, 0, . . . } of strengthj from 0 to 1 in steps of 0.05. The stimulus changes
at 400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were
k = 0.5 andτ = 6.
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Figure 8.6: Responses ofxn andyn and the size of delayed feedback control signalpn due to the
external signalsn added to the valuek from -0.5 to 0.5 in steps of 0.025. The stimulus changes every
400 network iterations (after 100 initial iterations with no stimulus and no control.k = 0.5 andτ = 6).
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type of neural model.
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Figure 8.7: The response of the system to noise. The stimulussn is replaced bysnr at each iteration
step, wherer is Gaussian noise with mean 1 and variance Var(r) = 0.005. The stimulus changes at
400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were
k = 0.5 andτ = 6.
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Figure 8.8: The response of the system to noise. The stimulussn is replaced bysnr at each iteration
step, wherer is Gaussian noise with mean 1 and variance Var(r) = 0.01. The stimulus changes at
400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were
k = 0.5 andτ = 6.

We also investigated the response of the system when sensory input was perturbed by stochastic

noise. The stimulus was perturbed at each iteration step by multiplying it by Gaussian noise with a

mean of 1 and a varianceσ, whereσ varied fromσ = 0 to σ = 0.1. The response was surprisingly

robust as illustrated in Figures 8.7 – 8.9. These results should be compared with the non-noisy case

of Figure 8.2. The noisy dynamics remain essentially unchanged, although as one might expect the

attractor becomes progressively ‘blurred’ as the noise level increases.

8.3 Local stability analysis

As we have seen earlier, little theoretical analysis is available for the Pyragas method of continuous

delayed feedback control, let alone for the discrete form of the method used here. However, a discrete

version of a variation of Pyragas’ method has already successfully been applied to the synchronisa-

tion of two identical iterative chaotic maps in[Oliveira and Jones 1998]. The version used there for

synchronisationis similar to but not identical to the method used here forstabilisationand that pa-

per contained a suggestive account of the local stability properties. We gave a similar analysis for a

continuous system in Section 5.7.1.
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Figure 8.9: The response of the system to noise. The stimulussn is replaced bysnr at each iteration
step, wherer is Gaussian noise with mean 1 and variance Var(r) = 0.1. The stimulus changes at
400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were
k = 0.5 andτ = 6.

We next try to provide a similar empirical analysis for the method of stabilisation proposed here

in the case where no external stimulus is present. First, we note the stabilised state when control is

switched on withk = 0.5, τ = 6 and no external stimulus is applied. This gives a 2-period controlled

behaviour{ξF1, ξF2} = {(0.81808, 0.569261), (0.543838, 0.264166)}.
If we again define a measure of contraction

µn =
min (|ξn+1 − ξF1|, |ξn+1 − ξF2|)

min (|ξn − ξF1|, |ξn − ξF2|)
(8.2)

towards{ξF1, ξF2} from stepn to stepn + 1 thenµn depends on the eigenvalues of the Jacobian of

the associated four dimensional system{ξn, ξn+1} in the vicinity of {ξF1, ξF2} and these (although

bounded) can be much larger than 1. Thus it is simply not true that with this control method the system

will monotonically approach the unstable periodic behaviour. However, if we examine the effects of

control after several iterations we find that theprobability that the cumulative net contraction becomes

small is very large.

To establish this we generate a random initial pointξ0 and iterate the controlled system. At thenth

iteration we define

ρn =
min (|ξn − ξF1|, |ξn − ξF2|)
min (|ξ0 − ξF1|, |ξ0 − ξF2|)

. (8.3)

The quantityρn gives us an measure of the extent to which aftern iterations with control the system

hascontractedtowards the unstable 2-period.

By showing thatρn becomes small with high probability, i.e. thatρn → 0 asn → ∞, where the

convergence is in probability, we can establish that the method isprobabilistically locally stable.

We repeated the calculation ofρn for 1000 different initial starting points andn ≤ 80 and created

histograms showing the frequency ofρn against the value. These results are shown in Figure 8.10.

These histograms suggest that∀ε > 0,

P [ρn < ε]→ 1 (8.4)

asn→∞. Thus the system without stimulus is probabilistically locally stable.

The application of an external stimulus basically modifies the system dynamics byshifting the

dynamic behaviour along the bifurcation diagrams as mentioned earlier. Many new chaotic and non-

chaotic behaviours are produced by the neural system which are different from its initial built-in dy-

namics without stimulation. Thus the delayed feedback control seems to act as a supporting tool for
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Figure 8.10: Histograms ofρn atn = 20 (top left), 40 (top right), 60 (bottom left), 80 (bottom right)
of 1000 random initial starting points for controlk = 0.5 andτ = 6.

stabilising the system into periodic states. Although there is insufficient theoretical explanation for the

dynamical behaviour of our neural system, the above heuristic analysis seems to fit very well with the

observed simulation results.

8.4 Generic stimulus-response neural model

In fact, we can generalise the model shown in Figure 8.1. The chaotic feedforward network can be

trained and modelled on a known chaotic time series, using ourirregular embedding technique with

the embedding found by using the Gamma test technique shown in Section 4.2.3.

A generic scheme of such stimulus-response recurrent network is shown in Figure 8.11. The single

output of the network feeds back into inputs using delay buffers accordingly to asuitableembedding

– i.e. should contain enough information for predicting the next system state. A multiple of delayed

feedbacks can be used for each input of this recurrent neural network as control lines (based on the

idea from Pyragas’ delayed feedback control). The control module shown in Figure 8.11 is similar to

the one as shown in Figure 8.1 and the control perturbation for theith input at each iteraten is

ki(xi(n− i)− xi(n− i− τ)) (8.5)

whereki andτ are the usual parameters as in the Pyragas delayed feedback control. Each control

perturbation signal should be switched on and off in the control module as in the earlier example. In

the diagram,τ is the same for each control perturbation but of course, we could setτ to be different on

each control line. External stimulus to the network can be applied to the controlled inputs as shown in

the diagram. The control module should switch on automatically and simultaneously whenever there

is an external simulation. Variations of stimulation, such as on the control delayed feedback lines, as

shown earlier may also be used.
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Figure 8.12: Response signal onx(n− 6) with control signal activated onx(n− 6) usingk = 5 and
τ = 0.414144 and without external stimulation.
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Figure 8.13: Response signals on network outputx(n) and on observation point (on delay line)x(n−
6), with control signal activated onx(n−6) usingk = 5 andτ = 0.414144 and with constant external
stimulationsn added tox(n − 5), wheresn varies from -1 to 1 in steps of 0.05 at each 400 iterative
steps (indicated by the change of Hue of the plot points) after initial 20 transient steps.

8.4.1 Examples

Using the neural network trained on the Mackey-Glass time series as in the example in Section 4.2.3,

we can construct a stimulus-response neural system based on the generic model described. There

follows a gallery of different responses of the system using different settings of controls and external

stimulation. The response signals of the system can be observed at the outputx(n) of the feedforward

neural network module or the “observation points” on the delay linesx(n − 1), . . . , x(n − d), as

indicated in Figure 8.11. Due to the increased complexity of this neural system, of course, not all

possible settings are tried and presented.

We usek = 5 andτ = 0.414144 for our control parameters on all the possible feedback control

lines. The control is applied to the delayed feedback linex(n − 6). Without any external stimulation

and using only a single control delayed feedback, the network quickly produces a periodic response as

shown in Figure 8.12.

