Smooth Data Modelling
and
Stimulus-Response via Stabilisation of
Neural Chaos

A Thesis submitted for the degree of Doctor of Philosophy
in the University of London and for the Diploma of
Membership of Imperial College

by

Alban Pui Man Tsui

z(n — 6)

12

0.6

0.4

5000 10000 15000 20000

Department of Computing
Imperial College of Science, Technology and Medicine
University of London



Abstract

On the basis of studies of the olfactory bulb of a rabbit Freeman suggested that in the rest state the
dynamics of this neural cluster is chaotic, but that when a familiar scent is presented the neural system
rapidly simplifies its behaviour and the dynamics becomes more orderly, more nearly periodic than
when in the rest state. This suggests an interesting model of recognition in biological neural systems.
To realise this in an artificial neural system, some form of control of the chaotic neural behaviour is
necessary to achieve periodic dynamical behaviour when a stimulus is presented.

In this thesis we first study the general problem of modelling smooth systems and introduce a
number of useful techniques relevant to the problem of modelling chaotic dynamics. After a pre-
liminary review of chaotic dynamical systems and their control, and discussing several examples of
neural chaos, we then construct a chaotic neural model. We show how this model can be successfully
controlled using several different parametric control methods. However, such methods of control are
externalto the network and we are interested in the control of higher dimensional networks using a
technique which igntrinsic to the neural dynamics.

Using a higher dimensional system we investigate several methods of control and conclude that
control usingdelayed feedbacis a feasible mechanism for producing the retrieval behaviour de-
scribed by Freeman. Delayed feedback provides a mechanism for stabilisation onto unstable periodic
behaviours. The particular unstable periodic orbit which is stabilised depends quite strongly on the
precise character of the applied stimulus. Thus the system can act as an associative memory in which
the act of recognition corresponds to stabilising onto an unstable periodic orbit which is character-
istic of the applied stimulus. The entire artificial system therefore exhibits an overall behaviour and

response to stimulus which precisely parallels the biological neural behaviour observed by Freeman.
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Chapter

Introduction

This work draws its inspiration frorfFreeman 1991 On the basis of studies of the olfactory bulb

of a rabbit Freeman suggested that in the ‘rest state’ the dynamics of this neural cluster is chaotic,
but that when a familiar scent is presented the neural system rapidly simplifies its behaviour and the
dynamics becomes more orderly, more nearly periodic than when in the rest state. We call this the
‘retrieval behaviour’ since it is analogous to the act of recognition . This suggests an interesting model
of recognition in biological neural systems which is quite different from earlier attempts to use neural
networks for pattern recognition or as associative memories. To create an artificial neural network
which behaves in the manner described by Freeman we have to investigate several fields of study
which at first sight are far removed from the conventional study of neural networks.

To construct such a system we have to consider how best to construct neural models which exhibit
chaotic dynamics. Neural network models which are dynamical systems are not (of course) new.
The classical example is the Hopfield network, for which the simplest case considers nodes whose
outputs are zero or one and where memories are associated with specified (preferably uncorrelated)
point attractors. However, such a model cannot meet our needs. The state space is finite, consisting
of fixed length vectors whose components are zero or one, and hence ‘chaos’ in the classical sense
of dynamical systems, with its infinitely rich variety of modalities will never be exhibited. Indeed for
a symmetric Hopfield network the dynamics are essentially trivial: starting from any initial state the
network will simply iterate to a fixed point.

In contrast if the dynamics are chaotic then unstable periodic orbits are dense on the chaotic attrac-
tor and there are infinitely many of them. Thus an associative memory such as described by Freeman,
for which the computations are performed toabitrary precision, could in principle accommodate
infinitely many memories. At any rate such a system is not subject to the conventional Hopfield upper
bound of0.15n, wheren is number of neuronfAmit et al. 1987. Of course, for the Hopfield net
the situation is rather different. In the Hopfield model memories are associated with specified point
attractors, whereas in the Freeman paradigm memories would be associated with unstable periodic
behaviours which could not be specifiald initio. However, another great attraction of the Freeman
approach is that it introduces the possibility of responding to stimuli over vatyimg scalesusing
behaviours with different periodicities.

Plainly we need to work with network models having continuous node outputs rather than the
discrete outputs of the classical Hopfield model.

One of the major developments of neural networks in the 1980's was the introduction of backprop-
agation which enabled the construction of smooth non-linear input/output models using multilayer
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feedforward neural networks. As we shall see in Chapter 3 it is possible to model a continuous dy-

namical system, which in the first instance may be defined by a system of differential equations, by a

smooth (non-linear) input/output model which over time generates new states of the system based on
a finite number of previous states. This observation is in fact a quite deep theorem due originally to

[Takens 198]L

Historically there have been several interesting models of neural systems which generate chaos
and in Chapter 5 we shall give a brief survey. An early example of such a study was the VCON
oscillator neuron ofHoppensteadt 1989 However, building on the existing knowledge of smooth
non-linear modelling techniques we choose to use an approach based on Takens theorem and construct
feedforward networks which can form accurate iterative models of any given system.

We therefore start in Chapter 2 by examining some recent developments in data analysis and mod-
elling under noise, the Gamma tékbntar 1997; Stefinssoret al. 1997, which help us to construct
smooth non-linear models with some degree of efficiency. Use of the Gamma test eliminates much
of the tiresome process of trial and error often associated with training a feedforward neural network.
In particular we study how much can be inferred about the required architecture for the feedforward
network directly from the training data.

In Chapter 3 we digress slightly and investigate other possible modelling techniques which might
provide alternative methods for prediction without the long training times often associated with feed-
forward neural network model building. These techniques are all based on estimating the correspond-
ing output of a hitherto unseen input using tbeal near neighbour information of the input signal in
the input space of the training data. Extraction of such local information is accomplished using a data
structure known asled-tree kd-trees are also basic to the Gamma test and are described in some detail
in Chapter 3. In Chapter 4, more examples of applications which require smooth data modelling are
given, as well as many essential pre-processing techniques introduced for improving the modelling.

Once we have developed diverse and relatively efficient techniques for modelling smooth non-
linear functions we are then able to meet the requirement of constructing feedforward networks that
approximate iterative chaotic maps with a very small mean-squared error (of the otderpf

Having seen how to exhibit neural chaos the next question becomes how to control it? We approach
this issue by considering a range of existing techniques which since 1989 have been used to control an
enormous range of different types of chaotic systems. Historically the first of these was a technique
due to Ott, Grebogi and Yorke, known as &Y methodOtt et al. 1994 and we describe this
method in some detail in Chapter 5. The basic idea is that a chaotic system exhibits numerous unstable
periodic orbits and, having located one such behaviour, the OGY method seeks to stabilise this orbit
using small variations of some accessible system parameter.

Many such methods require careful and systematic analysis of the chaotic dynamical behaviour,
which is usually difficult and computationally expensive, before successful control can be achieved.
Moreover, such control techniques aeternalto the system being controlled, whereas for a neural
system to behave as described Byeeman 1991the control should bitrinsic to the neural dynam-
ics. Nevertheless, such preliminary studies serve as a useful starting point for studying the control of
neural chaos. In Chapter 6, many simple examples of controlling chaotic artificial neural networks are
given.

The dynamics of large neural ensembles are high-dimensional, and whilst the OGY technique is an
effective tool for the control of low dimensional chaos it needs further elaboration for effective control
of higher dimensional systems. Indeed, for higher dimensional systems it may be that other types
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of control procedures will prove far more effective. To investigate the control of higher dimensional
chaos as a starting point for the discussion of higher dimensional neural chaos we have chosen a
well studied dynamical system described by a modified form of the Euler equations, the so called
chaotic satellite attitude control problem. In Chapter 7 we apply various techniques to a variation of
the chaotic satellite attitude control problem and show that it is possible to stabilise the system in a
situation where five of the six sensors (three angular velocities and three attitude angles) and two of the
three thrusters are inoperative. It emerges from the work of this chapter that a remarkably simple and
effective method of stabilisation onto an unstable periodic behaviour can be effected by the application
of delayed feedback. Delayed feedback to cortomitinuousdynamical systems exhibiting chaos was

first suggested ifPyragas 1992 We use a modified version of this approach to stabilise an iterative
neural model (previously trained to generate chaotic behaviour in the ‘rest state’) in the presence of an
input stimulus. We determine that the response to a particular stimulus is remarkably robust in the face
of noise. A result which we found to be rather surprising whilst at the time extremely encouraging.

Little theoretical analysis is available for the Pyragas method of continuous delayed feedback con-
trol, let alone for the discrete form of the method used here. However, a discrete version of a variation
of Pyragas’ method has already successfully been applied gytiwlronisatiorof two identical iter-
ative chaotic maps ifOliveira and Jones 1998The version used there feynchronisations similar
to but not identical to the method used heredtbilisation [Oliveira and Jones 199@lso contained
a suggestive discussion of the local stability properties of the method used. For botértbe Hap
and the chaotic neural network used here it was shown that whilst the synchronisation control method
used by[Oliveira and Jones 1998vas not locally stable it was neverthelgssbabilistically locally
stable

We provide a similar empirical analysis for the method of stabilisation proposed here in the case
where no external stimulus is present.

One of the attractions of delayed feedback stabilisation is that it has a very low computational
overhead and so is extremely easy to implement in hardware. It would also be very easy to implement
in biological neural circuitry and so offers one plausible mechanism whereby such stabilisation might
occur.

The particular unstable periodic orbit which is stabilised depends quite strongly on the precise
character of the applied stimulus. Thus the system can act as an associative memory in which the act
of recognition corresponds to stabilising onto an unstable periodic orbit which is characteristic of the
applied stimulus. The entire artificial system therefore exhibits an overall behaviour and response to
stimulus which precisely parallels the biological neural behaviour observed by Freeman.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



20

Chapter

Feedforward neural network modelling &
the Gamma test

Feedforward artificial neural networks (FANN for short) with a smooth sigmoidal have been com-
monly chosen as the choice for modelling smooth input-output systems. A suitable architecture for the
feedforward network and an effective learning algorithm can often be used to model data or predict
time series with good accura¢racopoulos and Jones 199 this chapter we sketch these funda-
mental results on the modelling capability of feedforward neural networks. An alternative graphical
explanation of feedforward networks based on ideas due to Lapealesdes and Farber 1998 also
presented.

A data noise estimation technique called Geemma tesis then presented and discussed in terms of
its usefulness and relevance to automating neural network construction for data modelling. Basically,
this is an introduction to the Gamma test which will be continuously used and exploited in the rest of
this work.

2.1 Feedforward neural network approximation

The theoretical basis for feedforward neural network approximation stems from the fact that standard
feedforward neural networks, with as few as one hidden layer, using (fixed) arbitrary sigmoidal func-
tions, can approximate to any desired degree of accuracy any continuous fufictRsh— R™ over
a compact subset @&", provided sufficiently many hidden units are availalt®rnik et al. 1989;
Cybenko 198R This is, of course, an existence theorem and gives no guarantee that any particu-
lar training method will converge to the required approximation, nor any indication of the number
of hidden units required. However, it is an important result. These results depend essentially on the
Stone-Weierstrass theoremnich asserts that an algehraof real continuous functions, that separates
points on a compact s&tand does not vanish at any point/6fis densen the space of reaontinuous
functions onkC.

In practice a second hidden layer can often be used to reduce the number of hidden units in a single
hidden layer network, so leading to a more efficient representation.

Here we present a simple theorem on feedforward neural network modelling to illustrate the idea
that a feedforward neural network can be viewed as an approximation function. In this example we
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show that any continuous function on a squar&ncan be approximated by a 3-layedforward

neural network[Blum and Li 199]. The result requires the use of a special case of the Stone-
Weierstrass theorem which says that any continuous function on such a square can be approximated
by a sum of cosine functions. Here is the theorem we need without the proof:

Theorem 2.1.1 (Stone-Weierstrass theorem special casé)et f : [0, 7]> — R be continuous. For
any givere > 0, there isN € N and constantg,,,,,, with0 < m,n < N, such that

N
flz,y) — Z Amn, cos(mz) cos(ny)| < e (2.1)

m,n=0

forall (z,y) € [0, 7]%.

Stated in this form the result bears a strong resemblance to Fourier's theorem, but we are not
interested here in performing Fourier analysis. Our plan is simply to prove an approximation theorem
for feedforward networks using threshold neurons. Define

step(z) =1 if x>0, otherwise step(z) =0. (2.2)

We first establish thatos(¢) can be uniformly approximated by a suitable linear combination of such
step functions, i.e.

Lemma 2.1.1. Let
M
~y(t) = ijstep (t—96,) (2.3)
j=1
Givend > 0and X > 0, X € N we can choosd/ = M(4, X), M € N, sufficiently large and real
numbersw; andé; (1 < j < M) so that

|v(t) —cos(t)| <o for |t <2X7w (2.4)

Sketch proof.The idea is simply that we approximates(t) by a sequence a¥//2 small horizontal
line segments, where each line segment is composed from a pair of step functions. This process is
illustrated in Figure 2.1. [

We can use this lemma to establish

Theorem 2.1.2.Let f : [0, 7]> — R be continuous. For any given> 0, there is a 3-layer feedfor-
ward neural network with McCulloch-Pitts neurons in the hidden layer and a linear output unit which
approximatesf on [0, 1] to withine.

Proof. According to Theorem 2.1.1 above, there\isand constants,,,,,, 0 < m,n < N, such that

N
flz,y) — Z Umn cos(ma) cos(ny)| < ¢ (2.5)
m,n=0 2
forall (z,y) € [0,7]?. Let K = max |am,|. We express
cos(ma) cos(ny) cos(max + ny) + cos(mx — ny) 2.6)

2

1This includes the input layer, one hidden layer and one output layer.
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cos(x)

Figure 2.1: cos(z) can be approximated byline segments for which each line segment is composed
from a pair of step functions.

and also note thdtnx + ny| < 2N= for any (z, y) € [0, 7). Writing

N
h(z,y) = Z a% (cos(mx + ny) + cos(mx — ny)) (2.7)

m,n=0

we have from (2.5)

Fa.y) = hla,y)| < 5. (2.8)

We next use Lemma 2.1.1, takidg= ¢/(4(N +1)?K), to approximate the sum of cosines and obtain

hla,y) = Y- B (n(ma +ny) +7a(ma — ny))

m,n

€ €
- ; B (4(N +1)2K + AN + 1)2K> (2.9)

€ €
<;2(N+1)2 )

If we now examine the feedforward network illustrated in Figure 2.2 we see that the guipy) of
the network is precisely a linear combination of step functions,

N

slen= 3 L2 (1 (ma + ny) + 2(ma — ny))

’ (2.10)

N a M M

= Z % Z u;step(mz +ny — ;) + Z vjstep(maz — ny — v;)
m,n=0 j=1 j=1
Inequalities (2.8) and (2.9) give
|f(z,y) —g(z,9)| < |f(z,y) = bz, y)| + |h(z,y) — g(z,y)|
cEyf_ (2.11)
272" ¢

for (x,y) € [0, 71]?. ]

More detailed examples and more general theorems for different type of activation functions can
be found in[Hornik et al. 1989; Cybenko 1999 The main point concluded from these results is
that multilayer feedforward networks are a classuofversal approximators In general anyf €
C'[S], the space of continuous real functions on a compact suBs#tR", can be arbitrarily closely
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(a,,u)2

N g(x, »)

(a,,v)2

mn V.

Figure 2.2: The 3-layer neural network implementirfgo within e. The network hagN +1)% x M +
(N +1)? x M hidden neurons (doubly labelled by, n, j). The two weights from the inputs to the
hidden neuron labelleth, n, j in the top half aren andn, whereas those to the hidden neurann,

j in the bottom half aren and—n.

approximated in the uniform norm by a two-layer feedforward network with semi-linear hidden units
using a sigmoidal threshold functiog, and one linear output urliHornik et al. 1989. Thus

f(z) ~c Zwig Z QaijTj — C4 (2.12)
i=1 j=1

where the weights); anda;; and thresholds; are real numbers. The symlre| denotes the approx-
imation with error< e. The functiong is @ monotone real function with(z) — 0 asz — —oc and
g(z) — lasz — oc.

2.2 Graphical understanding of FANNs

For a clearer understanding of the functionality of a feedforward network, Lagédpsdes and
Farber 198Bhas opted for a graphical and modular approach to construct a feedforward network to
model a surface, i.¢f : [0,1]*> — R.

Lapedes’ basic recipe will produce a ‘hill' by constructing a network with 2 hidden layers of
sigmoidal nodes and a summing output layer. Here is a simple recipe for a neural unit of 2 inputs and
1 output to produce a hill:

1. Construct a ‘sigmoidal surface’ with a single node, see Figure 2.3. The weights set the orienta-
tion of the facing slope and the threshold value positions the slope on the input space.

2. Construct another ‘sigmoidal surface’ with another node with the same set of weights (i.e. the
same orientation) and a threshold with a suitable slight offset from the previous threshold value.
The difference of the outputs of the two nodes can produce a ‘ridge’ surface (Figure 2.4).

3. Similarly produce another ‘ridge’ perpendicular to the previous ‘ridge’ using the previous two
steps but with different set of weights and thresholds. The sum of the two ‘ridges’ will produce
a ‘gentle’ hill as shown in Figure 2.5.
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Figure 2.3: Single sigmoidal nodeo((20z + Figure 2.4: Adding another sigmoidal node
20y +10) with T' = 2) can produce a ‘sigmoidal ~ with suitable weights £(20z + 20y + 10) —
surface’ for this 2 inputs and 1 output system. ¢ (20z + 20y + 20) with 7" = 2) can produce

aridge.
S
\.9?’~
. ".::.:..::::.~
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Figure 2.5: The intersection of two ‘ridges’ Figure 2.6: Suitable choice of weights, thresh-
placed perpendicularly to each other forms a olds for the final layer can smooth off the un-
gentle ‘hill’ surface. wanted trailing ridges.

4. Passing the sum into another sigmoidal node to flatten the unwanted elevations to form a perfect
round hill surface, Figure 2.6.

Further hills on the same surface can be produced by constructing different units and then their outputs
can be passed through a summing node. One should note that the steepness of hills depends on the
temperatures] (i.e. slopes) of the sigmoidal nodes.

Based on this recipe, we can produce a hill using the architecture shown in Figure 2.7. The sections
A andB correspond to the two ‘ridges’ described in step 1 and 2 of the recipe. The n@uis #te
node which smoothes off the trailing ‘ridges’ of the intersection of the two ‘ridges’ as in step 4. The
final node aD is a sum node for summing all the hills together.

This graphical approach inspires an interesting idea, that of using the ‘slope’ estimate in the
Gamma testStefanssoret al. 1997 to construct suitable feedforward neural networks to model data of
input and output pairs. Early investigation shows how the second parametaurned by the Gamma
test can be used to estimate the number of hidden nodes for a single hidden layer feedforward neural
network which are required to attain the best achievable perfornfanggout any further discussion
of this new idea which can be found later in the chapter, let us introduce the Gamma test.

2A joint investigation with Nenad Encar
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inputs

Figure 2.7: Connectivity of a unit to produce a hill. Add 4 more nodes to hidden layer 1 and one more
node to hidden layer 2 for each additional hill.

2.3 The Gamma test - an introduction

In a recent papdiStefanssoret al. 1997 a simple test (th&amma tegtwhich, in many situations, can
accurately estimate from the available input/output data the best achievable performance of a smooth
data model was developed. For non-linear modelling applications, and in particular for feedforward
neural networks trained by backpropagation, such a test is extremely useful because it enables us
to predict the best achievable performance of the model without the time consuming necessity of
estimating this empirically by creating, training and testing a number of networks.

The Gamma test is a data analysis routine, that (in an optimal implementation) runs in time
O(M log M) asM — oo, whereM is the number of sample data points, and which offers an estimate
of the best Mean Squared Error (MSE) that can be achieved by any continuous or smooth (bounded
first partial derivatives) data model constructed using the data without over-fitting. For completeness
we briefly describe the Gamma test but here we are interested in how the complexity of the modelling
task can be estimated rather than the best achievable MSE.

Let a data sample be represented by

((x1, 22, yxq),y) = (2, y) (2.13)

in which we think of the vectorr = (z1,...,24) as the input, confined to a closed boundedet
and the scalay as the output. In the interests of simplicity the following explanation is presented for
a single scalar output which is assumed, whenevgiis the output of a neural network, to lie in the
interval (0,1). But the same algorithm can be applied to the situation whesea vector with very
little extra complication or time penalty.

We focus on the case where samples are generated by an unknown continuous finafion
R¢ — R and

y=f(x1,29,... ,2q) +r (2.14)

wherer represents an indeterminable part, which may be due to real noise or might be due to lack of
functional determination in the posited input/output relationship i.e. an element of5amany-ness’
present in the data. Over-training can eliminate the first of these for a particular training data set,
but no amount of over-training can eliminate the second. In the case of applications to a time series
s(t), when the data might represent a numbéf of successive samples({ — 1),... ,s(t — d’)) in

time andy represens(t), the indeterminable quantitymay result from an insufficient embeddihg

3An embedding is a technique for reconstructing dynamics using delay coordinates. Further discussion in Section 4.1.1.
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dimensiond’. For the present we treat the issue as a data processing problem invigistatistical
noise uncorrelated witle or y andMean(r) = 0.

In essence the Gamma test returns two numtgrsl, in whichT is an estimate of the MSE of
an outputy, and in the case where the data is uniformly distributed in input sgaseapproximately
1(IVf?) [KonEar 1997, where the angle brackets denote expectation with respect to the sampling
distribution. Thus provided € [0, 1] (or some fixed bounded interval) is a rough measure of the
complexity of the surface to be modelled. In constructing feedforward neural networks the ability to
quickly estimate from the training data the surface complexity we seek to model is useful because one
would expect such a measure to be correlated with the architecture of the required neural network.
In particular it can be used to give us some idea of how many hidden layer units are required for the
network to be capable of producing the MSE suggested by the Gamma test. Parsimony of hidden units
is important because we are seeking to interpolatsith@lesthigher dimensional surface which can
be generated by a feedforward neural network through the data set without over-fitting.

First a series of experiments are performed to investigate and/or validate the functionality of the
Gamma test. Then the rest of this chapter will discuss how the second parameter returned by the
Gamma test can be used to estimate the number of hidden nodes for a single hidden layer feedforward
neural network which are required to attain the best achievable performance. Other statistics might
easily be used to estimate surface complexity from the data, however a significant consideration here
is that whatever method is used the algorithm should have a reasonable run time if we expect to be
processing a large data set. Since the Gamma test ruf$lihlog M) time and we already need
this algorithm to estimate the best achievable MSE without over-fitting it seemed natural to begin by
investigating how the slope parametkis correlated with the required number of hidden units.

The later section will discuss a good correlation between the valde@tfurned by the Gamma test
and the number of hidden layer neurons required to attain a good model of the data using a feedforward
neural network with one hidden layer. In order to enable simple visualisation we have restricted the
number of inputs in these experiments to 2 or 3 but the same principles can be applied regardless of the
number of inputs provided that sufficient data is available. The purpose here is to convince the reader
that the approach has some promise rather than to describe a precise formula for automated neural net
construction.

The results presented in Section 2.4 are preliminary but indicate that the method is quite practical.
The approach offers the possibility that the entire process of performance prediction and constructing
a feedforward neural network which attains the best achievable performance on the basis of given
training data can be automated with a fair degree of reliability.

For the Gamma test to be applicable the following assumptions are required. We assume that
training and testing data are different sample sets in which:

e Assumption A

1. the training set inputs are non-sparse in input-space.

2. Each output is determined from the inputs by a deterministic process which is the same for
both training and test sets.

3. Each output is subjected to statistical noise whose distribution may be different for different
outputs but which is the same in both training and test sets for corresponding outputs.

Given samples such as (2.13), in which the underlying continuous fungtisnunknown, we
cannot hope to estimate the mearmf r, since a non-zero mean will create a bias which could just
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as easily be incorporated into the data model by considgfritagbe replaced by + p. We therefore
assume in what follows that = 0.

In point of fact it is the variance of, Var(r), which is of real interest. For example, if we were
using a number of samples such as (2.13) to train a neural network#hér) provides a lower bound
for the mean squared error of the output.e. the variance of — f(z)), beyond which, if the estimate
is accurate and\ssumption A holds, any attempt to improve the neural network model by further
training would at best result in over-training. Indeed, this is trueafoy continuous or smooth data
modelling technique.

The Gamma test is a very simple method for estimatiag(r). The most time consuming part of
the process is to compute near neighbour lists for each poibtit assuming that a bounded number
of near neighbours are required (we found thgat. = 20 or 30 near neighbours is typically ade-
quate) this can be done ®(M log M) time using kd-treefBentley 197%. Supposedx(i), y(i)) and
(z(4),y(j)), ¢ # j, are two data samples. The basis of the idea is the observationdt{at &ndx(j)
are near neighbours in input space gnd continuous theg(i) andy(j) should be near in the output
space. Thus, for example, we should not expect the test to work welkitnparity, where the input
vectors (being the vertices of ahcube) are sparse and the output values (1 or 0) are uncorrelated for
input-space near neighbours.

Suppos€x, y) is a data sample. Létc’,y’) be a data sample such tHat — x| > 0 is minimal.
Here|-| denotes Euclidean distance and the minimum is taken over the set of all sample points different
from z. Thusz’ is the nearest neighbour do(in any ambiguous case we create a list of all equidistant
points and incorporate them into the averaging).

The Gamma test (or near neighbour technique) is based on the statistic

1 ' N2
Y= 537 ;@ (1) = ()" (2.15)
Let 5 be the mean-squared first near neighbour distance. One can show that under reasonable condi-
tions

;irr(l)v = Var(r) (2.16)

where the convergence éenvergence in probabilityFor a finite set of data samples we cannot have
arbitrarily small nearest neighbour distances. However, in practice even the crude measure provided
by (2.15) often proves very useful.

If one is prepared to assume thfais smooth with bounded first partial derivatives we can obtain a
more precise estimate than (2.15) by using a regression line fit on the statisliiov given data sam-
ples(z(i),y (7)), wherex(i) = (z1(2), ... ,zm (7)), 1 <i < M, let N[i, p] be the list of (equidistant)
p™ nearest neighbours te(i). We write

1 1 , . 1 < . .
0(p) = 37 Z ) > =) - =) = Vi ; (Vi pl) — =) (2.17)

JENi,p]

where L(NTi, p]) is the length of the listV[i,p]. Thusd(p) is the mean square distance to e
nearest neighbour. We also write

v(p) = ﬁ > L(% > () —y@)? (2.18)

i=1 i Pl) S
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where they observations are subject to statistical noise assumed independeahdfhaving bounded
variance.
Under reasonable conditions one can show that

v = Var(r) + Ad + o(9) as M — o (2.19)

where the convergence is in probability. From which it follows thaty = Var(r) (in probability) as
6 — 0.

This Gamma test computes the mean-squafedearest neighbour distanc&®) (1 < p < Pmasx.
typically pmax = 10) and the corresponding(p). The regression line ob(p), v(p)) is computed and
the vertical intercepl is returned as the Gamma value. Effectively this is the limity asé — 0
(i.e. M — oo) which in theory isVar(r).

The original version of the Gamma test[Btefinssoret al. 1997; Kortar 1997 used smoothed
versions of§(p) andv(p) given by

P M
AG) =23 37 S [ H) — a() (2.20)
h=1 =1
and
P = 53 g7 3 WONTAD) vl (221)

The idea being that these equations rolled off the significance of more distant near neighbours. Thus
taking pmayx large in such an implementation often does not significantly alter the resiilimatue. In-
deed all the values df reported in this chapter (and the discussion of the Gamma-minimum-predictor
in Chapter 3) are based on the original version of the algorithm. However, later experience showed that
providedpmax is kept small the extra complication of computidgp) andT (p) is largely unnecessary
(although this form of the Gamma test can sometimes produce letistimates whed/ is small)
and the later implementations are based on equations (2.17) and (2.18).

An implementation of the Gamma test is given in Algorithm 2.1. The method used to construct the
near neighbour lists can &(M2) or O(M log M) depending on the sophistication of the coding.

Procedure: Gamma Test(data)
{data is an array of point&e(i), y(i)), (1 < i < M), in which is a real vector of dimensiod
andy is a real scalgr
for i = 1to M do
{computex nearest neighbou}s
for p = 110 pmay do
Ni,p] = t wherex(t) is thep™ nearest neighbour te(i).
end for
end for
for p = 110 pyuax do
computeA(p) as in (2.20) for original version (or replaced with (2.17) for later version)
computel’(p) as in (2.21) for original version (or replaced with (2.18) for later version)
end for
Perform least squares fit on coordinéte(p), I'(p)) (or replaced with(é(p), v(p)) for later version
(1 < p < Pmax) Obtaining (sayy = Az + T
return (T, A)

Algorithm 2.1: The Gamma test algorithm.
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2.3.1 Some supporting analysis for the Gamma test

Since the full justification of the theoretical background of the Gamma test is not completely published
and available, we outline some supporting analysis and present two illustrative experiments.
Consider the term

S0 ) = S (@) + '~ f(2) —r)?
1 , (2.22)
= (0" =)+ (f(@) = f@))’.

Using the smoothness hypothesis on the unknown fungtime can expand the term

fa') = f(z) = (&' — ) f'(2) + O]z — z|*) (2.23)
and substitute back into (2.22) to obtain
S 0 = 2 (07 =)+ (@ — @) f @)+ O~ al?))?
= L0 =P D@ ) f (@)

— [b] (2.24)

+5 (@ —2) f'@)° + (' = O(a’ — af*) +0(a’ ~ al’)

[ (d]

If we now average both sides ovex ¢ < M we can consider each term separately. Let us write

M
_ L o >
A = [Var(r) 2M;(71 ri)?, (2.25)
1 M
I o N
B= M;(TZ Ti)(xi wz) V fo=a|, (2.26)
1 M
N o 2
and
1 M
— | I I .2
D= M;(“ ri)l@’s — || . (2.28)

To justify (2.15) it is sufficient ad/ — oo that each of these terms tends to zero. Bof andD
this is fairly clear by virtue of the assumption that there are no isolated points inspace sampling
distribution, i.e. thatx’ — x| — 0 asM — oo, and the fact tha¥/ f is assumed bounded.

That A — 0 asM — oo follows from the assumption that; andr; are uncorrelated. In fact,
sinceMean(r) = 0, we would expect that, with probability oné = O(M~1/2) asM — oc.

To establish (2.19) is more demanding. We have to show not only that these terms tend to zero but
that the ternC, which corresponds to the terdy in (2.19), does so morgowlythan the termsA , B
andD. In other words we could justify (2.19) if we could prove that

A=0(M~2%) =o(C)
B =0(C) as M — co. (2.29)
D =0(C)
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What should we expect for the order 6? Heuristic considerations suggest that; — x) ~
M~Y4asM — oo, whered is the dimension of the support of the sampling distributiorispace,
see for exampl@Melzak 1979 for more formal results. In which case we expect that M —2/¢ as
M — oo. Sothatd = o(C) providedl/2 > 2/d, i.e.d > 4. We should recognise that in seeking
to justify (2.19) by treating each of these terms separately we loose useful cancellation between error
terms. In practice the Gamma test based on (2.19) seems to work very well edes for

Now consider the requirement tht= o(C). We regard the individual terms of the sumAnas
noiser’; — r;, which has mean zero, multiplied by terfws’; — x;) - V f in which V f is bounded
and(z'; — x;) ~ M~'/4asM — oco. We should therefore expetto be O(M~(1/4+1/2)) with
probability one. Thud3 = o(C) providedl/d + 1/2 > 2/d, i.e.d > 2.

The final requirement is tha = o(C). The individual termgz’; — x;|? of the sum inD are
similar in magnitude to those ¢fexcept that each is multiplied by a noise terin—r;. The net effect
on the sum is to introduce cancellation. We should expectthatO (M ~(2/4+1/2)) with probability
one asM — oo. ThusD = o(C) provided2/d + 1/2 > 2/d, which is automatically satisfied.

We next give two simple experiments to check if these terms behave along the lines predicted. We

taked = 6 and use the function
f(z1, w2, 23, 24, T5,76) = 7 + x5 + 235 + 25 + 22 + 22 (2.30)

with —1 < z; < 1 and a uniform sampling distribution ie-space. First we try with a uniform noise
distribution withVar(r) = 0.09. By increasingV/ we can repeatedly calculate the corresponding term
A and we can then perform a linear regression to fit a line to the plbigofl againstlog M. The
gradient of this line is then the valyeof A =~ M?9. Similarly this procedure can be repeated for the
termsB andC. We then plot the gradienig of the “loglog” plots for the terms4, 5 andC against
M to check the asymptotic values @f The result for the uniformly distributed noise experiment is
shown in Figure 2.8. The asymptotic behaviour of the critical terms is approximdtety ) —0-57,
B~ M~%%3 andC ~ M~%3, so thatC is the dominant term as required.

The experiment is repeated for Gaussian noise with miéam(r) = 0 and varianc&/ar(r) =
0.09. The corresponding result is shown in Figure 2.9. Here the asymptotic behaviour of the critical
terms is approximatelyd ~ M~193 B ~ M~ andC ~ M~°3% so that once agaifi is

dominant.
In practice such large values df are not necessary when using the Gamma test on data generated
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Figure 2.8: Gradientg; of the “loglog” plots for the termsA, B andC against varying\/ for uniformly
distributed random noise with variance about 0.09
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Figure 2.9: Gradientgy of the “loglog” plots for the termsA, B andC against varyingy/ for Gaussian
noise, with mean 0 anWar(r) = 0.09.

by such simple surfaces

2.3.2 Gammatestin higher-dimensional input space

A simple experiment is set up to investiage how the Gamma test (original form) behaves when the
input vectors are higher-dimensional. First define a function

d
fl@) = W;sin®(a;z; + by), (2.31)
=1

wherez; is thei" component of vectog with 0 < z; < 1, ¥; = cos?(i), a; = 0.5cos?(iv/2) and
b; = sin?(i\/6), for generating sample data. The choice of these parameters was arbitrary, subject to
the requirement of maintaining model complexity. In fact, this is the underlying model to be implicitly
approximated by the Gamma test in order to measure the level of noise of the data. For each dimension
d, M data points are generated by this function and random noise, of 20% of the size of the output
range,| max f(x) —min f ()|, of the functionf in (2.31), is then added to the outputs of the sampled
data.

For eachd, we increasél/ and measure the true variance of the noiae(r) and also calculaté
for comparisonM is increased until approximately

’f‘ - Var(r)|

V) <005 (2.32)

i.e. the percentage error bfis less than 5 percent. This is done foirom 2 to 11.

Some of the results are shown in Figures 2.10-2.12. To achieve the desired 5% error, the Gamma
test only requires about 700 data tbe= 3 whereas forl = 11, it requires over 10000 data. In fact, the
error still fluctuates after 10000 data fde= 11. Therefore it appears that for highérthe largerM is
required to approximate the variance of noise. However, very much larger valdésod required to
stabilise the gradiem.

Of course, this is founiformly distributed input data. For many of the examples of interest the
support of the sampling distribution in input space has small Hausdoff dimension. In such cases far
fewer data samples are required to get an accurate estimate.

To summarise, if there are enough data available, the Gamma test can capture very well the variance
of noise,Var(r) as shown in Figures 2.10-2.12. To have a better estimatdafthe same problem, a

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



2.3 The Gamma test - an introduction

32

Noise
0.00034 Gamma bar
000032 +——— > |- Varr
0.0003 - ST - —
0.00028 SN
0.00026
0.00024 t t t t t t t t t t t t t {
300 500 700 900 2000 4000 6000
Sample size M
Slope A
0.0025
0.002
0.0015
0.001
0.0005
0 f f f f f f f f f f f f f i
300 500 700 900 2000 4000 6000
Sample size M
Error (%)
20
15
10
5
0 1 1 1 1 1 1 1 1 ‘ ‘ —
300 500 700 900 2000 4000 6000
Sample size M
Figure 2.10: Gamma test experiment result fd= 3.
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Figure 2.11: High-dimensional Gamma test result #be 9.
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Figure 2.12: High-dimensional Gamma test result ibe= 11.

much largerM/ is required. For simpler surfaces the numbérequired is much smaller. The practical
usefulness of an accurateis discussed next.

2.4 Analysis of relationship betweend and neural models

In what follows, we try to discuss the strong relationship between the data and the neural architecture
required to model the data, based on experimental observations. The main results and data from these
experiments have been presenteddontar 1997, therefore we only provide brief descriptions and
general discussion.

Figure 2.13: One hill (2-4-1). Figure 2.14: Six hills (2-10-1).
We try to demonstrate the correlation betwekralculated from a data set in which the underlying
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model was supposed unknown, and the ideal minimum number of hidden layer neurons required to
attain the best (neural) model possible without over-fitting the data. We as$isvadready accurately
estimated using larg&f (the number of data for the Gamma test). Thus we first create a routine which
constructs a Z-1 neural network with an input/output surface for which the number of hills is pre-
specified. This is very simply done and is based on the ideas descrilisxpiedes and Farber 1988
described in Section 2.2, but with only one hidden layer for ease of comparison with the neural network
architecture. By placing ridges in parallel vertically and similarlyridges horizontally we can obtain

an input/output surface, withi hills usingh = 2(k + [) hidden units, for which the output neuron
performs the flattening of unwanted elevations. This is a parsimonious use of hidden units to create
maximal surface complexity and represents in some sense a ‘worst case’ scenario. (See Figures 2.13 —
2.14)

The next step is to create an experimental input/output data set by selecting an input vector at
random and then propagating these inputs through the ideal network to obtain the associated output.
In this way we can generate as many points in our data set as we wish, so that we can perform the
Gamma test on these data to obtdin Then the relationship between the number of hidden units of
the neural networks and the valdefor a fixed size of sampled data can be compared. We concluded
that there was a reasonably linear correlation between the digmel the number of hidden units.