Figure 8.13 shows the signals on the outputx(n) of the feedforward neural network module and

x(n − 6) (observed at the observation point on the delay linex(n − 6)) with the control signal on

x(n − 6) usingk = 5 andτ = 0.414144 and with external stimulationsn added tox(n − 5). This

simple combination using a single control line plus a stimulation on the delay line already produces

a variety of dynamical behaviours, but when the external stimulus is high, the system appears to be

chaotic.
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Figure 8.14: Response signals at network outputx(n) and at the observation points onx(n − 6) and
x(n − 5) delay lines with control signal activated on all delay lines usingk = 5 andτ = 0.414144
with external stimulationsn added tox(n− 6), wheresn varies from -1 to 1 in steps of 0.05 changing
at every 500 iterative steps (indicated by the change of Hue of the plot points) after initial 20 transient
steps.

The precise results depend on which delayed feedback control lines are activated. Using the same

multiple control settings for all delay lines, the system can be stimulated on the delay linex(n − 6)
(just after the delay buffer) by a constant external signalsn, wheresn varies from -1 to 1 in steps of

0.05 at every 500 iterations after the first 20 steps of transient. The result of the signals onx(n) and at

the observation points on thex(n− 6) andx(n− 5) delay lines are shown in Figure 8.14 and exhibit

highly periodic stabilised behaviour for some stimuli. In some cases, some response signals seem to be

quasi-periodic. Figure 8.15 illustrates another example using two different external stimulation signals

atx(n− 5) andx(n− 6) and achieving a wide variety of periodic responses.

Even without external stimulation, we see quite significant modifications of the dynamics when

different configurations of delayed feedback control lines are activated, usingk = 5 andτ = 0.414144
for each control lines. Figure 8.16 illustrates, after first 20 transient iterations without any control, the

response signals of the network due to a sequence of different delayed feedback settings which change

at every 1200 iterative steps. Only particular ranges of multiple delayed feedbacks can stabilise the

chaotic system into a high periodic response.

In general, using the generic model we can produce different types of network exhibiting different

types of chaotic attractors and reproduce a rich variety of stabilised dynamical behaviours using only

suitable delayed feedback control and external stimulation of the network. The resulting behaviour is

comparable to the behaviour observed by Freeman as noted several times previously. This section has

provided only a glimpse of the possibilities inherent in using these models.
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Figure 8.15: Response signals on the network outputx(n) and at the observation points onx(n− 6)
andx(n−5) delay lines with control signal activated on all delay lines usingk = 5 andτ = 0.414144
and with external stimulation,s(1)

n added tox(n − 6), wheresn varies from -0.5 to 0.5 in increasing

steps of 0.05, ands(2)
n added tox(n− 5), wheresn varies from 0.5 to -0.5 in decreasing steps of 0.05,

changing at every 500 iterative steps (indicated by the change of Hue of the plot points) after initial 20
transient steps.

8.5 Discussion

We have shown how a conventional artificial feedforward neural network equipped with delayed feed-

back control can simulate the type of rest behaviour and response to stimuli observed by Freeman in

the olfactory bulb of the rabbit. The system is in effect an associative memory in which the act of

recognition corresponds to the stabilisation of the system onto an unstable periodic orbit characteristic

of the applied stimulus.

If the dynamics are chaotic then unstable periodic orbits are dense on the chaotic attractor and

there are infinitely many of them. Thus such an associative memory for which the computations are

performed to anarbitrary precision could in principle accommodate infinitely many memories; at any

rate such a system is not subject to the conventional Hopfield upper bound of0.15n, wheren is the

number of neurons[Amit et al.1987]. Of course, for the Hopfield net the situation is rather different. In

the Hopfield model memories are associated with specified (preferably uncorrelated) point attractors,

whereas in the present model memories are associated with unstableperiodicbehaviours which cannot

be specifiedab initio. This introduces the possibility of responding to stimuli over varyingtime scales.

The experiments here were based on high precision digital simulations. In a low arithmetical

precision analog implementation it is possible that much of the rich variety of dynamical behaviour

would be lost.

Nevertheless, the model has a certain compelling simplicity which is suggestive. The responses

described areintrinsic to the network model and control is not artificially applied from outside the

network itself. The method of delayed feedback control is simple to apply in hardware and feasible in
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biological neural circuitry.

As with the many applications of the method of Pyragas to control more conventional chaotic dy-

namics our approach lacks a full formal analysis. However, we have investigated the local stability

properties of the method applied to the particular model described here and have concluded that al-

though control is not stable in the conventional sense it is neverthelessprobabilistically locally stable.

The experiments described raise several interesting issues. An investigation of essentially the same

model could be performed with delayed differential equations using a more biologically accurate de-

scription of the neurons. As in[Tsui and Jones 1999a] and Chapter 7, we describe delayed feedback

control applied to the stabilisation of a six dimensionalsmoothdynamical system and this illustrates

that the ideas described here could quite probably be applied successfully to a similar model based on

differential equations.

Another question which naturally arises is whether ‘the basin of attraction’ of a particular unsta-

ble periodic orbit, which has emerged as the response to a specific stimulus, could be ‘widened’ by

repeated presentations using some form of weight adjustment based on Hebbian learning. The crit-

ical aspect to investigate here would be whether this could be done without destroying the essential

underlying chaotic dynamics or other conditioned responses.

The periodic responses exhibited are common in coupled oscillator models (e.g.[Stewart 1992])

which are very different from the model described here. It is therefore interesting to note that, by incor-

porating delayed feedback, periodic neural responses can be achieved with an essentially conventional

feedforward neural network model without the introduction of an oscillator neuron.
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Chapter 9
Conclusions

During this work, many diverse and interesting topics have been investigated:

• Smooth data modelling implementing techniques based on various paradigms, including the

study of feedforward artificial neural network (FANN) modelling approaches and other aids for

improvement in modelling, e.g. the Gamma test and embeddings;

• A study of chaos and the applications of chaos control on a variety of chaotic systems, including

controlling simple chaotic neural systems and the high dimensional satellite attitude control

problem;

• An experimental chaotic artificial neural system under external stimulation together with the

effects of delayed feedback control.

All of these ideas have led us to the accomplishment of the original goal, of constructing a chaotic arti-

ficial neural network capturing the stimulus-response behaviour observed by Freeman in the biological

network of neurons in the olfactory bulb of a rabbit.

This chapter, beside giving a concise summary of the work achieved so far, also revisits some of

the essential ideas and techniques discovered during the whole investigation. However, due to the

diversity of the topics studied, many unverified methods and thought-provoking concepts suggested by

this research are also highlighted for possible future investigation.

9.1 Achievements

To construct our chaotic stimulus-response model we have had to examine a number of diverse ideas.

Smooth data modelling

We first studied the ability of a feedforward neural network (FANN) to model an arbitrary smooth

function from inputs to outputs. In principle such networks can play the role of universal approxima-

tors but in practice finding the architecture, weights and thresholds, and the number of training data

required, so that the network will model a given function to a given degree of precision, is not such a

simple process.

With this in mind we examined the construction of FANNs using Lapedes’ graphical approach.

This graphical approach, originally used simply to explainwhyneural networks could act as universal
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approximators, suggested a technique for constructing neural networks to approximate a surface by

combining a series of neural modules (generating ‘sigmoidal surfaces’).

We then investigated theGamma test, which emerged as an invaluable tool for data modelling in

this research. Essentially, the use of the Gamma test together with the Lapedes’ recipe for surface

construction enables us to estimate the complexity of the neural architecture required directly from the

data. We have exploited the possibility of using the slope value returned from the Gamma test applied

to the the training data, to estimate the minimal architecture necessary for modelling the input-output

surface and to estimate the number of training data required to give a suitable model.

In fact, this idea (joint investigation) eventually led to N. Končar’s Metabackpropagation algorithm

[Končar 1997].

Next we examined various modelling methods using ‘local’ information derived from the training

data in the vicinity of the query point. We first discussed the virtue of the kd-tree data structure, which

allows fast query times for locating the near neighbours (in input space) of any point. In this way

prediction can be simplified by modelling using a small subset of local data, as opposed to a global

modelling technique.