Similarly, we also extend the experiment with 3 inputs and 1 output neural network. Instead of
using the neural network to construct surfaces, we construct 3D density field as illustrated in Fig-
ure 2.15, which employs both a grey scale and variations in point-size to indicate the variation of the
output. Again, we could see a near linear correlation betweand the number of hidden nodes.

Figure 2.15: Discrete approximation to the 3D density field output of a 3-12-1 neural network.

We next define a class of surfaces for which a single parameter can be varied so as to increase or
decrease the complexity. This is easily done by writing

1+ sin(p(2z + 3y))

fla,y) =015+ o= + sin(p(z — ))

, (2.33)

Increasing the value gf causes the surface to become progressively more complex. For each surface
generated by varying, 650 data points were sampled and then a fixed amount of additive noise (Gaus-
sian) with a variance of 0.0014 was added. We then performed the Gamma test to defeamihé

for this particularp. Using the neural network training software frgMasters 1998 an implemen-

tation of conjugate gradient method training algorithm (see also Appendix D), with each node using
sigmoidall/(1 + Exp(z)), and an architecture with one hidden layer and no cross connections, we
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trained the feedforward network on the 650 data points in an effort to determine the least number of
hidden units required so that the network error could be reduced to the correspbndiigire 2.16

and Figure 2.17 compare the original surface with that learnt by the neural network using the 650 data
points. Considering the added noise the surface shown in Figure 2.17 is a very good approximation to
the surface in Figure 2.16. From a number of such experiments, we also observed that there is a near
linear relationship betweea and the number of hidden units in the ‘best’ neural network.

Figure 2.16: f(z,y) whenp = 2.75. Figure 2.17: Trained neural network output on
noisy data fop = 2.75.

The potential application of these results to the automated construction of problem specific neural
networks is fairly plain. Firstly, if possible one ensures the accuracy of the Gamma test Yald@s (
by increasing\/ until these values asymptote to a stable value. Second, using the Gamma tekt value
enables one to predict beforehand a useful performance metric for the model, which may or may not
be a neural network. If a neural network is the chosen tool for constructing the non-linear input/output
model then usingd we can predict with fair accuracy how many hidden units will be needed in a
single hidden layer network. This is discussed further in the next section. Finally, we Usedhee
to indicate when backpropagation should cease. If the MSE obtained by backpropagation cannot be
reduced td" then the number of hidden units should be increased.

The observed strong link between the Gamma test vdlaend the architecture of the simplest
feedforward neural network, which accurately represents the data model, leads to an attempt to use
A to estimate the minimal neural network architecture required to model the data. Assuming that we
have a uniform distribution of the data[KonCar 1997, then approximately

(IV£?). (2.34)

In principle, we can choosg explicitly and computéV f|? at any point and thus the average can be
evaluated by

1
m/|Vf|2dx1...dxm, (2.35)

where|C| is the volume of the closed bounded data set region.

The idea of usingd is to assume that the data will produce a smooth surface of hills and that there
is a real functionf : [0, 1]¢ — [0, 1] (with bounded output) describing this surface whose complexity
can be modified by varying a parameter.
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We can choose the functighwhich is defined as follows:
1
flz1,z2,... ,2q) = 7 [sin®(amz1) + sin®(arzs) + - - - + sin®(amzq)] . (2.36)
Ford = 1, the function is

f(z) = sin*(amz) (2.37)

which has one hill fow = 1. By increasingz, more hills can be produced (See Figure 2.18). In fact
the positive numbed is the number of hills within the range input doméin1]. This is also true for
anyd > 1. If d = 2, this function describes? hills which are distributed evenly on this 2-dimensional
surface. (See Figure 2.19).
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Figure 2.18: f(z) with a = 4. Figure 2.19: Surface off(z, y), hills produced

by Sine.

By expressing the definition of explicitly with this functionf we get

1 1 2 2
[ [(g_f) ++(§_f) ]dd

T 1
4/ dxy---dxg (2.38)
0Jo

IR A af \’
71/0/0 [(%) ++<8$d> dry---dxg.

The partial derivatives are given by

1
A Z<|Vf|2> =

af  am .
preiaiey sin(2anx;), (2.39)
and as a result we finally get the following equation
a’m? sin(4am)
A= 1-— . 2.4
8d ( dam ) (2:40)
If a is an integer therin(4an) = 0. From (2.40) we get
2,2 /
A~ “82 o an~ovaYAd (2.41)
m

For thed inputs case, the numbergives usa? hills. If we use the recipe for our previous experi-
ments, the number of hidden neurons (for our one hidden layer architecture) required for a given value
ais

n=D(2d)a ~ 4\/?TDd\/A_d (2.42)
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from (2.41), whereD is a constant. This can also be used with Lapedes’ recipe of architecture for
hills [Lapedes and Farber 1988nd the required number of neurons is

d
n=D(2d+1)a’ =~ D(2d + 1) (2\@@) . (2.43)

# hidden neurons
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Figure 2.20: Theoretical relationship between #hidden neuronsnd

However, one should notice that the practical results from the experiments do not necessarily match
the theoretical one shown in Figure 2.20. This is mainly caused by the choice of the hill function which
is not exactly the same as the hill generated by 2 neurons (in 1-dim case), therefore it only gives us
an approximation of the neural network architecture dritkelf is only an approximation. There are
several limitations to this technique:

e The choice off as defined in (2.36) is arbitrary and one does not know which function should
be used.

e Every surface to be modelled is assumed to be regularly placed hilld @adnot give the true
nature of the surface.

e Although this can be used for higher dimensional input space, the resultifrgm (2.40),
degrades accordingly because of the assumption of regular distribution of hills.

However, these limitations can be overcome in certain situations. The chojceanf be replaced
by a similar sine function with a higher power than 2 which may give us a stronger similarity with our
hill in the experiments. The surface can be assumed to be of some other form with a periodic nature but
it should be able to reflect the necessary number of neurons required for a neural network architecture
to model the data.

These results are only a preliminary presentation of this modelling technique. Whilst for outputs
normalised td0, 1] (or bounded) the slopd returned by the Gamma test gives an estimate of the
surface complexity, this value gives no idea how difficult it will be to approximate the surface by a
feedforward network using particular sigmoidals. Thus the number of hidden units actually required
depends on both surface complexity and the difficulty of approximating the surface using particular
sigmoidals. It might be interesting if some quantitative estimate for this second factor could be readily
derived from the data, as is the case with the sldpe
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2.5 Automated neural network modelling strategy

Using the idea from the last section, on usitdrom the Gamma test to estimate the complexity of
surfaces, Kobar[Kontar 1997 himself later further developed the application of adaptive feedforward
neural network construction to train the network to learn a particular surface based on a given set of
data. The technique is named tMletabackpropagatioand is concisely summarised in Algorithm 2.2,

Procedure: Metabackpropagation(data)

{data is a list of training data, input-output pafts(i), y(:)), (1 < i < N), in whichx is a real
vector of dimensior andy is a real scalgr

Perform initial Gamma test on data to calculBtand A. {Assuming the format of the data will give
a good model - further discussion in the next chapter.

Setl" as the training target MSE (mean squared error).
Create an initial feedforward neural network that has number of hills (using Lapedes’s recipe in
Section 2.2) specified by using equation (2.43).

First randomise the weights of the whole network.

Initialise each hill by doing a few backpropagation training cycles on subset of the data. Subset
of points is chosen from the near neighbour list of the point (information that is required |in the

Gamma test calculation and is now available) that give the largest error identified by feeding every
point through the network. Therefore each hill is trained on its own exclusive set so that each hill is
positioned in the right place in the input space.

Set flagdone = false.
while done # true do
Perform backpropagation training on the whole network until either a specified number of|cycles
is reached or MSE is achieved by the training algorithm.
if MSE is achievedhen
Setdone = true.
else
Create an extra hill.
Initialise the new hill by backpropagation on subset of points which give the largest MSE.
Append the new hill into the network.
end if
end while
return the network

Algorithm 2.2: The Metabackpropagation neural network construction using the Gamma test.

2.6 Discussion

Together with the graphical explanation of the modelling capability of a feedforward neural network
[Lapedes and Farber 1988nd the Gamma tefBtefanssoret al. 1997, a new idea of using a heuris-
tic on the input data to estimate the necessary feedforward neural network architecture to model such
data is introduced. The results presented for this technique so far are preliminary but indicate that
the method is quite practical. The approach offers the possibility that the entire process of perfor-
mance prediction and constructing a feedforward neural network which attains the best achievable
performance on the basis of given training data can be automated with a fair degree of reliability.

It is essential to study the Gamma test to understand and improwetabackpropagationool
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which constructs a neural network with given desired properties as well as in other data modelling
applications which are discussed later.
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Chapter

Smooth data modelling

As we have seen a significant disadvantage of using feedforward neural networks to construct global
models of smooth mappings is the often rather drawn out process of training. Whilst it is true that the
Gamma test and Metabackpropagation significantly help in this respect, it remains a fact that training
a neural network can be a time consuming and somewhat uncertain process. Moreover, it is difficult
to use a neural network fatynamicmodelling, for example in time series prediction we may wish to
incorporate newly arrived information into our predictive model. This is often not practical using a
neural network model because at every prediction step it requires an unquantifiable amount of time to
perform further backpropagation training before making the prediction.

Apart from neural networks there are a wealth of alternative non-linear modelling and prediction
techniques available. Putting to one side conventional parametric statistics, on the grounds that such
an approach requires we postulatpriori the nature of the model, many of the alternatives are based
on neighbourhood information elicited from the data.

In the case of time series, for example, we attempt to reconstruct the dynamics using an embed-
ding technique; then the neighbourhoods are neighbourhoods in embedding space. This predictive
technique is very intuitive and has an illustrious history in forecasting, Lorenz called it the ‘method of
analogies’. The idea is that we make a prediction based on historical evidence by asking ‘what hap-
pened in the past when we sawgianilar sequence of events’'? To implement this idea efficiently we
simply recognise that finding sequences of historically similar events exactly corresponds to finding
near neighbours in the embedding space i.e. to the construction of a kd-tree.

The advantages of using kd-trees combined with stmoal prediction method are considerable.

We can build the kd-tree quite quickly and unlike neural network backpropagation we do not have to
worry about long training times, becoming trapped in a local minimum, or over-fitting. We can also
update the kd-tree with new information very rapidly. Moreover, once the current near neighbours are
known, techniques such as local linear regression can build accurate local models very quickly.

In this chapter we first examine geometrical surface reconstruction techniques, which can be very
effective when we are dealing with the low noise case. Here we will exploit the fact that there is no real
requirement for a global model. When making a prediction fpagicular data point it is sufficient
to perform a local reconstruction of the surface in the vicinity of the query point. Provided the density
of previously seen data points is high near the query point interpolative local reconstruction of the
surface can provide an accurate estimate of the output value. The point here is that whilst the scaling
properties of a higher dimensional geometrical reconstruction technique may be poor if one is seeking
a global reconstruction, the same algorithm applied ole@al basis may be very fast - sufficiently
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fast to do the reconstruction ‘on the fly’ for each query point as it is presented. If the response time
required for the final application permits this approach then it has considerable advantages: the set-up
(i.e. training) times are reduced to the construction of near neighbour lists and no large data structures
need to be retained.

Of course, if the density of data points near the query point is low the problem of producing
an accurate prediction becomes much harder. At one level it can be regarded as a proiolem of
terpolation/extrapolationalternatively we might argue that what is truly required is rtbeovery of
the underlying law/functiomvhich governs the input-output relationship - only then can interpola-
tion/extrapolation by undertaken with any degree of confidence. Global models constructed from data,
such as neural networks or geometrical surface reconstructions, cannot make any great claim to handle
such situations effectively, although neural networks may on occasions perform better in this situation
than straightforward surface reconstruction. The ability of such data modgén&ralisehas histor-
ically been approached most often by trying to provided some confidence measure associated with a
prediction. Indeed, such measures, if reliable, provide an extremely useful enhancement of a predictive
model, but in truth do not really address the basic issue of effective generalisation.

After a prior discussion of kd-trees we first examine the area of geometrical surface reconstruction
algorithms with particular reference to higher dimensional reconstruction and computational complex-
ity. We select the algorithm which seems most appropriate as a general purpose interpolative surface
reconstruction technique and implement it for comparison with alternative techniques designed explic-
itly to deal with higher noise levels.

To deal with noisy data we need to develop techniques which employ statistical cancellation in
some manner. Two rather obvious points need to be made. Firstly, if the data is modelled by

y=fz1,...,zq)+r (3.1)

where f is smooth and- is statistical noise wittMean(r) = 0, then any particular prediction made
using f is going to have an error statistically determined by the varidnaér). If Var(r) is large
then the expected error will be large, no matter how accurgtédyknown. Second, if despite this we
seek to extract an accurate approximation fothen the only viable way to proceed is to attempt to
reconstructf by statistically cancelling the high noise level. Put plainly:

e High noise levels require more data.

One reason feedforward neural networks take a long time to train under high noise levels (in the data)
is that backpropagation only cancels noise as a by-product of the algorithm. Such cancellation is not
efficiently performed and becomes relatively less efficient as the complexity of the surface increases.

We shall examine one noise cancelling technique based directly on the Gamma test. the Gamma-
minimum-predictor. A detailed examination of the underlying rationale shows the Gamma-minimum-
predictor is effectively performing local linear regression on the squared distance of near neighbours.
Once this is appreciated it seems natural to ask: why do local linear regression of the squared distances
(and thereby throw away directional information in the input space) when one can almost as easily do
local linear regression on the data coordinates themselves? In retrospect this seems quite obvious, but
we include the work on the Gamma-minimum-predictor out of interest (since it performed surprisingly
well under the circumstances) and because it provides a useful comparison with the more general local
linear regression technique which we have found to be very useful.

Local linear regression, although well known, has no been much exploited in the neural network
community. This seems rather surprising since one might expect that it is the rmatm@lter science

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.1 Extracting local near neighbours information 42

algorithm with which to compare a feedforward network - at least in terms of performance. For very
large data sets the kd-tree construction and extraction of near neighbours could easily be parallelised
(although in practice this is not usually necessary) so that neural networks offer little or no advantage
in that particular respect.

One intriguing possibility which emerges from this study is that, if one is determined to build a
neural network model under high noise levels, it might well be advantageous to pre-process the training
data using local linear regression to effect noise cancellation and hence generate new (much smoother)
training data for the network - thereby substantially reducing the training time.

3.1 Extracting local near neighbours information

In order to performocal analysisof data in the vicinity of a particular query point, it is necessary
to first extract a list of near neighbours of the point. This enables us to examine the output values
associated with the neighbours, and other information such as the distances of the near neighbours
from the query point, and hence which neighbour is the nearest etc.

Finding such neighbours can be regarded as the computational geometry probéegeoearch-
ing. The typical way to solve this problem is to process the data into some type of data structure. One
of the first data structures for range searching wasjtredtree[Finkel and Bentley 1974 Shortly
after quadtreekd-treed Bentley 1975; Finkett al. 1977 were developed as an improvement in terms
of worst-case behaviour. Later, another data structuresathge treewas discoveredlLueker 1978;
Bentley 1979; Lee and Wong 1980

The kd-tree is the structure that has been implemented for the Gamma test and is used there to
extract lists of near neighbours. Since we probably want to examine our data using the Gamma test it
is natural to use the already created kd-tree as the basis for our local data modelling. Therefore, in what
follows we shall describe in some detail the construction and use of kd-trees and omit any discussion
of alternative methods, descriptions of which are readily available in the literature.

3.1.1 Fast nearest neighbours search using a kd-tree

The kd-treeis a data structure for storing/ data points allowing for logarithmic expected time
searching for the nearest neighbours of the given query point from thlepeints distributed in a
d-dimensional spacfBentley 1975; Finkekt al. 1977. Originally the name kd-tree stood far
dimensional tree but we will instead ugein line with the rest of this work, to denote the dimension

of the input space. Our discussion and implementation of kd-tree construction and querying is based
on[Margetts 199k

Building the kd-tree

Before we can find thgmax Nearest neighbours of a query point, we first need to construct the kd-tree
from the set ofM input data points. The kd-tree can be built recursively. The data points are stored
at the leaves of the tree. Each leaf nodebucketcan contain a maximum number (called thecket
sizg of points. The bucket size is used to determines whether or not to call the building procedure
recursively.

If the number of data points being processed at this instance is less than the bucket size, the data set
is simply returned to be a leaf node. If it is larger, we create an internal node by splitting this data set
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into two subsets and each will become a subtree for this node. The split is performed by determining
which component of the data points gives the largest “spread”, found by searching through all the
values of thei™ component of the data and recording the maximum and the minimum values for
1 < i < d. Then the median of the values for tH# component which gives the largest spread is
extracted. We can then partition the data around this median value so that the data points will be
evenly distributed. This kind of fair splitting allows the tree to be constructed in &t log M)
provided thaipmax remains bounded. Of course pifax = O(M) the time complexity is unavoidably
O(M?).

The structure of the kd-tree can be formatted as follows

kd-tree ::= {component indemedian valuekd-tree, kd-tree}
[{data point identifier}, . ..]

where the twdkd-tree references in the definition are the left and right branches of the tree. We need
to give an identifier for each data point in order to distinguish them, because the order of the data
points will be disrupted by the tree building process. A summary of the building procedure is given in
Algorithm 3.1.

Procedure: buildkdTree(d, dataPoint3
{Assuming thabucketsizés set to a fixed valug.
if sizeof(dataPoint$ < bucketsizehen
{aleaf nodé
return dataPoints
else
{a non-terminal node
1 = index of component adlataPointswhich gives the largest spread
median= the median of theé! component values of aflataPoints
if median== the lowest or the highest' components oflataPointsthen
{repeated values exist, return data without spliting
return dataPoints
end if
split dataPointsinto two sets,dataA (; component< mediar) and dataB (:"" component>
mediar)

return {i, median buildkdTree(d, dataA), buildkdTree(d, dataB) }
end if

Algorithm 3.1: Build kd-tree ofd-dimensional data recursively.

Searching for nearest neighbours

Once the kd-tree has been built, we can use it to find the nearest neighbours for any query point. The
simple search routine first searches through the tree to find the closest leaf node to the query, it then
repeatedly searches outward from this leaf node to the next nearest terminal node until the required
number of nearest neighbours is reached.

The searching routine is recursive and it relies on several important global variables used within
the searching procedure:

nearest A priority queue of the nearest neighbours found so far. It is basically a list of pairs containing
the data identifier and its corresponding distance from the query point. These pairs are sorted in
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increasing distance from the query point, so that the furthest near neighbour always lies at the
end of the list. Before calling the search procedure, all distances are initialisef to

lowerBounds This is a set of] lower bounds currently defining thewer edges of the search region.
These bounds are settax before each nearest neighbour search;

upperBounds This is a set off upper bounds currently defining thpperedges of the search region.
These bounds are setdo before each nearest neighbour search.

It is also necessary to define a boolean test to determine if the search can terminate. This is
performed by checking if the geometric boundaries of the branch of the kd-tree under consideration
are closer than the furthest nearest neighbour found so far. The branch being considered can only
be ignored if the “spherical” region covered by the furthest nearest neighbour distance centred at
the query point does not overlap with the potential search region defined bgvibeBounds and
upperBounds Otherwise, that branch has to be searched. This procedure is described by the pseudo
code in Algorithm 3.2. This ability to ignore sections of the tree allows us to perform the search in
time proportional ta@)(log M).

Procedure: boundsOverlapBall¢, query)
total=0
for eachi™ component; < d do
if quenyi] < lowerBoundq] then
total = total + (queryji] — lowerBoundsi])?
if total > the square of the furthest distancenisarest then
return FALSE
end if
else
if quenyfi] > upperBoundqi] then
total = total + (queryi] — upperBoundsi])?
if total > the square of the furthest distanceniarest then
return FALSE
end if
end if
end if
end for
return TRUE

Algorithm 3.2: The nearest neighbours search termination boolean test.

The kd-tree search algorithm is divided into the case for handling the leaf node and the case for
the non-terminal node. Whenever a leaf node is encountered, the data points within it are added to
the priority queuenearest if their distances from the query node are less the current furthest nearest
neighbour. If the query node itself is encountered, we may or may not, depending on the user’s need,
include it in the list of nearest neighbours. If the node is non-terminal, we search the branch closer
to the query node. Then the further branch is searched on backtracking if it is required by using
boundsOverlapBallboolean test in Algorithm 3.2.

The searching routine is described in detail in Algorithm 3.3 which is similar to Bentley's pseudo-
code[Bentley 197%. The building and searching of the kd-tree is a frequently used and important
technique for extracting nearest neighbours of a given query from a set of points. This fast extraction of
local near neighbour information enables the Gamma test to rox M log M). The near neighbour
information from the kd-tree is the essential building element of various local modelling techniques
which are discussed in what follows.
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Procedure: searchkdTree(, query, treg)
if treeis a terminal node/buck#hen
for each poinp attreedo
calculatedistanceof p from query
if distanceis less the distance of the last pointrefarest then
updatenearestwith p in increasing order of distances
end if
end for
else
{non-terminal node; refer to the main for its structure
i = treg[1] {the index: for splitting at this nodé
median= tregf2] {median value for splitting at this nogle
{recursive call on closer brangh
if quenyfi] < medianthen
t = upperBoundq]
upperBoundqi] = median
searchkdTreeg, query;, treg[3]){left branch
upperBoundqi] = ¢
else
t = lowerBoundq]
lowerBoundqgi] = median
searchkdTree(, query, tred4]){right branch
lowerBoundqi] = ¢
end if
{recursive call on further branch if necessary
if quenyfi] < medianthen
t = lowerBoundq:]
lowerBoundqi] = median
if boundsOverlapBall(d, query) then
searchkdTree, query, treg4]){right branch
end if
lowerBoundq:] = ¢
else
t = upperBoundqi]
upperBoundqdi] = median
if boundsOverlapBall(d, query) then
searchkdTree(, query, tred3]){left branch
end if
upperBoundqi] = ¢
end if
end if

Algorithm 3.3: The nearest neighbours search recursive procedure.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.2 Geometrical local data modelling 46

3.2 Geometrical local data modelling

We can think of modelling a section of some ‘surface’ as constructing a terrain, this is often en-
countered in computer flight simulation, geographical visualisation of the Earth’s surface and many
other 3-dimensional object modelling applications. Sudkreain is basically a 2-dimensional sur-
face in 3-dimensional space with the property that every vertical line intersects the surface at a point,
if it intersect it at all. Alternatively in mathematical language, the terrain is the graphwiciion
f: A c R? — R that assigns a height(p) to every pointp in the domainA of the terrain. For
modelling purposes we only know the value of the functfoat a finite setP C A of sample points.
From the heights of the sample points we need to approximate the height at other points in the domain
in such a manner as to give a ‘smooth’ surface.

The technique already commonly used by 3D graphics programmers is to first detetrmanga:
lation of P, a planar subdivision whose bounded faces are triangles and whose vertices are the points
of P, assuming that the sample points are such that we can make the triangles cover the domain of
the terrain. We can then lift each sample point to its correct height, thereby mapping every triangle
in the triangulation to a triangle in 3-space. This results polyhedral terrain- a graph of a con-
tinuous function that is piecewise linear - as an approximation of the original terrain, as illustrated in
Figure 3.1. The remaining problem is, given only the heights of the sample points, to determine the
appropriate triangulation, such that the terrain looks ‘natural’.

I
w

(@)

Figure 3.1: Reconstruction of a terrain with triangulation: (a) triangulation of 120 sample points on
the zy-plane; (b) the surface = sin(z) + cos(y) to be modelled; (c) the reconstructed terrain based
on the triangulation by lifting each sample point to its correct height.

It turns out that a triangulation that contains small angles is bad, because that means we are using
‘skinny’ triangles to give the approximation of the height of a point. For example, consider the point
q, as shown in Figure 3.2, determined by two points that are relatively far away. In fact the same point
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Figure 3.2: Difference of approximate height aton a high ridge running from North to South by
flipping one edge: (a) a near approximation to the true height by two near sample points; (b) a bad
approximation of height by two sample points that are relatively far apart.

q can be better approximated by using two nearer sample points. Therefore we can rank triangulations
by comparing their smallest angles. If the minimum angles of two triangulations are identical, then
we can look at the second smallest angle and so on. Since there are only a finite humber of different
triangulations of a given set of poinf3, this means that there must be a optimal triangulation - this

is the triangulation we seek and it maximises the minimum angle. This optimal triangulation is called
the Delaunay triangulatiorand we shall shortly discuss it in some detail.

3.2.1 Triangulations of point sets

Before we fully explain our geometrical approach to modelling and prediction, a brief but formal in-
troduction to some fundamentals of computational geometry is necessary. For simplicity we shall
introduce the ideas in the planar space of 2 dimensions and then extend the definitions to higher di-
mensions where necessary.

First, letP = {p1, po, ... ,pn} be asetof points in the plane and defimaaximal planar subdivi-
sionas a subdivisioy' such that no edge connecting two vertices can be addgavithout destroying
its planarity. So driangulationof P is defined as a maximal planar subdivision whose vertex det is

Delaunay triangulation attempts to achieve small and approximately equilateral triangles. If we
then use the triangles as the basis for interpolating the height for an unknown point we can expect to
get better accuracy using the Delaunay triangulation than by simply selecting some arbitrary enclosing
small triangular region.

We next provide a more precise mathematical definition of Delaunay triangulatiom hethe
number of triangles in a triangulation and consider the sequence of the angles of the triandlilation,
given as(a;, ... ,as,), and sorted in order from the smallest to largest. Let a sequence of angles of
some other triangulatiofi* be given agaj, ... , a3,,). Then we can define the relationstip> 7,
between any two triangulations to indicate that the angle sequeritasofexicographically greater
than the angle sequenceBf.

We then obtain the following theorem, stated here without proof[@&delsbrunner 199Y.

Theorem 3.2.1. The Delaunay triangulatiois maximalover all possible triangulations in the sense
thatT > T*.
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Before we provide an alternative definition of the Delaunay triangulation let us introduce the
Voronoi diagram Let P = {p1,ps,... ,pn} be a set ofn distinct and not all collinear points in
the Euclidean plane, and let dist, p;) be the Euclidean distance between pginandp;. Then
the Voronoi diagramVor(P) of P is defined as the subdivision of the plane intaells for eactsite
(point) in P, with the property that a point lies in the cell corresponding to a site if and only if
dist(q p;) < dist(g, p;) for eachp; € P with j # i. Very often these cells are referred as Yoeonoi

polygons

Figure 3.3: Voronoi diagram with Voronoi polygons indicated by black connected lines and its dual
Delaunay triangulation indicated by grey/lighter connected lines.

Delaunay[Delaunay 193k has shown that the dual of the Voronoi polygons is a triangulation
of then points. If we draw line segments between every two point® iwhose Voronoi polygons
have a common border of length greater than zero, see Figure 3.3, then, under the assumption that no
four points are co-circular (as a result that all vertices of the Voronoi diagram have degree three), this
triangulation is the uniquely defined Delaunay triangulation.

Therefore, an alternative definition of a Delaunay triangulation is a triangulation where the circum-
scribed circle of any triangle contains no pointfofn its interior. Define a set of points to begeneral
positionif it contains no four points on a circle. Then the Delaunay triangulatioR & uniqueif and
only if the resulting graph of is a triangulation, which is the casef is in general position. See
Figure 3.4 for an example. Without such uniqueness of the definition, we will start having problems
similar to Figure 3.2 due to the flipping of an edge in reconstructing the surfaces.

Several definitions are required. A set of poiftss aconvex seif the line segment joining any
pair of points inS is wholly contained in5. Theconvex hulbf a set of points is the smallest convex set
that contains the points. Inc&dimensional space] non-collinear points definefacet A d-simplex
is ad-polytope forming the convex hull ef + 1 affinely independent points. In factdasimplex can
be thought of as a polytope constructeddoy 1 facets, with each facet defined bypoints from the
set ofd + 1 points specifying the simplex. The points defining the simplex are callegigtiees
The boundary elements of a facet are calledritiges Each ridge is basically an element defined by
d — 1 points. A ridge in fact signifies the adjacency of two facets. In the sBaagenerally, facets are
triangles and ridges are edges and therefore a 3-simplex is a tetrahedron. A Delaunay triangulation in
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Figure 3.4: An example of two different maximal triangulations of the same point set of four points
on a circle, therefore no unique Delaunay triangulation exists.

R3 is a therefore a subdivision of the space into tetrahedrons, as opposed to triangkes, in

Thus the idea of a Delaunay triangulation of a set of points may be generalised tbdangnsional
real space.

Our requirement is for an accurate and correct Delaunay triangulation algorithm in higher dimen-
sions. In fact, triangulation in higher dimension is still an actively researched area. Most higher
dimensional Delaunay triangulation algorithms may occasionally lead to a triangulation which is not
quite the Delaunay triangulation - this can occur when almost collinear points are misclassified due to
fixed precision floating point calculations.

In our case, for data modelling, having a precise Delaunay triangulation of points in input space is
desirable but is not always essential. The triangulation will be used to infer the value we are trying to
predict. If the triangulation is not optimal it may have the effect of making the prediction slightly less
accurate, but in most cases the effect will be negligible. As long as the input sample points available
are dense and/or evenly distributed in some sense, this technique seems to perform very well even
without the assurance of a perfect Delaunay triangulation of points in the input space.

3.2.2 Computing the Delaunay triangulation

Because we interested in having Delaunay triangulation incorporated into our data modelling scheme,
we seek a readily available but efficient Delaunay triangulation algorithm. In this section, we give
a brief introduction to the computational geometry, without going into details for every algorithm
mentioned. However, we will provide a clear description of the algorithm finally selected to provide
the Delaunay triangulation module used in our data modelling.

There are many alternative Delaunay triangulation algorithms, but most of them are designed
specifically for 2D or 3D problems. However, for our purposes we need a quite general Delaunay
triangulation algorithm that can work in any dimensién It emerges that with this constraint the
choice is very limited. In fact finding such an efficient algorithm is still an actively researched area.

Su[Su 1994; Su and Drysdale 1997as given an excellent survey of a variety of the standard
2D and 3D algorithms. Examples agévide-and-conquemethodgGuibas and Stolfi 1985; Dwyer
1987 which use special data structures to break down the problem into smaller sub-problems and
then combine the sub-solutions to obtain the required solutionswheepline algorithnby Fortune
[Fortune 198 incremental techniqudsased on adding sites to the diagram one by one and updating
the diagram after each site is add&larkson and Shor 1989; Guibas and Stolfi 1985; Guteel.

1994; andgift wrappingalgorithms which start with a single Delaunay triangle and then incrementally

IHowever, regardless of the dimension we may still refer to suélsianplex in a Delaunay triangulation as a triangle.
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discover valid Delaunay triangles one at a tifBavyer 1991; Maus 1984 We shall not discuss these
algorithms further.

Algorithms for calculating Voronoi diagrams can also be used. In fact, many Delaunay trian-
gulation algorithms to which we have referred are derived from the corresponding Voronoi diagram
algorithms. These algorithms were taking the advantage of the dual relationship between Delaunay
triangulation and the Voronoi diagram.

We have chosen to base the calculation technique on the use of a convex hull algorithm - the
Quickhull (sometime®Qhull for short) by[Barberet al. 1994. This is described by SiSu and Drys-
dale 1997 as a stable but relatively slow algorithm if used in planar Delaunay triangulation. Barber’s
Qhull, is essentially a combination of the classical 2-dimensional divide-and-conquer Quickhull algo-
rithm and the general dimensi@eneath-beyond algorith(to be described shortly), an algorithm that
works in any dimension. Using Qhull we can construct a higher dimensional Delaunay triangulation
algorithm based on the following observation.

The Delaunay triangulation ¢ may be computed from a convex hullitf*+! [Brown 1979. To
determine the Delaunay triangulation of a set of points R¢, we first lift the points to a paraboloid
using the transformation

x = (21,20,...,2q) — @ = (T1,22,... ,Tq, 2] + T3+ -+ 27) (3.2)

We then compute the convex hull of these transformed coordindtesR*!. The set ofridgesof

the lower convex hulls the Delaunay triangulation of the original pointsRd. This means that the
wealth of convex hull algorithms can be directly applied to compute Delaunay triangulations (as well
as high-dimensional Voronoi diagrams ).

3.2.3 Qhull - a convex hull algorithm

Quickhull (or Qhull for short and not to be confused with the classical quickhull in 2D) is the convex
hull algorithm[Barberet al. 1996 selected as the basis of our method to compute Delaunay triangu-
lations. The motivations for this choice were: algorithmic stability, availability of source code library
[Barberet al. 1994 and applicability in any number of dimensions.

This algorithm uses two main operatior@jented hyperplane throught points- a hyperplane
represented by its outward-pointing (pointing away from the convex hull) unit normal and its offset
from the origin, andsigned distance to hyperplanghe ‘signed distance’ of a point to a hyperplane
is the inner product of the point and the normal plus the offset. The hyperplane defines a halfspace
of points that have distances from the hyperplane with an extra attaigpedf the attached sign is
negativewe shall say the point iselowthe hyperplane. If the sign [®sitivewe shall say the point is
abovethe hyperplane. See Figure 3.5 for illustration.

Not unlike other randomised incremental algorithms, Qhull’s incremental processing technique is
based on the theorem Ipgrinbaum 1961, Theorem 5.2.1t uses a simplified version given below.

Theorem 3.2.2 (Simplified Beneath-Beyond)Let H be a convex hull ilR? and letp be a point in
R? — H. ThenF is a facet of the convex hulbnv (p U H) if and only if

1. Fis afacet ofH andp is below F’; or

2. F'is not a facet off and the vertices of" are p together with the vertices of a ridge of H,
such that there is one facet &f which containsR (H is incident toR) lying belowp and all
other facets off containingR (i.e. facets incident t@) lie abovep (see Figure 3.6).
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An example of a change to the convex hull effected by introducing a new point is illustrated in
Figure 3.7. Efficiently determining the facets which argible from a point (the point imbovethe
facets) is the central problem of the Beneath-Beyond theorem. A clever technique which sets Qhull
apart from the other incremental algorithms is that after initialisation, it assigns each un-processed
point to anoutside sebf a facet, or by definition, the corresponding facet is visible from the point.

horizon edges
Changes of convex hull in 3D

\l As a light point source by introducing po[ntp

e \ P
N visible facets \,\
newly formed cone

top
of facets due to p

horizon edges

\ 7
Original Convex Hull New Convex Hull

Figure 3.7: Incremental construction of a convex hull in 3D.

When Qhull constructs a cone of new facets, it uspardtioning technique to build new outside
sets from the outside sets of the visible facets by locating a new visible facet for each point. If the
point is below all of the new facets, the point is inside the convex hull and can be removed. At the
same time, partitioning records the furthest point of each outside set. At initialisation, Qhull selects a
non-degenerate set of points, which if possible should be far apart, for the initial starting simplex. The
full outline of Qhull is given in Algorithm 3.4.

Thus Qhull algorithm works ilR? and via the lower facets of the convex hull Rf+! of the
transformedcoordinates, the Delaunay triangulation of the points in the input space can easily be
calculated.

Although Qhull cannot be described as a fast algorithm for low dimensional problems, it can
work in any dimensioni and produces results comparable with other similar algorithms. Now let
M be the number of input points iR ~ be the number of processed points (i.e. the number of the
randomly selected points used for the ‘cone’ construction process of the convex hull construction) and
fr = O(rl%/21/|d/2]!) the maximum number of facets oivertices|Klee 1966. We also define

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.2 Geometrical local data modelling

52

Procedure: Convex hull in R4
{Given a setP of M (M > d) data points;
selectd 4 1 points to construct a starting simpléx
for each facet” of S do
for each unassigned poiptof P do
if pis aboveF then
assignp to F's outside set
end if
end for
end for
for each facef’ with non-emptyoutside setio
select furthest poind of F’s outside set
initialise visible setl’
assignF’ into visible setl”
for all unvisited neighbour® of facets inV’ do
if p is aboveB then
addB intoV
end if
end for
createH, a set of horizon ridges of boundary 6f
for each ridgeR in H do
create a new facet frolR andp
link the new facet to its neighbours
end for
for each newly created facét do
for each unassigned poigtin anoutside sebf a facet inV do
if ¢ is aboveF” then
assigng to F'’s outside set
end if
end for
end for
remove the facets iy
end for

Algorithm 3.4: The Qhull algorithm for convex hull construction Rf’
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Definition 3.2.1. An execution of Qhull ibalancedf
- the average number of new facets for jifeprocessed point igf;/j and

- the average number of partitioned points for tifeprocessed point i6M — j)d/j.

Then if the balance condition holds, the worst-case complexity of QhGl{ /& log r) for d < 3 and
O(Mf,./r) for d > 4 [Barberet al. 1996. If » = M and the balance conditions hold, the cost of
Qhullis O(M log M) for d < 3 andO( fr) otherwise. This is the same as the expected cost of the
randomised incremental algorithdGlarksonet al. 1993.

3.2.4 Query estimation using local Delaunay triangulation

Now that we have the Delaunay Triangulation of the input space of sample points we can easily model
a surface. The original problem of ‘terrain’ modelling is basically to model a funcgtio®R? — R,

usually in a restricted closed bounded domaia R2. Given an unseen data poipt= (zg, o) € C,

we can easily calculaigs corresponding outpufy (or height in the ‘terrain’ problem) by performing
linear interpolation using the 3 sample points, say,= (x1,y1,21), p2 = (%2,y2,22) andps =

(z3,ys, z3) corresponding to the triangle which is calculated via Delaunay triangulation and which
encloseshe query data in the input space as shown in Figure 3.8.