Borrowing ideas from computational geometry we examined the possibility of using Delaunay

triangulation as an aid to local reconstruction of a surface in the vicinity of a query point. This led to

the prediction method we refer to as LDT. The Delaunay triangulation of the data can be calculated

via a convex hull construction technique. Our implementation is based on the convex hull calculation

method called Qhull. This technique brought many new and interesting ideas from computational

geometry into this research, although ultimately the approach was discarded in favour of local linear

regression.

We next devised the Gamma-minimum-predictor (GMP) based on the Gamma test. This approach

was based on the idea that given an unseen query pointx the associated output valuey should be

chosen so as to satisfy the condition: when (x, y) is added to the data set the resulting|Γ̄| value

should be minimised. This criterion can be used to analytically determine the required value ofy and

it emerges that this value can be computed reasonably quickly.

We then examined a simple but effective prediction technique we calledlocal linear regression

(LLR). This is done by performing least squares fit on the local data near the query point. A series

of experiments were performed comparing the performance of various modelling techniques. In many

situations LLR emerged as the ideal choice in terms of accuracy and computation time. It is rather

difficult to understand why neural network modellers have not used this technique as a baseline for

comparison with their neural networks.

Using a series of experiments, e.g. modelling sunspot activity and detecting a binary message

embedded in a chaotic carrier, we further demonstrated the practical virtue of the Gamma test. The

Gamma test facilitates the determination of a best embedding (using our irregular embedding) for

constructing a very good model from a time series. The Gamma test-embedding technique seems to be

comparable with the other standard model identification tools, such as principal component analysis

and dimension reduction techniques.

From the present perspective our most important result is that we can model any chaotic time series

using a recurrent neural network with suitable delay lines based on the ‘best’ embedding suggested by

the Gamma test. This forms the essential component for the construction of our chaotic stimulus-

response neural model.
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Stabilisation via chaos control

Having seen how to produce neural chaos in iterative versions of conventional feedforward neural

networks we next explored the possibility of stabilising chaos using chaos control methods. The key

idea behind most control methods takes advantage of the local properties of the underlying chaotic

attractor, using small (usually minimal) and ‘suitable’ perturbation to stabilise the system dynamics

onto the already existing (unstable) periodic orbits.

The OGY method was first studied because it was the classical chaos control technique. This

method uses a small variation of a system parameter to perturb the system dynamics onto the stable

manifold of the selected unstable fixed point in order to achieve the stabilisation. We then investi-

gated other similar methods such as the OJ (Otani-Jones) method, which tries to directly minimise the

‘distance’ between the next system state and the desired stabilised state (an unstable fixed point).

However, these control methods have many problems in applications to real systems. The OGY

method especially was originally designed with a low dimensional system in mind, and it is only ef-

fective in 2-dimensional discrete systems or 3-dimensional continuous systems if a Poincaré section

is used. Both the OGY and OJ methods require working in a discrete space constructed from the

original continuous system. As a result, an embedding for the construction of delay coordinates is

usually required and this procedure simply complicates the problem of finding a good reconstruc-

tion/representation of the original dynamics. The steps for these control techniques are:

• locating an unstable fixed point or a periodic orbit for stabilisation;

• local stability analysis at the chosen control point, e.g. estimation of stable and unstable eigen-

vectors and eigenvalues;

• sensitivity analysis to calculate the sensitivity vectors for estimating how the system state varies

with respect to a small variation of the control parameter.

For the OJ method we also require a good one-step predictor. Poor estimation of the Jacobian and

sensitivity vector(s) may hinder the success of the control.

In contrast, we also studied Pyragas’ delayed feedback and briefly demonstrated the GM periodic

feedback method. These methods are based on a very simple control mechanisms, using an appropriate

feedback signal to directly perturb the system dynamics. The feedback signal is usually determined by

the current and some past system states and suitably chosen parameter values. However, such methods

suffer the disadvantage of inadequate theoretical justification. Moreover, there is the practical problem

of choosing appropriate parameter values. From a conventional chaos control theory perspective it

might also be considered a disadvantage that one cannot specifyab initio the desired unstable periodic

orbit of the original uncontrolled dynamics. However, given the goals of the present work this hardly

seems relevant.

Using these control methods, we demonstrated the possibility of controlling chaotic neural systems

with a series of experiments on simple artificial neural networks. The results indicate that whilst most

of the methods described can be used effectively to externally control low dimensional neural chaos

they are unlikely to be effective on high dimensional systems and moreover lack any serious biological

plausibility. Only methods based on some type of feedback control seem to offer both the prospect of

being capable of dealing with high dimensional systems and at the same time some degree of biological

plausibility.
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In order to put this conclusion to a practical test we further investigated various techniques, which

might perhaps be suitable for high-dimensional control, by applying them to the chaotic satellite atti-

tude control problem. We induced chaotic dynamics into the attitude control problem by using non-

linear feedback perturbation. In this way we could be sure that the system was truly representative of

six dimensional chaos.

We applied the delayed feedback method, the OJ method (with modification for tracking an or-

bit) and an extended method based on the OGY method for high-dimensional spaces – the DYIDSG

method – to control this system. Although we could not achieve the desired stabilised behaviour from

the DYIDSG method (despite many attempts made), we did obtain successful control results using

delayed feedback and the OJ method. This enabled us to highlight several important aspects and to

compare the relative merits of the techniques.

Rather remarkably delayed feedback using knowledge based only one system variable easily sta-

bilised the satellite onto a periodic orbit using only a single thruster. Whereas, for the OJ method, it

was necessary to modify the control into tracking the same unstable periodic orbit which proved to be a

rather difficult process. The unsuccessful application of DYIDSG provided a list of difficulties similar

to the application of the OGY method. This also emphasises the problems of using a high-dimensional

embedding to reconstruct the dynamics and led to poor accuracy of the estimation of the local stability

analysis and sensitivity analysis.

This feasibility study enabled us confidently to choose the delayed feedback technique as the main

control component for the chaotic stimulus-response neural system.

Stimulus-response neural model

To realise such an artificial neural model, we first demonstrated the possibility of chaos control via

a simple delayed feedback on a chaotic recurrent neural network. Using this system, we suggested

ways to produce varying responses for the system dynamics using an external stimulus together with

delayed feedback.

At the same time, we have from time-to-time attempted to explain why such stabilisation, via

simple delayed feedback, is effective using a new idea ofprobabilistic local stability. Examples can

be found in Sections 5.7.1 and 8.3.

Although there is insufficient theoretical explanation for the dynamical behaviour of our neural

system, our simple heuristic analysis seems to fit well with the observed simulation results.

We have further demonstrated that one can construct a chaotic iterative neural network by training

the network on a chaotic time series using suitable feedback with delay lines having connections ac-

cording to abestembedding. This embedding can easily be determined using the Gamma test. Using

multiple delayed feedback controls on this system many more stimulus-response behaviours can be

achieved. Ageneric modelis suggested in Figure 8.11. Although this model does not claim to be an

explanation for the chaotic stimulus-response behaviour observed in biological systems, having sim-

ple delay lines to elicit chaotic behaviour, and having delayed control lines to stabilise chaos, seems

perfectly feasible in biological neural circuitry. Certainly, this generic scheme of a chaotic iterative

neural system does produce stimulus-response behaviours similar to those described by Freeman in

a biological system. This model also offers the possibility of stimulus-response systems capable of

integrating stimulus events happening on differing time scales, which offers a rich new area for further

research.

Therefore, the original goal of this piece of research, to a large extent, has been achieved. More-
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over, we would venture to suggest that we should be surprised if it eventually transpires that such

biological neural behaviour is based on some entirely different principle.