(xOJyoazo)

p.= (X, ,,2,)

plz(xlryl > 2y

(x, )

Figure 3.8: Estimating the height, at the query poing = (xq, yo) by linear interpolation given that
the sample pointg,, p, andps form a triangular and enclosingin 2D input space and a hyperplane
in 3D.

In effect, these 3 pointp;, po andp; define a triangular ‘linear’ surface which can be easily
determined by calculating its normal using these 3 points. Suppose the surface (or hyperplane in 3D)
is given by

nixT + noy + N3z = ¢, (3.3)

wheren = (n1,n2,n3) is the normal to this triangle il andc is a constant. We can substitute
q = (z0, yo) into (3.3) to estimate the output by

C—N1Tog — N
= ST Ml (3.4)
3

which is a simple linear interpolation ik?.
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This whole calculation can be generalised for data modelliiRy'inGiven a set of\/ (> d) sample
data points{{z1,v1}, {z2,y2}, ... , {zm,ym } }, wherez; € R? andy; € R, we can estimatg, for
the query pointc, as in Algorithm 3.5. We can refer this to lmeal Delaunay triangulation modelling
or LDT for short.

1. From the set ofif sample pointse;, find the firstpmax Nearest neighbours of the quety by
constructing the kd-tree of thief sample points in the input space.

2. Perform Delaunay triangulation of theggax nearest neighbours in the input space using a
technique such as the one described earlier.

3. Locate the simple¥ which encloses the queuy, in the d-dimensional input space.

4. Use thel+1 (d+1)-dimensional sample poinfX; = (x;, y;) defining the simplexs in d-space
to calculate the normat = (ny,n2,... ,nq+1) in the @+ 1)-space and get the equation of th
hyperplane

S

X -n=nix1+nxs+- -+ ngrqg+ngp1y =c, (3.5)
wherec is a constant.
5. Substitute the query, into (3.5), therefore
NITq1 + NaZga + -+ + Na%gd + Na41Yq = C (3.6)

We can solve fog,, the only unknown in this equation.

Algorithm 3.5: Data modelling off : R? — R using local linear interpolation via Delaunay triangu-
lation.

The most expensive step is the Delaunay triangulation of the sample points. Instead of processing
the whole set of points, we can calculate only the Delaunay triangulation pfthe> d + 1) nearest
neighbours of the query point to improve the speed, because we know that such a simple local linear
interpolation step involves only + 1 nearsample data points.

The other time-consuming step is to locate the triangle/simplex which encloses the query point.
In computational geometry, a planar point location problem can be solvéxlisy M) time, but
the optimal time for the point location problem in three and higher dimensions is still essentially an
open question. For a subdivision induced by a sedbhyperplanes ini-dimensional space, it is
known to be®(M?) in the worst caséEdelsbrunner 1987 However, many specific subdivisions
can lead to much more efficient point location, e.g. convex polytépskson 1987; Mataiek and
Schwarzkopf 199Band arrangements of trianglieke Berg and Schwarzkopf 1996 low dimensions,
or rectangular subdivisiorl€delsbrunneet al. 1986; de Berget al. 1999 in higher dimensions. In
our case, since we have the nearest neighbour distance information about each point, and if we assume
that the triangle/simplex enclosing the query point must be formeddnyeselection ofpyax near
neighbours, then by labelling the simplices with their vertices of near neighbours and sorting those
simplices lexicographically in ascending order of the near neighbour distances defining the simplex,
the search time can be much improved. In many cases, the first simplex in the sorted list is usually the
required simplex.

During the linear interpolation step, the required norma a vector which is mutually orthogonal
to all vectors formed by the data points defining the simplex. One of the basic calculations is shown in
Appendix B.
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Figure 3.9: Surface of Equation (3.7) in the bounded input spficé]? C R? for the modelling
experiments.

3.2.5 Some simple prediction experiments using local Delaunay triangulation

To demonstrate this predictor, we perform a simple surface reconstruction experiment. The surface to
be modelled is given by

f((2,y)) = sin’[4(z + y)] (3.7)

with the bounded input spade, 1]> C R?, see Figure 3.9.

M = 200 data points are randomly sampled from input-space with a uniform distribution which
together with their correspondingvalues provide a set of training data for the predictor. We then
define a test data set as ‘a grid of data’ equally spaced in the input space, i.e. & seydff(x,y))
where0 < z,y < 1 and sampled at every 0.0625 along thandy axes to have 256162) test data.

In this way a surface can be reconstructed from these test data.

The result of this experiment usingax = 12 is shown in Figure 3.10 with MSE of 0.0118274. In
this experiment, if the query point is not in any triangle, its nearest neighbour’s output is used as the
estimate for the query. The distribution of the squared error is shown in Figure 3.11. Note the high
concentration of error at the boundary of the convex hull of the input training data. The error is also
more pronounced in regions where the gradient of the surface is large. A more detailed illustration of
how this predictor copes with test data at the boundary is given in the next section.

Figure 3.10: Reconstructed surface with Figure 3.11: Distribution of the squared errors
Pmax = 12. MSE =0.0118274. of the prediction.

3.2.6 Outside query prediction

When the convex hull of the sample points (training data) does not enclose the query point in the
input space, this means that the query is not contained in any one of the triangles from the Delaunay
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triangulation of the sample points. We call this amtside query As we discussed in the chapter
introduction performing (linear) interpolation to predict/estimate the output at an outside query is a
difficult issue (as the previous experiment illustrates for that particular modelling technique). We
examine several strategies which can sometimes improve the estimation in such cases, but the accuracy
of each technique depends heavily on the distribution of the sample points anfdhihe query is
from theconvex hull of neighbouring sample poiimighe input space.

The following techniques rely on the availability of the local near distance information found by
the kd-tree. The simplest method (used above) is to take the output value of the closest near neighbour
point of the query as the output of the outside query point, e.g. @it value for the query ag in
Figure 3.12. This only works well if the near distance from the query point is relatrebil

A
output value z on output value z on

hyperplane ABD hyperplane ABC

Figure 3.12: The difference of estimating the output valueat g, an outside query point, between
using the hyperplane given iy A BD formed byg’s 3 nearest neighbour$, B and D and using the
hyperplane formed bAABC. The hyperplane given b ABC' is in fact a better choice for this
estimation.

Another method is to take the firgt+ 1 nearest neighbours and form a hyperplane which can be
extended to cover the outside query. Using this hyperplane, a linear interpolation can be performed to
estimate the output value. Although this seems to offer the opportunity of takirstpiireinformation
into account for the estimation, the chosen hyperplane is not necessarily the hyperplane in the ‘correct
direction’, as demonstrated in Figure 3.12. Moreover, sometimes these neighbours may not be the
vertices of a triangle which is given by the Delaunay triangulation of the sample points at all. This
approach also is dependent on the assumption that the query point is not too distant from the near
neighbours.

Instead of taking the hyperplane formed by the fir$tl nearest neighbours and since the triangles
calculated are lexicographically sorted in the ascending order of nearest distances of their vertices, we
can take the first simplex for our hyperplane linear interpolation. This simplex is not necessarily the
hyperplane formed by thé+ 1 nearest distance neighbours. In general, this performs better than the
previous technique because it removes the assumption that th&-firsthearest neighbours forms a
valid Delaunay triangle from thé-triangulation of the samples.

We can also take several nearest triangles, perform linear interpolation for each triangle, and then
average the results to estimate the output value. Our early experiments shows that there is not much
improvement taking averages, because if the local area to be modelled is very hilly the angles be-
tween those hyperplanes are large and will result a poor estimation which does not reflect the ‘slope’
information of the nearest triangle.

Finally we can combine several technique together for such outside query estimation to compen-
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Strategy No.H Method MSE
1 Output value of the nearest neighbour 0.0118274
2 Hyperplane formed by the firgt+ 1 nearest neighbours 0.00625806
3 First simplex from sorted list 0.00541832
4 Averaging estimates from severd) Gimplices 0.00408974
5 OQCS ( = 0.45) 0.00553535

Table 3.1: MSE of different outside query strategies used in the experiment.

sate for each technique’s limitations and exploit the available information reflecting near neighbour

distances from the query. We define a heuristic measure to estimatdatiee closenessf the query

point from the cluster of themax Near neighbours by looking at the ratio
01

5—7

Pmax

(3.8)

vV =

whered; is the distance of thé" nearest neighbours from the query pointz It 1, this means the

query is very ‘far’ away from its nearest neighbour. On the other handsifclose to zero, this means

the query is near the cluster of near neighbours. Using this ratio we can define the following strategy:
if v is small (say below some threshaflwe can pick the first triangle from the sorted list to perform
linear interpolation, ifv is large and close to one (> (), we do not perform any linear interpolation

but simply pick the first nearest neighbour’s output as the estimate. Surprisingly, this technique gives a
rather competitive performance compared with the other techniques, at least on the particular problems
examined, provided a suitable value of the threslqakichosen (usually taken to be about 0.45 in the
experiments). We simply refer to this as thatside query combined strateffpQCS).

A comparison of the MSEs of the various strategies described is shown in Table 3.1. This com-
parison only provides a general guidance of usage for tackling the outside query problem. Some
strategies might perform better than others on different problems. Table 3.1 shows that the fourth strat-
egy performed best in this experiment. But from general experience, OQCS seems to be a more robust
practical choice, particularly if the data are sparsely and unevenly distributed in the input space.

3.2.7 Performance analysis

Intuitively, since this predictor is trying to reconstruct the surface based on the underlying geometrical
properties, it might be expected to degrade very rapidly in terms of performance under noisy data.

To investigate this issue we use the same experimental setup, but with normally distributed noise
r havingMean(r) = 0 added to the output of the test data. The predictor is set uppwith= 12
and using OQCS for outside query. We then measure the MSE of the estimation on the test data for
varying variance of the added noiSer(r) starting from 0.02 to 0.5 in steps of 0.02. A graph of MSE
againstVar(r) can then be plotted, as in Figure 3.13. As expected, the performance reduces as the
level of noise increases, although the graph shows that the predictor may still perform moderately well
at high noise levels.

These experiments are merely illustrative. In general, for a particular problem, we should need
to consider in far more detail the interrelationship between surface complexity, noise level and the
variation ofpmax Which we shall discuss later.

The sizeM of the training data set obviously also plays an important role in the accuracy of the
final prediction. More training data can improve the estimation. Figure 3.14 is a graph of MSE against
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Figure 3.13: MSE error againsVar(r) of nor- Figure 3.14: MSE error of the test data against
mally distributed noise- with Mean(r) = 0 the number of sample dafid used for the train-
added to the outputVar(r) goes from 0.02 to  ing, size from 100 to 200 in steps of 10 using
0.5 in steps of 0.02, with OQCS & 0.45) and ~ OQCS ( = 0.45) with pmax = 12.

Pmax = 12.
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Figure 3.15: MSE againspmax, the number of nearest neighbours, varying from 5 to 25 for the local
Delaunay triangulation and using OQCS £ 0.45) without noise and with noise (Mean(r) = 0,
Var(r) = 0.15).

M, with the same surface estimation experimental setup as before. We shall have more to say about
estimating the necessary size of a data set.

The accuracy of this predictor also dependo@g., the number of nearest neighbours. Using the
same experiment setup (without noise and using OQCS), we incpgasi the range from 5 to 25
and plot against the MSE on the testing data (see Figure 3.15).

By examining the distribution of training data in relation to the distribution of the squared errors of
the test data (see Figure 3.16) of the experiment withy = 12 and using OQCS((= 0.45), we see
that even in some regions with a low concentration of training data, the errors are still small. The large
errors are along two ridges, where the generating surface has a large gradient combined with sparse
training data in the local region.

Having a largepmax in the non-noisy output data case, certainly improves the chance of having
a ‘more correct’ local Delaunay triangulation, and hence a better local estimation. At the same time,
it is neither desirable nor necessary to hawgy too large, because the local triangulation eventually
will not change when more points further away are included. Also the estimation may degrade by
increasingpmax because the assumption of local linearity becomes less likely to be true over a larger
region, see for example Figure 3.15 at abawt = 25. Of course, the distribution of the training data
can also affect our choice pfyax Since a large concentration of data points in a small region may only
require a smalpmax to produce an accurate estimation.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.3 The Gamma predictor 59

Figure 3.16: Distribution of the squared errors (contour plot) of the test data and the distribution of
the training data (point plot) in the input space of the local Delaunay triangulation surface modelling
experiment withpmax = 12 and using OQCS((= 0.45).

On the other hand with noisy data, it is more desirable to have a gmalbs illustrated in Fig-
ure 3.15. Small amounts of noise can significantly affect the true nature of the output surface, thereby,
reducing the accuracy of estimation using piecewise linear interpolation.

3.3 The Gamma predictor

One attractive idea might be to extend the Gamma test itself so that the underlying ideas could be
used formodellingrather than simply noise estimation. The suggestion is that since the Gamma test
estimates noise, maybe we can use a extension of the idea to choose a predicted value for a query point
2 S0 as taninimisethe expected noise when the new data pairy) is added to the training set. We

have called the resulting algorithm tB&amma-minimum-predictpor GMP for short. In this section

we describe the derivation which is based on the original Gamma test, give illustrative results, and
eventually explain why there is a well known and better technique for local modelling under noise.

3.3.1 Derivation of the Gamma-minimum-predictor

Suppose we are givell points(z (i), y(7)), wherex (i) = (z1(4),... ,zq(¢)), 1 <1 < M, and that
I is computed as described in section 2.3. Now suppose that we are given a neyepdint- 1), y)
for whichy = y(M + 1) is unknown. We want to choogeso that the recomputed valuelof= T'(y)
is minimal.

Consider now

Ap) =13 LS (k) — 2 39)
h=1

i=1

D=
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and

}:QIE: — (). (3.10)

h=1 i=1

”Slr—*

Notation: In this section we replace the previous used symitmyl Iz, since we wish to use

N 1 Pmax
I'= k). (3.11)
Pmax 1
Similarly we write
B 1 Pmax
A= A(k). (3.12)
Pmax =1

Tr=T— SAQ.A (3.13)
Sa
where
1 Pmax B B
Sar = — > (A(p) = A)(T(p) ~ T), (3.14)
Pmax e
and
) 1 Pmax -
Sa® = (A(p) — A)". (3.15)
Pmax =1

We have to consider what happens when a new pe{df + 1) is added. One effect is that the
neighbourhood structure in input-space changes. Computationally this is straightforward: we merely
have to add the new point(M + 1) to the kd-tree, a procedure that already exists and was used to
build the tree. (Of course, after the prediction is made we shall should also need to remove the new
point from the kd-tree if we plan to use it again. In practice, for data sets that are not too large, it is
often easiest to maintain a copy of the tree, add the new point to the copy, use the augmented tree for
the prediction and then replace it by the original copy!)

Let us assume that this has been done and that the new neighbourhood structure is described by
Noewlt,p] (1 <3< M +1,1 < p < pmay- Corresponding to the new neighbourhood structure we
can use (3.9) and (3.10) to compute new valueg¥@y) andI’(p). Thus

M+1

1 P 2
Anew(p) = I‘)Z MJrl Z ‘33 x(i)| (3.16)

and this is easily calculated and does not invaJv&or I'en(p) We write

Lnew(p) = T(p,y) = Z M+1 (yWNoewld: b)) —9)* + D (v —u(0)*|,

(3.17)

1
p

whereU (p, M) is independent of and.S(h) = {i|Nnewli, ] = M + 1} which is easily determined
from the new neighbourhood structure.
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From (3.13) withA(p) andTI'(p) replaced by their values we now have

- S
FR(y) = Fnew — M Anew (3.18)
AneW

In this expression only the first term and the term with subsétipt, involvesy. This equation will
determine the new value 0fz.

If we apply the criterion then the value g¢fis that the value which minimisdsz(y). We proceed
by evaluatingdT' z(y)/9dy. From (3.18) we have

0 Jd = Anew 0
—T —T S . 3.19
ay R( ) 8’y new — SAnew ay( Anewl—‘new) ( )

The next step is to evaluate the partial derivatives. For the last term in (3.19) we proceed as follows.
Note that the terma e andSx,,, can be considered as known (i.e. they are easy to compute) and do
not involvey. Hence it remains to consider

8 a 1 Pmax B B
573/ (SAneanew) = 87y <pmax ;(Anew@) - Anew) (F(p, y) - Fnew))
= —pzm:axA — Boew) [ 2T(py) - 2T (3.20)
= pmax new new, By y2%’) By new .
Pmax
o _
— _ C _F ,
pmax Z ( W)= Jy new)
where
C(p) = Anewlp) — Anew (3.21)

and these are readily computed.
We determine the first term in the sum of (3.20) and obtain

i€S(h)

9 1 - ,
8—yF(Pay) = mz (y—y(N[M+1,h])+ > (y—y(l))) o

L P
_ M Eg
where
p
A= Ap, M) = M+1 hzl [y Noew M + 1, h]) + g(:h)y(i)] . (3.23)

The first term in (3.19), i.e9Thew/dy, is also the second term in the sum of (3.20). To evaluate
this we replacé’(h) by the new value in (3.17) and obtain from the updated version of (3.11),

o _ 1 pma*lzh: 1
By " pmax  h A= M+ 1

—(y(NnewM +1,k]) —y) + Z (y —y(@))

i€S(k)

] (3.24)

1 Pmax

1 o -
_ m;ﬁ; [y Y(Nnew M + 1, k]) + ie%(:k)(y—y@))] :
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Collecting together the terms inwe have

8 B 1 Pmax 1 h
2 Frow= 1+ SIS |y — 3.25
ay new = 3] pmax}lz::lhkz:l| ()|1y 2 ( )
where
1 oy
Pmax h=1 k=1 i€S(k) (3 26)
1 Pmax .
- A(h, M)
pmaxh=1
Hence
oT(p,y) ar 1 (1 AL
oy oL _ NS - —S =SS |y — Mo, M) + . (3.27
o~ 3y = 3 | p 2o S~ 5 3 ISy = A M)+ (32T
Forl <p < pmax let
1 1 p 1 il’max1 h
A(p) = - S(h)| — — S(k 3.28
0= 3751 |5 o505 -3 5 X (>] (3:28)
and
B(p) = Ap, M) — (3.29)
then
a Pmax
—(S = C . 3.30
Finally let

Pmax

1 1
TS Z Z|S (3.31)

pmax e 1

Then equating (3.19) to zero and solving fowe obtain
A 1 Pmax
— o —— ) _C(p)B(p)
Snew Pmax =
y= . (3.32)

Pmax

_ new 1 Z C

new Pmax

The final algorithm is given in Algorithm 3.6. But with careful examination, the whole process would
appear to be simply performing a local linear regression on the squared distances of the near neighbours
from the query point.

3.3.2 Performance analysis

To investigate the GMP, we perform a series of experiments based on the experimental setup for surface
modelling (defined by (3.7)) as described in Sections 3.2.5, 3.2.7). We first investigate how the number
of nearest neighbounsy,ax used for GMP affects the modelling, given the same set of test data. The
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Procedure: Gamma-minimum-predictor(kd-tree,z, pmax, M)
Add pointz to kd-tree to getView[i, p] (1 < i < M 41,1 < p < pmax)
{i.e. new nearest neighbour [jst
for p = 1t0 pmax do
ComputeApen(p) from (3.16)
ComputeS(p) = {i|Nnewt,p] = M + 1} {these sets are small
Compute)(p, M) from (3.23)
end for
for p = 110 pmax do
ComputeA(p) from (3.28)
ComputeB(p) from (3.29)
end for
ComputeAew
for p = 110 pmax do
ComputeC(p) from (3.21)
end for
ComputeSa,,
Computey from (3.26)
Computer from (3.31)
Computey from (3.32)
Remove point: from kd-tree{if not copied
End

Algorithm 3.6: The Gamma-minimum-predictor given a new quernp estimate outpuj.

MSE
*
0.06} -
0.05} *
,*‘ ——— Nnon-nol sy
0.04 .
..
S _
0.03 L P * noi sy
10 15 20 25 Pmax

Figure 3.17: MSE againstmax the number of nearest neighbours, varying from 5 to 25 for GMP
without noise and with noiséMean(r) = 0, Var(r) = 0.15).
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result is shown in Figure 3.17 which indicates that the MSE of the estimation is optimalpyhes
14 when no noise is present. Not surprisinglypifax is taken too large, the performance of GMP
degrades. Notice that even at the optimal value, the MSE is still higher than the Delaunay triangulation
predictor, LDT. When noise is present, it is advisable to have a |afgeas shown in Figure 3.17.

We then examined how GMP copes with varying noisy data whgp= 12. Normally distributed
noiser with Mean(r) = 0 and varianc&ar(r) from 0.02 to 0.5, increasing in steps of 0.02, is added
to the outputs of the training data. The MSE of the test data is then plotted against the noise variance
as shown in Figure 3.18. As expected, GMP degrades ‘gracefully’ as the level of noise increases.
This experiment also illustrates that the GMP can cope with noise well, unlike Delaunay triangulation
predictor, LDT.

MSE MSE
0.14

0.12
0.1
0.08

0.019
0.018
0.017
0.016
0. 015
0.04 0.014
0.02 0.013

0.06

0.1 0.2 0.3 0.4 0.5 Var(r) 100 120 140 160 180 200 M

Figure 3.18: MSE against normal distributed Figure 3.19: MSE against the number of sam-
noiser with Var(r) from 0.02 to 0.5 in steps ple data used) for the training, from 100 to
of 0.02 and Meafr) = 0 using GMP with 200 in step of 10, of GMP witlpmax = 12.

Pmax = 12.

0.8

0.6

Figure 3.20: Distribution of the test data squared error (by contour plotpfai = 12 and the distri-
bution of training data (points).

The MSEs of the test data are also measured for varying size of the set of training data with
pmax = 12, see Figure 3.19. The result shows that for this experiment the accuracy of estimation by
GMP depends o/, i.e. M >= M (e) for given MSEe as expected. We then generate the result again
for the full set of training data, i.6\/ = 200 and look at the distribution of the squared error of the test

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



3.4 Prediction using local linear regression 65

data in relation to the distribution of the training data in the input space. This is shown in Figure 3.20.
The MSE is 0.0126141. Some regions with low concentration of training data, especially at the lower
left corner of the plot, have much higher squared error. This plot essentially implies that foifixed
the modelling can be improved if the training data are more evenly distributed in the input space.

In fact, the main determinant of model accuracy seems to be that the maximum nearest neighbour
distances approach zero@kbecomes large; regions where nearest neighbour distances are large give
larger predictive errors. This should not be too surprising: it is intuitively obvious for any interpolation-
based technique and is, moreover, one of the fundamental assumptions behind the Gamma test itself.

In any event examination of the basic formula (3.32) for the GMP shows that, by a somewhat de-
vious route, we have eventually arrived at an algorithm which is effectively performing local linear
regression on the squared distances of nearest neighbours of the query points. But why just do local
linear regression on the squared distances? Why not do it on the data coordinates themselves? In the
next section we shall see that this simple approach works extremely well - especially at high noise lev-
els provided sufficient data is available. Once the kd-tree has been constructed, local linear regression
is very fast for any reasonable input dimension, certainlyifap to several hundred. Moreover, local
linear regression based on kd-trees can be done dgimgmic updatingi.e. new data can augment the
kd-tree as it becomes available and the next prediction can use this information. This is something that
is very difficult to accomplish with feedforward neural network modelling using backpropagation.

3.4 Prediction using local linear regression

Based on the local information given by the kd-tree, we can takpthenearest points to perform a
least squares fito estimate the query point by assuming its underlying model is ‘locally linear’ and
we simply call thidocal linear regressioror LLR for short.

We first review the idea of ‘least-squares-fit' and its relationship to the pseudoinverse of a matrix
as introduced by Penro§Benrose 1955; 1956

3.4.1 Least squares fit

The simpleleast squares fifLSF) problem is defined by:

Definition 3.4.1 (Least squares fit).Given a set of\/ data points
(i, (Ti1, Tizs - -+ Tim)), (1<i<M) (3.33)

wherel is large andm is fixed, thdeast squares fis the point 4, A5, ... , A,,) such that

M
Fu(Ar, As, o A) =Y (i — (A + Aomin + ...+ AmTim))? (3.34)

i
is minimised.
The conventional LSF considers,; as a function of 4, As, ... , A,,), which (sinceF,; > 0
for all (4, As,...,A,,) is minimised by the expedient of equating the partial derivatives to zero
and solving the corresponding equations. Treatifig (-, ... , 4,,) as unknowns in these equations

the coefficients are therefore determined by ffedata points (3.33). The amount of data to be
manipulated in solving these linear equations therefore becomes largéfwith
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There are many algorithms already available for solving this probRmesset al. 1994 and also
there are many adaptive algorithms available, such as a recursive generalised-least-squares procedure
described in[Hastings-James and Sage 1p@®&d methods for updating pseudoinverse iteratively
[Maeda and Mutata 1984; Telfer and Casasent 198@ for estimating the parameters which we
are not going to discuss. The idea of pseudoinverse will be described later. However we investigate
a simple iterative method (suggested by A.J. Jones in 1991) as a detailed illustration of how to solve
such LSF problem. Although an iterative step method is unnecessary for our local data modelling
when only a finite, fixed set of data is available, it could be useful in situation when the data set to be
modelled requires constant updating due to the arrival of new data.

3.4.2 lterative least squares algorithm

In studying dynamical systems it is often necessary to approximate the dynamics or mapping by just
observing a small finite set of data. This is facilitated using LSF. Here we investigate an iterative
technique and how it can be used to improved to minimise computational cost without losing the
accuracy of the approximation, especially for real-time systems which requires constant updating due
to the constant arrival of new data.

The LSF algorithm described here involves, for fixetl anm x m matrix of numberd/;; (M)
(1 <4,j < m)and a vector of elementg (1 < i < m) which, asM varies, satisfy the following
recursion relations

Uij(M 4 1) = Usj(M) 4 & (p41)iT (M+1); (1<4,5<m)
VilM +1) = Vi(M) + ym12(mr+1y0 - (1 <i<m) (3.35)
The point to note about these recursion relations is thatthe- 1 numbers ford/ + 1 only depend
on the new data point
(@(M4+1)15 T(M41)25 - - - > T(M41)m)> YM+1) (3.36)
and so can be computed recursively as new data points are added.

Theorem 3.4.1.1f U;;(1) = 0, V;(1) = yiz1; and forM > 1 the numberd/;; (M) (1 < 4,5 < m),
Vi(M + 1) are defined by (3.35), then for any givéh the solutiond* = (A3, A5,..., A%)) to the
LSF problem satisfies

Ull U12 te Ulm AT Vl
U1 U2 Uam A3 Va

: : =1 . ] (3.37)
Uml Tt Umm Ajn Vm

Thus provided the distribution of data points is such that the matrjx)(is invertible, one inversion
of them x m matrix will solve the LSF problem for the given data points.

Proof. To minimiseF,; we require

?9?,5 =0 for 1<k <m. (3.38)
This gives
M
D =20y — (A1 + Asziz + .+ Apim))Ti] =0 (3.39)

)
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or
M M M
Z (yixik) - A Z (ﬂfzﬂm) - = Ay Z (%m%k) =0 (3-40)
for 0 < k& < m. If we use the definitions
M M
Uj;€ = Ujk(M) = Zmijmik and V] = V](M) = Zyixij (3.41)
for 0 < j,k < masin (3.35) we can then express (3.40) as
Ui Ui -+ Uim Ay Vi
U1 Us U Ay Va
= ) (3.42)
Uml tee U mm A77L ‘/m
which is (3.37). [

Obviously by Theorem 3.4.1, this immediately demonstrates that for very Idrgthe iterative
LSF problem (normally solving/ simultaneous equations) reduces to solvimgimultaneous equa-
tions.

Extension for more than oney

It would be interesting to know that similar recursion relations can be defined for the LSF problem
with more than ong in a data point. The original problem then becomes:
Given a set of\/ data points

(i1, Tizy - -+ s Tim), (Yirs Yizs - -+ > Yin)) (3.43)

for 1 <i < M whereM is large andn andn are fixed, find the matrix

Ay A - Agg
Ag1 Ag Az,
(Aqj) = : N : (3.44)
Aml o Amn
such that
M n
Fu ((A45)) = Z Z (yir — (Arpmin + AokTio + . + Ak Tim))’ (3.45)
ik
is minimised.
In other words, we need to solve
Y11 Y2 - Yin
Y21 Y22 Yan B
Ymi1 Ym2 o YMn
11 r1z2 v T1im A1 A -+ Aln
To1 T2 ZTom Asr Ago Agn,
(3.46)
M1 TM2 et TMm Aml Am2 T Amn
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for (A;;) by mean of matrix algebra such as the pseudoinverse of a matrix (described later). This would
be a quite inefficient technique iff were large. One approach to tackle this is to split up the problem
into smaller sub-problems. Therefore we can arrange the data pointsets of data points

((1117 L2y - v+ ,xim)y yzk) (3-47)

and solve for A, Asg, ... , Ami) for 1 < 5 < nindividually using recursion relations (3.35) de-
scribed above. Ideally we should seek an alternative iterative technique for solving this problem.

To derive a similar iterative LSF algorithm for this problem, we adhere closely to the proof of
Theorem 3.4.1. To minimis&),,, we require

=0for1<j<n,1<k<m. (3.48)

Now we consider (3.48) for a particularand then we get a set of equations

OF s M

DA, 0= ; (i1 (yir — Arkwin — AokTiz — ... — Ak Tim))
M
OFy
A0 0= 21: (i2(yix — Arprir — Aokiz — ... — AprZim))
(3.49)
M
OF
6A—7,]\:[k =0= zl: (im (Yix — Akl — Aokiz — ... — ApkTim))
and rearranging these equations (3.49) we get
SM iy SManzn YSMaaze - XM anzm A
wa Ti2Yik ZZM L3241 wa Ti2T42 qu Ti2Tim, Ay,
- | | | (350)
Zf\l TimYik wa TimTi1 Ef\/[ TimTi2 - Ef\/[ TimTim Ak

For the otherk’s, equations similar to (3.50) can be derived and then can be gathered together and
formulated as

M M M
Zi Ti1Yi1 Zz Ti1lYi2 Zl Ti1Yin
M M M
Zi Ti2Yi1 Zi Ti2Yi2 Zi Zi2Yin
M M M
Zi TimYi1 Zz Ti1lYi2 - ZZ TimYin
M M M
Zi Ti1%41 ZZ Ti1Zi2 v ZZ Ti1Tim A A o Apa
M M M
Doi TioTil Yl Tipkio i TioTim Ap Ao
. . (3.51)
M M M
Zi TimTil Zi TimTi2 et Zi TimTim Aln A2n Tt Amn

Equation (3.51) forms the basis of our new relations which involves the two matfi¢es x n) and
U (m x m) and their components recursive relations are

UZJ(M + ].) = UZ(M) + m(M+1)i$(M+1)j (1 S i,j S m)

] ) (3.52)
Vij(M 4 1) = Vij(M) + 2(p41yiym41); (1<i<m,1<j<m
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with U;;(0) = 0 andV;;(0) = 0. Therefore the whole original problem, in terms of these matrices,
reduces to solving

V =U(Ay) (3.53)

and the solution4;;) can be found by pre-multiplying both sides of (3.53)iy’, the inverse matrix
of U if U is non-singular i.e.

(A))=U"'V (3.54)

The equation (3.53) is then a reduced form of the original LSF problem, commonly referred to as the
normal equation|n fact, if we formulate (3.46), the original problem equivalently into

Y = XA (3.55)
In this simplified notation, its normal equation is simply given by
XTy =xTxA (3.56)
where superscrigf’ denotes the transpose of a matrix. Then the solutio# isfsimply given by
A= (XTXxX)"1xTy. (3.57)

However, it is important to recognise such adaptive properties of the normal equation. Only a
simple inversion of a square matrix and a matrix multiplication are required to recalculate the LSF
whenever a new data point arrives, providing the recursive relatipnandV; are kept. [One should
be aware that this is not necessarily the best or only adaptive algorithm and there are many alternative
algorithms already availabl¢astings-James and Sage 1969; Telfer and Casasent 1989; Maeda and
Mutata 1984; Weigendt al. 1994.] The otherimmediate advantage is that there is no need to calculate
the inverse of a large matrix i/ is large. In the case of singul&f, the optimal solution of (3.53) is
given byU#V as stated in Theorem 3.4.2 in the next section, whefds the pseudoinverse &f.

3.4.3 Pseudoinverse of a matrix

First we need to introduce the precise definitiorpséudoinversef a matrix[Penrose 1955; 1956
For any given matrixX € R™*", the matrixX# € R"*™ is said to be a pseudoinverse ¥fif the
following conditions are satisfied:

1 XX#X =X,

2. X#XX# =X,

3. (XX#)T = XX#,
4. (X#X)T = X#X,

whereT denotes the transpose of the matrix. The tegerseralised inverser Moorse-Penrose inverse
are also commonly used for such A .

The pseudoinverse of a matrix is important in solving the LSF problem. The reason becomes
obvious with the following theorerfPenrose 1955
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Theorem 3.4.2.Let X € R"*? andY € R™*? be given. Them = X#Y € R™*? is the unique
best approximate solution of the equatidii = Y.

One important property for the pseudoinverse which is implied by this theorem is that the pseudoin-
verse exists even for singuldf € RP*P. Before demonstrating how this pseudoinverse can help to
solve the LSF, we first need to introduce some definitions. The phest@pproximate solutiameans

that the quantity| X A — Y'|| ¢ is minimised and it is further explained as follows.

Definition 3.4.2. The|| - || -norm onR™*" is defined by
| X||F = Trace(XTX) (3.58)

for X € R™*", whereTrace(Y") is the trace of the square matrix. This norm is called thErobenius
norm.

Lemma3.4.1.For X e R™*" XTxXX# = XT.

Proof. We have

XT(xx#)=XxT(xx#")T (by pseudoinverse condition 3) (3.59)
= (xx")x)T (3.60)
=xT (by pseudoinverse condition 1) (3.61)
as required. [

Theorem 3.4.3.Let X € R™*? andY € R™*? be given. Them = X#Y is an element oR™*"
which minimises the quantityX A — Y| p.

Proof. We have

IXA-Y|3 = [IX(A-X*#Y)+ (XX* - L)Y|? (3.62)
= XA - X" V)|F+ (XX* - L)Y (%
+2 Trace ((A - X#Y)"'XxT(XX* - 1,)Y), (3.63)

wherel, € RP*? is the identity matrix. Sinc&” (XX# — I,,) = 0 by Lemma 3.4.1, the last term
disappears and we get

IXA=Y[3 = [ X(A= X#Y)|3 + |(XX# = 1)Y]% (3.64)
which achieves its minimurii( X X# — I,,)Y||% whenA = X#Y u

The derivation of the calculation 6f # depends on the following proposition.

Proposition 3.4.1. For any X € R™*? , thep x p matrix X X is invertible if and only if the columns
of X are linearly independent iiR™.

Proof. Consider that the square mati&” X is invertible if and only if the equatioX” Xv = 0 has
the unique solutiom = 0, v € RP.

Suppose that the columns &f are linearly independent and th&t” Xv = 0. Then it follows that
v XTXv = 0and saXv = 0, sincev” X7 Xv =37  (Xv)? = | Xv|?, the square of the Euclidean
length of then-dimensional vectotXv. SinceXwv is also a linear combination of the columns of
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X, we can expresXv = vizM + v 4 ... 4 0,2®), wherexz® is thei™ column of X and
v; is thei™ component ofs. Because the columns &f are linearly independent, theXiv = 0 =
v + w9z + ... 4 v,z®) implies thatv; = vy = --- = v, = 0, i.e. the vecton = 0. Hence
XT X is invertible.

On the other hand, i X is invertible, thenXv = 0 implies thatX” Xv = 0 and sov = 0.
Hence the columns oX are linearly independent. [

GivenX € R™*" thenX# can be computed using
Proposition 3.4.2. Let X € R™*™,

o If rank X = n, thenX# = (XTX)"1X7T.

o If rank X = m, thenX# = XT (X X)L

Proof. If rank X = n, thenX hasn linearly independent columns and we know that (from Propo-
sition 3.4.1) this implies thak " X is invertible inR™*™. Then it is only a matter of verifying that
(XT X)~1XT satisfies the four defining properties of the pseudoinverse, which completes the first part
of the proof.

If rank X = n, we simply consider the transpose instead by letling X”. Then ranky” = m,
sinceX and X7 have the same rank, and so by the argument aléve= (Y7Y)~1YT. However,
XT# = X#7T  as s easily checked again from the defining conditions. Hence

X# = X#1T — (xT)#T (3.65)

= v# =yxyTy)! (3.66)

= XT(xxT)-! (3.67)

which establishes the second part. [

In practice, the computation of# is modestly demanding for large matrices. There are many
algorithms for approximating pseudoinverferr 1985; Penrose 1955The most common technique
involves performing th&ingular Value Decompositiof8VD) of a matrix[Presset al. 1992; Golub
and Van Loan 1996 which is a computationally expensive but widely accepted technique for its
accuracy. A general discussion of pseudoinverse and SVD is given in Appendix A

For a LSF problem with largé/, the direct approach in solving it is to work out the pseudoinverse
of a M x m matrix if M # m. However, by formulating the normal equation of the problem, we can
solve the same LSF problem equivalently by calculating the inverse of a sguaren matrix if it
is non-singular or the pseudoinverse of a matrix if the matrix is singular. One interesting relationship
observed is that the optimal solution fdrof the LSF problemX A = I (the identity matrix) is in fact
the pseudoinverse of .

3.4.4 Local linear regression

The local linear regression (LLR) algorithm is simply explained in Algorithm 3.7. The advantage
is that this statistical modelling is performed locally with a small amount of sample data, usually
within a small region in the input space, on the assumption of local linearity. The LSF technique is
a widely studied method with many efficient algorithms readily available. In fact this technique is
more statistically sound than the previously discussed geometrical modelling technique, which relies
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on many heuristic assumptions and suffers the problem of outside query, as opposed to the linear
regression technique which does not require extra computational analysis and effort for such outside
query prediction.

—

Given a set of\/ sample data pointge;, y;) representing a mapping & — R, estimate the outpu
valuey, of the queryz,,.

1. Selectmaxthe number of nearest neighbours used for the linear regression.
. Use the input vectors; to construct a kd-tree.

2
3. Find thepmax Nearest neighbours af, from the kd-tree.
4

. Construct
Z11 T12 T1d b1 U1
T21 T22 T2d D2 Y2 T
. = . = Xp =Y
xpmaxl mpmaxz T ‘/'Upmaxd pd ypmax

via the iterative technique described earlier or simplylet X7 X andV = X7Y to construc
the normal equation

Upl =V.
5. Perform a LSF to estimate the paramejets (p1, po, - . . , pa) by
p’ =U*V
whereU# is the pseudoinverse 6f.

6. The outputy, is estimated by, = z, - p

Algorithm 3.7: Data modelling using local linear regression

Basically Algorithm 3.7 as it stands assumes that the linearity is passing through the origin, i.e.
p1x1 + poxo + - - - + pgxg = y but in many cases it would be better to have an extra term to have an
affine model

P1%1 + p2x2 + - +PiTqg +Cc =y, (3.68)

wherec is a constant. Therefore for the input of the algorithm, we can assume that the input vector
becomesy;1, o, - . ., x;q, 1) for estimating the parametets (po, - . ., P4, ©)-

The only problem with LLR is to decide the size g the number of near neighbours to be
included for the local linear modelling. Although having more sample data points intuitively can
improve the estimation, at the same time this may have the effect of assuming, say, a ‘hilly’ surface to
be linear. Choosingmax is usually a trial and error process as it depends heavily on the nature of the
underlying actual model and of courdé. Analysis of the choice gfi,a« for linear regression is called
influence statistics It examines how influential having extra near neighbours is on the accuracy of
the linear regression using methods, such as COVRATIO, which measures the effect on the variance-
covariance matrix of the parameter estimdt@awlings 1988 or a method of simply studying the
MSE. We made some initial attempts to use influence statistics to make the chgigg dfnamically
adaptive, however, the results were poor and more in-depth study is needed. Nevertheless, we can
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always perform a increasing-near-neighbour-test by increasing the sigg.«and study the error of
prediction on a set of test data (with known output values) to choose a ‘suitahletvhich minimises
the prediction error on the test data, before fixingy for further estimation.

3.4.5 Performance analysis

As before, we use the same experimental setup as in Section 3.2.7 to predict points on the surface
defined by (3.7) using the same set of training data, but this time we use LLR.

VBE
. 06
05

044 .
, — +— non- noi sy

03}
.02

© ©o o o o o

.01

10 15 20 75 Pmax

Figure 3.21: MSE againspmax the number of nearest neighbours, varying from 5 to 25 for the local
linear regression with affine model without noise and with noldean(r) = 0, Var(r) = 0.15) and
M = 200.

We first demonstrate the surprising result of varying thegizg the number of nearest neighbours
of the query point for LLR. Interestingly, by varyinghax from 5 to 25 (using a affine model), the MSE
of the non-noisy test data seems to increase proportionally as shown in Figure 3.21, contrary to the
immediately intuitive idea that having more near neighbours should improve the prediction. Note in
this casel is fixed so that, increasingnax means that the assumed local linear region is larger. The
distributions of surface estimation squared errorggsx = 12 andpmax = 5 are shown in Figure 3.22
and Figure 3.24 respectively. Clearly, fof.x = 12 the error (MSE =0.0198301) is much higher than
for pmax = 5 (MSE = 0.00550315). The estimated surfacerfgsx = 5 shown in Figure 3.23 looks
almost as smooth as the original surface which is surprising, considering so few nearest neighbours
are used for the local data modelling. Most errors are concentrated at places with large curvature
of the surface. This implicitly signifies that jfnax is too large, the estimation at regions with fast
changes of gradient is much poorer, due to the fact that such regions are highly “non-linear”. Therefore,
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Figure 3.22: Distribution of squared error of surface estimation using LLR with, = 12 and affine
model with MSE = 0.0198301.
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having fewer near neighbours will in effect approximate a smaller region, so that the assumption of
local linearity is more likely to be valid. However, for data with added normally distributed moise
(Mean(r) = 0, Var(r) = 0.15) the optimalpmax for minimum MSE is higher. Therefore the effect of
noise can be ‘ironed’ out as expected by taking bigge as also shown in Figure 3.21. In general
this may required that we increaseé.

Figure 3.23: Estimated surface using LLR with  Figure 3.24: Distribution of squared error of
pmax = © using affine model with MSE = surface estimation withnax = 5 and MSE =
0.00550315. 0.00550315.

LLR is also tested for performance under noisy data. We then measure the MSE of the estimation
on the test data for varying varian®er(r), of normally distributed noise added to the output values
of the training data, starting from 0.02 to 0.5 in steps of 0.02 using the same experimental setup. The
result is shown in Figure 3.25. The noise does have a significant effect on the accuracy of estima-
tion, but in general LSF based LLR performs better than the Delaunay triangulation based technique
described earlier.

MSE MSE
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Figure 3.25:MSE error against normal dis- Figure 3.26: MSE of test data against the size
tributed noiser added to output withVar(r) of training dataM from 100 to 200 in step of
from 0.02 to 0.5 in steps of 0.02 and of 10, using LLR pmax = 5, affine model).
Mean(r) = 0 using LLR (pmax = 5, affine

model).

As in the experiment in Section 3.2.7, we also investigate how the size of training data set can affect
the MSE of the test data. The expected result is in Figure 3.26, showing that having a reasonably large
training data set is essential for better estimation. In fact, there seems to be an inversely proportional
relationship between the size of the training data set and the testing MSE.

The effect of the distribution of the training data input space on the prediction squared error of the
test data of the same experiment setup with affine LLR with = 5 is shown in Figure 3.27. The
precise distribution of the training data seems not to be the main factor affecting the modelling perfor-
mance. However, less dense input data in regions with sharp changes of gradient at the ridges results
in slightly degraded estimations. In general, LLR works well with non-evenly distributed training data
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in the input space.

. 015

Figure 3.27: Distribution of the squared errors (contour plot) of the test data and the distribution of
the training data (point plot) in the input space of LLR surface modelling experimenipwith= 5
using an affine linear model.

3.5 Direct comparison

Using the experimental results from Sections 3.2.7, 3.3.2 and 3.4.5, we make a direct comparison
between each modelling technique described so far as a summary. We also discuss other aspects such
as the complexity of the underlying model etc. which may also affect the modelling process. Although
there are still many other possible factors indirectly determining the effectiveness of our modelling
techniques, we shall present only a short discussion.

Figure 3.28 and Figure 3.29 are the combination of Figures 3.15, 3.17 and 3.21 in both the non-
noisy and the noisy case respectively. In the non-noisy situation, we can see that havipgaoge
improve the modelling for both LDT and GMP. Though by careful examination, hayiggtoo large
will cause both LDT and GMP to degrade in terms of the precision of estimation. On the other hand
for the LLR, it would be advisable to use small.x when there is no noise in the data.

However, in the presence of noise, having slightly lagggk for LLR can improve the prediction.

In general, ifVar(r) increases, the normal procedure is to increase the number of local data (assuming
the size of local region is fixed) to obtain a better estimation. However, by increpgingwe are
basically including the number of data from the finite size of training data set for LSF as well as
implicitly increasing the size of the local region assumed to be linear. Eventually this will have an
adverse effect on the estimation, due to using linear approximation in a ‘larger’ local region as shown
in Figure 3.29.

As pmax increases in the noisy case, both LDT and LLR degrade very rapidly as expected (Fig-
ure 3.29). Surprisingly, having very larggax for GMP can definitely improve the result and the MSE
seem to asymptotically approach to an optimal MSE value.
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Figure 3.28: MSE againspmax 0N data without noise for LDT, GMP and LLR.
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Figure 3.29: MSE againspmax On data with added noise for LDT, GMP and LLR.

Figure 3.30 is the combined result from Figures 3.13, 3.18 and 3.25. As the variance of noise
Var(r) increases all modelling degrades as expected, although LDT and LLR degrade at a much faster
rate, especially for LDT, due to the geometrical reconstruction of the surface using noisy output values
for prediction. GMP performs well in high levels of noise, perhaps because it is a regression of data
based on the distance rather than all the coordinates as used by LLR.

The collected results from Figures 3.14, 3.19 and 3.26, showing the changes of MSEs for each
modelling technique in earlier experiments against varnyifighe number of training data without
noise, are shown in Figure 3.31 and demonstrate that having a Adrige necessary for accurate
prediction for all modelling techniques. Surprisingly, we observe that LLR, compared with the other
two, improves at a faster rate a$ increases.

It would also be interesting to investigate how tmmplexityof the underlying model to be re-
constructed and the sparseness of the training data, in other words the 8izecah affect the per-
formance of each modelling technique. This experiment is very similar to Sections 3.2.5 and 3.2.7 by
modelling the surface given some training data. The surface to be modelled is defined by

f(z,y),a) = sin’[a(z +y)] (3.69)

with the bounded input spade, 1] ¢ R?, similar to (3.7). By varying: we can increase the com-
plexity as shown in Figure 3.32.

For this experiment, we use the same sampling of the input space. The samplé &ixehe
training runs from 100 to 200 using a step size of 10. The complexity of the surface is also varied by
increasing: of (3.69) from 1 to 6 using a step size of 0.5. Then we use the trained model to reconstruct
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Figure 3.30: MSE againsWVar(r) variance of added noisefor LDT, GMP and LLR.
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Figure 3.31: MSE againstV/ the number of training data for LDT, GMP and LLR.
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f(z,y)

Figure 3.32: Surfaces defined by (3.69) for different values
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the surface, using the same set of testing data, and calculate the MSE for each model. We also add
normal distributed noise (Mean(r) = 0, Var(r) = 0.15) to the output values of the training data for
comparison with the non-noisy case. This is applied to all three modelling technique.

For LDT modelling, we us@max = 12 with OQCS ( = 0.45). For the GMP, we sebnax = 12
whereas for the LLR, we use an affine model with,x = 5. These choices gfax etc. are chosen
for each modelling technique at optimal or near optimal performance without the presence of noise.
Although pmax can be varied, we believe that our choice should give a fair comparison between each
modelling technique since different modelling techniques have optimal performance at different values
of pmax Which are very problem-dependent, especially when the data is noisy.

a g hon-noi sy a g noisy

Figure 3.33: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying model: and the number of training dafd for the LDT modelling experiment.

a g Nhon-noi sy a g hoisy

Figure 3.34: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying modek and the size of train dat&/ for the GMP modelling experiment.
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Figure 3.35: Relationship between the MSE of the surface reconstruction, the complexity of the un-
derlying modek: and the size of train dat& for the LLR modelling experiment.

This result for LDT is shown in Figure 3.33. Without noise and even having digre modelling
is still fairly good. Of course, having largéd will improve the modelling for large. In thenoisycase,
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having largeM and keepingmax constant, as discussed earlier, reduces the quality of the prediction
for LDT significantly, especially when is large.

For the GMP modelling as shown in Figure 3.34, lasgecreases the difficulty of the modelling
especially having fewer training data (i.e. smalléj in both noisy and non-noisy cases.

Figure 3.35 shows the result for LLR. Obviously, in the noisy case, the MSE is high due to the
choicepmax = 5 only. But in terms of the relationship betweenand M, this seems to perform
very badly wheru is large withA/ small in contrast with LDT and GMP which perform better in the
same case with or without noise. In fact, as expected when the data is sparsely distributed, we would
expect that LDT will outperform LLR in non-noisy and complex surface situations. Unusually, GMP
performs better in the same case even though GMP is simply a variation of “LLR in squared distances”.
What we mean here is that the graphs for GMP are similar in terms of noisy and non-noisy situations,
unlike the case for LLR, the graph for the noisy case fluctuates by a large amount by just verying
especially when the surface is more complex. This implies that more data points are needed for the
training.

3.6 Discussion

Out of the three modelling techniques, LLR seems to be an efficient and practical method. In terms
of running speed, we have not performed any detailed analysis but here we would like to give a brief
and general discussion and a very crude estimation of time for the steps involved for the techniques,
especially the effect of the dimensidrof the input space on the query time.

The GMP and LLR are both fairly fast modelling techniques. They both require the construction
of a kd-tree which take®(M log M) time. For the GMP, every query involves the restructuring of
the near neighbour relationship which in the worst case should takeqilylog M) but in practice,
the time taken is much less. The rest of the computation for the output value is therefore polynomial in
time with respect to the selectggax and M. It does not seem to be highly sensitive to the dimension
d of the input space in terms of running speed.

The LLR similarly requires the kd-tree to extract the local near neighbours but it does not re-
structure such relationships for each query. The most expensive calculation step is to calculate the
pseudoinverse and this will depend on the choice of technique for the computation. Using the SVD
technique the time involved for such query should be in the ordéXpfaxd?) + O(d*) (assuming we
calculate the SVD of @max X d matrix, see Appendix A) plus the near neighbour quer@@bg M).
Therefore, the running time is highly dependent on the dimensibat still polynomial. From our
experience, this method seems to be the most efficient of the three techniques discussed.

From our experiments, the LDT seems to be the worst performer in terms of speed. The main

drawback is due to the slow calculation of the Delaunay triangulation and the point location problem
of finding the correct Delaunay cell containing the query point. In general the computational theory of
Voronoi diagrams and the dual Delaunay triangulation is still not well understood, especially in high
dimensions, but Seid¢Seidel 199] has estimated the tight upper bound of the number of cells of the
\Voronoi (equivalently Delaunay) subdivision to BEnl(@+1)/2]) for n given d-dimensional points.
To determine whether a point is in a convex polytopé-timensional space, i.e. outside or the inside
query, can take as much @$n'%/2]) for convex polytopes defined by the intersectiomdfalf-spaces
[Edelsbrunner 1997

Therefore, given that we hayg,ax d-dimensional near neighbours we would expect in the worst
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case, the query time would take abé(pkia V/?) + ©((d + 1)L(d+1)/2]), plus the time calculating

the linear interpolation and the local near neighbours searching time. Of course, since we are using
Qhull and the simplices are sorted in the order of the nearest points defining the simplices, the query
should take less time. Nevertheless, the performance of LDT will suffer for a verydahmy@articular,

the running time is exponential in time in termsdbf

However, there is a method whittanslateghe whole problem of locating the Delaunay cell which
contains the query point into a problem of solving a linear programming prolffekuda 1998 This
method became available very late in the present account and it has not been tested, but the detail is
explained in Appendix C. This technique, in general, exploits the relationship between the convex hull
in the “lifted space” and the Delaunay triangulation as explained earlier in Section 3.2.2 and it seems to
bypass many problems that have arisen in the calculation of high-dimensional Delaunay triangulations
and the point location problem. Although, the problem of having the query point outside the convex
hull of the set of training data points, our ‘outside query’ problem, remains.

In a recent article, Ekelar{@Ekeland 199Bdescribe§Bombieriet al. 1969’s work on Bernstein’s
theorem dealing with functions whose graphs laiieimal surfaces, i.e. the functiofi(z1, ... ,z4)
for which the surfacey = f(x1,... ,z4) minimises the area between all small closed curves drawn
on it. Must such functions be linear or must their graphs be hyperplanes? In fact, the answer is
yes if the underlying dimension is two, three and up to se@umbieri et al. 1969 have proven
that it is no longer the case in dimension eight or higher. Although we are not directly interested in
differential geometry (but it may be a future research area), this result is very surprising and important
for modelling techniques which use hyperplanes.

Therefore, one should be careful in extending any new idea which works in low-dimensional space
into higher-dimensional space, e.g. applying a modelling technique assuming linearity in 8- and higher-
dimensional problems, may not be necessarily correct as one might assume intuitively. However, we
believe that using a small local region modelling technique, and assuming locally piecewise linearity,
the error accumulated from such an assumption would not be that[Eghmbieriet al. 1969’s result
indirectly implies that using neural network modelling techniques, we may achieve a more accurate
and general model for which no assumption of linearity is used within the model. Of course this still
suffers from potentially long neural network training times before it can start to predict.
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Chapter

Practical techniques & examples of modelling

We will present a series of examples of modelling on a few practical problems. These examples demon-
strate that the Gamma test has been an invaluable preprocessing tool to aid the model identification
process. Before we give these examples we first briefly discuss a few typical preprocessing techniques
which are important and necessary in any model construction, as a contrast to our approach in using
the Gamma test.

We shall also address the general problem of generating an iterative neural network which can
model a given chaotic dynamical system with a high degree of precision. This we do in Section 4.2.3,
where we apply the tools developed in the earlier parts of this chapter to produce a feedforward itera-
tive neural network which closely models the Mackey-Glass time series. Although first introduced by
means of a particular example, these techniques are quite general and allow is to construct a feedfor-
ward iterative network which can accurately model any (reasonable) chaotic dynamical system given
only a sufficiently long times series of a single scalar variable of the system. This enables us to produce
such networks extremely easily and in Chapter 8 we shall how such networks can be controlled.

4.1 Model identification and data preprocessing techniques

This section briefly introduces two basic but essential preprocessing techniques on given data before
passing the data onto the modelling stage.

4.1.1 Embedding

Instead of being given a full state description of the system and a output to be modelled as assumed
above, very often there is only one accessible state variable available in the system (especially in real
applications) and we are required to use the available past values of this particular variable to predict
the future state. In other words, we need to reconstruct the dynamics of the system from the available
time series in order to predict the unseen states.

If h is the observable variable this reconstruction is normally done by wislay coordinateso
constructd-dimensional vectog¢ = (h(t), h(t — 7), h(t — 27),... ,h(t — (d — 1)7)). If d is chosen
large enough and the underlying dynamics is finite dimensional, then there exists a dynamical system
describing the evolution of which can be used for our modelling purpose. Assume that the actual
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system is described by

dx

Z_F 4.1

=@ (4.1)
wherex is, say,d’-dimensional. (Further discussion on dynamical systems is given in Chapter 5.)
Then the quantity.(¢) may be regarded as a smooth function of the state variabi¢éence £ can be
related tax by some functiorG, i.e.

¢ =G(a). (4.2)

The important issue now is to ensure tgahould represent a dynamical system that evolves forward

in time such that ift, denotes a system state afyd= G(x,), then there is no state, # x, satisfying

&, = G(z}). Thus given the delay coordinagg = G(xy), the stater, is uniquely determined and

can be evolved forward any amount in time by (4.1) to a new state, which can then be transformed
to the¢ variable by the functiordz. This basically defines a dynamical system evol\gnigrward in

time. Importantly the functiodz must satisfy the condition that # &’ implies

G(z) # G(z'). (4.3)

If this is true, we can then say thét is an embeddingof the d’-dimensionalz-space into thei-
dimensionak-space.
Takend Takens 198]istudied this problem and obtained the result that generically

d>2d +1 (4.4)

is sufficient to avoid the problem of intersections in the embedding space and we refer to this result as
the Takens’ embedding theorem.
Practically, we often construct thedimensionaembedding space vectas

&, = (x(nty),x(nty +tp),x(nty + 2tp),... ,xz(nt;+ (d—1)tp)) (4.5)

by sampling the time series of a system variahlé represent the original dynamics. Hefgis the

delay time which is the time period between successive components of each of the embedding space
vectors and; is thejump timewhich is the time interval between successive vectors. Careful choice

of the delay time is essential for a good reconstruction of the chaotic attractor. Many techniques for
constructing such embedding vector and determining the jump time and the delay time can be found in
[Otani and Jones 1997b; Rosensteiral. 1994. Later in our experiments we show how the Gamma
test can determine a ‘good’ embedding to aid the construction of an accurate model.

4.1.2 Principal component analysis (PCA) and dimension reduction

Given M data pointse; € R™ (1 < i < M), theprincipal component analysig®®CA) is to find the
(n — m)-dimensional hyperplane that best represents the data points. Mathematically, the problem is
to find anm x n matrix A whose rows are orthonormal to each other and &actora that minimises

> A — a)|%.

The whole process of PCA can be briefly summarised into the following steps:
1. Form then x n covariance matrix from the x M data matrix.

2. Extract the eigenvectors and eigenvalues from the covariance matrix.
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3. The eigenvectors are tipeincipal componentand the eigenvalues are theiagnitudes

Using PCA, we can performfeature selectiomwf the given set of data. It is a process that trams-
forms a “data space” into a “feature space”. It is designed so that the data may be represented by a
reduced number of “significant” and “effective” features which retain most of the intrinsic information
content of the data.

First we assume that the vectethas zero mean:

Elx]=0 (4.6)

whereF is the standard statistical expectation operator. (There is no loss of generalisation: if we have
a non-zero mean, we can subtract the mean from the data vectors before proceeding with the analysis.)

LetaM x M matrix R be thecorrelation matrixof the data, defined as the expectation of the outer
product of the vectos with itself,

R = E[zxT). (4.7)
The whole problem of performing PCA is to solve for
Ru=M\u (4.8)

a standarceigenvalue problem The precise justification can be found [[Haykin 1994. Let the

eigenvalues d® be denoted by\g, A\1,..., Ay —1 and the associated eigenvectors be denoted by
ug, U1, ... ,ups—1 respectively. We can then write
Ru; = My, (0<i<M-1), (4.9)

where we shall assume the eigenvalues are distinct. Let the corresponding eigenvalues be arranged in
decreasing order

A >AL > > N> > Ay (4.10)
so that\g = Aax and let the associated eigenvectors be used to constidckal/ matrix
U=lup,ur,...,u,...,up—1]. (4.11)
We can write (4.9) as a single matrix equation
RU =UA (4.12)
whereA is a diagonal matrix defined by the eigenvalues of mafjx
A =diagXo, A1, s Ay Anoal- (4.13)

Note that thd/ is anorthogonal matrixU” = U~1).
These vectors,; basically giveM possibleprojectionsof the data vecto, i.e.

a; =T - u,, 0<i<M-1) (4.14)

where theq; are the projections af onto the principal directions represented by the unit vecigrs
and are called thprincipal componentsWe can combine the set of projections into a single vector by

a = [ao,al,... ,a]y]_l]T = UT:I:. (415)
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SinceU is orthogonal we also obtain

M-1
x=Ua= Z a; ;. (4.16)
1=0

If the vectorsu; are linearly independent, they formbasisof the data space. (4.16) is in fact
a coordinate transformation, according to which a pairnih the data space is transformed into a
corresponding point in the feature space.

The main practical value of PCA is that it provides an effective techniqueifieension reduction
We may reduce the number of features needed for effective data representation by removing those
linear combinations in (4.16) that have small variances and retain only those terms that have large
variancedOja 1983. In fact the variance of;; is directly related to the corresponding. Thus to
perform dimensionality reduction on some input data, we can then project the data orthogonally onto
the subspace spanned by the eigenvectors (calculated from the correlation®ydtebonging to the
largest eigenvalues. This technique is also referred sulspace decomposition

In our brief investigation, performing PCA with subspace decomposition on a local scale such as
for our local modelling techniques, involving the Gamma test, can only slightly improve the accuracy
of modelling but the result is not always necessarily significant. Perhaps, this is due to the fact that for
many problems, it is hard to determine whether a principal value is small enough to be removed for the
subspace decomposition step. In all our modelling examples, the Gamma test is always used to deter-
mine the best embedding in the data preprocessing stage and subsequent PCA on such processed data
does not seem to effect any significant improvement. We believe that using the Gamma test to choose
the best embedding has already taken care of picking up the significant ‘variables’, as if performing
the PCA dimensionality reduction. The result from our Gamma test approach is comparable with the
PCA technique, if not better.

4.2 Practical examples on data modelling and prediction

In this section, we apply our modelling techniques to some practical experiments. At the same time,
we introduce other practical techniques and ideas, involving the Gamma test, which help to perform
the prediction of time series. First we look at sunspot activity prediction and then we look at how the
modelling technique can be used for other applications.

4.2.1 Modelling of sunspot activity and prediction

The data used in this experiment consists of 280 points representing sunspot activity from over the pe-
riod 1700 — 1979 shown in Figure 4.1. This was used and descrij@deigendet al. 1994. The data

was available from the ftp addres$p.santafe.edu in the directory/pub/Time-Series/

data/ . The data has been scaled@ol] range and the variance is estimated to be 0.0410558.

In order to model such time series data, we need to construct the model by choosing an embedding
to establish an input-output relationship. Basically, an embedding of a time series is a selection of past
values which are used to predict the current value forming a ‘mapping’ relationship. The choice of a
good embedding can produce a good model for quality prediction of future values. We can of course
make use of Takens’ embedding theorem as introduced in the last section. In our case of the sunspot
activity time series, we do not know the exact dimensionality of the sunspot activity dynamics. So
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Figure 4.1: Time series of sunspot activity from over the period 1700 — 1979.

we turn to an alternative technique provided by the Gamma test to choose a suitable embedding and
dimensionality.

First we define the notion ofmask A mask of, say length 5, is a string of 0's and 1's with length 5.
Each binary digit represents one particular past value of a time seriEse rightmost digit represent
the most recent value. A “1” indicates to include that value for the embedding and “0” indicates not to
include it. Therefore 11111 means that we have an embeddin@fof 1), x(t — 2), x(t — 3), x(t —

4),z(t —5) whereas 11001 represents an three-dimensional embedditig-efl ), x(t —4), (¢ — 5).

This last type of embedding is callédegular or non-uniform Non-uniform embedings were also
considered byJudd and Mees 1998a paper which we only became aware of in the final phases of
present work.

We can run the Gamma test on each different embedding to choose the one which gives us the
gamma valud" closest to zero. If the embedding dimensiomisthen we hav@™ — 1 embeddings
to consider. Ifm is large, performing the Gamma test on all such embeddings is time consuming and
sometimes impractical. Very often, we take at most 20 past data points for such an embedding search
or use some heuristic searching techniques such as standard hill-climbing. The main reason why we
can obtain a different' value using an irregular embedding is that in effect we are changing the near
neighbour relationships between each data point in input-space. Leaving out one particular variable
and obtaining a lower is an indication this variable is either irrelevant or subject to a great deal of
measurement noise. Therefore, that variable should not be included for our model reconstruction.

By doing a search on the possible best embedding using 15 past values, using 9 nearest neigh-
bours for the Gamma test, the 8-dimensional embedding 001000100111111 was foudd with
0.0083971616, A = 0.13698427. It is interesting to note that this embedding uses all past years for
half an 11-year cycle and supplements this information with samples approximately bracketing a full
cycle. Of course, there might possibly be a better embedding with [Bvegr using a different value
of pmax- Also using 15 past values for embedding search arises because we have a very limited size
data set which may not be enough for accurate estimation of the truestfotsa the data (or for data
modelling).

One method to estimate the number of training data required is biitest This is simply a
series of Gamma tests varyid. If M is sufficiently largel" should be a close estimate of the true
value of Var(r). In other words M such data points should allow us reconstruct an accurate model.
Using the above embedding, dn-test was performed on the sunspot data. Starting fiém= 15
to M = 265 in steps of 5, data were randomly chosen from the data set and the Gamma test was
performed. This was repeated 5 times and then the averdgeas taken and plotted againgt. Due
to the high dimension of the embedding and a small data set, we would not expdcstaatlises as
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Figure 4.2: M-test on the sunspot embedding data.

shown in the resulting Figure 4.2. Hence, all available data are needed for ésting

Using this embedding, we obtain 267 data points and the first 208 data are used for training the
model and the remaining 59 data points are used as test data. Various results using different modelling
are shown in Table 4.1. Using LDT, the MSEs are high as expected due to few and sparse noisy
training data. In fact, for the same reason it is not a good idea to use any clever heuristic techniques for
the outside query problem and just taking the first near neighbour value for the outside query (strategy
1) can produce better result. Taking highgex is also helpful.

‘ Model techniqueH Options ‘ Pmax ‘ MSE ‘
LDT strategy 1 40 0.015547
LDT strategy 5¢ = 0.35 20 0.0192818
GMP - 21 0.0146605
GMP - 25 0.0148654

LLR affine 59 | 0.007649749

LLR non-affine 54 | 0.005806554
Neural Net 8-10-10-1 (train MSE = 0.0084) - 0.013834

Table 4.1: Test data MSEs of various modellings of sunspot activity.
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Figure 4.3: Sunspot prediction on test data using LLR with non-affine model wyith = 54.

For the GMP, we can obtain a better result by just having a largge In fact, it is a much faster
computation because for LDT, a highgkax is needed which means performing the time consuming
process of Delaunay triangulation of about 40 8-dimensional data. A surprisingly good result can be
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Figure 4.4: MSE againspmax for affine and non-affine LLR modellings on the sunspot activity.

produced by using LLR which is efficient and powerful in the way it can reduce the MSE to about

5 x 10~3. The non-affine model performed better than the affine model and this was unexpected. The
actual result for the non-affine LLR usingh.x = 54 is shown in Figure 4.3. The non-affine model
seems to be a better model for this particular time series as shown in Figure 4.4. In general, other
techniques suffer poor prediction for the last two big peaks around year 1958 and 1968 resulting the
overall large MSE of the test data whereas LLR can predict it fairly accurately.

As a comparison, we trained a feedforward neural net on the same set of training data until the
training MSE reached about 0.0084, thef the data set. The network uses the sigmoidal function
f(z) = sp(2/(1 +e*T) — 1), where the temperatufg = 1.2 and the scale factorr = 1.5, as the
activation function and it is trained by using the BFGS algorithm (see Appendix D). As indicated by
the M -test, we would not expect the network to perform well. However, the MSE on the test data is
rather pleasing and closely matches the MSEs for many modelling techniques studied, but it is still not
as good as the LLR as shown in Table 4.1. In this small problem, the training time required is not long
but for a larger data set, this would not be chosen as the ideal technique for a ‘quick’ answer.

We then tried a dimension reduction approach based on the idea of dimension reduction via PCA
in a local scale for the LLR modelling technique as an improvement method. The idea is to take
advantages of the calculation of the inverting matrix stage. To solve for a best solutighifor
XA =Y, as shown in Section 3.4 typically, we need to calculate the pseudoin¥étse the matrix
X, say it is am x n matrix, so to obtaird = X#Y. Computationally,X# can be calculated using
the Singular Value Decomposition (SVD) of the matiixby expressing

X =Uupv7T (4.17)

whereU € R™>*™ V' € R™*" are orthogonal matriced) € R™*" is a diagonal matrix with entries
Dy =w;, 1 <i<r,w >wy>--->w. >0, wherer = rank X and all the other entries are
zeroes. Further discussion of SVD is in Appendix A. Then

W=t o0
o o 1 ur. (4.18)

X#=v

nxm

whereW is ar x r diagonal matrix ofw;. The inversé¥ —! is then a diagonal matrix df/w;.

We now define a tolerance valiig, so that a threshold,, = T, x w; is defined, i.e. the threshold
Tinr is @ percentage of the largest. If w; < Tir thenl/w; is set to zero in (4.18) for the calculation
of the pseudoinvers& #. Settingl /w; to zero for smalkv; is in fact important for practical numerical
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computation since it reduces any floating point arithmetic accumulated error due to the reciprocal of
smallw;, as well as removes the ‘least important’ information, e.g. noise, from our input data. This is
the same as removing some of the basis set of vectors in the riiagfpanning the subspace.

Notice that/ = X X7 is the correlation matrix ok (see Section 4.1.2). The squares of the entries
w; are in fact the non-zero eigenvaluesof ', in order words, the magnitude of the principal vectors
of the PCA of X. Zeroing the entries corresponding to smalleffectively removes those principal
components with small variances, although the data in the above case is not expressed in the feature
space. Therefore this technique is not exactly a PCA dimension reduction. The relationship of SVD
and PCA is studied and further demonstratef3erbrands 1941

We then apply our simple but ‘crude’ dimension reduction technique, by setting a suitabldvalue
on thepmax local data points before linear regression, with the same embedding and non-affine model
usingpmax = 54. However, this does not improve the model in a significant way and occasionally,
the modelling seems to be worse. The main difficulty in applying this technique is to determine the
threshold value for removing unwanted spurious and insignificant components. As a control experi-
ment, we used the full embedding 1111111111111 using non-affine LLRpwith= 54 and varied
threshold valud’,. to compare the test MSEs. The results are in Table 4.2. From these results, it seems
that the Gamma test modelling approach for choosing a suitable embedding is comparable to using
the locally dimensionality reduction technique for LLR modelling, but the Gamma test has provided a
deterministic way to aid the modelling process, whereas this dimension reduction technique requires
the careful choice of’.. Too large a value df,. could render the local linear regression inaccurate.

T, | pmex| MSE
0.1 54 | 0.012119
0.05 54 | 0.007819
0.005 | 54 | 0.0088599
1x107¢ || 54 | 0.0088599

Table 4.2: MSEs of test data on non-affine LLR sunspot modelling uging = 54 with variousT,
for component removal.

Usefulness of the Gamma test embedding search

From the above example, we can clearly see that havingegular embedding as opposed to the
standard approach taking regular past time lags, as suggested by Takens, a good model can be recon-
structed from a finite set of time series data.

To explicitly demonstrate the usefulness of this Gamma test approach for identifying the ‘depend-
able’ past lags, we construct a chaotic map for which the current system state does not depend on
the immediately previous two states but directly depends on the values of the further past states. We
construct the following system,

T, = —1.4z2_ +0.052, ¢, (4.19)
in a form similar to the l#non map

T, = —1422 | + 0.3z, o, (4.20)
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Tnt1

4.6: Chaotic attractor of the original
the map defined in (4.19). Hénon map in (4.20).

but instead depending on the system’s fifth and sixth lagged values. The chaotic attractor from (4.19)
is shown in Figure 4.5, which is very different from the originaédnén map attractor as shown in
Figure 4.6. If we use the standard embedding technique, we could take the embedding 111111 so as
to include the fifth and the sixth delayed states. However, this would presumably pick up unnecessary
values, the first delayed state, the second delayed state etc., for the system reconstruction. Very likely,
the extra values may behave as noise in the dynamic reconstruction.

Using (4.19) we generate a time series of 6000 samples for this experiment. By having a fixed
length of 10 lags, we can constrizt’ different embedding vector data sets. For each data set, we
can perform the Gamma test on the embedding vectors. By comparing the refuvakebs, we can
obtain the best embedding which gives the l¢BstTable 4.3 show the 10 best embeddings from this
full search. Of course, other searching techniques such as using genetic algorithm or hill-climbing
can approximate a best embedding without needing to coniptdeall embeddings. In fact, simply
having increasing embeddings and computinglthalues is good enough for a fast solution.

‘ Order‘ r ‘ A ‘ Embedding
1 6.879299 x 10~% | 0.338208| 0100110001
2 7.484070 x 107 | 0.314507| 0101111001
3 1.521949 x 1075 | 0.174325| 1001111010
4 —1.821650 x 10~° | 0.379670| 0000110000
5 1.848148 x 10~° | 0.287325| 0011110010
6 1.891623 x 10~° | 0.426509| 1000110000
7 —2.002271 x 10~° | 0.276795| 0000111011
8 2.034062 x 10~® | 0.541767| 0000110000
9 —2.106169 x 1075 | 0.343622| 0000110011
10 2.990317 x 10~° | 0.381624| 0001110100

Table 4.3: A list of ‘good’ embeddings sorted in ascending ordefIdf

As seen in the result in Table 4.3, some of thealues are negative which is probably caused by
statistical noise, especially when theare small and close to zero. We could simply ignore those em-
beddings which give negativg but if the asymptotid’ is sufficiently small the resulting embeddings
should produce a good model. As expected, the embedding 0000110000 is in the list, because this is
the recurrence relationship used to define the system (4.19). Surprisingly, there are five better embed-
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dings with positive values. Indeed, such embeddings often produce better models. Note that the fifth
and the sixth past lag states also appear in those five better embeddings. This experiment demonstrates
that the Gamma test can easily help us to determine an appropriate embedding constructed from a
reasonably sized set of time series data.

4.2.2 Detecting a message buried in a chaotic carrier

This section is basically a summary report on the joint mini-project with Ana Oliveira who is inter-
ested in secure communication via synchronisation of chaos. This experiment is to use our modelling
technique in an attempt to model a digitised chaotic signal to detect and retrieve hidden binary mes-
sages within such a carrier signal, i.e. another demonstration of the usefulness of this simple modelling
scheme (SeBOliveiraet al. 1999 for the main result).

Using synchronisation to secure communication has been an actively researcH&larea and
Oppenheim 1993; Oketani and Ushio 1996; Padttal. 1992; Pecorat al. 1997. The method used is
to assume that we have two identical chaotic systems, one in the transmitter and one in the receiver and
select one of the chaotic system variables of the transmitter as a carrier for the transmitted message.
Using a suitable synchronisation technique, the message can then be decoded from the chactic carrier.