9.2 Future work

This series of investigations has suggested a generic artificial neural model which appears to have a

similar behaviour to Freeman’s observed neural behaviour. Although we do not claim that our generic

model precisely reflects the realities of biological neural dynamics, it has provided us with an interest-

ing investigation and at the same time perhaps made a useful step towards a full implementation in an

artificial neural system in which neural chaos is exploited for recognition.

Starting from the early work on the Gamma test and surface modelling, there is still room for

improving the Metabackpropagation algorithm, e.g. using clever placement of ‘hills’ for constructing

an initial output surface for neural network training. In fact, alternative training algorithms such as

BFGS could be used to improve the efficiency of Metabackpropagation. In addition with regard to the

Gamma test there is much work to be done in exploiting it for practical applications and providing a

detailed theoretical analysis and justification.

With regard to modelling techniques. The LDT method has surely left us a series of investigations

in computational geometry. Many questions are left to be answered, such as how correct is a Delaunay

triangulation in a high dimensional space if the currently available algorithms are used, and what is

the best possible bound in terms of running speed of such algorithms. Many alternative algorithms

for computing Delaunay triangulations are yet to be implemented and studied. In fact, this is still an

actively researched area in computational geometry. Improvements in this area can surely improve our

LDT prediction. Also further work is required to handle the outside query problem.

The GMP technique may now be simply viewed as a linear regression of “distances” and it may

not be worth further investigation, but the LLR can still be improved by directly incorporating other

preprocessing techniques, because the presentation here is still in its simplest form. There is also

the possibility of developing an effective adaptive algorithm for the choice of the number of near

neighbours used to construct the LLR model.

Embedding techniques have played an important role in this work, especially the use of irregu-

lar embeddings. However, many further extension, such as using an embedding containing multiple

variables from several time series, may also be significant in terms of providing a good model and

prediction. Recently,[Judd and Mees 1998] has also suggested using a local variable embedding to

improve local modelling. This has yet to be further studied.

Controlling chaos has proven to be important in many applications. The chaotic satellite control

problem in Chapter 7, illustrates several pitfalls that prevent many conventional techniques (at least in

their present form) from being extended to high dimensional systems.

Better techniques for estimating the location of unstable fixed points, and estimating local dynam-

ics and sensitivity vectors, are required for effective control of high-dimensional systems using the

conventional techniques. To fully exploit the DYIDSG method, it is necessary to modify the technique

so as to incorporate many more control and/or system variables, rather than using a single variable

embedding in an attempt to reconstruct the dynamics of a high-dimensional chaotic attractor.
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9.3 Final conclusions

The generic stimulus-response model has provided a basic framework for future investigations of this

type.

A primary goal of such research is a better understanding and analysis of delayed feedback control

applied to chaotic systems.

Whilst we now have some hint of the guiding principles for this type of chaotic neural stimulus-

response system, we have left untouched the vexing problem of howdesirableresponses could be

learnt or encouraged by some type of Hebbian learning.

As things stand progressive modification of the weights of the system might easily cause a radical

modification of the geometry of the attractor, thereby possibly eliminating chaos altogether, or at least

altering the attractor to such an extent that all other stimulus-response pairs are radically disrupted

(progressive disruption is not so much of a conceptual problem). The problem of how a system such

as we have described mightlearn is an area which we are content to leave to a future date.
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Appendix A
Solving Pseudoinverse via Singular Value
Decomposition

The least square fit (LSF) problem can be solved by calculating the pseudoinverse of a matrix. It is

important to demonstrate the uniqueness of the pseudoinverse of a matrix.

A.1 Some theoretical background

Theorem A.1.1. Every matrix possesses a unique pseudoinverse.

Proof. First we just assume the existence of pseudoinverse (which can be established via the Singular

Value Decomposition as shown later) and try to show uniqueness. LetA ∈ Rm×n be given and

suppose thatX,Y ∈ Rn×m are pseudoinverse ofA. Then

X = XAX (by pseudoinverse condition 1)

= X(AX)T (by pseudoinverse condition 3)

= XXTAT = XXTATY TAT (by transpose of pseudoinverse condition 1)

= XXTATAY (by pseudoinverse condition 3)

= XAXAY (by pseudoinverse condition 3)

= XAY (by pseudoinverse condition 2) (A.1)

= XAY AY (by pseudoinverse condition 1)

= XAATY TY (by pseudoinverse condition 4)

= ATXTATY TY (by pseudoinverse condition 4)

= ATY TY (by pseudoinverse condition 1)

= Y AY (by pseudoinverse condition 4)

= Y (by pseudoinverse condition 2).

Therefore,X = Y and hence, the pseudoinverse ofA is unique.

To demonstrate the existence of the pseudoinverse of a matrix, we need to have a discussion of the

Singular Value Decompositionor SVD of any matrix. The SVD is based on a generalisation of the

result in linear algebra that any symmetric matrix can be diagonalised via an orthogonal transformation.
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Theorem A.1.2 (Singular Value Decomposition).For any given non-zero matrixA ∈ Rm×n, there

exist orthogonal matricesU ∈ Rm×m, V ∈ Rn×n and positive real numbersw1 ≥ w2 ≥ · · · ≥ wr >
0, wherer = rankA, such that

A = UDV T (A.2)

whereD ∈ Rm×n has entriesDii = wi (1 ≤ i ≤ r) and all other entries are zero.

Proof. Supposem ≥ n, thenATA ∈ Rn×n andATA ≥ 0 (meaning the entries are greater or equal

to zero). We first show there is an orthogonaln× n matrixV such that

ATA = V ΣV T (A.3)

whereΣ ∈ Rn×n is given by

Σ =


µ1 0

.. .

0 µn

 (A.4)

whereµ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues ofATA, counted according to multiplicity. IfA 6= 0,

thenATA 6= 0 and so has at least one non-zero eigenvalue. Thus there is anr (0 < r ≤ n) such that

µ1 ≥ µ2 ≥ · · · ≥ µr > µr+1 = · · · = µn = 0. Write Σ =

[
W 0

0 0

]
, where

W =


w1 0

.. .

0 wr

 , (A.5)

with w2
1 = µ1, . . . , w

2
r = µr. PartitionV asV = [V1, V2] whereV1 ∈ Rn×r andV2 ∈ Rn×(n−r).

SinceV is orthogonal, its columns form pairwise orthogonal vectors, and soV T1 V2 = 0. We have

ATA = V ΣV T

= [V1, V2]

[
W 2 0

0 0

]
V T

= [V1W
2,0]

[
V T1

V T2

]
= V1W

2V T1 .

(A.6)

Hence

V T2 A
TAV2 = V T2 V1︸ ︷︷ ︸

=(V T
1 V2)T =0

W 2 V T1 V2︸ ︷︷ ︸
=0

, (A.7)

so thatV T2 A
TAV2 = (AV2)TAV2 = 0 and henceAV2 = 0.

Now the equalityATA = V1W
2V T1 suggests at first sight that we might hope thatA = WV T1 .

However, this cannot be correct in general, sinceA ∈ Rm×n. whereasWV T1 ∈ Rr×n, and so

the dimensions are incorrect. However, ifU ∈ Rk×r satisfiesUTU = Ir, then V1W
2V T1 =

V1WUTUWV T1 and we might hope thatA = UWV T1 . We use this idea todefinea suitableU .

Accordingly, we define

U1 = AV1W
−1 ∈ Rm×r, (A.8)
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so thatA = U1WV T1 , as discussed above. We compute

UT1 U1 = W−1 V T1 A
TAV1W

−1︸ ︷︷ ︸
W 2

= Ir. (A.9)

This means that ther columns ofU1 are an orthonormal set of vectors inRm. Let U2 ∈ Rm×(m−r)

be such thatU = [U1, U2] is orthogonal inRm×m – thus the columns ofU2 are made up of(m − r)
orthonormal vectors such that these, together with those ofU1, form an orthonormal set ofm vectors.

ThusUT2 U1 = 0 ∈ R(m−r)×r andUT1 U2 = 0 ∈ Rr×(m−r). Hence we have

UTAV =

[
UT1

UT2

]
A[V1, V2]

=

[
UT1 A

UT2 A

]
[V1, V2]

=

[
UT1 AV1 UT1 AV2

UT2 AV1 UT2 AV2

]

=

[
UT1 AV1 0

UT2 AV1 0

]
(sinceAV2 = 0)

=

[
W 0

UT2 U1W 0

]

(A.10)

usingU1 = AV1W
−1 andUT1 U1 = Ir, so thatW = UT1 AV1,

UTAV =

[
W 0

0 0

]
(usingUT2 U1 = 0). (A.11)

Hence,

A = U

[
W 0

0 0

]
V T , (A.12)

as claimed. Note that the conditionm ≥ n means thatm ≥ n ≥ r, and so the dimensions of the

various matrices are all valid.

If m < n in the other case, considerB = AT instead. Then by the same argument as above, we

get

AT = B = U ′

[
W ′ 0

0 0

]
V ′

T
, (A.13)

for orthogonal matricesU ′ ∈ Rn×n, V ′ ∈ Rm×m and whereW ′2 holds the positive eigenvalues of

AAT . Taking the transpose, we have

A = V ′

[
W ′ 0

0 0

]
U ′

T
. (A.14)

Finally, we observe that from the given form ofA, it is clear thatrankA = r.

Using the above existence theorem, we can decompose any matrix as above and implicitly show

the existence of the pseudoinverse of any matrix. The calculation of the pseudoinverse is based on the

following theorem.
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Theorem A.1.3. LetA ∈ Rm×n and letU ∈ Rm×m, V ∈ Rn×n, W ∈ Rr×r be as given above via

the singular value decomposition ofA, so thatA = UDV T whereD =

[
W 0

0 0

]
∈ Rm×n. Then

the pseudoinverse ofA is given by

A# = V

[
W−1 0

0 0

]
︸ ︷︷ ︸

n×m

UT . (A.15)

Proof. To prove this is just a matter of checking thatA# of (A.15) satisfies the defining conditions of

the pseudoinverse. We will verify two of these conditions as a simple illustration. LetX = V HUT ,

whereH =

[
W−1 0

0 0

]
∈ Rn×m. Then

AXA = UDV TV HUTUDV T

= U

[
Ir 0

0 0

]
︸ ︷︷ ︸

m×m

[
W 0

0 0

]
︸ ︷︷ ︸

m×n

V T = A. (A.16)

Similarly, one finds thatXAX = X. Next we consider

XA = V HUTUDV T

= V

[
W−1 0

0 0

]
︸ ︷︷ ︸

n×m

UTU︸ ︷︷ ︸
Im

[
W 0

0 0

]
︸ ︷︷ ︸

m×n

V T

= V

[
Ir 0

0 0

]
︸ ︷︷ ︸

n×n

V T

(A.17)

which is clearly symmetric. Similarly, one can verify thatAX = (AX)T , and the proof is complete.

A.2 Computation of SVD

The actual computation of SVD of a matrixA ∈ Rm×n with m ≥ n is described in detail in[Golub

and Van Loan 1996], which is based on the method described in[Golub and Kahan 1965]. Therefore,

only a concise description of the required steps which is based on[Golub and Van Loan 1996] is given

here. The method depends mainly on two main matrix decomposition operations, the Householder

transformations and Givens rotations.

A.2.1 Householder transformation

Let v ∈ Rn be nonzero, then ann× n matrixP of the form

P = I − 2
vvT

vTv
(A.18)

is called aHouseholder transformation, and very often being referred asHouseholder matrixor House-

holder reflection. Such a vectorv is called aHouseholder vector. If a vectorx is multiplied byP , then
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it is reflected in the hyperplanespan{v}⊥. Note thatP is symmetric and orthogonal. The Householder

transformation can be used to zero selected components of a vector.

Suppose we are given nonzero vectorx ∈ Rn and wantPx to be a multiple ofe1, where‖ei‖2 = 1
and all components ofei are zeroes except atith component which is 1. Now

Px =
(
I − 2

vvT

vTv

)
x = x− 2vTx

vTv
v (A.19)

andPx ∈ span{e1} imply v ∈ span{x, e1}. Settingv = x+ αe1 gives

vTx = xTx+ αx1 (A.20)

and

vTv = xTx+ 2αx1 + α2 (A.21)

and therefore

Px =
(

1− 2
xTx+ αx1

xTx+ 2αx1 + α2

)
x− 2α

vTx

vTv
e1. (A.22)

In order to zero the coefficient ofx, we setα = ±‖x‖ for then

v = x± ‖x‖e1 ⇒ Px =
(
I − 2

vvT

vTv

)
x = ∓‖x‖e1. (A.23)

Example A.2.1

Supposex = [1, 3, 1, 5]T andv = [7, 3, 1, 5]T , then we have

P =


−1/6 −1/2 −1/6 −5/6
−1/2 11/14 −1/14 −5/14
−1/6 −1/14 41/42 −5/42
−5/6 −5/14 −5/42 17/42

 , (A.24)

which givesPx = [−6, 0, 0, 0]T as in the calculation shown above. ∗

It is essential to know how a Householder reflection is applied to a matrix. Let the notation

A(ri:rj ,ci:cj) denote the submatrix ofA defined by rowri to row rj and columnci to columncj .

Also let [v, β] = house (x) define the Householder transformation onx whereβ = 2/(vTv).
Suppose we haveA ∈ Rm×n (m ≥ n), we want to obtainB = QTA whereQ is an orthogonal

matrix chosen so thatB(j+1:m,j) = 0 for somej that satisfies1 ≤ j ≤ n. Then we just first calculate

[v, β] = house (A(j:m,j)) to obtain the required Householder matrixP = Im−j+1 − βvvT and the

required

Q =

[
Ij−1 0

0 P

]
= Im − βṽṽT , ṽ =

[
0

v

]
. (A.25)

A.2.2 Givens Rotations

Householder transformations are useful for introducing zeroes on a large scale by annihilating all but
the first component of a vector. However,Givens rotationsare the choice in calculations where it
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is necessary to zero elements more selectively. The Givens rotations are rank-two corrections to the
identity of the form

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0


...
. . .

...
...

...
0 · · · c · · · s · · · 0 i
...

...
. ..

...
...

0 · · · −s · · · c · · · 0 j
...

...
...

. ..
...

0 · · · 0 · · · 0 · · · 1
i j

(A.26)

wherec = cos(θ) ands = sin(θ) for someθ. Givens rotations are orthogonal and by pre-multiplication

byG(i, j, θ)T amount to a counterclockwise rotation ofθ radians in the(i, j) coordinate plane.

The basic purpose of Givens rotations is to zero an element. Givens scalar valuesa, b, we want to

computec = cos(θ) ands = sin(θ) so that[
c s

−s c

]T [
a

b

]
=

[
r

0

]
, (A.27)

wherer is some scalar value.

A.2.3 Bidiagonalisation

Bidiagonalisationis an essential first step for solving SVD. This basically involves several House-

holder transformations. SupposeA ∈ Rm×n andm ≥ n. We next demonstrate how to compute

orthogonalUB (m×m) andVB (n× n) such that

UTBAVB =



d1 f1 0 · · · 0
0 d2 f2 0
...

. . .
. . .

.. .
...