We are interested in decoding the message without using any synchronisation techniques and no
knowledge of the dynamical system used to generate the carrier. There have been several attempts
such as a forecasting approaching (one-step predictor) involving filtering in the frequency domain in
[Short 1994 and a technique without filtering in the frequency domaifShort 1997. Nevertheless,
our method appears to be simpler, using the combined Gamma test and LLR strategy. By modelling
the carrier and using a one-step predictive model, the binary message should appear as noise or a large
error signal when a model prediction is compared with the received signal. We have tried the method
on two different message encoding schemes, a binary message masked by adding it to a chaotic carrier
and a binary message modulated in one of the system bifurcation parameters.

Masked message

First we masked a binary message as a square wave signal as in Figure 4.8 intatiable (Fig-
ure 4.7) of the Chua circuit which is defined as

& =oa(y—z— f(z))

y=x—y+=z , (4.21)
Z=—Py
where
f(a;):bm+%(a—b)(|x+1|—|x—1|) (4.22)

anda, 3, a, b are constants and setto he= 10, 8 = 14.87,a = —1.27, b = —0.68. One digit of the
binary message is a ‘square’ peak for a duration of 0.8 time unit. The message is completely hidden
by masking as in Figure 4.9.

As before the Gamma test was used to find a good embedding for the modelling of the time series
of y sampled at every 0.01 second (see Figure 4.9). The embedding 0011110001 was found with
[ = 1.8219 x 1079 and A = 0.29044 using about 10000 data points. As suggested by\thtest,

1The detail of the synchronisation is omitted here - [&@%veiraet al. 1999.
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be encoded/masked.

ing the binary message in Fig-

ure 4.8.

3000 training data were taken for the affine LLR model construction. ¥ith= 8, we obtain a MSE

of 3.3338 x 10~° on the test data. The result is shown in Figure 4.10. The retrieved message appears
as patterns on the error time series. The ‘0’ and ‘1’ of the message appear as pairs of ‘blips’ as in
Figure 4.11 and Figure 4.12 respectively on the error time series. Therefore we can fairly easily detect
‘blips’ using our technique, but how well it can be used for distinguishing the difference between a ‘0’
and a ‘1’ signal, i.e. a recognition problem, requires further future investigation.
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Figure 4.10: The result of the affine LLR model on the test data of the chaotic carrier with masked
binary message of thgvariable of the Chua circuit.
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Similarly, we tried the same problem but with the binary digit encoded as a single ‘flash’ blip signal
(duration of 0.01 second for each digit) and successfully retrieved the masked message. Also, noise
was added to the carrier to increase the difficulty of the modelling but we could again successfully
retrieve the message up to certain amount of noise.
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Modulated message

Next we tried the same technique on binary message modulated into one of the system parameter. The
Lorenz system defined by

t=o(y—x)
y=rr—y—zz , (4.23)
z2=-bz+uzy

whereo, r andb are constants, was used for the modulation scheme by using the pararaster
[John and Amritkar 1994 o = 10 andb = 8/3. A ‘1’ corresponds to a positive change in the
parameter and if after a time interv® = 20 no change occurs then a ‘0’ is encoded. Each binary
digit was encoded at evenly spaced time interval. We varieetween- = 28.0 andr = 30.0 for the
encoding and we can decode the message from the carrier without much difficulty. Smaller@hange
was tried but were not successful.

The binary message to be modulated, 10011010, is as Figure 4.13 and the message was modulated
into r of the system. Figure 4.14 shows and Figure 4.15 shows the time seyjegithf and without
the modulation with both starting at the same initial conditiapfrom the modulated system clearly
appears as another chaotic time series.

31*1 r

30.5

80

Figure 4.13: The binary mes- Figure 4.14: The original time Figure 4.15: The time series of

sage 10011010 is encoded assaries ofy without modulation. y starting at same initial condi-
variation ofr of the Lorenz sys- tions but with message modu-
tem. lated.

Using the same modelling procedure again, a embedding 1001110001 was found using 10000
data points, for the time serigsof the system, i.e. the carrier, sampled at every 0.01 second. The
corresponding Gamma valuelis= 4.0067 x 10~° and A = 0.21089. The number of training data
used isM = 6000 as estimated by th&/-test. The model was created and tested and we obtained
MSE 0f4.5525 x 10~* on the test data. This MSE value, relative to the other experiments, is not very
small. One possible reason being that the Lorenz system is slightly harder to model. Nevertheless, the
model result is shown in Figure 4.16 and the binary ‘1’ can still be located by observing the pattern in
Figure 4.17 on the errors.

This illustrates how simple and powerful this modelling strategy of combining the Gamma test
and LLR really is. Further details on the application to eavesdropping a chaotic carrier are reported in
[Oliveiraet al. 1999.

4.2.3 Modelling a chaotic process by a neural network

Constructing a neural network from a chaotic map has been an interesting and significant area for
the investigation of neural dynamif®/elstead 1991; Tsui and Jones 1R9The typical method of
constructing such a network is to choose a chaotic map and use a set of input and output data from
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Figure 4.16: The predicted model result for thetime series. Figure 4.17: A ‘1’ signal on
the error time series.

this map to train a feedforward neural network. Then the outputs of the network are immediately fed
back to the inputs to form a recurrent network. This is the approach used in our early experiment in
studying chaos control in neural network as shown later and descrilp@dunand Jones 1997

In practice, this is a rather difficult process due to the fact that the current state alone does not
always contain the necessary information to predict the next state. In this section we apply the Gamma
test modelling approach which can simplify the construction process, as well as introduce a new type
of neural model which can capture the essential dynamical features of a given chaotic time series.

To capture the chaotic dynamics given by a time series of a system variable, we first use a sequence
of Gamma tests to determine a best embedding (i.e. an embedding which mininisesas to select
the best set of inputs for the model dynamics R¢ — R. The dimensionl is given accordingly by
the best embedding.

As an example, we look at the Mackey-Glass equation defined by

d 0.2z(t —7)

wherer = 30 > 17 s the time delay. We then generate a time series of 800 points sampled at intervals
of At = 10. Using a six dimensional embedding 111111, we reformatted the data into 794 data
points which were then put to a sequence of Gamma tests to find the best embedding. The embedding
111100, which gavé& = 0.00093817 and A = 0.30222, was obtained. It is interesting to note that

the full embedding search obtained the best model by omiiting- 1 - A¢) andxz(t — 2 - At). Why

is this? In the original time delay equation the valt(¢) depends on the valugt — 30). The values

x(t — 10) andx(t — 20) are not needed at all, as the software discovered. This illustrates the utility of

l/ delay buffers
x(nlb)
x(nD4)
x(n(B)

Neural >
Network x(n)

A
A

F 3
V3

A
F 3

F 3
V3

input output

Figure 4.18: A recurrent neural net with delayed inputs, suggested by the embedding found by the
Gamma test, for modelling a chaotic time series.
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the Gamma test in finding the best embedding in a dynamical system with lags.

The M-test suggested that a minimum of around 500 data points were required for the model. In
fact we chose to use 550 data points to train a feedforward neural network with the architecture 4-8-
8-1 until the training MSE was about 0.000936. The feedforward neural network was trained using
the BFGS algorithm, a quasi-Newton method (described in Appendix D), with an output function
f(z) = 1.5(2/(1+e~12*)—1), wherex is the usual activation function, as used in the earlier sunspots
experiment. The remaining 293 data points were tested, giving MSE of 0.001623. As suggested by
the embedding 111100, we can feed the output of the system back into the input to construct an
iterative network having delay feedback lines. An example of the architecture for this embedding is
illustrated in Figure 4.18. Delay buffers are used on the feedback lines to give past values so that a
mapF : R* — R can be correctly represented.

Tpil Tn1
1.2 1.2

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

Tn

0.2 0.4 0.6 0.8 1 1.2 Tn

Figure 4.19: Mackey-Glass attractor from the Figure 4.20: Chaotic attractor of the trained
sampled time series. neural network.

The true attractor plotted from the sampled time series of this system and the trained neural net
attractor are in Figure 4.19 and Figure 4.20 respectively, showing the similarity between them.

This idea of using suitably chosen time delayed feedback lines in an iterative neural network to
obtain a feedforward neural model of a chaotic dynamic system specified by a single time series is an
important step towards our ultimate goal. We shall return to this topic in Chapter 8. However, we note
that this method is really an innovative application of Takens theorem to neural network modelling.

4.3 Discussion

We have presented several examples in which the Gamma test is used as a means of model identi-
fication to determine a ‘good’ embedding from which an iterative model of the time series can be
constructed. Usingrregular embeddings very often a better model than that provided by a literal in-
terpretation of Takens theorem can be obtained. This is illustrated in our construction of a model for
sunspot activity and by the detection of a message buried in a chaotic carrier.

The determination of the significant delayed components of the Mackey-Glass time series detected
by the Gamma test also helped us in constructing a chaotic neural network which models this dynamics.

By incorporating several suitable delay buffers, based on a good embedding, and using these feed-
backs to the inputs, a chaotic time series can easily be modelled. Previously training such an iterative
neural network (to model a given chaotic system) was considerably harder and contained some ele-
ment of ‘hit-and-miss’. The techniques provided here have enabled us to construct a wealth of chaotic
neural systems (only one of which is presented in this thesis) which can then be used as the basis for
experiments in control and synchronisat[@liveira 1999.
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However, before we can construct our chaotic neural stimulus-response model, we need to study
the nature othaosand the techniques which have been used to control it.
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Chapter

Chaotic Dynamics & Control of Chaos

This chapter attempts to give a concise description of the basic idea of dynamical systems and chaos,
and introduces the terminologies used throughout the remainder of the thesis. Essential tools and
techniques for studying chaotic dynamical systems are presented. Some further examples of chaotic
neural dynamics are also given.

Finally we begin to explore the basic ideas required to effeatrol of a chaotic system. Several
chaos control strategies will be described and illustrated with simple experiments.

5.1 Dynamical systems

The subject oDynamical systemis a mathematical attempt to understand processes which evolve in
time. A dynamical system may be defined as a deterministic mathematical prescription for evolving
the state of a system forward in time. Time here either may be a continuous variable, or else it may be
a discrete integer-valued variable. A typical continuous dynamical system is defined as:

WO _ P lafo) (5.1)
wherez(t) is and-dimensional vectoras, . .. ,x4) representing a state of the system and it may be
thought of as a point in a suitably defined space — which we shalpballe spacer state spaceFor
any initial stater(0) of the system (5.1), we can in principle solve the equations to obtain the future
system state:(¢) for t > 0. The path in state space followed by the system as it evolves with time
is referred to as aorbit or trajectory. A trajectory therefore displays the history of the states of the
system.

We describe here some terminology regarding dynamics of the trajectorigsit Aetis a set of
points in state space that a trajectory repeatedly visits, and it is defined only for discrete or continuous
autonomoussystems. Alimit cycleis a periodic solution of the system. The limit sestableif all
nearby trajectories remain nearby and itirsstableif no nearby trajectory, except those lying on the
limit set, remain nearby. Sometimes the trajectory in state space will head for some final attracting
region which might be a point, curve, area and so on. Such an attracting object is cab¢ulabir
of the system, since a number of distinct trajectories will be attracted to this set of points in the state
space. The set of all initial conditions leading to trajectories that approach a given attractor is called
thebasin of attractiorfor that attractor.

Time t is implicit to anautonomousystem, i.ex(t) = f(t) for a continuous system. Otherwise if timés explicit in the
system, then such systemnisn-autonomous
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5.2 Chaos

Before we can give a formal definition of chaos, it is necessary to introduce some mathematical defi-
nitions:

Definition 5.2.1. Let X be a metric space and l&f C X, thenY isdensen X if vz € X,3Jy € Y
arbitrary close tox.

Definition 5.2.2. A dynamical system isansitiveif for any pair x, y and anye > 0, there exists &
within e of z whose orbit comes withinof y.

Definition 5.2.3. A dynamical system’ depends sensitively on initial conditioifs35 > 0 such that
for anyz and anye > 0, there is ay within e of z and at such thatd [F (z(t)), F (y(¢))] > 8 where
d is a metric.

Informally a chaotic dynamical system is a system which may superficially appear to behave ran-
domly but when the system starts off at the same initial point, it always produces the same orbit. There
does not seem to be an universally agreed definition of chaos between mathematicians. Here is one
formal definition of chaotic dynamical system from DevafBgvaney 199P

Definition 5.2.4. A dynamical syster' is chaoticif
e The set of periodic points is dense,
e F'istransitive,

e [ depends sensitively on initial conditions.

It is a characteristic of chaotic dynamics that the resulting attractors often have a much more in-
tricate geometrical structure in the state space than thosgofarly behavingdynamical systems.
The dimensiofof these attractors is not an integer. Such geometrical objects are fifdtaidelbrot
1987. When an attractor iFactal, it is called achaotic attractoror astrange attractofRuelle and
Takens 197]1L

5.3 Essential tools

Some (but not all) essential mathematical tools for studying chaotic dynamical systems are introduced
here. They are briefly explained and interested readers should be able to find them in any standard
dynamical system books, el@evaney 1992; Hilborn 1994

5.3.1 Bifurcation diagram

A non-linear dynamical system, sd¥.(x) wherer is a system parameter, could change suddenly in
terms of qualitative and quantitative behaviour as a result of a small change in some control parameter
r, e.g. from order to chao®ifurcationis the word for describing such a sudden change in the nature of
system as a control parameter is varied. To understand bifurcation behaviour, it is often helpful to look

2The standard definition of dimension is thex-counting dimensioar the capacity dimensionWe can imagine covering
the space by a grid aV-dimensional cubes of edge lengtheofWe then count the number of cub®s(e) needed to cover the
set. We do this for successively smalleralues. Then the dimension is definedBy = limc_.¢ In M (¢) /In(1/e).
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at thebifurcation diagram This is a picture in the, z-plane of the relevant fixed and periodic points

as functions of-. Therefore it is a plot of the periodic points for each parameter valden example

of a bifurcation diagram is shown in Figure 5.4. The way to generate such diagrams is described in
Algorithm 5.1.

Assume the system &, (x) wherer is a parameter, < r < r, andx is a state of the system.
1. Set parameter = r initial parameter value.
2. Setry = system initial state.
3. lterate the map’., say, 500 times (or more to remove transient states).
4. Iterate the map’. another 1000 times (starting fromg) and plot the resulting values of
5

. Increase- by a small amount; — r + ¢ (The size ofc depends on the range of the parameter
r), andif r > r¢ stopping parameter valikenexit elsereturn to step 2.

Algorithm 5.1: Generate bifurcation diagram of a dynamical system.

5.3.2 Poincage section

A Poincaté section(or a Poincat map) is a device invented by Henri Poireeas a means of simpli-
fying the analysis of a continuous dynamical system (or ‘flow&)/dt = F(x(t)), F : R? — R?, to
a discrete map.

Consideringd first-order autonomous ordinary differential equations, the Poinsection repre-
sents a reduction of thedimensional flow to and— 1)-dimensional map by choosing some appropri-
ate (@ — 1)-dimensional surfacg (a global cross section) in thkdimensional phase space satisfying

e every orbit of ' meetsy: for arbitrarily large positive and negative time and,;
o if x € ¥ then the flow atc is not tangent t&:.

Letzy = xo(t) € ¥ and definery : ¥ — R such thatrr(zo) = 7 > 0 is the least time for which
xz(t+ 7) € . The Poinca section of the flow through is defined as

P = {:l:(t + TF((EO))|V$0 S Z} (52)

i.e. each point ort is evolved forward in time until the trajectory interse&is The set of all such
re-intersections is the Poinéasection.

5.3.3 Lyapunov exponent

The Lyapunov exponertdf a map may be used to obtain a measure of the sensitive dependence upon
initial conditions that is characteristic of chaotic behaviour. For a one-dimensional iterative map,
Zn+1 = f(x,), the system is allowed to evolve from two slightly differing initial stategndz + e,

then aftem iterations their divergence may be characterised approximately as

e(n) ~ ee™ (5.3)

where the Lyapunov exponenptgives the average rate of divergence. The difference between two
initially nearby states after thé" step is written as

M (x+e)— f(x) ~ ee™™. (5.4)
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Figure 5.1: A two dimensional example of the calculation of Lyapunov exponents - the evolution of a
sphere of initial points to an ellipsoid.

For smalle, using the chain rule for the derivative of th# iterate and taking the limit as tends
to infinity, we can derive

n—1

p=Tm > log, | (o), (5.5)
1=0
wheref’ is the first derivative of functiorf, and this illustrates the general idea behind the Lyapunov
exponents.
For continuous time systems,

dx;

dt
there are two aspects of the time evolution which are of particular interest. The first aspect relates to
the evolution of volume elements in state space. For a continuous time system described by a system
of differential equations such as (5.6) an element of voltmeill evolve over time according to the
divergence equation

=gi(z1,...,24,p:), (i=1,...,d), (5.6)

1dv S 89' = divg (5.7)

see for exampléHilborn 1994.

We first note that, if/ can be written in diagonal form, djv= Trace J, where/J is the Jacobian
matrix of the system. Thus if the average over timélodce J < 0, then the volume elements will
contract and the system will lsBssipative whereas if the average over timeTace J = 0 the system
is ‘conservativein the sense that it is measure preserving in phase space. Now

d
Trace J = Z A (5.8)
i=1

where the); are the eigenvalues of. Thus the dissipative or preservative properties of a system in
the phase space are determined by the average over time of the sum of the eigenvalues of

We are primarily interested in dissipative systems which are chaotic, so that the second aspect of
time evolution which concerns us is whether nearby trajectories have a tendency to diverge exponen-
tially on average.

For continuous systems, Lyapunov exponents provide a coordinate-independent measure of the
asymptotic local stability of properties of a trajectory. The concept is very geometrical. Imagine a
small infinitesimal ball of radiug(0) centred on a point(0) in state space. Under the action of the
dynamics the centre of the ball may move, and the ball becomes distorted, see Figure 5.1. Since the
ball is infinitesimal, this distortion is governed by the linear part of the flow. The ball thus remains
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an ellipsoid. Suppose the principal axes of the ellipsoid at time of lengthe; (¢). The spectrum of
Lyapunov exponents for the trajectaryt) is defined as

€i(t)
€(0)

Note the Lyapunov exponents depend on the traject¢ty. Their values are the same for any
state on the same trajectory, but may be different for states on different trajectories. The trajectories of
ad-dimensional state space havéyapunov exponents. This is often called theapunov spectrum
It is conventional to order them according to size. The qualitative features of the asymptotic local
stability properties can be summarised by the sign of each Lyapunov exponent; a positive Lyapunov
exponent indicating an unstable direction, and a negative exponent indicating a stable direction. The
motion will be dissipative if

1
w; = lim  lim {—log[

t—o0e(0)—0 | T

H (1<i<d). (5.9)

d
> pi <0 (5.10)
=1

and chaotic if at least one; > 0.

Trajectories’ divergence properties can also be expressed in terms of the eigenvdlsaae the
eigenvalues will determine the form of the solution to the locally linear differential equations which
determine the trajectory at any particular point of the phase space. In general terms these locally linear
solutions for ther; will be of the form

AreMt 4 Aget2t 4 4 Agetdt (5.11)
If for a particular trajectory we write the time average

T
lim In || gt
T—oo Ji=0

. (<i<a), (5.12)

[Otani and Jones 199¥bonjecture that this provides an alternative route to the Lyapunov exponents.
For an high-dimensional iterative map functiaft™ = F(X(~1), whereF = (F}, ..., Fy),
with Jacobian

OF; ..
J—Q%) (1<ij<d). (5.13)

Volume elements will locally contract or diverge according dst J| is less than or greater than 1,
respectively. Thus in this case the condition for a dissipative system depends on the avedagé of
rather tharilrace J as in the continuous case.

We can still speak of an average rate of divergence: if the system is allowed to evolve from two
slightly differing initial statesX = (x4, ... ,z4) andX + ¢ aftern iterations the divergence of the two
points may be characterised as

e(n) = (e(0)e™™, ..., e(0)ea) (5.14)

where the Lyapunov exponenisgive the average rate of divergence/convergence over a large number
of iterations. For small we can express this as

1 — OF;
wi = lim = Zln‘ (1<i<d). (5.15)
k=1

n—oo n ox;

b)
X=X &
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trajectory of centre TN e

renormalisation at this points

Figure 5.2: At ¢, an orthonormal set of vectors from the centre of the sphere evolves by stretching and
contracting along the axes of the developing ellipsoidzA4 new set of vectors generated such that
one of the new vectors is parallel to the previous stretching direction.

which is analogous to (5.9) for a continuous system.

The Lyapunov exponents are essential for investigating chaos, convergence and divergence dynam-
ics of any system, therefore a good numerical estimating technique is required. Two such algorithms
are described here.

The first algorithm is based on the description fréBaker and Gollub 1990; Parker and Chua
1994 and is best used when the full mathematical description of the dynamics is available. The ba-
sic idea of the of the calculation of the Lyapunov exponents is same as the definition shown above.
However, it is impractical to perform the actual calculation, because the initially close phase points
would soon diverge from each other by distances approaching the size of the chaotic attractor, and the
computation would then fail to capture the local contracting and diverging rates. Therefore, vectors
connecting the surface of the ellipsoid to the centre must be reduced in size periodicahoor
malised to ensure that the size of the ellipsoid remains small and that the surface points correspond
to trajectories near that of the centre point. The renormalisation is shown in Figure 5.2 and can be
achieved by the linear algebra technique of Gram-Schmidt orthonormalisation. The Lyapunov expo-
nents are taken to be tlaweragef those obtained over many segments of the central trajectory.

There are three main inputs - the numerical integrdttime step,7’, the maximum number of
iterations of numerical integratioh,,,., andz[], the current state of the"-order system. The pseudo-
code of this algorithm is shown in Algorithm 5.2.

These are some important notes for using this algorithm:

e The single square brackgisndicate a vector and the doubld indicates a matrix. Alsojy]|]
means the'" row of the matrix and][;j] means thg™ column of the matrix.

e ul|[] is the orthonormalised perturbation matrix with initial value/pthe identity matrix.
e (x,y) denotes the inner product of the vecterandy.

e ¢r(z[]) is the solution of the differential equations, i.e. the current state of the system.

o1 (x[]) is the solution of thevariational equationof a matrix-valued time-varying linear dif-
ferential equation. It is the linearisation of the vector field along the trajectgryor in other

word, it is the Jacobian at the current point on the trajectory. This can be solved numerically at
the same time of solving; with initial value® = I att.

SHere we use fourth order Runge-Kutta method as a reasonable compromise between computer speed and accuracy of
solution.
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Procedure: Lyapunov exponent$ 7', kuax, x[] )
{T size of time step for numerical integratign.
{kmax the maximum number of steps of numerical integration.
{z[] is the current state of the systém.
u[][] = I {identity matrix;
fori=1ton do
pli] =0
sum[i] =0
end for
k=0
repeat
k=k+1
if kK == k. then
exit - no convergence
end if
{changes due to the local dynamibs atx[]}
ozl = er(z[)ul][
{next numerical integrated state with time step T
af] = ¢r(z[))
for i =1tondo
vl[i] = dz()[4]
{renormalisatiof
forj=1to(i—1)do
oflfi] = o[l[i] = (ol][i], ullilyul] ]
end for
ulfé] = w{][il/v[)[z]]
{accumulate the average divergent/convergent yates
sumli] = suml[i] 4+ In |v[][¢]]
wult] = sumli]/kT
end for
until convergence
returru[] the Lyapunov exponents

Algorithm 5.2: An algorithm for estimating Lyapunov exponents.
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¢ A modified Gram-Schmidt orthonormalisation procedure is used[iNokle and Daniel 1979

In practice, the choice df in this algorithm plays an important role in the success of finding the
Lyapunov exponents. Too small a value could result in excessive orthonormalisation and generally
lead to inaccuracy of the Lyapunov exponents. Too large a value could lead to numerical overflow
which happened quite easily in experiments.

In most cases for the experiments, neural systems are available but it would be difficult to obtain
the precise mathematical description to obtain the solution of the variational equétioasthe Jaco-
bian describing the local flow, which is essential for calculating the local divergence and convergence
rates. Since the neural systems are available, close-by points are randomly generated near the point
of trajectory concerned and iterated, so that a least squares fit can be performed to estimate the local
Jacobian. Generally this worked very well but this brought in another problem of choosing the size of
local region for estimating the local flow.

The second technique is very similar to the one just discussed, but the spectrum of Lyapunov
exponents is estimated by calculation from the observed time series of a single scalar vadatiie,
system{Sano and Sawada 198%-or the single variable case, one can reconstruct the dynamics by the
use of delay coordinatd3akens 198] i.e.

x; = (x(iT),... ,x(it + (d — 1)tp)) (5.16)

wheretp is the delay time and is the reconstructed dimension. However, as shown in a later experi-
ment, if it is available the time series of system states may also be used for better accuracy without the
‘hidden’ problem from delay coordinates. The procedure is shown in Algorithm 5.3.

In this method, since a time series of state vecterg; = 1,2,... , M) measured at discrete time
interval is available, we do not need to perform numerical integration as shown in the first method. The
local flow, the Jacobiad, at each state; in the time series is estimated firstly by collecting points
{z;} from {x;} within a hypersphere centred at the paintwith radiuse, i.e. forming the set

{y:} = A{zni —j | |zri — 5] < €}, (5.17)

wherey; is the displacement vector betweep; andx;. | - | is the usual Euclidean norm.
The displacement vectotg = xj; — x; is mapped to

{zi} ={Trit1 —xj1 | |2pi — 5] <€} (5.18)

If the radiuse is small enough for the displacement vectgrsandz; to be regarded as good approx-
imation of tangent vectors in the tangent space, then the evolutign tof z; can be represented by
some matrix\/;, as

zZ; = iji' (519)
In this case thel/; which minimises the average of the squared error norm betwgandy, with

respect to all components of the matnix;, that is

N
1 2
i‘fﬁ;'zi - Myyl?, (5.20)
is the optimal estimation of the linearised flow map from the datagetnd z; or the Jacobiay

atzx;. Finding the solution of this problem is basically a standard least squares fit problem and an
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Lyapunov exponentsts, T', €, maxzN)
{ ts list of time series of state vector§;time step between each state vegtor.
{ e radius of the hypersphere for including local points to estimate localjflow.
{ mazN maximum number of points to be included for estimating local fjow.
n = dimension of the vector its; w[|[] = I {identity matrixt
for i =1ton do
pli] = 0; sumli] =0
end for
for £ = 1 to (length¢s) - 1) do
zi[] = k' vector ofts; x| = (k + 1)*® vector ofts
A={}; B={}{ empty lists}
for j = 1to length{s) do
z;[] = j*® vector ofts
if |zx[] — ;]| < ethen
{ order of the vectors in the lists are important
append displacement vectar,(] — z;[]) to A
zi+1[] = (j + 1)'" vector ofts
append displacement vectar,([] — z;41[]) to B
end if
end for
{if not enough points for estimating local flow, skip to the next state véctor
if length(4) > n then
if length(4) > max N then
A = list of the firstmaxz N vectors fromA
B = list of the firstmax N vectors fromB
end if
form A’[][] with eachj*" columnA’[][j] = j*" vector from listA
form B'[][] with eachj*" column B'[][j] = ;' vector from listB
J[)[] = B'[][] pseudoinverse{'[][]) {least squares fit oA and B}
dz{][} = J{[ull
for i =1ton do
oflfi] = 8e[][i]
{ renormalisatior}
forj=1to(@—1)do
vl [i] = v{J[i] = (v{][a], ul] i) u[][J]
end for
ulls) = o[ ll/llo[ |
{ accumulate the average divergent/convergent fates
sumli] = sumli] + In(v[][7])
wli] = sumli] /KT
end for
end if
end for
returny[] the Lyapunov exponents

Algorithm 5.3: Lyapunov exponents for trajectories of a continuous systems estimate from a finite
time series.
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interesting way of solving this problem is shown in the next section. The remainder of this Lyapunov
exponents estimation technique is same as in the previous technique.

This second method is possible only if the time series represents the dynamics of a chaotic attractor
and thus has thergodicproperty which ensures there are enough nearby points which can be collected
for estimating local flow at each orbit point. The ergodic property relates the time average of a function
to its average over phase space. This relationship, which is fundamental in statistical mechanics, was
first conjectured by W. Gibbs prior to the invention of the Lebesgue integral. For Gibbs this was
singularly unfortunate since without the Lebesgue integral it is impossible to express the idea precisely.
Suppose that, except for a set of measure zero, the att@aiba dynamical system is transformed
into itself by an elemer” of a group of measure preserving transformati@ifswhere without loss
of generality we may suppose the measurg(S) = 1. Supposef is a measurable function and
sufficiently well behaved (e.gf: € L!), then Birkoff proved that fol” € 7

Jim 057 AT o)) = [ F@)don o), (5.21)

except for a set of values af, of zero measure. If” represents translations in time then this equation
asserts that for almost all initial conditions the time averaggisfequal to its measure-weighted phase
average. Ary with this property is calle@rgodicwith respect to the transformati@h.

However, if sufficient samples of the time series are not available, or more generally such that
the rank of the matrix4d formed from these column vectors is less than the dimension of the local
flow n, then a linear approximation to the local flow cannot be estimated; in which case the algorithm
just ignores the current point and moves to the next point. Providing this skipping of points does not
happen too often, this technique will still give very good estimation of the Lyapunov exponents. In
practice, one would like to avoid computing the rank4oét each step. To this end we use the number
of samples of the time series as an approximate guide. If this number is greater Weaperform
the estimate and use the pseudoinverse (discussed in Section 3.4.3) rather than the inverse to cover
the eventuality that the matrix may be possibly be singular. Whilst not ideal, this comprise seems to
result in a faster algorithm without a significant loss of accuracy. Also, in Algorithm 5.3, there is an
upper limit, max N of the number of local points used in estimating the Jacobian in order to reduce
the computation time. Results of using these techniques will be shown later in later experiments.

5.4 Neural networks as dynamical systems

The evolution of the state of a neural network can be considered from a rigorous mathematical point of
view as a dynamical system. Many dynamical behaviours, such as attracting or repelling fixed points
and limit cycles, can be observed in non-linear artificial neural netwiBl&cock and Westervelt
1986; Hirsch 1989; Marcus and Westervelt 1p88haotic dynamics have also been observed in many
artificial neural systems, either in continuous-time systéfisten and Clark 19g6or discrete-time
systemgWang 1991. In this section, some simple chaotic neural models are briefly described. There
are many chaotic biological and artificial neural models waiting to be discovered.

4We can think of7” as the translation group dh
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Figure 5.3: The rotation numberR against  Figure 5.4: A bifurcation diagram of a VCON.
w/p.

5.4.1 Chaos at the neuronal level

Science has long been modelling the biological neuron using mathematical descriptions. Here we
examine thevoltage-controlled oscillator neuroor VCON [Hoppensteadt 1989 This model, in
contrast to all-or-none neuron models, generates voltage spikes that phase-lock to oscillatory stimu-
lation, similar to the phase-locking of action potentials to oscillatory voltage stimulation observed in
Hodgkin-Huxley preparations of squid axdt$odgkin and Huxley 1952

The VCON model of a single neuron (cell body potentia = with phaser) stimulated through a
synapse on the cell body (presynaptic poteniialy with phasey) is

Ccll_f =w + C cosy (x(t)) cosy (y(t)), (5.22)

where the constant’ describes the polarity of the synapsefor excitatory,— for inhibitory) and its
strength|C|. V. denotes the super-threshold part of a voltdgeoV, = V if V' > 0, butitis O
otherwise. Thuscos, = describes action potentials generated by the VCON. Finalig, the mean
firing rate in the absence of interactionylhas fixed frequency, then the model becomes

C(li—j = w + C cos () cos (ut). (5.23)

One interesting aspect of this simple model is that it is chaotic. To illustrate the chaotic nature,
we can look at the frequency encoding and processing which can be partly described in terms of the
output/input phase ratio

R = lim @ (5.24)
t—o0 y(t)

We can calculate:(1007) and plotxz(1007)/(1007k) againstw/u. The results appear in Fig-
ure 5.3 which is similar to thdevil's staircaséor the circle map. Each plateau in this plot indicates
an interval of phase locking. Irregular firing is observed for certain applied frequencies. We can de-
scribe these chaotic dynamics by using the bifurcation diagysimown in Figure 5.4 witku/p as the
varying parameter value. Parameter values for which iterates are widely scattered are ones for which
there is a high periodic orbit or an ergodic solution. We can refer to these responses as being chaotic.

However, this chaotic aspect of a network of VCONSs still has not been studied in detail or exploited
in a practical way.

5See any standard text book on dynamical system and chaokQ#.4993, for further information.

6An initial point z = ¢ is selected and iterated 1000 times undr: x(0) = ¢ — z(27/u) (mod 2), Poincaé’s
mapping. Then the interv@d, 2) is partitioned into 200 equal subintervals and a pixel is plotted if its support cell is hit during
the iteration. (Ignore the first 10 iterates to suppress transients.)
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5.4.2 Chaos at the network level

The dynamics of a collection of neurons can also shift from a orderly behaviour into chaos by a simple
system parameter change. A very small network consisting of only two neurons can possess a chaotic
attractor and a particular simple chaotic network has already been studied and proven to be chaotic by
Wang[Wang 199]. The details of this are discussed in Section 6.1.1.

Another network model that was examined is the Tsudd Teida 199 This network provides
a model of dynamic link memory in terms of a self-organised chaotic transition in non-equilibrium
neural networks. The network itself consists of a symmetrically coupled network which is defined
in relation to a memory storage and an asymmetrically coupled network, which has no relation to a
memory but causes the overall system be in a non-equilibrium state. The memories are stored on the
transition states of the dynamics of the network. The chaotic transition blocks palsememories
and thereby allow a successive retrieval of true memory. This combination of symmetric and asym-
metric couplings give rise to a special kind of chaotic dynamics which allows neural networks to be
temporarily unstable, keepirgiability due to convergent dynamic$suda suggests that the cortical
chaos may serve for dynamically linking true memory as well as a memory search. The original paper
gives a thorough explanation of this special kind of network and its dynamics.

A simple feedforward neural network can, in fact, learn the behaviour of a chaotic attractor/chaotic
dynamics of a known chaotic system so that the network can behave chadfivalistead 1991
That this can be done is due to the fact that multilayer feedforward neural networksigessal
approximatordHornik et al. 1989.

5.5 Controlling Chaos - Strategies

Chaos was historically considered unreliable, uncontrollable and unusable. For these reasons, engi-
neers typically avoided it. However, in recent years, scientists have demonstrated that chaos is man-
ageable, exploitable and many even consider it to be val{iBitle and Pencora 1993This progress

in using chaotic systems is principally due to a control technique developed in 1990 by Ott, Grebogi
and Yorke (OGY)[Ott et al. 199d. Since the original paper a number of variations of the OGY con-

trol method and other chaotic control techniques have been published. The details of applying the
OGY method are introduced to illustrate the basic idea of chaotic control. This chapter tries to give
a ‘snapshot’ of some of the ideas lmfinging order into chaosnd therefore, a selection of methods

to control chaotic dynamics are introduced. There are still many techniques waiting to be discovered,
implemented and investigated.

The key idea behind most control methods takes advantage of the behaviour of the underlying
chaotic (or strange) attractors. A chaotic attractor can be viewed as a dense set of unstable periodic
orbits[Grebogiet al. 198§ and the principle on which the OGY control method is based is to exploit
the already existing (unstable) periodic orbits. The word periodic here is used very loosely. We say
is a point on &k, ¢)-periodic orbit of a discrete systefif |F("**)(x) — x| < e foralln > N and
somee > 0, where| - | denotes the Euclidean norm. The periodic orbits of interest in this context do
not satisfy this definition because they are unstable, the periodic behaviour is displayed intermittently,
and we shall return to this discussion if and when a formal definition is required for our particular
purposes.

In general, the control strategies can be divided into two main groups - controllingsameter
perturbation e.g. the OGY method, and controlling \agstem variable perturbatiosuch as continu-

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



5.6 Controlling via system parameter perturbation 108

ous delayed feedback contf#lyragas 1992

The aim of any parameter perturbation control method such as the OGY method is to obtain de-
sired performance, i.e. a desired attracting time-periodic motion by makingnoraittime-dependent
perturbations in aaccessiblesystem parameter. The typical approach is briefly described as follows:

e Determine some of the low-period unstable periodic orbits embedded in the chaotic attractor.
o Examine these orbits and choose one which yields desired system performance.

e Construct a rule for suitably small parameter perturbations which stabilises this already existing
unstable periodic orbit.

The variable perturbation control technique has an almost identical approach except a control signal
is added to the state variables of the system so that the system dynamics can be perturbed onto some
periodic orbits embedded in the chaotic attractor.

5.6 Controlling via system parameter perturbation

In this section, the OGY method is presented with a simple experiment to reinforce the idea of con-
trolling chaos via system parameter variation. Other direct variations of the OGY method are also
introduced. Some parameter variation control methods are also demonstrated.