0 · · · dn−1 fn−1

0 · · · 0 dn

0


(A.28)

a bidiagonal matrix.

Basically,UB = U1 · · ·Un andVB = V1 · · ·Vn−2 can each be determined as a product of House-

holder matrices as follows:
× × × ×
× × × ×
× × × ×
× × × ×
× × × ×


U1−→


× × × ×
0 × × ×
0 × × ×
0 × × ×
0 × × ×


V1−→


× × 0 0
0 × × ×
0 × × ×
0 × × ×
0 × × ×


U2−→


× × 0 0
0 × × ×
0 0 × ×
0 0 × ×
0 0 × ×


V2−→


× × 0 0
0 × × 0
0 0 × ×
0 0 × ×
0 0 × ×


U3−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 ×


U4−→


× × 0 0
0 × × 0
0 0 × ×
0 0 0 ×
0 0 0 0


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Therefore, eachUk introduces zeroes into thekth column, whileVk zeroes the appropriate entries in

row k. The whole process is summarised in Algorithm A.1.

GivenA ∈ Rm×n, m ≥ n, this will calculateB = UTBAVB which is upper bidiagonal andUB =
U1 · · ·Un andVB = V1 · · ·Vn−2.

Procedure Householder Bidiagonalisation (A)

for j = 1 to n do

[v, β] = house (A(j:m,j)), UTj =

[
Ij−1 0

0 Im−j+1 − βvvT

]
A = UTj A

if j ≤ n− 2 then

[v, β] = house (AT(j,j+1:n)), Vj =

[
Ij 0

0 In−j − βvvT

]
A = AVj

end if

end for

B = A, UB = U1 · · ·Un, VB = V1 · · ·Vn−2

return (UB , VB , B)

Algorithm A.1: Householder Bidiagonalisation (an illustrative version without optimisation of speed

and storage)

A.2.4 The SVD algorithm

GivenA ∈ Rm×n, m ≥ n, we can calculate the SVD ofA first by reducingA to upper bidiagonal

form as described above in Algorithm A.1 so to obtain

UTBAVB =

[
B

0

]
B =



d1 f1 · · · 0

0 d2
. . .

...
. . .

. . .
. . .

...
. . .

. . . fn−1

0 · · · 0 dn


∈ Rn×n. (A.29)

Then the remaining problem is to compute the SVD ofB. The immediate next step is to try to diago-

naliseB by reducing eachfi to zero. The steps are:

• Compute the eigenvalueλ of

T(n−1:n,n−1:n) =

[
d2
n−1 + f2

n−2 dn−1fn−1

dn−1fn−1 d2
n + f2

n−1

]
(A.30)

that is closer tod2
n + f2

n−1.

• Computec1 = cos(θ1) ands1 = sin(θ1) such that[
c1 s1

−s1 c1

][
d2

1 − λ
d1f1

]
=

[
×
0

]
(A.31)

and setG1 = G(1, 2, θ1), a Givens rotation.
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Then we apply the Givens rotationG1 above toB directly. For illustration, we assumen = 6 and this

gives

B ←− BG1 =



× × 0 0 0 0
+ × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×


. (A.32)

We then can determine Givens rotationsU1, V2, U2, . . . , Vn−1 andUn−1 to chase the unwanted nonzero

element down the bidiagonal as follows:

B ←− UT1 B =



× × + 0 0 0
0 × × 0 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×



B ←− BV2 =



× × 0 0 0 0
0 × × 0 0 0
0 + × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×



B ←− UT2 B =



× × 0 0 0 0
0 × × + 0 0
0 0 × × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×



(A.33)

and so on. Eventually we obtain a new bidiagonalB,

B = (UTn−1 · · ·UT1 )B(G1V2 · · ·Vn−1) = U
T
BV . (A.34)

However, the above procedure can only applied iffk anddk are non-zeros. Iffk = 0 for somek, then

B can be split into [
B1 0

]
k

0 B2 n− k
k n− k

(A.35)

two matricesB1 andB2 and the original SVD problem therefore decouples into two smaller problems.

If dk = 0 for k < n, then by pre-multiplying a sequence of Givens transformations can zerofk. For

example, ifn = 6 andk = 3, then by rotating in row planes (3,4), (3,5), and (3,6) we can zero the
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entire third row as follows:

B =



× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 × × 0
0 0 0 0 × ×
0 0 0 0 0 ×


(3,4)−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 0 + 0
0 0 0 0 × ×
0 0 0 0 0 ×



(3,5)−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 0 0 +
0 0 0 0 × ×
0 0 0 0 0 ×


(3,6)−→



× × 0 0 0 0
0 × × 0 0 0
0 0 0 × 0 0
0 0 0 0 0 0
0 0 0 0 × ×
0 0 0 0 0 ×



(A.36)

If dn = 0, then the last column can be zeroed with a series of column rotations in planes(n −
1, n), (n − 2, n), . . . , (1, n). In summary, we can decouple iff1 · · · fn−1 = 0 or d1 . . . dn = 0. The

precise background idea is presented in[Golub and Kahan 1965; Golub and Van Loan 1996] on which

this description is based. The whole process can be summarised in Algorithm A.2.

Given a bidiagonal matrixB ∈ Rm×n having no zeroes on its diagonal or super diagonal, the algorithm

will returnB = U
T
BV , orthogonal matrixU and orthogonal matrixV .

Procedure Golub-Kahan SVD Step (B)

Let µ be the eigenvalue of the trailing2× 2 submatrix ofT = BTB that is closer totnn.

y = t11 − µ
z = t12

for k = 1 to n− 1 do

Determinec = cos(θ) ands = sin(θ) such that
[
y z

] [ c s

−s c

]
=
[
? 0

]
Vk = G(k, k + 1, θ) whereG is a Givens rotation.

B = BVk

y = bkk; z = bk+1,k

Determinec = cos(θ) ands = sin(θ) such that

[
c s

−s c

]T [
y

z

]
=

[
?

0

]
Uk = G(k, k + 1, θ) whereG is a Givens rotation.

B = UTk B

if k < n− 1 then

y = bk,k+1; z = bk,k+2

end if

end for

U = U1U2 · · ·Un−1; V = V1V2 · · ·Vn−1

B = B

return(B,U, V )

Algorithm A.2: Golub-Kahan SVD step.

Typically, after a few of the Golub-Kahan SVD step in Algorithm A.2, the super diagonal entry

fn−1 becomes negligible. Some criteria for smallness withinB’s band can then be used to zero such
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negligible values. Typically, the criteria is of the form

|fi| ≤ ε(|di|+ |di+1|)

|di| ≤ ε‖B‖
(A.37)

whereε is a small multiple of the unit roundoff and‖ · ‖ is some form of norm.

Combining all of these ideas, we can then obtain the full SVD algorithm in Algorithm A.3. This is

only a crude description demonstrating the steps necessary to calculate the SVD. Many details in terms

of computational implementation have been deliberately omitted since[Golub and Van Loan 1996] has

provided a thorough discussion on the derivation and the possible implementation. Depending on how

much information is needed from SVD, the computational time is in order ofO(mn2) + O(n3) (see

also[Golub and Van Loan 1996]). A SVD algorithm in terms of C in source code is readily available

from [Presset al.1992].
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GivenA ∈ Rm×n (m ≥ n) andε, a small multiple of the unit roundoff, the algorithm returns orthog-

onalU ∈ Rm×n, orthogonalV ∈ Rn×n and diagonal matrixΣ ∈ Rm×n such thatUTAV = Σ + E

whereE is an error matrix.

Procedure SVD (A)

Use Algorithm A.1 to compute the bidiagonalisation:[
B

0

]
← (U1 · · ·Un)TA(V1 · · ·Vn−2)

U = U1 · · ·Un; V = V1 · · ·Vn−2

while q 6= n do

for i = 1 to n− 1 do

if |bi,i+1| ≤ ε(|bii|+ |bi+1,i+1|) then

Setbi,i+1 to zero

end if

end for

Find the largestq and the smallestp such that ifB can be represented by B11 0 0
 p

0 B22 0 n− p− q
0 0 B33 q

p n− p− q q

thenB33 is diagonal andB22 has nonzero super diagonal.

if q < n then

if any diagonal entry inB22 is zerothen

Zero the super diagonal entry in the same row. UpdateB.

UpdateU andV accordingly to the orthogonal transforms used.

else

Apply Algorithm A.2 toB22 to getU andV .

B = diag(Ip, U, Iq+m−m)TBdiag(Ip, V , Iq)
U = U diag(Ip, U, Iq+m−m); V = V diag(Ip, V , Iq)

end if

end if

end while

Σ =

[
B

0

]
return (U ,Σ,V )

Algorithm A.3: The SVD algorithm.
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Appendix B
Normal vector

Theorem B.0.1. Given a set of linearly independentd-dimensional vectorsaj , (1 ≤ j ≤ d − 1), the

vector orthogonal to the span[a1,a2, . . . ,ad−1] is given by expressing the determinant∣∣∣∣∣∣∣∣∣∣
e1 e2 · · · ed

a11 a12 · · · a1d

...
...

. . .
...

a(d−1)1 a(d−1)2 · · · a(d−1)d

∣∣∣∣∣∣∣∣∣∣
(B.1)

in terms ofek, the first row elements of the determinant, whereek are d-dimensional vectors with all

elements equal to zeroes except at thekth position the element is 1, i.e. they are forming a basis for the

d-dimensional space.

Proof. Let ek be vectors as defined in the theorem, and letb = (b1, . . . , bd) andaj = (aj1, . . . , ajd)
(1 ≤ j ≤ d− 1) bed-dimensional vectors. Also let

A =


a11 a12 · · · a1d

a21 a22 · · · a2d

...
...

. ..
...

a(d−1)1 a(d−1)2 · · · a(d−1)d

 (B.2)

be a(d− 1)× d matrix formed by the row vectorsaj .

Consider the following determinant

det(A, b) =

∣∣∣∣∣∣∣∣∣∣
b1 b2 · · · bd

a11 a12 · · · a1d

...
...

. ..
...

a(d−1)1 a(d−1)2 · · · a(d−1)d

∣∣∣∣∣∣∣∣∣∣
(B.3)
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which can be expanded by the first row into

det(A, b) = b1

∣∣∣∣∣∣∣∣
a12 · · · a1d

...
. . .

...

a(d−1)2 · · · a(d−1)d

∣∣∣∣∣∣∣∣− b2
∣∣∣∣∣∣∣∣

a11 · · · a1d

...
. . .

...

a(d−1)1 · · · a(d−1)d

∣∣∣∣∣∣∣∣
+ · · ·+ (−1)d+1bd

∣∣∣∣∣∣∣∣
a11 · · · a1(d−1)

...
.. .

...

a(d−1)1 · · · a(d−1)(d−1)

∣∣∣∣∣∣∣∣
=

d∑
k=1

bkek · vkek = b · v,

(B.4)

expressing in terms ofv = (v1, . . . , vd) where

vk = (−1)k+1 det(Ak) (1 ≤ k ≤ d) (B.5)

andAk is the submatrix ofA with thekth column removed. Butdet(A, b) = 0 if and only if eitherb

is orthogonal tov or b is linearly dependent to the span
[
a1, . . . ,a(d−1)

]
or the set of vectorsak are

linearly dependent, i.e. the elements ofv are all zeroes.

Provided the vectorsaj are linearly independent or in other wordsv is a non-zero vector, we can al-

ways chooseb such thatdet(A, b) = 0. This implies that we can choose anyb ∈ span
[
a1, . . . ,a(d−1)

]
such thatv is orthogonal tob. Hence,

v =

∣∣∣∣∣∣∣∣∣∣
i1 i2 · · · id

a11 a12 · · · a1d

...
...

. ..
...

a(d−1)1 a(d−1)2 · · · a(d−1)d

∣∣∣∣∣∣∣∣∣∣
(B.6)

is always orthogonal to span
[
a1, . . . ,a(d−1)

]
.
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Appendix C
Point location in Delaunay cell via LP

This is an alternative method[Fukuda 1998] for efficiently determining the nearest point set associated

with the Delaunay cell containing a given pointc ∈ Rd. This is done by translating the problem

into a standard linear programming (LP) problem, which can easily be solved by using the simplex

method or other similar techniques. This may provide a more efficient method for simplex location

to improve the geometrical method, LDT, on data modelling. The idea is first to realise that the

Delaunay triangulation can be represented by the convex hull of appropriately lifted points inRd+1,

and the projectedlower facets of the convex hull coincide with the Delaunay triangulation once they

are projected to the original spaceRd+1, as discussed in Section 3.2.2. The technique to find the

Delaunay cell containing the pointc can be simplified to locate the first facet of a polyhedron “hit” by

a ray.

C.1 Reformulation into LP

As described earlier we first lift the point intoRd+1. Let

f(x) = x2
1 + x2

2 + · · ·+ x2
d (C.1)

and let

p̃ = (p, f(x)) ∈ Rd+1 (C.2)

for p ∈ S, i.e. in the given setP of points and the position of the pointp is indicated byx.

Then the lower convex hullP of the lifted points,S̃ = {p̃ : p ∈ S}, represents the Delaunay

complex. For any fixed vector̃y ∈ Rd+1 andy0 ∈ R, let ỹ · x ≥ −y0 denote a general inequality of a

vectorx ∈ Rd+1. For such an inequality to represent a facet ofP , it must be satisfied by all points in

S̃,

ỹ · p̃ ≥ −y0, ∀p̃ ∈ S̃, (C.3)

and by any points shifted vertically upwards, that is point with the last componentỹd+1 ≥ 0.

Furthermore any non-vertical facet can be represented by such an inequality withỹd+1 = 1. For a

given pointc, let c̃ = (c, 0) and letL(λ) = c̃+ λed+1, λ ≥ 1, whereed+1 is the unit vector inRd+1

whose last component is 1.
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Determining the Delaunay cell containingc is equivalent to finding the first facet hit by the halfline

L. Therefore, we need to find a non-vertical facet inequality such that the intersection point of the

corresponding hyperplane{x : y · x = −y0} and the halflineL(λ), λ ≥ 0, is highest possible.

By substitutingL(λ) for x in y · x = −y0 with ỹd+1 = 1, we obtain

λ = −y0 − y · c, (C.4)

wherey denotes the vector̃y without the last coordinatẽyd+1. The LP formulation is therefore

minimise z = y0 + y · c

subject to f(p) + y0 + y · p ≥ 0 for all p ∈ S.
(C.5)

Although an optimal solution (y0,y) to this LP problem does not directly determine any facet in gen-

eral, the simplex method can return an optimal basic solution which can determine a facet inequality

in this case. The Delaunay cell containingc is the one determined by the set of points inS whose

corresponding inequalities are satisfied with equality at an optimal solution.