5.6.1 The original OGY control law

Assume the dynamical equations describing the system are not known, but that an experimental time
series of some scalar dependent varialfig is available. We define aambeddingf the system using
time delay coordinatefackarcet al. 1980 by

Ey)=(z(),z(t+7),...,2(t+ (d—1)1)) (5.25)

and we can then get a surface of section or a Poinsaction. As a result a continuous-time-periodic
orbit appears as a discrete-time orbit cycling through a finite set of points.
Fori > 1, let

dp=p—po and 0§, 1(pi) = & 11(pi) — &r(po) (5.26)

where& - is an unstable fixed point of the attractor. Suitable fixed points, which become candidate
targets for control, are extracted from experimental data using relatively simple numerical search tech-
niques (Se¢Otani and Jones 1997b

Suppose the iteration on this section is described by

€i+1 =F(&;,p) (5.27)

wherep € (po — dpmax, Po + 0Pmax) IS @ control parameter, with maximum perturbatin, .., and
po Is the control parameter nominal value for which the dynamics generates a chaotic attractor. In the
vicinity of the fixed point¢ ., the behaviour oF' can be described by the first order approximation

08,1 1(pi) = JO&;(pi—1) + udp; (5.28)

“Comment Choosing the various parameters which enable a good reconstruction of the high-dimensional dynamics is a
non-trivial issue. Efficient techniques for accomplishing this are discusd@tami and Jones 199¥b
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Figure 5.5: Intervals for which the variables are defined.

whereJ is thed x d Jacobian matrix:

J = [DeF(E)] ¢, v (5.29)
andu is and-dimensional column vector
oF
u = 6_pi(£F’p0)’ (5.30)

Thisw is also called thesensitivity vectoof the OGY method. Sincgy. is embedded in a chaotic
attractor, the linearisatiosi is composed of stable eigenvectersand unstable eigenvectogg with
their corresponding stable and unstable eigenvalyeand A, respectively, so that\,| < 1 and
|Ax| > 1. One estimated, e, e., As, A, USINg linear regression based on observational data.

With this information about the local mal, one can derive the OGY control law. However, we
first observe the following lemma which has been provel@itani and Jones 199¥b

Lemma 5.6.1. Suppose thd x d matrix J hasd linearly independent eigenvectoes, . . ., eg with
real eigenvalues.q, . .., \4s. Thus we assume the eigenvectors form a badks'irConstruct the dual
basisf,, ..., f, defined by

1 ifi=j
e fi=1 T (5.31)
0 ifi#j
Then for anyz € R?
fo Jz=AFf, T (5.32)

The control law seeks to ensure tigat ; falls on the local stable manifold of the fixed point, so
that on the next iteratiog, , ; will move closer ta€ -(po). This can be formulated as

Ju-08,1=0 (5.33)

which together with (5.32),yields ttentrol formulafor the new value of the control paramejgr=
Po + ap’u
5}% _ _)\u fu ) 6£L(p'b—1) ]
fu u

The version of this control law seems different from the one in the original d&yeet al. 1994
stated as follows:

(5.34)

This is because the sensitivity vecigin the original OGY paper is defined in terms of the shift of
the fixed point¢ - with respect to the change jn whereas in Dressler and Nitsche versiBmessler

(5.35)
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with change in p
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Figure 5.6: Comparison of the sensitivity vectogsandw.

and Nitsche 1992 u is defined as the shift ig,, ; with respect to the change in see Figure 5.6.
Whereagj is defined as

g [%_F} _ pim S2P) = Er (o), (5.36)
Op po  PTPO P — Do

However, this difference is explained by the relationship
u=(I—-J)g (5.37)

demonstrated ifOtani and Jones 199%owherel is thed x d identity matrix (see also Figure 5.6).
To illustrate this relationship, first consider that in the original OGY method, the Jacobian phadrix
defined to be the changesgnrelative to theshiftedfixed point, i.e.

§iv1(p) —€r(p) = J (&i(p) — Er(p)) (5.38)
where from (5.36)
&~ &p(po) + (P —Ppo)g. (5.39)
Then from these last two equations we have in the OGY notation
£iv1(p) = €p(po) = J (§(p) — €r(po)) + (p — po)I — J)g- (5.40)
By direct comparison with (5.40) and the corresponding equation in the Dressler and Nitsche notation,
§ir1(p) = &r(po) = J (&§(p) — Er(po)) + (P — po)u (5.41)

(which are both first order identities ) yields the relationship in (5.37).
In fact using (5.34) makes more sense: it is much easier to meaduoen observations than to
measurey.

5.6.2 OGY with the use of delay coordinates

It has been shown by Dressler and Nits¢Beessler and Nitsche 19p#hat with the use of delay
coordinates from experimental data it can be beneficial to modify the original OGY method. They
argue that in the case of activated control (i.e. switching the parametergfronto p; at timet;)

the experimental surface of section m&plepends not only the new actual valpebut also on the
preceding valug;_1, i.e.

§iv1=F(&,pi-1,p:)- (5.42)
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Figure 5.7: The combined effect af in combination withdp; 1 anddp;.
Using the previous argument for the derivation of the original OGY control law, we can then replace

(5.26) by

bp=p—po and  6& (pi—1,pi) = &1 (Pi—1,1i) — Ep(Po, Do)- (5.43)

The linearisation which one has to consider now is given by

08 1(Pi—1,pi) = J6&;(pi—2,pi—1) + vIp;_1 + udp; (5.44)
where
o€, o€,
v = [ 5”1} and wu= { 5”1} . (5.45)
Ipi—1 (po,po) Ipi (po,po)

The combined effect of, v andw is shown in Figure 5.7.
With the consideration of the requirement for plac§)g, onto a stable manifold, i.e.

fu ) 5€i+2 =0 (5-46)
and the constraint to prevefit from becoming large, i.e.
0piy1 =0 (5.47)

and using the linearisation (5.44) we have the new first order control law

B —\2 Aufy v
The proof of this can be found {iOtani and Jones 199¥b

f’u, : 551‘(]71'7271%71) -

(5])2‘,1 . (548)

op;

5.6.3 Applying OGY and OGY-derived variation

The OGY method was first implemented for an experimeriiitto et al. 1990. The set-up requires

a magnetostrictive metallic ribbon, whose stiffness can be changed by applying a magnetic field. The

bottom end of the ribbon is clamped to a base; the top flops over to the left or right. When the ribbon is

exposed to a field whose strength is varied periodically at a rate around one cycle per second, the ribbon

buckles chaotically. A second magnetic field of small field strength served as the control parameter.
Following the original report, a sudden surge of analyses and experimental results were published

using the OGY method. The OGY method has been applied to control chaos in an electronic cir-

cuit [Hunt 1991, a chaotic multimode lasdRoy et al. 1997, and even biological systems - car-

diac arrhythmias in rabbit ventriclgGarfinkel et al. 1993 and rat brailMoss 1994, etc. Varia-

tions of the OGY method have been used for synchronisation of di@arsoll and Pecora 1993;
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H time

Figure 5.8: A chaotic attractor of the Hhon map Figure 5.9: Chaotic signak: of the Hnon map
with a = 1.4 andb = 0.3. with a = 1.4 andb = 0.3.

Roy and Thornbur 1994; Lai and Grebogi 199vhich allow the exploitation of chaos in communica-
tion.

There are also many improvements to the original OGY method, including control of higher peri-
odic orbits[Hunt 1991; Auerbacht al. 1994, control of Hamiltonian chaotic systerfisai et al. 1993,
use of the past values of the control paraméiressler and Nitsche 193Zreation of non-existing
periodic orbit§Hunt 1991 and tracking of unstable orbifSchwartz and Triandaf 1994

One noticeable problem with the OGY method is that a large amount of time may be wasted as
the control system waits for the dynamical system to approach the desired orbit in the chaotic attractor
[Ditto and Pencora 1993n order to switch on the control. Shinbri&hinbrotet al. 1997 provided
a technique that rapidly moves the chaotic states to the desired orbit of an attractor from an arbitrary
initial state.

5.6.4 A simple experiment using OGY control

The OGY method has been being studied and investigated using simulation techniques in the software
Mathematicd". It has been applied to a simple chaotic system, thadh magdHénon 1976 The

aim of our early experiments was to implement the OGY method and study how to stabilise the system
onto a ‘fixed’ point.

The two-dimensional EBnon map[Hénon 1976 was the main test bed for applying the OGY
method. The reason for using thé&hbn map is that this map is discrete and simple and the theo-
retical details, such as the Jacobian, eigenvalues and eigenvectors, etc., can be easily calculated for
comparison with the experimental approximations. This dynamical system is defined as follows:

— 2

Ynt1 = T

wherea and b are non-zero constants. For different valuesacdnd b, this map can produce all
types of dynamic regular and irregular behaviours including different types of limit cycles and chaotic
attractors. With the values = 1.4, b = 0.3, this map produces a chaotic attractor as shown in
Figure 5.8. By looking at the chaotic signabf the Henon map, shown in Figure 5.9, one can see that
this system is very chaotic.

Due to the fact that system is known and it is discrete, the phase portrait of this system may
be treated as the ‘return map’ and the OGY method can be applied directly. The parapeter
po = a = 1.4, was chosen as the control parameter. A fixed pg§int= (xp,yr) at (0.883397,
0.876596) was located by looking at 20000 successive iterations of the system with radius distance of
0.01 and this point was then chosen as the control point.
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Figure 5.10: Controlled Henon map with signat stabilised onto the ‘fixed’ point under 50 time steps
and controlled parameterwith values slightly less than 1.4, the initial parameter value.

The local dynamics of the control point were approximated by the estimated Jacobian matrix. This
was done by collecting 200 points within radius distance of 0.045 from the fixed point and their next
iteration and then performing standard least squares fit on these data to obtain the matrix:

—1.772920 0.302421
~ (5.50)
1.007215  0.000780
which was very close approximation to the theoretical Jacobian matrix
-2 b —1. .
J TR _ 766 0.3 (5.51)
1 0 1 0

obtained from (5.49). The theoretical unstable and stable eigenvectersaré-0.887191, 0.461402)
ande, = (—0.154156,—0.988046) respectively with corresponding theoretical unstable and stable
eigenvalues,, = —1.92282, A\; = 0.156021 respectively. From this approximate Jacobian matrix the
unstable and stable eigenvectors were found te be (—0.886675,0.462394) ané, = (—0.154695,
—0.987962) respectively. The approximate unstable and stable eigenvaluesiyere —1.93063,
As = 0.15849 respectively. Therefore, the approximate values were very close to the theoretical ones.
The sensitivity vector was estimated by starting the system sulfficiently close to the fixed point and
then the control parameter, was changed from, to some random value within the allowed range
1.25 < p < 1.55. The vector was then estimated to be the difference between the starting point and
the next data point. This is done several times and then an average was taken to obtain the sensitivity
vectoru = (0.926197, 0.152898)
The control result is shown in Figure 5.10. Other control parameters and fixed points were tested
with the same procedure just described, and the OGY method seems to be very successful in the
simulation. However, during this experiment several critical issues emerged:

e The sensitivity vector is the key value in the control, and it can be very hard to obtain a good
approximation.

e A poor approximation of the Jacobian matrix or the local linear map may not reflect the true
nature of the dynamics near the point to be stabilised. In some cases poor approximation will
incorrectly give us two stable or two unstable directions so that the OGY control method cannot
be applied.

e Sometimes the system takes quite a long time to fall within the control region around the selected
fixed point to be able to apply the control.
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More examples, experimental results and discussion on using the OGY method to control chaotic
neural systems are demonstrated in Chapter 6.

5.6.5 A brute force control law — Otani-Jones control

This Otani-Jones control, or OJ control for short, is based on an idea propoE@thiti and Jones
19974 and it has been successfully applied in many exaniMigeira and Jones 1997; Oliveied al.
1997; Otani and Jones 19977 his technique is an attempt to overcome some of the possible problems
in the application of the OGY control method. This control method is based on the assumption that
an effective short term (fast) predicting functigp , = P(§;), whereg, is a state of a-dimensional
iterative mapF : §; — &, or a state on a Poincasection of a continuous system, is available for
the system and is accurate over the large part of the state space. This does not cause any difficulty if
we were seeking to control an iterated feedforward neural network, e.g. Section 6.1.2 anfiTBstii’s
and Jones 1997where outputs are fed back to inputs, and which exhibits dynamical chaos. This is
because the neural network can be iterated once without applying control to give an exact prediction of
the next system state very rapidly. Therefore, the network is effectively its own Jacobian at every point
in the state space. As demonstratefiimacopoulos and Jones 1993; Welstead 196na dynamical
system, a feedforward neural network trained on a single trajectory of the system can form an accurate
short term predictor capable of generalising to other trajectories of the system.

The immediate benefit of the OJ control is that it does not require the computation of gjther
or )\, because a short term predictor functiBris available, although it is still necessary to perform
sensitivity analysis for the variations of the control parameters. The method first assumes there is
a short term predictor functio§;  , = P(§;) is available. Suppose that control parametep(s}
(p1,...,pn) are available, with nominal valug = (p1o,... ,pno) and that it is required to control
the system about a fixed poif)}.. The situation can be described as follows,

6&, 11 =&,11(P) — €p(Py) = P (§,(Py)) — &€r(Po) + Op151+ -+ dpisy (5.52)

wheresy, ... , s; are the sensitivity vectors with respect to each control parameter, i.e.
oF
8; = <8 > 1<i<li). (5.53)
Pi/ e=¢pp=pi

As with the OGY control, we first estimatg, . . . , s; by collecting statistics from observations of the
system state ned, under small parameter variations. Sinéds known, if sufficient observations
are availables,, ... , s; can be estimated via (5.52) using a least squares fit method, or equivalently a

fast pseudoinverse algorithm. We assume that the choice of control parameters is ssch thats;
are linearly independent, since there would seem to be no advantage in having a linearly dependent set
of sensitivity vectors.

The essence of the OJ control law for any p@iptnearé ; is to choosep = (p1,... ,p;) SO asto
minimise the squared Euclidean distance

|€i1(p) — Ex (D) (5.54)
with the knowns, ... , s;, i.e. we choos@ so as to minimise
[P (&(Po) — Ep(Po) + p1sy + -+ dpusi” . (5.55)
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Let S be the matrix with column vectoes, . .. , s;, then the solution of this minimisation problem
is given by

p—py=-5"[P(&.(p) — &r(py)] (5.56)

whereS—! is the inverse of the matrig if [ = d and the pseudoinverse Sfotherwise. Ifp is outside
its maximum allowed range of perturbation, ther= p,, i.e. without any perturbation applied to the
system, alternatively we could get= p, .. Or p,,;, appropriately.

In fact, a similar technique has already been implemented by[Reyl et al. 1993 who calls this
the minimal expected deviation method. The OJ control method is basically a practical extension for
cases with more than one available control parameters. In contrast to the OGY method, the OJ control
method is brutally direct and seeks only to minimise the distance of the next iteration from the target
unstable fixed point. Therefore, we might expect that the control perturbation needs to be applied at
every step. The OJ control method has been successfully applied to synchronisation on chaotic systems
- the Henon magOliveira and Jones 1997and has been demonstrated to be relatively robust in noisy
systems. Experimental use of this technique is demonstrated in Chapters 6 and 7.

5.7 Controlling via system variable perturbation

The most typical technique for variable perturbation is to have some kind of feedback connection to
the ‘inputs’ as thedelayed feedback contrdPyragas 1992 However, another technique - ti&v

control - uses a fixed amount of perturbatifiatias and Gémez 199% In most cases, systematic
analysis such as local dynamics estimation, sensitivity analysis, etc. associated with parameter pertur-
bation techniques is not required. Here the two types of system variable perturbation techniques just
mentioned are described and some initial experiments will be reported.

5.7.1 Continuous delayed feedback control

Pyragas’ continuous-time control technid®yragas 1992deals with a chaotic system which can be
represented by a set of ordinary differential equations

(cil_gzi = P(y,z) + F(t), (2—:: =Q(y,x). (5.57)
Herey is the observed variable and the vectadescribes the remaining state variables of the dynamic
system which are not available. The control sigh@t) disturbs only the first equation, corresponding
to the observed variable. We suppose that without a control signal the system being considered has a
chaotic attractor.

The idea behind this method is to construct this perturbakigr) in such a way that it vanishes,
or at least becomes very small, when the system moves along the desired unstable periodic orbit. One

approach suggested by PyragBgragas 1992 to use
F(t) = —k[y(t) —y(t —7)] = —kD(), (5.58)

wherek > 0 (see Figure 5.11). Here is a delay time and,(¢t — 7) is the delayed value of the
observed variable. Therefore the magnitude of the control signal is proportional to the difference
D(t) = y(t) — y(t — 7). If this time 7 coincides with the period of the unstable periodic orbit
(i.,e. 7 = T) then the control perturbation becomes small for the solution of the system (5.57), i.e.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos Alban Tsui, March 1999



5.7 Controlling via system variable perturbation 116

mput Chaotic output -
system o
-k y(0)
() t| D
kD@ -ye-0] T |
ky(t-1)

Figure 5.11: Delayed feedback control.

y(t) = y(t — T). To ensure small values of the control perturbation at all times and to avoid multi-
stability of the same control as a consequence of a large control signal, the control signal can be
restricted in the following manner,

_FO7 _kD(t) S _FO
F(t)=} —kD(t), —Fy< —kD(t) < Fy (5.59)

whereFy is a saturating value of the control.

Stabilisation of the system can be achieved by choosing an appropriate weaighhat a negative
feedback is achieved. Though QQu et al. 1993 argued that in some cases, a positive feedback
is needed. Therefore there are two variablegand = that can be adjusted in the experiment. The
delay T is expected to be the period of the stabilised orbit from the controlled chaotic system if the
system eventually stabilises. Some experimental results can be foliRdragas 1993; Pyragas and
Tamasevitius 1993; Celka 1994; Cooper and 881995.

The following experiment demonstrates this control technique. TosslRr attractofRossler
1974 was chosen for this experiment, defined as

T=—2—-Yy
Y=+ ay (5.60)
Z=b+z(x—2c)

wherea = 0.2, b = 0.2 andc = 5.7 in the experiment. Without control being applied, this system is
chaotic (see Figure 5.12).
A delayed feedback was appliedgavith £k = 0.2 andr = 17.5 as in

T=—-z—9
y=x+ay—0.2(y—y(t—17.5)) (5.61)
Z2=b+z(z —¢).

With the same starting conditions as in the unperturbed system, the system eventually stabilised into
an orbit as shown in Figure 5.13. Here no restriction on the size of the perturbation was used.

The immediate conclusion is that this method does work, but is not always successful. If it is
successful, the chaotic system can be stabilised very quickly. The drawback of this method is that
although the choice of and 7 is important there are no specific guidelines for choosing these pa-
rameters. Moreover, unlike the OGY method which does have a systematic derivation, there is no
adequate theoretical explanation of the mechanism of this control methotQuQet al. 1993 tried
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Figure 5.12: Chaotic Rssler attractor with, = Figure 5.13: Stabilised orbit from the chaotic
b=0.2andc =5.7. Rossler attractor.

to demonstrate the technique numerically and analytically by applying such feedback to a two dimen-
sional artificial dynamical system model. They showed that the stability of the system is sensitive to
the choice ofk. The success of control depends on the choicg,afhich in turn depends on the
other system parameters. In fact, as showiPyragas 1992 varyingk changes the size of the largest
Lyapunov exponent of the controlled system. By reducing this Lyapunov exponent below zero, the
system will then be stabilised.

In fact, by careful examination of the controlled examples we quickly discover that the progression
towards the fixed point, or unstable periodic orbit, is by no means monotone. At particular points of
the phase space the local eigenvalues of the Jacobian of the controlled system may have modulus much
larger than one, and so the system is often certaiatystablen the classical sense. However, provided
k andr are chosen suitably, indisputably the technique of delayed feedback does indeed work in the
many examples we have examined. Why is this so?

In fact it is not necessary for the effect of delayed feedback to be contractive towards the fixed
point, or unstable periodic orbit, ®very step It is only necessary that the effect be contractive
on average In [Oliveira and Jones 199&his idea ofprobabilistic local stabilityis studied for an
example ofsynchronisatiorof both the iterative ldnon map and the chaotic Ikeda iterative neural
network introduced in Section 6.1.2. In the next section we give a similar empirical analysis for
delayed feedback control applied to the controtofitinuousRossler system.

Analysis of stabilised Ryssler attractor

Using suitable parameters bfandr for the delayed feedback on the right choice of system variable,
the Rossler attractor can be stabilised onto a periodic orbit. Consider the setup for controlling the
Rossler system

T=—z—Y
y=x+02y+k(ylt—7)—y(t)) (5.62)
2=0.2+ z(x —5.7)

with & = 0.2 and7 = 5.9 and without restriction on the size of perturbation. The system stabilises
onto a periodic orbit with period length about 5.9, allowing for intrinsic error caused by numerical
integration, which is (as expected) equal to the value

We generate random initial starting points near tkis$ker attractor , and numerically integrate the
controlled system using these points as the initial conditions. Next we examine the distance between
each trajectory at timeand the closest point on the periodic orbit, i.e. the minimum distance between
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a trajectory at time and the periodic orbit, denoted as Thereafter, we can define the ratio

1%
pr = Zt (5.63)
Yo

whereyy is the minimum distance from the periodic orbit to the initial starting state of the trajectory.
The quantityp; provides a measure of the system contraction towards the periodic orbit. We then plot
histograms of all the, for different timest. The result is shown in Figure 5.14. As timéncreases,

the probability thap; is less than 1 becomes large. In fact it appearsghtends to zero in probability,
i.e.Ve >0

Plp: <€l —1 (5.64)

ast — oo. Thus in this case the controlled system is probabilistically locally stable, although it is also
clear from the histograms that the system is not stable in the classical sense.

Indeed careful examination shows that the control feedback signal does not necessarily remain at
0 once the system has been stabilised, it fluctuates in small quantity so as to keep the system stabilised
onto the unstable periodic orbit.

Frequency Frequency
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Figure 5.14: Histograms ofy, for Rossler attractor at= 11.8 and 53.1.

A similar justification of delayed feedback control is also used later in Section 8.3. Note that in
order to have confidence in the minimum distance estimate of the current state from the target unsta-
ble periodic orbit the sampling of points on the orbit must be sufficiently fine-grained. For complex
target orbits it might be necessary to build a kd-tree for the sample points in order to facilitate rapid
calculation of the minimum distance.

5.7.2 Periodic perturbation control (GM)

This periodic perturbation control technique is proposed bgréez and Maas[Giémez and Maas

1993; Matas and Gémez 1994; 1996 The application of this technique (GM) is very simple and it
works by applying instantaneous periodic kicks to the system variables, that amount to changes that
are proportional to their current values, and that take the form

2 =z (1+ 76 —j7)), (5.65)

wherez; represents thé" variable of the system at a given instant of timgregulates the intensity
of the perturbation applied to thi# variable,s is Dirac’sé function, and;j runs over natural numbers,
implying that the perturbations are applied at intervals that are uniformly spacediine proportional
perturbations can be applied to all or only to some of the system variables.
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Figure 5.15: Chaotic Henon time series of vari-  Figure 5.16: Controlledy with the same start-
abley. ing state.

As originally described the GM method is suitable for system with discrete variables. However, it
can be applied to a continuous system if a Poiacaaction is used, as in the example of controlling
Rossler system described [iMatias and Gémez 1995 (More demonstrations can be found in the
same paper). The following is a simple experiment on using this method on&henHnap as is
defined in (5.49).

In the experiment, the variablg was perturbed withy = —0.7 and+ = 2. The controlled
result is shown in Figure 5.16. Figure 5.15 shows the system with the same initial conditions but
without control. The system can be seen to quickly stabilise into a 2-cj(de582359,—0.471538)

— (—0.471538, 1.682359)

Similarly to the delayed feedback control, there are two parametarsd r associated with this
control law. The correct choice of these parameters governs the success of the application of control.
Again there does not seem to be any theoretical proof to explain the validity of the control technique.
From an engineering point of view, this is a very quick and simple control technique if correct choices
of the parameters are made. Further discussion of this can be found in later chapters after more exper-
iments.

5.8 Discussion

This chapter has introduced some of the basic ideas of dynamical systems and chaotic dynamics, and
of the control techniques used to bring chaotic motion into some type of orderly behaviour. Several
chaos control methods have been described. They each have their advantages and disadvantages but
are all capable of controlling low dimensional chaotic systems. However, further investigation and
experiments are needed to study their effect on high-dimensional chaotic systems, as most neural
systems are likely to be high dimensional.
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Chapter

Controlling chaotic neural networks

Chaotic dynamics within the biological system seems to aid neural information processing as observed
by Freeman (see Chapter 1). In order to take advantage of this idea in practical applications, it is
necessary to study how chaotic neural systems can be encouraged to follow particular unstable periodic
orbits. In this chapter, we demonstrate the feasibility of controlling a standard-model neuron, recurrent,
artificial neural network; whose dynamical behaviour displays chaos, by using the control methods
reviewed earlier.

6.1 Control with the OGY method

6.1.1 Controlling a simple chaotic neural network

The simple neural network that is used in this section for studying the OGY method applied to a chaotic
neural net consists of only two neurons. This network was first studied by Wangrohedthat there
exists period-doubling to chaos and chaotic attractors in the network usingraomorphistirom
the network to a known dynamical system having these propéwaag 1991

The architecture of this simple network is shown in Figure 6.1. It consists of only two neurons
with thresholds set to zero. The weight matrix is:

W — [Z ZZ] (6.1)

for some non-zero numbersb, k € R. The states of the two neurons are denoted asdy re-
spectively, whose values range in the interfa [0, 1], and a state of the network is denoted as a
vector (z,y) in the state spac&?. We consider that the neural network updates its state in discrete

timet =0,1,2,..., according to the following dynamics:
(@(t+1),y(t+1)) = Fr(z(t),y(t)) (6.2)
where
Fr(z(t),y(t)) = (or(ax + kay), or (bx + kby)) (6.3)

1Two mapsF : X — X andG : Y — Y are said to béopologically conjugatéf there exists nomeomorphisrii.e., a
one-to-one and continuous map with a continuous invelte)X — Y such thalG = H o F' o H—!. The homeomorphism
H is called a topological conjugacy @ andG. It is known that if ¥ andG are topologically conjugate, then they have the
same dynamical behaviour, i.e. the same orbit structure and stdbiétsaney 199p
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Figure 6.1: A simple network with outputs be- Figure 6.2: The attractor in networké’r with

ing fed back into inputs as a discrete dynamical parameterss = —5, b = —25, Kk = —1 and
system. T=1/4.
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Figure 6.3: Bifurcation diagrams inc andy for the network with parametes = —5, b = —25,
kE=-—1.
and
= ! 6.4
or(z) = [y (6.4)

The neuron activation functionr(z) is sigmoidal with a parametér > 0.

With the parameters = —5,b = —25, k = —1 andT = 1/4, this system possesses a chaotic
attractor shown in Figure 6.2. Thmroof that this network is chaotic derived from the bifurcation
diagrams inz andy for the network in Figure 6.3.

Using the same OGY control mechanism as in the experiment on controllinggihenHnap (see
Chapter 5), this system was stabilised onto the fixed point (0.896853, 0.999980)7 usintine con-
trolling parameter with initial value of' = 1/4. The local linear map near this fixed point was
approximated by the Jacobian matrix

g —1.96322 2.08867 (6.5)
—0.00755664 0.00893465
where the unstable and stable eigenvectors were founddg be(—0.999993, —0.00384731) ande;
= (—0.728493, —0.685053) respectively. The unstable and stable eigenvalues wgre —1.95519,
As = 0.000898838 respectively. The approximate sensitivity vector was found to be (0.0516806,
0.00197867). The control result is shown in Figure 6.4 and Figure 6.5.
During this experiment, it was very difficult to approximate the sensitivity vector to obtain the

desired control result. The difficulty was due to the unushapeof the chaotic attractor which is thin
and narrow. It might also be due to the fact that the stable eigenvalue of the local linear map was very
small. This problem is reflected in the fact that this Jacobian has very small determinant. Different
adjustments were made in order to achieve the control by:
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Figure 6.4: Changes of the control parametErduring the OGY control on the simple chaotic net-
work.
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Figure 6.5: The simple chaotic network is stabilised onto the fixed point in under 10 time steps.

e increasing the allowed range of the control parameter;
¢ including more points near the fixed point for approximating the Jacobian matrix;
¢ resizing the local region near the fixed point to get a better estimate of the local linear map.

This experiment illustrates some potential problems which may arise in applying the OGY control
method. This control technique is very sensitive to the quality of the required approximation.

6.1.2 Controlling a trained chaotic neural network

In the next experiment we trained a feedforward network on the Ikedd Hexpmelet al. 1989 and
then by feeding the outputs back into the inputs empirically produced a neural network with chaotic
attractorf Welstead 1991; Dracopoulos and Jones 1283hown in Figure 6.6. The training was done
by the modified training software from Mastef®asters 1998
The Ikeda map is defined by

g(z) =~ + Rzexp {z (H— HO‘W)} (6.6)

wherez is acomplexvariable, of the forme + iy, andi? = —1. We can identifyz + iy with the
point (x,y) on the complex plane so thatcan also thought of as a mapping & — R2. The
dynamical system is then defined by, = g(z,,). For parameter values= 5.5, v = 0.85, k = 0.4
and R = 0.9, this mapping has a chaotic attractor illustrated in Figure 6.7. With only 4000 training

2The software uses the conjugate gradient method training algorithm (see Appendix D) which is very efficient. The dis-
advantage is that it requires to read all the training data into memory. This causes a problem in running the software under
MS-DOS(tm) when training with a large set of data. It was necessary to modify the software for running under an environment
without ‘memory restriction’.
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Figure 6.6: Feedforward network as a dynamical system.

Figure 6.7: The Ikeda chaotic attractor, for pa- Figure 6.8: Attractor for chaotic network with
rameter values: = 5.5, v = 0.85, x = 0.4and  architecture 2-10-10-2 (with inputs and outputs
R=0.9. rescaled to [0,1]).

pairs (re-scaled into the range [0,1]) and training MSE error of ab®ut 10~°, the network already
produces an attractor shown in Figure 6.8 with features similar to the original Ikeda map chaotic
attractor.

Using the first Lyapunov exponent estimation algorithm with 10000 iterations the Lyapunov expo-
nents of this neural system are estimated td ®868973, -0.769616 For comparison, the second
algorithm was performed on a time series of 10000 data points from this network and the estimated
Lyapunov exponents weld®.367997, -0.660926 Both techniques give a positive Lyapunov exponent
and a negative Lyapunov exponent which indicates that this network dynamics is definitely chaotic.

We use this network as the basis for the initial control experiments, the objective being to determine
which parameters or system variables are most effective in stabilising the system onto an unstable
periodic attractor.

The OGY control method was applied to control the chaotic neural network described above. An
unstable fixed poin§r = (0.626870, 0.553256) was located by examining successive iterations of the
system and was used as the unstable periodic point to be stabilised. The Jacobian at this point was

J —1.26617 —1.03629 6.7)
—0.564996 —1.06779
with eigenvalues\; = —0.395399 and \, = —1.93857, and stable eigenvectar, = (0.7656,
—0.643317) and unstable eigenvectey, = (—0.838887, —0.544306).
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Figure 6.9: Bifurcation diagram for output: Figure 6.10: Bifurcation diagram for outpuy
obtained by varying parametéf simultane-  obtained by varying parametéf simultane-
ously in all nodes. ously in all nodes.

Figure 6.11: Bifurcation diagrame obtained by ~ Figure 6.12: Bifurcation diagramy obtained by
varyingT' in the output layer only. varyingT in the output layer only.

Using T as a control parameter

The first attempt used’ (i.e. effectively the slope of the sigmoidal in (6.4)) as a control parameter
with 7' = 1 being the nominal value, as this was the value used in training. In these initial experi-
mentsT’ was varied in all nodes of the network simultaneously. These attempts to effect control were
unsuccessful.

By examining the bifurcation diagrams Figure 6.9 and Figure 6.10 we conclude that the possible
explanation is that the chaotic region arouhe- 1 is small Slight changes of will result in changes
in dynamics from chaos to stability. Therefore the system looses the original ‘not-perturbed’ dynamics
rapidly due to high sensitivity to this parameter change (i.e. even small variatidiscbénge the
nature of the attractor).

The next attempts were made by varylfigof nodes in a particular layer of the network and here
the OGY control method worked better. It seems that by var{inig only one particular layer the
chaotic regions of the bifurcation diagrams become broader (see Figure 6.11 and Figure 6.12) and so
control becomes easier with small variationsiof The variations ofl” and the controlled result are
illustrated in Figure 6.13.

Using variation of the inputs

The results of using an external signal feeding into one of the inputs as a control parameter, whose
nominal value is set to zero, were significantly more interesting. The bifurcation diagramé for

are given in Figure 6.14 and Figure 6.15. We use the same fixed point as before, so the Jacobian and
associated eigenvectors and eigenvalues remain unchanged.
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Figure 6.14: Bifurcation diagram for the output  Figure 6.15: Bifurcation diagram for the output
x(t + 1) using an external variable added to the y(¢ + 1) using an external variable added to the
inputz(t). inputz(t).

Using an external signal feeding into inputas shown in Figure 6.6), the sensitivity vectoy =
(—1.076260, —0.675875) was approximated. After applying the OGY control for less than 25 time
steps the system rapidly stabilised onto the unstable fixed point as illustrated in Figure 6.16.

The bifurcation diagrams for the output$t + 1) andy(¢ + 1) using an external variable with
nominal value zero added to the inpyt) are given in Figure 6.17 and Figure 6.18. Similarly, an
external signal feeding into inpyt(c.f. Figure 6.6) was used as the control parameter with sensitivity
vectoru, = (—1.204806, —1.062638). The controlled result is shown in Figure 6.19.

In these experiments, an improved technique dukOt@ani and Jones 199¥was actually used
to estimate the sensitivity vectots The Jacobian is used to obtain a prediction of where the system
would be at the next iteration if no control were applied. However, in the case of a neural network
this is unnecessary sintke neural network is effectively its own Jacobian at every poille can
therefore obtain an exact prediction of the next system state by simply iterating the network without
control. This resulted in much more accurate estimations of the sensitivity vectors, which itself made
control of the system using the OGY method much easier.

6.1.3 Experiment summary

The OGY method can be applied to the control of conventional feedforward networks whose behaviour
under iterated feedback has been trained to be chaotic. Whilst the method is computationally expensive

y ext sig x

50 100 150 o' " Step

Figure 6.16: Controlled results of the network using external signal perturbation to input
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Figure 6.17: Bifurcation diagram for the output  Figure 6.18: Bifurcation diagram for the output
x(t + 1) using an external variable added to the y(¢ + 1) using an external variable added to the

inputy(t). inputy(t).

Fo0t i M step

Figure 6.19: Controlled results of the network using external signal perturbation to input

and, in its original form subject to a number of limitations (for example inaccuracies in estimating the
Jacobian or sensitivity vectors can make control difficult if not impossible), nevertheless we see that
stabilisation of unstable fixed points is perfectly feasible. However, this relaxation onto a fixed point is
achieved by a control external to the network itself rather than as an implicit consequence of network
function.

It is interesting to observe that control by variation of a global slope parameter is not easy to
achieve, but becomes easier when the control variations are applied to a single layer rather than to the
whole network. It is notable that control becomes very much easier when the controlling parameter
is a small signal applied to one of the inputs. This may be closer to being a biological analogy than
control of behaviour through global or selective slope control.

Quite how easy it would be to extend such control to networks with many outputs being fed back
to many inputs remains to be determined. It also remains to be determined whether it is practical to
control high dimensional networks to follow unstable periodic orbits rather than fixed points. It is
likely that more sophisticated variations of the OGY technique or some completely different control
method would be required to accomplish this goal.

6.2 Otani-Jones control on a trained chaotic neural network

Similarly, we also tried the OJ method on the trained chaotic neural network described in the last
section. The unstable fixed point (0.630579, 0.551984) was found for this experiment. First we tried
usingT" of all the nodes in any particular layer of the network, but this was not successful. Instead
we chose to use external signal perturbation to the two inpw@#sdy as in the earlier experiment.

We estimated the sensitivity vectais =(-1.37770, -0.602572) ang, =(-1.08691, -1.06530), again

for the external signal t@ and external signal tg respectively. The predictor used in this case is the
feedforward network itself because the neural network can be iterated without control to give an exact
prediction of the next system state very rapidly.
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Figure 6.20: OJ controlledr andy of the chaotic neural network.
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Figure 6.21: Control signals ta: andy during the OJ control on the chaotic neural network.

The results of applying the OJ control are shown in Figure 6.20. The system was stabilised very
rapidly by the control in less than 20 time steps. The external perturbation control signasthy
are shown in Figure 6.21 and the perturbations were very small and were applied continuously during
the control.

Certainly, this method seems to be very effective. However, the problems of this control method
are

¢ unstable fixed points/orbits have to be located before applying the control;
e a predictor is required and
o it still requires sensitivity analysis on parameter changes.

Therefore, it does not seem to be biological plausible and it is very unlikely to be the control method
required for constructing a chaotic neural memory system.

6.3 Proportional delayed feedback control on a chaotic neural
network

The original delayed feedback control is a continuous control method for controlling continuous
chaotic systems (see Section 5.7.1). However, we applied the same idea but modified the method
to control the chaotic discrete neural network which was trained on the Ikeda map described in the last
section.

We applied a delayed perturbation to the inpuf the form

F(t) = —kD(t) = —k(y(t) —y(t — 7)) (6.8)
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Figure 6.22: Controlled results of the chaotic neural net using the delayed feedback technique. The
control signal was switched on &= 50.
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Figure 6.23: Perturbation signal during control.
(Signal does not go to zero, as shown in zoomed
view.)

which is added to the inpgtwhen the control was switched on, whére- 0.687263 andr = 5. These
parameters were chosen by trial and error. There was no restriction on the size of the perturbation
during the control. Note that here is updated discretely. The initial state of this system was chosen
atx = 0.329222 andy = 0.996373. The controlled results are shown in Figure 6.22.

After the control was switched on at= 50, the system immediately started converging to a near-
periodic-four cycle af(0.631890, 0.294159) (0.587467, 0.647057) (0.621878, 0.436043)>
(0.746626, 0.620744) This method required a very small perturbation signal as shown in Figure 6.23.
Closer examination of the graph reveals that a small perturbation was continuously applied to the
system to maintain this near periodic behaviour. This technique was tried for various different initial
condition and different values éfandr. In most cases, the system stabilised ontestraeor different
periodic orbits. It occasionally seemed to be the case that the initial starting point determined the basin
of attraction.

However, choosing: andr is a random process and therefore it is stithlack boxtechnique.
Nevertheless, this method does not require any estimation and pre-calculations, as with the OGY
method. The idea of this control method is also biologically sound: having a feedback in a neural
system in order to stabilise the system dynamics. Babloyantz's ¢8epulchre and Babloyantz 1993;
Lourenco and Babloyantz 1994; Babloyaetzal. 1999 have succeeded in controlling a network of
oscillator neurons using this technique. This method might form the basic ingredient for constructing
a chaotic memory system as also proposed by Hdff 1994]. By having many delay lines within a

neural network external stimulation can be fed into the system as the variation of signals of the values
kandr.
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Figure 6.24: Applying GM perturbation to nodéonly
of a fully connected network af, neurons.

6.4 Periodic perturbation control method on discrete neural net-
works

Here we also tried using the periodic perturbation cortsiémez and Maas 1993 (or GM for short)
on discrete neural networks as[Bok and de la Prida 1995The details of this method can be found
in Section 5.7.2. In this experiment, we usednameuron fully connected network defined as

zin+1)=orp (Z wijxj(n)) , (6.9)
j=1
with ¢« = 1,... ,m, which is basically an-dimensional mapX,. .1 = Fr(X,), whereX € R™.
Hereor(z) is as defined in (6.4).u(;;) is the connectivity matrix. With suitable connectivity, this
system can generate deterministic chiwang 1991.
In the experiment, we applied the GM method on a single neuron ofntimetwork (see Fig-
ure 6.24), therefore we have the system

z;(n+1) =op (Z wl-jxj(n)) (I +~0(n—p1)), (6.10)
j=1

zp(n+1) =or (i wijj(n)) , (I1<k<mk#1), (6.11)
j=1

as described in (5.65) andis any natural number. A fixed perturbatigris applied at intervals that
are uniformly spaced by.

First we tried the control on the system = 3 with T = 1/4 and the connectivity matriiwvang
1991

-5 5 =2
(wij)=1| —25 25 —2 |. (6.12)
-2 2 =2

The chaotic attractor of this system is shown in Figure 6.25.

Settingr = 4 andy = —0.1, the neural system quickly stabilised into a period-4 of{t449371,
0.499302, 0.499301)> (0.0476165, 0.7308, 0.0267278)(0.999999, 1, 0.994788) (0.000349632,
0.000349673, 0.000349626)as shown in Figure 6.26. It is very interesting that by applying a fixed
amount of periodic perturbation to one of the nodes the whole system stabilises.

Similarly we performed the same experiment on a system itk 4, T = 1/4 and the connec-
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tor for the system withn = 4. with m = 4 with control switched on at = 101
and switched off at = 300.

tivity matrix

5 5 -2 01
925 25 —2 0.1
W) = . 6.13
(wig) —925 25 —2 0.1 6.13)

—-0.1 01 0.1 0.1

A projection of this 4-dimensional chaotic attractor is shown in Figure 6.27. With the value®
and~ = —0.7 for the control, this chaotic system stabilised onto a period-6 offft000135249,
0.000451377, 0.000451377, 0.667242)0.566997, 0.573195, 0.573195, 0.5664066)0.0042818,
0.0232216, 0.0232216, 0.612616)(0.607799, 0.875801, 0.875801, 0.565166)0.0583833, 1, 1,
0.664534)— (0.999985, 1, 1, 0.73932}hown in Figure 6.28, similar to the results fr¢8ole and
de la Prida 1995

This method is similar to the delayed feedback control. It suffers from a similar drawback that the
choice of the critical values and-y is important and there are no specific guidelines to choose these
values. There is also no formal theoretical explanation to support the success of this control technique.
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6.5 Discussion

Many control methods have been tried on some neural networks exhibiting chaotic dynamics. It has
been shown that stabilisation of unstable fixed points is perfectly feasible. However, this relaxation
onto a fixed point, with methods such as the OGY and the OJ techniques, is achieved by a control
external to the network itself rather than as an implicit consequence of network function. Also it seems
to be that the choice of the control parameter in such control techniques plays an important role in
successfully controlling chaotic neural networks. The experiments suggest that a small external signal
applying to the system inputs can control such a neural system fairly easily. This is also supported
by the GM control method and the delayed feedback control, which can successfully control a chaotic
neural system by employing perturbations to the system variables.

In fact, delayed feedback control can easily be imagined in a real biological neural network for
controlling its chaotic dynamics. Having feedbacks in neural systems is already known to enrich the
neural dynamics, by increasing the range of achievable periods in a network of oscillators as observed
by Baldi and Atiya]Baldi and Atiya 199} However, Baldi and Atiya did not consider chaotic dynam-
ics in their neural models. Therefore delayed feedback control might well be the only technique for
realising a chaotic neural memory system with the behaviour observed by Frééreaman 1991
However, further understanding of this control technique is required.
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Chapter

Higher Dimensional Chaos Control

There is now an extensive literature demonstrating experiments on controlling low (usually 2 or 3)
dimensional chaotic physical systems using the original chaos control techniques, such as the OGY
method or similar variants. Most of these control methods, as introduced in the last chapter, are de-
signed for (or restricted to) low dimensional chaotic systems. We are interested in applying chaos
control techniques to higher dimensional chaotic systems. Using simulations, we apply several higher
dimensional chaos control techniques in an attempt to extract muchregadar motionfrom a tum-

bling satellite. The chaotic behaviour of the satellite in our experiments uses linear feedback of the
angular velocities based on the original suggestiollL@ipnik and Newton 1981 However, if only

this type of perturbation is used the attitude angles are essentially decoupled from the other equations.
To ensure that the system really does illustrate higher dimensional chaos we have introduced additional
non-linear perturbation terms dependent on the attitude angles.

First, a continuous delayed feedback control, is applied to the same chaotic satellite. Then we
implement the OJ control technique as introduced earlier. Finally, we experiment with the higher
dimensional control technique proposediing et al. 1994, which we shall refer to as the DYIDSG
method. This method assumes that there is only a times series of a single scalar variable available,
and the control strategy is similar to the original OGY method but extended for higher dimensional
chaotic systems. We present experimental results on the chaotic attitude control problem and compare
the difficulties and merits of each of these techniques.

The OJ method and the DYIDSG higher dimensional OGY method are both formulated for dis-
cretely updated systems. For the OJ method there are two possibilities: one can work with the full state
description at discrete steps or one can work with a single scalar variable and perform a reconstruction
of the dynamics using an embedding. The DYIDSG method, on the other hand, bases the control on
the assumption that only a single time series variable is available.

In addition both these methods of control require specification of an unstable fixed point which
will act as the target of the control method. In order to locate an unstable fixed point one first needs to
select a suitable jump time. However, for the purpose of comparison of these techniques, we should
try to apply the techniques to control onto temestabilised behaviour.

For illustrative purposes we apply the OJ method using the first option, i.e. a discretely updated vec-
tor which consists of the full state description, and the DYIDSG method using a suitably constructed
embedding vector.

First we apply the continuous feedback control to achieve a periodic motion. If the feedback control
signal vanishes on the stabilised orbit then this stabilised periodic motion is known to be an embedded
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unstable orbit of the original chaotic attract®yragas 1993; Pyragas and Tamelius 1993 and we

shall ensure that this is indeed the case. Having thus located an unstable orbit of the original system
(which in practice by other techniques is not actually that easy) we shall then use the same orbit again
in the other two control experiments, in order to compare the results. Based on this stabilised orbit, we
can construct the corresponding fixed point in some form of discrete motion for the OJ method using
a full state description, and also in an embedding of a single variable for the DYSDSG control. In this
way we ensure that the same periodic motion is being controlled by all three control methods.

There are a number of available techniques for obtaining fixed points and their associated jump
times, which we can broadly classify into two types. First, if the equations which govern the dynam-
ics are known we can employ iterative approximation methods using the equiSiomsow 1982;
Sepulchre and Babloyantz 1993Alternatively we may not know the equations and therefore have
to examine time series information and possibly construct an embedding. Given that the jump time
and/or delay time have been determined from the time series the method descriBetirirelcher
and Diakonos 1997could be used to determine one or more fixed points. In fact in the case of the
chaotic satellite we know the equations and can easily determine an approximate unstable fixed point
by iterative refinement. However, the technique describd®ammelcher and Diakonos 1998 of
particular interest because it would appear to be closely related to the control method based on delayed
feedbackPyragas 1992 and we shall discuss this relationship at the end of the experiments.

7.1 Satellite with chaotic dynamics

The dynamical system we seek to control is the rotation of a rigid body with external perturbing forces

chosen so that the resulting system exhibits chaotic behaviour. A similar stylised version of a real

satellite attitude control problem subjected to chaotic perturbation has been studied using a variety of
adaptive control techniques, see for exanipleacopoulos and Jones 1997; Kam and Jones 1995

We first briefly outline the dynamical equations which describe the system.

We imagine a satellite controlled by three pairs of thrusters on the mutually orthogonal principal
axes. This system is described by the Euler equations with additional terms to account for the effects
of the control torques, and we follow the notatior{6fouch 1984 The system consists &fnematic
equations relating the attitude angles with the angular velocitiegjyamamicequations describing the
evolution of the angular velocitid€rouch 1984; Meyer 1986

The orientation of the satellite at a given point can be locally described in terms of three @éngles
0 and+), which are successive clockwise rotations about inertial &xekand K respectively. The
corresponding rotation matrices are

1 0 0 cosf 0 —sind
M, (¢) = 0 cos¢ sing |, My0)= 0 1 0 , (7.2)
0 —sing cos¢ sinfd 0 cos#
cosy siny 0
M.(y) = —siny cosy 0
0 0 1

respectively. These successive rotations transform the inertially fixed set of orthonormdl, akes
and K (regarded as initially instantaneously coincident with the body axes) into thei axesdk
fixed in the body. The angular position (the combined effect of the three rotation matrices (7.1)) can
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be described by a single orthogonal rotation matrix
A= M.M,M, (AA" =1) (7.2)

and for some purposes it is more convenient to work with this global representation. The evolution of
A may be expressed as

A=Sw)A (7.3)

wherew = (w,, wy,w,) are the angular velocities of the satellite &f(@) is the matrix defined by
Sw)=] —w, 0 w: |- (7.4)

Equation (7.3) is th&inematicequation of the satellite. Alternatively this can be represented
[Crouch 198%as

Wy ¢ 10 0 0
Wy = 0 |+ 0 cos¢p sing 0
W, 0 0 —sing cos¢ 0
1 0 0 cosf 0 —sind 0
+ 1 0 cos¢ sing 0 1 0 0 (7.5)
0 —sing cos¢ sinf 0 cosf )
and on collecting terms and inverting we get the following form
ci) 1 singtanf cos¢tand W
0 =10 cos ¢ —sing Wy (7.6)
1/} 0 singsecd cos¢psect w,

which, provided one uses an adaptive integration algorithm that can deal with isolated singularities, is
in some respects a more suitable form for solving by numerical integration, and this is the approach
adopted here. In general, numerical integration algorithms, such as Runge-Kutta, applied directly to
chaotic systems often lead to significant cumulative errors. Recent studies of conservation algorithms
for the dynamics of Hamiltonian systems on Lie groups using the technique commonlysyatiptétic
integration[De Vogelaere 1996could be applied to the problem of an accurate integration of (7.3)
subject to the constraitA” = I. The basic idea of sympletic integration algorithms is to design
into the procedure the constraints on the system which one knows in advance must apply, e.g. energy-
momentum conservation. If this is done carefully the resulting procedure will be much more accurate
than a conventional numerical integrator, see for exarfi@ais and Simo 1994

Thedynamicalequations are

Lw, = (I,—L)wyw,+ G+ H,
ILw, = (I,-I)w.w,+Gy,+ Hy (7.7)
Lo, = (I —Ij)wewy+G,+H,

wherel,, I, and I, are the principal moments of inertia with respect to body a%&s;G, andG .,
are the three control torques produced by the thrustersHand!,, and H, are the perturbing torques
which can be chosen so as to force the uncontrolled satellite into chaotic motion.
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Figure 7.1: Chaotic attractor: phase portrait of Figure 7.2: Chaotic attractor: phase portrait of
the angular velocities. the attitude angles.

Figure 7.3: Chaotic attractor: angular velocities Figure 7.4: Chaotic attractor: angular velocities
wy againsty,. w, againstu,

Earlier paperg¢Dracopoulos and Jones 1997; Kamn and Jones 1995ave taken, = 3, I, = 2
andI, = 1 with the perturbing torques defined by

H, -12 0 & Wy
H, | = 0 035 0 w, (7.8)
H, -6 0 —04 W,

(a linear feedback matrix with suitable elements). These torques are chosen to be sufficiently large
to induce chaotic motion and are comparable in magnitude with the available thruster torques. The
dynamics of the satellite will then exhibit chaotic motidreipnik and Newton 1981

However, by examining the dynamical equations in (7.7) and (7.8) one can see that these only
involve the angular velocities. Therefore these equations can be integrated without reference to the
attitude angles. To achieve a truly higher dimensional problem, and thereby obtain a more challenging
control problem, we introduce extra terms involving the attitude anglésindy into the perturbation:

H, -12 0 @ Wy cos fsin
o, | = 0 0.35 0 wy | +| cos¢sind | . (7.9
H, -6 0 -04 w, cos ) sin ¢

The chaotic attractor of the system defined by (7.7) and (7.9) is shown in Figure 7.1 and Figure 7.2,
which show the phase portrait of the angular velocities for time duratian-ef500, and the phase
portrait of the attitude angles (modul@s) for time duration oft = 200, respectively. Figure 7.3
and Figure 7.4 show the cross sections of the attractor in Figure 7.1. We estimate the Lyapunov
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exponents using the technique describedFarker and Chua 1992 pJ8@vith initial conditions of

wy = 2,wy =41, w, =3, ¢ =0 =1 = 0and 50,000 integration time steps of size 0.01. In this
way the Lyapunov exponents for the systém= (w,,w,,w.,¢,0,1) are estimated to b€0.3629,
0.1313, 0.0174,-0.0077,—0.0721,—0.7509 to 4 decimal places. Having both positive and negative
Lyapunov exponents indicates that the dynamical system is indeed chaotic.

7.2 Continuous delayed feedback control

The continuous delayed feedback control technique describ¢Byiragas 1992and also in Sec-

tion 5.7.1 was tested on this satellite dynamical system. We chose the angular veloeisythe
feedback control variable and no restriction was applied to the magnitude of the control variable, i.e.
Fy = oo, although the range of the resulting control torques was relatively small (see Figure 7.14).
Under this control regime the dynamic equations (7.7) become

: — (Iy — Iz)wywz H, G,
Wy = 1. + I, + I,
Iz I.L zWx H G,
o, = ( Jwsw + 8y Ty (7.10)
I Iy I
o - Lww, H. G
w, = T, + T + T k(w, —w.(t—1))

whereH,, H, and H, are as defined in (7.8) andis a delay time. Since nominally, = G, =
G, = 0, we can translate these delayed feedback perturbation equations into

Uy - Lwyw.  Hy
ce = I I
. (Iz - Im)wzwz H’l/
Wy, = ——" "4 2 7.11
y 1, I (7.11)
I:n - I x Hz
o, = Yemhjowwy (He Wy
I, I,
Hence the thruster, control is defined to be
G,=-Lk(w,—w,(t—71)). (7.12)

In the experiment the control parameters are set te 0.5 and delayr = 2.12, which leads to
the unstable periodic motion described in Figure 7.5 and Figure 7.6. In fact, many other values of
k and T could also achieve periodic, or nearly periodic, motions. However finding such parameter
combinations is mainly a trial and error exercise. At present this is the principal weakness of this
control method. We would stress that the defaghosen in the control does not necessarily always
give a stabilised periodic orbit with time period(as suggested in the original pajByragas 1992
because sometimes the stabilised period can be a multiple of

The results are shown in Figure 7.5 — Figure 7.15. Figure 7.7 shows the position of the controlled
orbit in relation to the chaotic attractor in the,( w,) state space. In this case, the stabilised motion is
~ 2.12 second, i.e. close to the original set-up value of 2.12. As we shall see, in comparison with
the OJ and DYIDSG experiments these results are very impressive:

e The only information regarding the state of the system used in the control calculation is the
angular velocityw, (i.e. five of the six possible state variables are ignored).
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Figure 7.5: Phase portrait of angular velocities Figure 7.6: Phase portrait of attitude angles
of delayed feedback controlled motion. (modulo 27) of delayed feedback controlled
motion.

O desired orbit

Wy

Figure 7.7: The desired periodic orbit in relationship with the chaotic attractor ondhe.(,) state
space.

Wy
2.9
1.3
2.85
1.25
1.2 2.8
1.15 2.75
1.1 2.7
1.05 2.65
t
0. 95 119\/ 1192 1193\/ 1194 1191 1192/ 1193 1194 ¢
Figure 7.8: Angular velocityw, (delayed feed-  Figure 7.9: Angular velocityw, (delayed feed-
back control). back control).
ws ¢
0.6 2.5
0.5 2
0.4 1.5
0.3 1191 1192 1193 1194
0.5
\A191 1192 \1493 1194 !

Figure 7.10: Angular velocity w, (delayed Figure 7.11: Stabilised attitude angle (de-
feedback control). layed feedback control).
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Figure 7.12: Stabilised attitude anglé@ (de- Figure 7.13: Stabilised attitude angle> (de-
layed feedback control). layed feedback control).
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Figure 7.14: Change of control torqué’,. Figure 7.15: Control torqueG, when satellite

is stabilised betweeh= 800 and 1200.

e Control is easily achieved using only one of the three thrusters.

e In contrast to the OJ and DYIDSG experiments no prior calculation and very little real-time
calculation is required.

e The system is easily stabilised into a periodic motion for which the control thruster adjustments
are very small, i.e. the energy cost of maintaining this behaviour is small as observed in Fig-
ure 7.14 — 7.15.

7.3 Direct Otani-Jones control

The Otani-Jonesontrol method (OJ contro[Dtani and Jones 199F7appears to be a feasible control
technique for controlling high-dimensional chaotic systems and in this section we present some results
of applying the OJ method to the chaotic satellite system.

All six state variables, the angular velocities and the attitude angles, were used for the system state
€ = (wa, wy, ws, ¢, 6,1) and the control parameters were the thruster torgugss, andG..

The OJ method is designed for discretely updated systems, so the first step is to discretise the
system in a suitable way to ensure that controlling the corresponding unstable fixed point/orbit of the
discrete system is equivalent to controlling the original fixed point/orbit of the continuous system.
Normally we could generate data for analysis by numerically integrating the dynamical equations and
collecting observational data, say for 20,000 points in time steps of 0.1 second. However, in our case
we just sample the stabilised periodic orbit achieved from the continuous delayed feedback control
to obtain the target unstable periodic orbit of the discrete system. In our experience, it is easier to
achieve successful control if we sample the system in a small time steps. At the start of control we
find the sampled point of the target orbit which is closest to the current system state. At each step
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we then choose the control solution which minimises the distance between the next system state and
the corresponding next sampled state of the target orbit. The whole process is basically tracking an
unstable orbifCarroll et al. 1992; Gillset al. 1993.

We thus need to modify the original OJ method to accommodate this orbit tracking strategy. The
control strategy in (5.55) can be re-written as minimise
|2

|f)(€n—1(po))“éf@ekpo)4‘5an—1814L4-"'4-5phn—1sun (7.13)

where£™®%s the target next state on the unstable periodic orbit,sapds the sensitivity vector for

thei'" parametep; ,,_; attimen — 1.
Notice that now instead of using the original sensitivity vector, which normally is the change of

the fixed point¢'2®* due to the variation of the control paramegerat timen, we use the sensitivity
vectors
apP Ploetse e Pl
Sim = (én—l Pin—-1 Pin 1) (1 S i S 1)7 (714)
' Opin—1

This is the change of the predicted next statg pf, at timen, due to the variation of the parameters
applied at timen — 1, from the predicted state with all the parameters at their nominal values. Thus
a final variation of the OJ method for tracking in this way is that the predictor fundtiogs now
dependent on both the current system state as well as the system control parameter values.

In situations where the iterated méajpis unknown we could imagine constructing a fast predictive
function P by training a neural network. However, in the present case, where we assume the equations
are known and the objective is to demonstrate the technique, there is no virtue in training such a
network and we shall therefore calculdteusing F' (i.e. by simply integrating the equations over the
jump time).

The unstable orbit in this experiment has a periodicity’of 2.12, which we divide into 120 target
states. In this way we can ensure that at every control step relatively small parameter perturbations are
required. Of course, using such small time steps, together with appropriate control variations, the
satellite could be forced to any desired orbit, whether this orbit is an embedded unstable periodic orbit
in the original chaotic attractor or not. But the point here is to achieve the particular target, which
corresponds to an unstable periodic orbit of the original system,switill control perturbations.

In our experiment, the results indicated that using if the target periodic orbit is estimated inaccu-
rately then even with small time steps, it was very difficult to control the system without using large
parameter perturbations.

Because the sensitivity vectors in (7.14) are now dependent on the current system state, they have
to be correctly estimated and recalculated at every time step. One way to achieve this for a real time
application is to use a neural network as demonstratd®liveira et al. 1997, where the trained
neural network is used to calculate the sensitivity vectors for synchronisation of the chaotic systems
using OJ control. To get the information necessary to train such a network we would in practice use
the predictorP to analyse how the next (predicted) state changes with small variations in the control
parameters. However, for this experiment we simply collect data by making small variations of the
control parameterp at timen — 1 and then integrate the system forward to timeThis is repeated
about 50 times and then least squares fit is used on the data so collected to estimate the sensitivity
vectors.

Finally the required control perturbation at time- 1 is calculated according to (7.13). However,
the attitude angles, # andy ( mod 27) are not continuous and this would pose a problem for the least
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Figure 7.16: Phase portrait of angular velocities Figure 7.17: Phase portrait of attitude angles

of OJ controlled motion.
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Figure 7.18: Changes of control torqu&,, dur-
ing OJ control.

squares fit step needed to calculate the required control perturbation. Therefore for the minimisation
step of the OJ method we replace the state description in terms of angular velocities and attitude
angles by a description using the orthogonal rotation matrix defined in (7.2). The state description

then becomes

(wr, Wy, Wz, a11, @12, 413, A21, 22, @23, A31, A32, a33)

(modulo27) of OJ controlled motion.

Gy

-4

Figure 7.19: Changes of control torqu&, dur-
ing OJ control.

(7.15)

whereq;; is an element of the rotation matrikas in (7.2).

The results appear in Figure 7.16 — 7.17 showing that under control the satellite follows the desired
unstable orbit. Note the close similarity to the results in Figure 7.5 — 7.6 for the delayed feedback

control. Figure 7.18 — Figure 7.20 show the control thruster torqle€~,, andG, and Figure 7.21 —

Figure 7.20: Changes of control torqu&,, dur-
ing OJ control.

Smooth Data Modelling and Stimulus-Response via Stabilisation of Neural Chaos

H,

-0.

<

[

=
(3]

I

vvvvryy-yvy|\|\|\|1|\| tsec

Figure 7.21: Changes of perturbing torqué,
during OJ control.

Alban Tsui, March 1999



7.4 DYIDSG control 141

- L

Figure 7.22: Changes of perturbing torqué, Figure 7.23: Changes of perturbing torqué.
during OJ control. during OJ control.

Figure 7.23 show the perturbing torquis, H, andH, acting on the satellite during the OJ control.

The control thruster torques are for the most part relatively small, compared to the perturbing
torques, which is in line with the original objective. Occasionally, there is a ‘burst’ of larger control
signals which we believe occurs because the ‘natural period’ of the controlled orbit does not quite align
with the periodr = 2.12 of the target, the ‘burst’ serving the function of bringing the two back into
phase for a while.

If the target orbit is not a very close approximation to an embedded unstable periodic orbit of
the original chaotic attractor, i.e. the target orbit has been estimated inaccurately, the control torques
required to achieve stabilisation are much larger. In our earlier attempts these varied in the range from
—10 to 10. However, in comparison with delayed feedback control, this method does require slightly
higher torques to control the satellite with a higher computational cost, in terms of constructing the
one-step predictor and the estimation of the sensitivity vectors.

7.4 DYIDSG control

In this section we first describe the DYIDSG method in its original féBing et al. 199 and then

report on our attempt to control the six-dimensional chaotic satellite system using only one thruster.
This is designed to enable us to contrast the method with the continuous delayed feedback experiment,
which also only used one thruster to achieve control.

In fact, despite all our efforts, the result of the DYIDSG experiment was not very successful and
we shall discuss some possible reasons after presenting the details. Perhaps one should not be too
surprised: in the original description of the DYIDSG method, only one control variable is used, but
this control is applied in discrete steps and so is held constant for variable periods. It might be that this
method could be effective if it were further extended to incorporate more control parameters.

The basic idea of the DYIDSG methdDing et al. 1994 is to apply a sequence of small parameter
variations so as to force the system at the next several iterates into the stable subspace associated with
the unstable fixed point or unstable periodic orbit. It is therefore a natural extension of the classic
OGY method. One essential ingredient of this method is to incorporate dependence of past parameter
variations in the control scheme, an extension first described by Dressler and Nibseksler and
Nitsche 1992 for the original OGY method. The derivation of the control law is rather complicated
so we attempt only a summary below, $Béng et al. 1994 for full explanation.

First assume that the original dynamical system can be describe#-bin@ensional state variable
X. In experimental studies of chaotic dynamical systems, especially high-dimensional ones, it is
often the case that the only accessible information is a time series of some scalar function
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h(X(n)). However, as shown bTakens 198]Jl, employing delay coordinates with a suitable delay
time, the high-dimensional dynamics from the time sefigg) can be reconstructed using the vector
z, assigned as

T
Zy = (z,(ll), zf), . ,z,(lm)) def (Tn—mt1, Tn—mt2, - - - ,a:n)T (7.16)

wherem is the dimension of the reconstructed state space. For suitablyrdargg is generically a
global one-to-one representation of the system varialile).
Then the discrete map far, is

Znt1 = R(Zn, Pn—mt1: Pn—m+2; - - - 7pn) (7.17)

whereR generally depends on all the parameter variations effective during the time interval-1 <
t < n spanned by the delay vectey [Dressler and Nitsche 1992

Assume there is an unstable fixed pak(p) in the original attractor fop = 5. * This is reflected
in the delay coordinates by

Z(p) = R(Z(D), P, P - -- , D) (7.18)

wherez(p) = [7(p),Z(p), - .. ,z(p)]T, T denoting the matrix transpose, an) = k(X (p)).
The linear dynamics (without parameter changes) at the fixed p@intcan be described by the
m x m Jacobian matrix

J - [Dan(znapn—'m—i-lvpn—nb-i-Qa o 7p'rL)]z7L:§(ﬁ)7p”77”+l:pnim+2:...:pn:5 (719)

whereD,  denotes the Jacobian matrix operator of partial derivatives. We denote the partial deriva-
tives due to the variations of the parameter (and the past values) by

B(m) = [Dp, s REnpo-mtts s Pu)]e o) puiimmpums
Bm—1) = [Dp,_paB(z0promstseoe Pl o) poiimmpup
B(1) = [Dp,R(zZn,Pn—mt1;--- ,pn)]znzz(ﬁ)’pnimH:_:pn:ﬁ. (7.20)
Therefore, the local linear flow near the unstable fixed point is described by
Zny1 —2(0) = J(zn —Z(D)) + (Pn—m+1 —P)B(m)
+ (Pn—mt2 —P)B(m — 1) + -+ + (pn — ) B(1). (7.21)
Because we are using delay coordinates from (7.16) the next iteyate= (=4”,... , z{" ") and
we can therefore write (7.17) in component form as
T
1 2 m—1 m
Zn+1 = (Zv(H)-l’ Z7(H)-1’ e ’Zv(z-i-l )7 Z7(L+)1) =
T
<Z7(7,2)a an)a st azfy(lm)a r(znapn—m+1;pn—m+27 s apn)) (722)

10nly a fixed point - ‘period 1’ orbit - is being discussed here. The technique can be extended and generalised for stabilising
a period# orbit [Ding et al. 1994 .
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wherer is an appropriate function. We then see that most of the entries in the niatnd the vectors
B are zero. Explicitly,

0 0
0 0
J = : : : : : (7.23)
0 0 0 1
a(m) a(m—1) a(m—2) a(l) e
and
B(i) = (0,...,0,b(i)),, (1<i<m) (7.24)

The estimation of (i) andb(z) is discussed in the experiment.
Now assume thaf in (7.23) hasu unstable directions andstable directionss(+ u = m) with

eigenvalues\; satisfying|A1| > [Aa] > -+ > |Au] > 1 > |Aug1] > |[Augz] > -+ > |Am|. Let
e; denote the corresponding eigenvectors. Then a possible control approach is to push the trajectory
zn+1 into the stable subspace spanned by the stable direatioris + 1 < 7 < m), by suitable
parameter variations according to (7.21). Instead the DYIDSG method expands the original state space
as suggested iF8o and Ott 199k to a(2m — 1)-dimensional space whose extended vectors are given
by

Y,= (zf,pn_mﬂmn_mw, e >pn—1)?><(2m_1) (7.25)
which includesz,, and all the previous: — 1 variations of the parametgr The equivalent unstable
fixed point in the extended system then becomes become

~ . _ T
Y = (Z0) 5.5, D)1y 2m) (7.26)
and the linear dynamics near the fixed point will be
Y, -Y=JY,-Y)+(p.—D)B (7.27)
where
J B(m) B(m-—1) B(m-2) B(2)
0 0 1 0 0
- 0 0 0 1 0
J= ) (7.28)
0 0 0
0 0 0 0 (2m—1)x(2m—1)
with 0 anm-dimensional row vector of 0's and
~ T
B=(B1)"0,...,0,1); . 4 (7.29)
Now the eigenvalues of are also eigenvalues dfwith corresponding eigenvectors
ki=(el,0,...,0,0)" (1<i<m) (7.30)
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inthe (2m —1)-dimensional space. Suppose that the eigenveetars, . . . , e,,, of J corresponding to
the stable subspace are linearly independent. Then we can extend the sebof v (stable) vectors
kyi1,...,kn by adding vectorgk,,, 11, ... , kam—1 SO as to construct a basis for tfilan — 1 — u)-
dimensional stable subspace analo@¢Y") of .J. We note in passing that the vectors of (7.30) are
insufficient to span thé2m — 1)-dimensional expanded state space but the additianall linearly
independent vectors required to span the full state space are fairly easily found, as siBigin
etal.1994.

At this stage the idea of the DYIDSG control method becomes very similar to the original OGY
method. Suppose that at timethe system trajectory falls in the neighbourhoodYofcalled the
control region. To stabilise the subsequent motion around this fixed point:witistable directions;
successive small parameter perturbati®ms 6p;, 11, - - - , 0pn+(u—1) in such a way that the deviation

5Yn+u = Yn+u -Y (731)

lies entirely in the stable subspafg (Y'). For a short period the natural dynamics should then cause
the orbit to relax onto the fixed point. The parameter can be set back to its nominagpwadtikfurther
parameter adjustments are required.

Without going into details, we should note that bdtnd.J” have the same eigenvalue spectrum.
In fact, the contravariant unstable eigenvectargletermined by

JTv; = \v; (7.32)

for 1 < i < u have the property that they are orthogonal to the stable subdpa@é) of J, ie.
vIk;=0forj=u+1,u+2,...,m,m+1,...,2m — 1. Then the control perturbations required
are simply obtained by solving

v]8Y piw =0,
v36Y iy =0,
(7.33)
'v?:(SYn_,_u = O,
for pn, Pnt1s -+ Pnt(u—1)- Although the solution gives us the nextperturbation values together

with p,, at timen, in practice, it is preferable to computg at every iterate: to avoid the problem of
system noise.

7.4.1 Experimental description and results

In our experiment using the DYIDSG technique the thruters chosen as the control parameter with
the nominal valu&s, = G, = 0. We adhere closely to the method described in the original paper.

First we need to choose a hyperplane to create a P&rsmstion to reconstruct a discretised
dynamics of this autonomous system. Unlike the original description of choosing a fixed point from
the reconstructed dynamics on the Poigcsection for the control, we want to control the dynamics
onto the same unstable periodic orbit used earlier in the continuous delayed feedback experiment.
Therefore we have to choose a hyperplane which cuts the trajectory of this target orbit to obtain a
corresponding unstable fixed point on this Poigcsection. The hyperplane, = 0.3 was chosen
and the original unstable periodic orbit is approximatelg at (1.30484, 2.59193, 0.30000, 1.23980,
0.57523, 3.63385) on this hyperplane.
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First we generated about 75000 data on this Poisaction whenever the trajectory cut this
hyperplane. These data were then used for our dynamic reconstruction and data analysis for the control.
Two different strategies for the reconstruction of the dynamics were tried with this experiment: the
interspike intervalseconstruction as introduced [Bing et al. 1996 and the simple method of using
a single system variable on the Poircaection to reconstruct the dynamics.

Theinterspikeinterval is the time interval,,, required for the trajectory to return to a point on the
Poincae section entering from the opposite halfspace to that from which it left. The interspike interval
is then used as the basis for an embedding for the purpose of reconstructing the system dynamics.
[Ding et al. 1994 demonstrated that,, the time between they(— 1)th and thenth crossings of the
section, is uniquely determined by the original system dynamics and corresponds to aéPwiapar
With interspike sampling the target orbit then becomes the fixed pbint .. , Ir) , wherelp = 2.12
is the estimated period of the orbit stabilised by the delayed feedback control.

We reconstructed the dynamics with an embedding of dimension 8. The first problem noticed
was that estimating the local linear dynamics was difficult. For example, slightly increasing the local
region, or equivalently including a few more ‘close’ data point for linear approximation, caused the re-
sulting Jacobian to vary significantly, for example to have a different number of unstable eigenvectors.

We followed the DYIDSG method to control the satellite using initial conditions close to the un-
stable fixed point. The sensitivity vectors were estimated as described in the original paper. The result
is shown in Figure 7.24, which shows the variation of the interspike interval (if control had been suc-
cessful this should be approximately constant), and Figure 7.25, which shows the controGsignal
The control signal rapidly becomes zero, but this is because after initial control is lost the system does
not make a close return to the target state in the interspike interval space within the time period ob-
served. For a close return in interspike embedding space to occur the trajectory in the original state
space would have to make 8 successive close returns, which seems relatively unlikely. Unfortunately,
a smaller embedding space does not seem to capture the original dynamics very well.

Figure 7.26 shows the evolution of the angular velocityagainstv, from the time control was
initiated for approximately 10 interspike intervals. If control were successful this graph should be that
of a simple closed curve.

As we can see, this experiment was not very successful although at the first 10 steps or so (See
Figure 7.26), the dynamics was under control. Later, once control was lost, the system came back only
in an occasional fashion, with control switched on for just a few steps. By reducing the maximum
allowed perturbation, the control could only produce a ‘trapped’ periodic behaviour which was not the
desired orbit. Having a larger allowed perturbation can lead to a ‘bifurcation change’ on the attractor
and in many cases, the trajectory does not then come back to the Raection for several thousand
seconds. Many alternative settings were tried, such as changing the reconstruction dimension of the
embedding, refining the approximation technique for the estimation of the Jacobian and the sensitivity
vectors, and incorporating the fixed point tracking adaptive technique as repof@diakmanet al.

1997; Dinget al. 1997, but despite these efforts we were unable to achieve satisfactory control of the
system.

We next tried to reconstruct the dynamics by observing the system varighd@ the Poincdr
section. The valuev, = 1.3048 was then used as our fixed point value for constructing a delay
coordinate with an embedding, corresponding to the original unstable periodic orbit. We could not
achieve any successful control and similar problems arose. In comparison with the interspike interval
technique, this approach seemed to be performing less well - but since both attempts were essentially
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Figure 7.26: The dynamics gradually moves away from the desired orbit being under control pertur-
bations.

unsuccessful this does not say a great deal.

Even without successful control, we have learnt that there are many problems which seem to affect
this control method when applied to higher dimensional chaotic systems. The first problem is that for
higher dimensional systems the local linear dynamics is not necessarily easy to estimate even with a
reasonably large observed data set. Similarly, performing an accurate sensitivity analysis is difficult,
due in part to the fact that it is not obvious how to determine the size of local region which defines
which embedding vectors (from the observed data set) to include as ‘close’ points.

By examining the cross sections of the angular velocities in Figure 7.3 — 7.4 and Figure 7.7, es-
pecially in the region where our desired periodic orbit is situated, we can see how difficult it is to
estimate the local dynamics (with suitable linearisation) using a finite set of data (the calculation of
the sensitivity vectors was extremely time consuming). Examining Figure 7.7 closely shows the dy-
namics, corresponding to the next 10 iterates on the Pd@rssution has discontinuities. This graph
is plotted based on the information of the actual state on the Péiseation and the return time, then
the dynamics is numerically integrated from each initial condition for a period corresponding to the
‘return time’. The gaps clearly indicate the problem of tracking the point at which the trajectory hits
the hyperplane. Therefore, a combination of inaccurate estimates for the eigenvectors and sensitivity
vectors, and the cumulative small inaccuracies of numerical integrations due to floating point errors
for the chaotic dynamics, contributed to the difficulty of this experiment. In other words, the DYIDSG
method seems to be highly sensitive to the accuracy of the eigenvectors and the sensitivity vectors.
Intuitively, we could reasonably ask: how can we expect a single control parameter, fixed for the (vari-
able) period of each control step, to effectively perturb a (say) 10-dimensional chaotic system onto a
stable behaviour?