In some cases, the above LP might be unbounded. This corresponds to the case in whichc is not

in any Delaunay cell, or in other words, not in the convex hull ofS.
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Appendix D
Function optimisation for neural network
training

The aim of learning in a typical feedforward artificial neural network (FANN) or multilayer perceptron

(MLP) is to minimise the instantaneous squared error of the output signalE, by modifying the total

number ofn synaptic weightsw = (w1, w2, . . . , wn) (simply labelled by single subscript for the ease

of explanation) of the whole network, on the given set of input-output data pairs. Therefore, we want

to minimise the scalar cost functionE(w) subject tow ∈ Rn. Without going into details, the usual

technique is to train the network, so that the global minimum ofE(w) is attained. This is done via

backpropagationusing a gradient steepest descent approach to update the weights. At eachith training

cycle, the weights are changed by the following heuristic rule,

w(i+1) = w(i) − µ(i)∇wE(w(i)) (D.1)

whereµ(i) > 0 is the learning rate and it usually has a fixed value and∇w is the gradient operator

with respect tow, i.e

∇wE(w) = ∇E(w) =
[
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂wn

]T
. (D.2)

However, alternative techniques for choosingw to minimiseE(w), based on known function optimi-

sation techniques, are proven to have a much faster convergence rate in many practical applications.

D.1 Error function optimisation strategies

There following are several optimisation strategies which are suitable for neural network training. The

ideas are introduced with minimal but sufficient information for implementation. Much theoretical

background is omitted.

D.1.1 The Newton’s method

Newton’s methodis a well known technique for simple function optimisation but is presented here for

the higher dimensional approach necessary for neural network training. The functionE(w) near the

pointw(i) can be approximated by the first few terms of the Taylor series expansion

E(w) ≈ E(w(i)) + (w −w(i))T∇E(w(i)) +
1
2

(w −w(i))T∇2E(w(i))(w −w(i)), (D.3)
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where

∇2E(w) =


∂2E
∂w2

1

∂2E
∂w1∂w2

· · · ∂2E
∂w1∂wn

∂2E
∂w2∂w1

∂2E
∂w2

2
· · · ∂2E

∂w2∂wn

...
...

.. .
...

∂2E
∂wn∂w1

∂2E
∂wn∂w2

· · · ∂2E
∂w2

n

 , (D.4)

the Hessian matrix of the scalar functionE(w). To minimise this series the next pointw(i+1) must

satisfy

∇E(w(i)) +∇2E(w(i))(w(i+1) −w(i)) = 0 (D.5)

because, at a minimum point,∂E(w)
∂w = 0. If the inverse matrix of the Hessian matrix exists, the above

(D.5) can be rewritten as

w(i+1) = w(i) − [∇2E(w(i))]−1∇E(w(i)) (D.6)

This is the basic updating rule which can be used for the weights training in a MLP. The main disad-

vantages are to require the calculation of the first and second order derivatives and the calculation of

the inverse of the Hessian matrix[∇2E(w)]−1, with the possible problems of computational difficul-

ties and singularity. If the starting pointw(0) is far away from a minimum, the algorithm may diverge.

This happens when the Hessian matrix is notpositive definite– a symmetric matrixA ∈ Rm×m is said

to bepositive definiteif the quadratic formxTAx > 0 for all x 6= 0, x ∈ Rm.

D.1.2 The quasi-Newton method

Thequasi-Newton method, also called thevariable metric method, is designed to overcome the prob-

lem of computing the Hessian matrix in Newton’s method. It is performed by iteratively using suc-

cessively improvedapproximationsto the inverse Hessian instead of the true inverse. The improved

approximation are obtained from the information generated during the gradient descent optimisation

process. The sequential quasi-Newton method employs the differences of two successive iteration

points and the difference of the corresponding gradients to approximate the inverse Hessian matrix.

One implementation of this powerful and sophisticated quasi-Newton method is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm[Fletcher 1987]. It can be formulated by the following

equations,

w(i+1) = w(i) + µ(i)di, (D.7)

where

di ≈ w(i+1) −w(i) = −Hi∇E(w(i)). (D.8)

Be defining

yi = ∇E(w(i+1))−∇E(w(i)), (D.9)

we can update the matrixH by

Hi+1 =
(
I − diy

T
i

dTi yi

)
Hi

(
I − yid

T
i

dTi yi

)
+
did

T
i

dTi yi
. (D.10)
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The learning rateµ(i) ≥ 0 is determined from the one-dimensional line search

µ(i) = arg min
µ≥0

E
[
w(i) − µHi∇E(w(i))

]
. (D.11)

The matrixHi denotes the current approximation to[∇2E(w)]−1. The iterative procedure starts at

an arbitrary pointw(0), preferably close to the true minimum point, with an initial approximationH0

usually taken to be the identity matrixI. This type of variable metric method has eliminated the need

of deriving the second-order derivatives. A C-implementation of this method can be found in[Press

et al.1992].

D.1.3 The conjugate gradient method

Theconjugate gradient methodis an alternative function optimisation technique which is often used

in neural network training. This unconstrained minimisation is derived in such a way that it will

work well, or even exactly, if applied to a quadratic function (usually with positive definite Hessian

H). This method is said to be derived from aquadratic model. Also this method is derived with the

property ofquadratic terminationwhich means that the method will locate the minimising pointw∗

of a quadratic function in a known finite number of iterations, yet can be well applied iteratively to

minimise non-quadratic functions. In this case, the non-quadratic function is the feedforward neural

network.

A particular way of obtaining a quadratic termination is to invoke the concept of theconjugacyof

a set of non-zero vectorsv(1), v(2), . . . , v(n) to a given positive definite matrixH that is

v(i)T

Hv(j) = 0 ∀i 6= j. (D.12)

A conjugate direction methodis one which generates such directions when applied to a quadratic

function with HessianH.

The conjugate gradient method is a technique, of the combination of the conjugate direction infor-

mation and steepest descent method, often enable us to improve the convergence speed of the optimi-

sation. A simple form of this algorithm is formulated by the following equations,

w(i+1) = w(i) + µ(i)di, (D.13)

di = βidi−1 −∇E(w(i)), (D.14)

where

βi =
|∇E(w(i))|2

|∇E(w(i−1))|2
(D.15)

and

µ(i) = arg min
µ≥0

E
[
w(i) + µdi

]
. (D.16)

Therefore, the conjugate gradient algorithm uses information about the direction searchdi−1 from the

previous iteration in order to accelerate the convergence, and each search direction is conjugate if the

objective function is quadratic.

Theoretically, the algorithm will minimise a quadratic function inn or fewer iterations but in prac-

tice, it is usually necessary to restart the optimisation process periodically due to numerical inaccuracy
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of the results in a search direction and/or due to the non-quadratic nature of the problem. The con-

jugate gradient method can be regarded as lying in between the method of steepest descent and the

quasi-Newton methods in terms of the convergence properties and the complexity. The advantage of

the conjugate gradient algorithm is its simplicity for estimation of optimal values of the parametersµ(i)

andβi and no Hessian matrix need to be generated. However, in practice this gradient method does

not seem to be as effective as BFGS (quasi-Newton) method. Details of the theoretical background

can be found in[Fletcher 1987].
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tional pulses in the system variables.Physical Review E, 54(1):198–209, 1996.

[Matoǔsek and Schwarzkopf 1993] J. Matoǔsek and O. Schwarzkopf. On ray shooting convex poly-
topes.Discrete Computational Geometry, 10:215–232, 1993.

[Maus 1984] A. Maus. Delaunay triangulation and convex hull ofn points in expected linear time.
BIT, 24, 1984.

[Melzak 1979] Z.A. Melzak. Multi-indexing and multiple clustering.Mathematical Proceedings of
the Cambridge Philosophical Society, 86:313–337, 1979.

[Meyer 1966] G. Meyer. On the use of Euler’s theorem on rotations for the synthesis of attitude control
systems. Technical Report TN D-3643, NASA, Ames Res. Cen., Moffet Field, CS., 1966.

[Moss 1994] Frank Moss. Chaos under control.NATURE, 370:596–597, 1994.

[Namaj̄unaset al.1995] A. Namaj̄unas, K. Pyragas and A. Tamaševǐcius. Stabilization of an unstable
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