The DYIDSG method may be effective in controlling systems with dimension higher than two or
three (which is the limit of the original OGY) by using a slightly higher dimensional embedding. How-
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ever, this does not mean that the current form of the method can be used successfully on problems with
a much higher dimension which, very often in practice, may require several parameter perturbations.
In our example more thrusters could be used, but without a reformulation of the method there is no
effective way to incorporate this fact into the control.

7.5 Summary of experiment results

Both the OJ and DYIDSG methods require considerable observation and calculations prior to imple-
menting the control method. In practice, both methods require the location of an unstable fixed point
from observational data. For higher dimensional systems (even without embedding) we are likely to
need a very long sequence of observations in order to derive suitable delay and jump times and extract
an unstable fixed point. If an embedding technique is used on a sequence of observations of a single
system variable then we need to employ efficient techniques for the choice of delay and jump times.
For both the OJ and DYIDSG methods we also need to perform a sensitivity analysis from observations
of the system under small control parameter variations. All this analysis is required before control can
be turned on. The real-time computational requirements of the OJ method are a fast pseudoinverse cal-
culation, whereas the overhead of the DYIDSG is comparable to the OGY calculation, i.e. relatively
low.

However, we have seen that DYIDSG control seems to be ineffective against our high-dimensional
problem. This is due in part to the fact that only one control parameter perturbation is allowed, as
opposed to using all three thrusters for the OJ method. Also in DYIDSG control the single thruster
produces a fixed torque for a much longer period of time, where each time length depends on the return
time for the trajectory to the Poindasection. In contrast, the successful result of the Pyragas’ delayed
feedback method relies on the small, continuous variation of a single control thruster.

Numerous experiments on low dimensional systems have been reported using Pyragas’ delayed
feedback methodCooper and Sdhil 1995; Namajinaset al. 1995; Quet al. 1993 or its discrete
equivalent, i.e. applied on a Poinéasection rather than in continuous time, §@&éveira and Jones
1998; Tsui and Jones 1999Hn the second case if the system is described by agnap = F(&,,)
and the controlled dynamics by

whereA is a matrix defining the feedback constant, e.g. in the case of our satellite experiment if we
just consider the angular velocities

(7.35)

-

|
o o o
o o o
>~ o o

then if the method is successful the control perturbation(s) approach zero. In this case the system
dynamics stabilises onto an unstable fixed point of the original (uncontrolled) system. Thus one could
also consider the technique as a method of finding unstable fixed points, provided one has already de-
termined a suitable jump time. In essence this is the technique descrilschimelcher and Diakonos
1997 for determining unstable fixed points.

In [Schmelcher and Diakonos 199%e matrixA is required to be invertible with sufficiently small
components. Ifl is the dimension of the system then thex d matrix A is chosen so that = \C,
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with 1 > X > 0, where in practiceC is chosen from a set af!2? matrices which correspond to
special reflections in space and have componenf$,ic-1}. Each matrixC' stabilises a whole class
of unstable periodic orbits, rather than a single fixed point.

Thus the method described [Bchmelcher and Diakonos 1996 locate unstable periodic orbits
can be viewed as a discrete equivalent of Pyragas’ control method, but with much stronger restrictions
on the matriced.. Since we know that Pyragas’ method works in many cases without such restrictions
it seems likely that what is important here is that the effect &f contractive, or at least contractive on
average. When the method of Pyragas stabilises the original system it might be because the Lyapunov
exponents along the trajectory of the extended system are all negative, but in practice it is often the
case that the trajectory converges rapidly to the fixed point and remains there.

Thus the important theoretical issue becomes for which systems and under what constraints on
A can trajectories of the extended system be proved to either have negative Lyapunov exponents or
stabilise to a fixed point. A satisfactory answer to this question would provide both a theoretical basis
for a very effective control method and simultaneously offer an elegant method of locating unstable
fixed points or periodic orbits, thereby extending our understandin@ciimelcher and Diakonos
1997. A possible approach is indicated[i@liveira and Jones 1998; Tsui and Jones 19@8hwell as
in the next chapter, which discusses the relevangeaifabilisticlocal stability.

In this chapter we have compared three methods of controlling a six dimensional chaotic system.
Both the OJ and the DYIDSG method require prior observations and computation, in particular the
location of a suitable unstable fixed point, and both require a detailed sensitivity analysis. In each case
the real-time computational overhead is reasonable but significant. The results for the OJ stabilisation
were more satisfactory than those for the DYIDSG method (with which we were not able to achieve
effective control).

We have also illustrated the Pyragas’ method in its original continuous-time form using a single
delayed feedback variable applied to the same system. The advantage of Pyragas’ method is that no
prior calculations of any kind are required and the real-time computational overhead is trivial. It seems
remarkable that:

e The only information regarding the state of the system used in the control calculation is the
angular velocityw, (i.e. five of the six possible state variables are ignored).

e Control is achieved using only one of the three thrusters.

7.6 Discussion

The results of the control of the chaotic satellite provide a better understanding of the problems of
control of a higher dimensional chaotic system. The conclusion of these experiments have already
been discussed in Section 7.5. In summary, these experiments suggest that a rigorous analysis of
Pyragas’s method is long overdue.

We have tried to provide an analysis of the delayed feedback control technique in Section 5.7.1
on a simple system. (We also attempted to provided a similar analysis on the satellite but the result
is not conclusive and unsatisfactory, due to the fact that stabilised motion is complicated. The basin
of attraction of this particular stabilised orbit analysed also is small and therefore, it was difficult
to study how arbitrary orbits stabilise onto this orbit with random initial starting states.) Although
preliminary, this has enabled us to better understand this control method and leads us into the idea
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that the delayed feedback control technique may be the essential building ingredient for constructing a
stimulus-response neural system based on chaos control. Having such delayed feedback connections

within a biological neural system is not hard to imagine.
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Chapter

An Artificial Chaotic Neural
Stimulus-Response System

On the basis of studies of the olfactory bulb of a rajsiteeman 1991Freeman has suggested an
interesting model of recognition in biological neural systems via stabilisation of neural chaotic dy-
namics as discussed in Chapter 1. In this chapter we propose a chaotic iterative neural system which
does produce stimulus-response behaviour similar to that observed by Freeman in a biological system.
Our proposed system is based on the delayed feedback control idea which has proven very valuable in
chaos control applications.

8.1 Construction strategy - an introduction

To construct such a neural system, we require some form of chaos control. There is now an exten-
sive literature demonstrating experiments on controlling chaotic physical systems using the original
chaos control techniques, such as the OGY mefl@tiet al. 1994 or its similar variants as also
described and investigated in earlier sections of this work. Many such methods require careful and
systematic analysis of the chaotic dynamical behaviour, such as the OGY method, OJ method and the
high-dimensional DYIDSG control, which is usually difficult and computationally expensive, before
successful control can be achieved. Moreover, such control techniquestansalto the system be-

ing controlled, whereas for a neural system to behave as described by Freeman the control should be
intrinsic to the neural dynamics.

Therefore for constructing an iterative neural model, we implement a much simpler delayed feed-
back control, similar to Pyragas’ original continuous delayed feedbagkagas 1992 One of the
attractions of this method is that it has a very low computational overhead, shown in Section 7.2 on
the control of a chaotic satellite for the continuous case, and so is extremely easy to implement in
hardware. It would also be very easy to implement in biological neural circuitry and so offers one
plausible mechanism whereby such stabilisation might occur.

We use the chaotic neural network described in Section 6.1.2 for out chaotic iterative neural net-
work. Delayed feedback is then introduced into the model and this provides a mechanism for stabil-
isation onto unstable periodic behaviours. The particular unstable periodic orbit which is stabilised
depends quite strongly on the precise character of the applied stimulus. Thus the system can act as an
associative memory in which the act of recognition corresponds to stabilising onto an unstable peri-
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Figure 8.1: Delayed feedback on chaotic neural net.

odic orbit which is characteristic of the applied stimulus. The entire artificial system therefore will then
exhibit an overall behaviour and response to stimulus which precisely parallels the biological neural
behaviour observed by Freeman.

8.2 Delayed feedback applied to the chaotic neural net

A simple delayed feedback, similar to the Pyragas’ delayed feedback, can be added to the chaotic
neural net to control the chaotic behaviour with a careful choice of the parametads-. The basic

control setup of the neural model is shown in Figure 8.1. Here the trained chaotic feedforward neural
net described earlier in Section 6.1.2 is now equipped with extra delayed feedback control circuitry,
which is activated on presentation of an external stimulus. The delayed feedback is added to the state
variabley,, to effect the control. External stimulation is performed by feeding signals into inputline

of the network. LetF" F' be the feedforward network mapping such tR&|[(x,,, y»)] = (Tn+1, Ynt1)

then the controlled system with external stimulatigrat timen is described by

(xn+17yn+1) = FF[(JJ” + SnsYn +pn)} (81)

wherep,, = k(y.—- — y») is the delayed feedback control signal.

After some initial investigation we fixedl = 0.5 andr = 6 for the experiments. These values
stabilised the system with control switched on but with no external stimulus present. Other values of
k andr can also stabilise the system,,, y,,) successfully.

We imagine that the presence of an external stimulus excites (activates) the control circuitry which
is otherwise inhibited. Thus to achieve a stabilised dynamical regime in response to a stimulus the
control is switched on at the same time as the external signal is fed into the inpuf, lifdy varying
the external signal in small steps and holding the new setting fixed long enough for the system to
stabilise we can observe the response of the network to small changes in stimulus.

In Figure 8.2 the system is iterated for 100 cycles to eliminate any initial transients. Next an
external constant stimulus, = s is applied for 400 steps. In Figure 8.2 the stimulus is varied in steps
of 0.025 over the interval [0, 1] every 400 network iterations. We can see that the system exhibits
a fairly ‘'smooth’ transition of stabilised behaviour from one stimulus to the next. For the most part
in this case the response is a 1-period behaviour but a 2-period behaviour is also exhibited after the
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8.2 Delayed feedback applied to the chaotic neural net
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Figure 8.2: Responses af,, andy,, and the size of delayed feedback control signatiue to external
constant stimulation of0, 1] varying in steps of 0.025. The stimulus changes at 400 iteration steps
after an initial 100 iterations to eliminate transients. The control parametersiwei@®5 andr = 6.
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Figure 8.3: Responses af,,
control. Intervals labelled ‘s’

indicate the presence of the stimulus, intervals labelled ‘c’ indicate con-

trol is switched on, a label ‘sc’ indicates both, and no label indicates no stimulus and no control. The
particular regime is changed every 200 iterations after 100 iterations have been allowed for transient

removal.k = 0.5 andT = 6.
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Figure 8.4: Bifurcation diagrams for the outpuis,; andy,, 1 using an external variabkeadded to
the inputz,,.

strength of the external signal crosses a threshold at around 0.8 which is therefioreation point

For a stimuluss,, = s with s > 0.2 the delayed feedback control signal quickly becomes small, which
indicates that the system has stabilised onto one of its own unstable periodic behaviours. However, for
a stimuluss,, = s with s < 0.2 alarge feedback control signal,, often seems to create some new
periodic behaviour.

We can study the response of the system as the stimulus 0.2 is applied and removed and as control
is turned on and off. This is shown in Figure 8.3. In general terms the system stabilises after about
50 iterations. If the stimulus is applied without control the dynamical regime seems not to correspond
to an unstable periodic behaviour of the original network, but with control switched on the dynamics
quickly stabilises to a 1-period corresponding to an unstable periodic behaviour of the iterated network.

Note that in the transition se» s of Figure 8.3, in which control is removed but the stimulus
remains, surprisingly the system shifts from a 1-period to a 2-period, rather than reverting to the more
chaotic regime illustrated in the first 400 step interval, where the same stimulus without control proved
unable to stabilise the system.

In some cases, the external stimulation signal is enough to stabilise the system without switching
on the control module. The explanation of this might be that when such an external signal is strong
enough, or it is a particular kind of signal, it may shift the underlying dynamics from a chaotic region
into a periodic region in the bifurcation diagrams, as shown in Figure 8.4. This figure originally
appeared ifiTsui and Jones 199Which studied the same feedforward neural network.

Apart from a constant external stimulation signal applied to one of the inputs, other forsys of
can also be used. Low period square waves can also result in stabilised periodic responses as shown in
Figure 8.5.

A completely different way of applying a stimulus was suggestd#ioff 1994]. The stimulus can
be applied directly to the control variable In this way different behaviours can be achieved by using
the external signad,, to directly modifyk. Some results of this type of control applied to our system
are illustrated in Figure 8.6.

These experiments are merely illustrative and many variations are possible. For example, delayed
feedback control could equally be applied to several (or all) of the network outputs. With thersame
and multiple feedbacks it should be easier to achieve stabilisation compared to the case where feedback
is applied to just one variable. However, if delayed feedback on different network outputs also had
differing 7 then the outcome is less predictable. There remain many possibilities for exploring this
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Figure 8.5: Responses af
odic stimulations,, = {j,0, 5,0, ..

. } of strengthj from O to 1 in steps of 0.05. The stimulus changes

at 400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were

0.5 andT = 6.

k:

Figure 8.6: Responses af,, andy, and the size of delayed feedback control signaldue to the
external signak,, added to the valug from -0.5 to 0.5 in steps of 0.025. The stimulus changes every

400 network iterations (after 100 initial iterations with no stimulus and no coritrel 0.5 andr = 6).
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8.3 Local stability analysis

type of neural model.

Figure 8.7: The response of the system to noise. The stimsiluis replaced by, r at each iteration

step, where is Gaussian noise with mean 1 and variance(¥ar

0.005. The stimulus changes at

400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were

0.5 andT = 6.

k:

r at each iteration

0.01. The stimulus changes at

Figure 8.8: The response of the system to noise. The stimsiluis replaced by,

I

Lz

400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were

(

step, where- is Gaussian noise with mean 1 and variance

0.5 andT = 6.

k:

We also investigated the response of the system when sensory input was perturbed by stochastic
noise. The stimulus was perturbed at each iteration step by multiplying it by Gaussian noise with a

mean of 1 and a varianee wheres varied fromo = 0 to o = 0.1. The response was surprisingly

robust as illustrated in Figures 8.7 — 8.9. These results should be compared with the non-noisy case
of Figure 8.2. The noisy dynamics remain essentially unchanged, although as one might expect the

attractor becomes progressively ‘blurred’ as the noise level increases.

8.3 Local stability analysis

As we have seen earlier, little theoretical analysis is available for the Pyragas method of continuous

delayed feedback control, let alone for the discrete form of the method used here. However, a discrete

version of a variation of Pyragas’ method has already successfully been applied to the synchronisa-

tion of two identical iterative chaotic maps [@liveira and Jones 1998 The version used there for
synchronisatioris similar to but not identical to the method used hereshkabilisationand that pa-

per contained a suggestive account of the local stability properties. We gave a similar analysis for a

continuous system in Section 5.7.1.
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Figure 8.9: The response of the system to noise. The stimsiluis replaced by, r at each iteration

step, where- is Gaussian noise with mean 1 and variance(¥ar= 0.1. The stimulus changes at

400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were
k= 0.5andr = 6.

We next try to provide a similar empirical analysis for the method of stabilisation proposed here
in the case where no external stimulus is present. First, we note the stabilised state when control is
switched on withk = 0.5, 7 = 6 and no external stimulus is applied. This gives a 2-period controlled
behaviour{¢r1, &2} = {(0.81808, 0.569261), (0.543838, 0.264166)

If we again define a measure of contraction

1y = min (|1 — Er1l, [§nv1 — Eral)
min (£, — &1, [€n — Eral)
towards{&r1,r2} from stepn to stepn + 1 theny,, depends on the eigenvalues of the Jacobian of
the associated four dimensional systén, &,+1} in the vicinity of {¢71,£r2} and these (although
bounded) can be much larger than 1. Thus itis simply not true that with this control method the system
will monotonically approach the unstable periodic behaviour. However, if we examine the effects of
control after several iterations we find that ghrebability that the cumulative net contraction becomes
small is very large.
To establish this we generate a random initial pginand iterate the controlled system. At th&

iteration we define

(8.2)

Py = min (1€n = Er1l, 160 — §F2D' 8.3)
min (|0 — &r1l, [€0 — Eral)

The quantityp,, gives us an measure of the extent to which aftéerations with control the system
hascontractedtowards the unstable 2-period.

By showing thatfp,, becomes small with high probability, i.e. that — 0 asn — oo, where the
convergence is in probability, we can establish that the methpebisbilistically locally stable

We repeated the calculation pf for 1000 different initial starting points and < 80 and created
histograms showing the frequency @f against the value. These results are shown in Figure 8.10.

These histograms suggest that> 0,

Plp, <€ — 1 (8.4)

asn — oo. Thus the system without stimulus is probabilistically locally stable.

The application of an external stimulus basically modifies the system dynamiskifting the
dynamic behaviour along the bifurcation diagrams as mentioned earlier. Many new chaotic and non-
chaotic behaviours are produced by the neural system which are different from its initial built-in dy-
namics without stimulation. Thus the delayed feedback control seems to act as a supporting tool for
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Figure 8.10: Histograms ofp,, atn = 20 (top left), 40 (top right), 60 (bottom left), 80 (bottom right)
of 1000 random initial starting points for contrbl= 0.5 andr = 6.

stabilising the system into periodic states. Although there is insufficient theoretical explanation for the
dynamical behaviour of our neural system, the above heuristic analysis seems to fit very well with the
observed simulation results.

8.4 Generic stimulus-response neural model

In fact, we can generalise the model shown in Figure 8.1. The chaotic feedforward network can be
trained and modelled on a known chaotic time series, usingragular embedding technique with
the embedding found by using the Gamma test technique shown in Section 4.2.3.

A generic scheme of such stimulus-response recurrent network is shown in Figure 8.11. The single
output of the network feeds back into inputs using delay buffers accordinglgudableembedding
—i.e. should contain enough information for predicting the next system state. A multiple of delayed
feedbacks can be used for each input of this recurrent neural network as control lines (based on the
idea from Pyragas’ delayed feedback control). The control module shown in Figure 8.11 is similar to
the one as shown in Figure 8.1 and the control perturbation faf'tigout at each iterate is

ki(zi(n —i) —x;(n—i—171)) (8.5)

wherek; andr are the usual parameters as in the Pyragas delayed feedback control. Each control
perturbation signal should be switched on and off in the control module as in the earlier example. In
the diagramy is the same for each control perturbation but of course, we couldtedie different on

each control line. External stimulus to the network can be applied to the controlled inputs as shown in
the diagram. The control module should switch on automatically and simultaneously whenever there
is an external simulation. Variations of stimulation, such as on the control delayed feedback lines, as
shown earlier may also be used.
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Figure 8.12: Response signal an(n — 6) with control signal activated on(n — 6) usingk = 5 and
7 = 0.414144 and without external stimulation.
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Figure 8.13: Response signals on network outp(t) and on observation point (on delay ling): —

6), with control signal activated an(n — 6) usingk = 5 andr = 0.414144 and with constant external
stimulations,, added tax(n — 5), wheres,, varies from -1 to 1 in steps of 0.05 at each 400 iterative
steps (indicated by the change of Hue of the plot points) after initial 20 transient steps.

8.4.1 Examples

Using the neural network trained on the Mackey-Glass time series as in the example in Section 4.2.3,
we can construct a stimulus-response neural system based on the generic model described. There
follows a gallery of different responses of the system using different settings of controls and external
stimulation. The response signals of the system can be observed at thexgutpot the feedforward
neural network module or the “observation points” on the delay lines— 1), ..., z(n — d), as
indicated in Figure 8.11. Due to the increased complexity of this neural system, of course, not all
possible settings are tried and presented.

We usek = 5 andT = 0.414144 for our control parameters on all the possible feedback control
lines. The control is applied to the delayed feedback dife — 6). Without any external stimulation
and using only a single control delayed feedback, the network quickly produces a periodic response as
shown in Figure 8.12.

Figure 8.13 shows the signals on the outp(it) of the feedforward neural network module and
xz(n — 6) (observed at the observation point on the delay lite — 6)) with the control signal on
x(n — 6) usingk = 5 andr = 0.414144 and with external stimulatios,, added tar(n — 5). This
simple combination using a single control line plus a stimulation on the delay line already produces
a variety of dynamical behaviours, but when the external stimulus is high, the system appears to be
chaotic.
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Figure 8.14: Response signals at network outp(h) and at the observation points an — 6) and

xz(n — 5) delay lines with control signal activated on all delay lines using 5 andr = 0.414144

with external stimulation,, added taz(n — 6), wheres,, varies from -1 to 1 in steps of 0.05 changing

at every 500 iterative steps (indicated by the change of Hue of the plot points) after initial 20 transient
steps.

The precise results depend on which delayed feedback control lines are activated. Using the same

multiple control settings for all delay lines, the system can be stimulated on the delay(tine 6)

(just after the delay buffer) by a constant external signalwheres,, varies from -1 to 1 in steps of

0.05 at every 500 iterations after the first 20 steps of transient. The result of the signéls) @md at

the observation points on th€n — 6) andx(n — 5) delay lines are shown in Figure 8.14 and exhibit
highly periodic stabilised behaviour for some stimuli. In some cases, some response signals seem to be
quasi-periodic. Figure 8.15 illustrates another example using two different external stimulation signals
atz(n — 5) andz(n — 6) and achieving a wide variety of periodic responses.

Even without external stimulation, we see quite significant modifications of the dynamics when
different configurations of delayed feedback control lines are activated, kisingandr = 0.414144
for each control lines. Figure 8.16 illustrates, after first 20 transient iterations without any control, the
response signals of the network due to a sequence of different delayed feedback settings which change
at every 1200 iterative steps. Only particular ranges of multiple delayed feedbacks can stabilise the
chaotic system into a high periodic response.

In general, using the generic model we can produce different types of network exhibiting different
types of chaotic attractors and reproduce a rich variety of stabilised dynamical behaviours using only
suitable delayed feedback control and external stimulation of the network. The resulting behaviour is
comparable to the behaviour observed by Freeman as noted several times previously. This section has
provided only a glimpse of the possibilities inherent in using these models.
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Figure 8.15: Response signals on the network outp(it) and at the observation points a@iin — 6)
andx(n — 5) delay lines with control signal activated on all delay lines uging 5 andr = 0.414144

and with external stimulatiors,’ added tar(n — 6), wheres,, varies from -0.5 to 0.5 in increasing

steps of 0.05, and?) added tac(n — 5), wheres,, varies from 0.5 to -0.5 in decreasing steps of 0.05,
changing at every 500 iterative steps (indicated by the change of Hue of the plot points) after initial 20
transient steps.

8.5 Discussion

We have shown how a conventional artificial feedforward neural network equipped with delayed feed-
back control can simulate the type of rest behaviour and response to stimuli observed by Freeman in
the olfactory bulb of the rabbit. The system is in effect an associative memory in which the act of
recognition corresponds to the stabilisation of the system onto an unstable periodic orbit characteristic
of the applied stimulus.

If the dynamics are chaotic then unstable periodic orbits are dense on the chaotic attractor and
there are infinitely many of them. Thus such an associative memory for which the computations are
performed to amrbitrary precision could in principle accommodate infinitely many memories; at any
rate such a system is not subject to the conventional Hopfield upper bountbef wheren is the
number of neuronBAmit et al. 1987. Of course, for the Hopfield net the situation is rather different. In
the Hopfield model memories are associated with specified (preferably uncorrelated) point attractors,
whereas in the present model memories are associated with unsaibldicbehaviours which cannot
be specifiedb initio. This introduces the possibility of responding to stimuli over varyinge scales

The experiments here were based on high precision digital simulations. In a low arithmetical
precision analog implementation it is possible that much of the rich variety of dynamical behaviour
would be lost.

Nevertheless, the model has a certain compelling simplicity which is suggestive. The responses
described aréntrinsic to the network model and control is not artificially applied from outside the
network itself. The method of delayed feedback control is simple to apply in hardware and feasible in
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biological neural circuitry.

As with the many applications of the method of Pyragas to control more conventional chaotic dy-
namics our approach lacks a full formal analysis. However, we have investigated the local stability
properties of the method applied to the particular model described here and have concluded that al-
though control is not stable in the conventional sense it is neverth@iglsabilistically locally stable

The experiments described raise several interesting issues. An investigation of essentially the same
model could be performed with delayed differential equations using a more biologically accurate de-
scription of the neurons. As ifTsui and Jones 199Pand Chapter 7, we describe delayed feedback
control applied to the stabilisation of a six dimensiosaloothdynamical system and this illustrates
that the ideas described here could quite probably be applied successfully to a similar model based on
differential equations.

Another question which naturally arises is whether ‘the basin of attraction’ of a particular unsta-
ble periodic orbit, which has emerged as the response to a specific stimulus, could be ‘widened’ by
repeated presentations using some form of weight adjustment based on Hebbian learning. The crit-
ical aspect to investigate here would be whether this could be done without destroying the essential
underlying chaotic dynamics or other conditioned responses.

The periodic responses exhibited are common in coupled oscillator model§Sigart 199D
which are very different from the model described here. Itis therefore interesting to note that, by incor-
porating delayed feedback, periodic neural responses can be achieved with an essentially conventional
feedforward neural network model without the introduction of an oscillator neuron.
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Chapter

Conclusions

During this work, many diverse and interesting topics have been investigated:

e Smooth data modelling implementing techniques based on various paradigms, including the
study of feedforward artificial neural network (FANN) modelling approaches and other aids for
improvement in modelling, e.g. the Gamma test and embeddings;

e A study of chaos and the applications of chaos control on a variety of chaotic systems, including
controlling simple chaotic neural systems and the high dimensional satellite attitude control
problem;

e An experimental chaotic artificial neural system under external stimulation together with the
effects of delayed feedback control.

All of these ideas have led us to the accomplishment of the original goal, of constructing a chaotic arti-
ficial neural network capturing the stimulus-response behaviour observed by Freeman in the biological
network of neurons in the olfactory bulb of a rabbit.

This chapter, beside giving a concise summary of the work achieved so far, also revisits some of
the essential ideas and techniques discovered during the whole investigation. However, due to the
diversity of the topics studied, many unverified methods and thought-provoking concepts suggested by
this research are also highlighted for possible future investigation.

9.1 Achievements

To construct our chaotic stimulus-response model we have had to examine a number of diverse ideas.

Smooth data modelling

We first studied the ability of a feedforward neural network (FANN) to model an arbitrary smooth
function from inputs to outputs. In principle such networks can play the role of universal approxima-
tors but in practice finding the architecture, weights and thresholds, and the number of training data
required, so that the network will model a given function to a given degree of precision, is not such a
simple process.

With this in mind we examined the construction of FANNs using Lapedes’ graphical approach.
This graphical approach, originally used simply to explamy neural networks could act as universal
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approximators, suggested a technique for constructing neural networks to approximate a surface by
combining a series of neural modules (generating ‘sigmoidal surfaces’).

We then investigated theamma testwhich emerged as an invaluable tool for data modelling in
this research. Essentially, the use of the Gamma test together with the Lapedes’ recipe for surface
construction enables us to estimate the complexity of the neural architecture required directly from the
data. We have exploited the possibility of using the slope value returned from the Gamma test applied
to the the training data, to estimate the minimal architecture necessary for modelling the input-output
surface and to estimate the number of training data required to give a suitable model.

In fact, this idea (joint investigation) eventually led to N. Kam's Metabackpropagation algorithm
[Kontar 1997.

Next we examined various modelling methods using ‘local’ information derived from the training
data in the vicinity of the query point. We first discussed the virtue of the kd-tree data structure, which
allows fast query times for locating the near neighbours (in input space) of any point. In this way
prediction can be simplified by modelling using a small subset of local data, as opposed to a global
modelling technique.

Borrowing ideas from computational geometry we examined the possibility of using Delaunay
triangulation as an aid to local reconstruction of a surface in the vicinity of a query point. This led to
the prediction method we refer to as LDT. The Delaunay triangulation of the data can be calculated
via a convex hull construction technique. Our implementation is based on the convex hull calculation
method called Qhull. This technique brought many new and interesting ideas from computational
geometry into this research, although ultimately the approach was discarded in favour of local linear
regression.

We next devised the Gamma-minimum-predictor (GMP) based on the Gamma test. This approach
was based on the idea that given an unseen query poihe associated output valyeshould be
chosen so as to satisfy the condition: when {) is added to the data set the resultifig value
should be minimised. This criterion can be used to analytically determine the required vglaaaf
it emerges that this value can be computed reasonably quickly.

We then examined a simple but effective prediction technique we clalted linear regression
(LLR). This is done by performing least squares fit on the local data near the query point. A series
of experiments were performed comparing the performance of various modelling techniques. In many
situations LLR emerged as the ideal choice in terms of accuracy and computation time. It is rather
difficult to understand why neural network modellers have not used this technique as a baseline for
comparison with their neural networks.

Using a series of experiments, e.g. modelling sunspot activity and detecting a binary message
embedded in a chaotic carrier, we further demonstrated the practical virtue of the Gamma test. The
Gamma test facilitates the determination of a best embedding (using our irregular embedding) for
constructing a very good model from a time series. The Gamma test-embedding technique seems to be
comparable with the other standard model identification tools, such as principal component analysis
and dimension reduction techniques.

From the present perspective our most important result is that we can model any chaotic time series
using a recurrent neural network with suitable delay lines based on the ‘best’ embedding suggested by
the Gamma test. This forms the essential component for the construction of our chaotic stimulus-
response neural model.
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Stabilisation via chaos control

Having seen how to produce neural chaos in iterative versions of conventional feedforward neural
networks we next explored the possibility of stabilising chaos using chaos control methods. The key
idea behind most control methods takes advantage of the local properties of the underlying chaotic
attractor, using small (usually minimal) and ‘suitable’ perturbation to stabilise the system dynamics
onto the already existing (unstable) periodic orbits.

The OGY method was first studied because it was the classical chaos control technique. This
method uses a small variation of a system parameter to perturb the system dynamics onto the stable
manifold of the selected unstable fixed point in order to achieve the stabilisation. We then investi-
gated other similar methods such as the OJ (Otani-Jones) method, which tries to directly minimise the
‘distance’ between the next system state and the desired stabilised state (an unstable fixed point).

However, these control methods have many problems in applications to real systems. The OGY
method especially was originally designed with a low dimensional system in mind, and it is only ef-
fective in 2-dimensional discrete systems or 3-dimensional continuous systems if a P@iackon
is used. Both the OGY and OJ methods require working in a discrete space constructed from the
original continuous system. As a result, an embedding for the construction of delay coordinates is
usually required and this procedure simply complicates the problem of finding a good reconstruc-
tion/representation of the original dynamics. The steps for these control techniques are:

¢ locating an unstable fixed point or a periodic orbit for stabilisation;

¢ local stability analysis at the chosen control point, e.g. estimation of stable and unstable eigen-
vectors and eigenvalues;

e sensitivity analysis to calculate the sensitivity vectors for estimating how the system state varies
with respect to a small variation of the control parameter.

For the OJ method we also require a good one-step predictor. Poor estimation of the Jacobian and
sensitivity vector(s) may hinder the success of the control.

In contrast, we also studied Pyragas’ delayed feedback and briefly demonstrated the GM periodic
feedback method. These methods are based on a very simple control mechanisms, using an appropriate
feedback signal to directly perturb the system dynamics. The feedback signal is usually determined by
the current and some past system states and suitably chosen parameter values. However, such methods
suffer the disadvantage of inadequate theoretical justification. Moreover, there is the practical problem
of choosing appropriate parameter values. From a conventional chaos control theory perspective it
might also be considered a disadvantage that one cannot spbdifitio the desired unstable periodic
orbit of the original uncontrolled dynamics. However, given the goals of the present work this hardly
seems relevant.

Using these control methods, we demonstrated the possibility of controlling chaotic neural systems
with a series of experiments on simple artificial neural networks. The results indicate that whilst most
of the methods described can be used effectively to externally control low dimensional neural chaos
they are unlikely to be effective on high dimensional systems and moreover lack any serious biological
plausibility. Only methods based on some type of feedback control seem to offer both the prospect of
being capable of dealing with high dimensional systems and at the same time some degree of biological
plausibility.
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In order to put this conclusion to a practical test we further investigated various techniques, which
might perhaps be suitable for high-dimensional control, by applying them to the chaotic satellite atti-
tude control problem. We induced chaotic dynamics into the attitude control problem by using non-
linear feedback perturbation. In this way we could be sure that the system was truly representative of
six dimensional chaos.

We applied the delayed feedback method, the OJ method (with modification for tracking an or-
bit) and an extended method based on the OGY method for high-dimensional spaces — the DYIDSG
method — to control this system. Although we could not achieve the desired stabilised behaviour from
the DYIDSG method (despite many attempts made), we did obtain successful control results using
delayed feedback and the OJ method. This enabled us to highlight several important aspects and to
compare the relative merits of the techniques.

Rather remarkably delayed feedback using knowledge based only one system variable easily sta-
bilised the satellite onto a periodic orbit using only a single thruster. Whereas, for the OJ method, it
was necessary to modify the control into tracking the same unstable periodic orbit which proved to be a
rather difficult process. The unsuccessful application of DYIDSG provided a list of difficulties similar
to the application of the OGY method. This also emphasises the problems of using a high-dimensional
embedding to reconstruct the dynamics and led to poor accuracy of the estimation of the local stability
analysis and sensitivity analysis.

This feasibility study enabled us confidently to choose the delayed feedback technique as the main
control component for the chaotic stimulus-response neural system.

Stimulus-response neural model

To realise such an artificial neural model, we first demonstrated the possibility of chaos control via
a simple delayed feedback on a chaotic recurrent neural network. Using this system, we suggested
ways to produce varying responses for the system dynamics using an external stimulus together with
delayed feedback.

At the same time, we have from time-to-time attempted to explain why such stabilisation, via
simple delayed feedback, is effective using a new idearalbabilistic local stability Examples can
be found in Sections 5.7.1 and 8.3.

Although there is insufficient theoretical explanation for the dynamical behaviour of our neural
system, our simple heuristic analysis seems to fit well with the observed simulation results.

We have further demonstrated that one can construct a chaotic iterative neural network by training
the network on a chaotic time series using suitable feedback with delay lines having connections ac-
cording to abestembedding. This embedding can easily be determined using the Gamma test. Using
multiple delayed feedback controls on this system many more stimulus-response behaviours can be
achieved. Ageneric modeis suggested in Figure 8.11. Although this model does not claim to be an
explanation for the chaotic stimulus-response behaviour observed in biological systems, having sim-
ple delay lines to elicit chaotic behaviour, and having delayed control lines to stabilise chaos, seems
perfectly feasible in biological neural circuitry. Certainly, this generic scheme of a chaotic iterative
neural system does produce stimulus-response behaviours similar to those described by Freeman in
a biological system. This model also offers the possibility of stimulus-response systems capable of
integrating stimulus events happening on differing time scales, which offers a rich new area for further
research.

Therefore, the original goal of this piece of research, to a large extent, has been achieved. More-
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over, we would venture to suggest that we should be surprised if it eventually transpires that such
biological neural behaviour is based on some entirely different principle.

9.2 Future work

This series of investigations has suggested a generic artificial neural model which appears to have a
similar behaviour to Freeman’s observed neural behaviour. Although we do not claim that our generic
model precisely reflects the realities of biological neural dynamics, it has provided us with an interest-
ing investigation and at the same time perhaps made a useful step towards a full implementation in an
artificial neural system in which neural chaos is exploited for recognition.

Starting from the early work on the Gamma test and surface modelling, there is still room for
improving the Metabackpropagation algorithm, e.g. using clever placement of ‘hills’ for constructing
an initial output surface for neural network training. In fact, alternative training algorithms such as
BFGS could be used to improve the efficiency of Metabackpropagation. In addition with regard to the
Gamma test there is much work to be done in exploiting it for practical applications and providing a
detailed theoretical analysis and justification.

With regard to modelling techniques. The LDT method has surely left us a series of investigations
in computational geometry. Many questions are left to be answered, such as how correct is a Delaunay
triangulation in a high dimensional space if the currently available algorithms are used, and what is
the best possible bound in terms of running speed of such algorithms. Many alternative algorithms
for computing Delaunay triangulations are yet to be implemented and studied. In fact, this is still an
actively researched area in computational geometry. Improvements in this area can surely improve our
LDT prediction. Also further work is required to handle the outside query problem.

The GMP technique may now be simply viewed as a linear regression of “distances” and it may
not be worth further investigation, but the LLR can still be improved by directly incorporating other
preprocessing techniques, because the presentation here is still in its simplest form. There is also
the possibility of developing an effective adaptive algorithm for the choice of the number of near
neighbours used to construct the LLR model.

Embedding techniques have played an important role in this work, especially the use of irregu-
lar embeddings. However, many further extension, such as using an embedding containing multiple
variables from several time series, may also be significant in terms of providing a good model and
prediction. RecentlyfJudd and Mees 199®as also suggested using a local variable embedding to
improve local modelling. This has yet to be further studied.

Controlling chaos has proven to be important in many applications. The chaotic satellite control
problem in Chapter 7, illustrates several pitfalls that prevent many conventional techniques (at least in
their present form) from being extended to high dimensional systems.

Better techniques for estimating the location of unstable fixed points, and estimating local dynam-
ics and sensitivity vectors, are required for effective control of high-dimensional systems using the
conventional techniques. To fully exploit the DYIDSG method, it is necessary to modify the technique
S0 as to incorporate many more control and/or system variables, rather than using a single variable
embedding in an attempt to reconstruct the dynamics of a high-dimensional chaotic attractor.
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9.3 Final conclusions

The generic stimulus-response model has provided a basic framework for future investigations of this
type.

A primary goal of such research is a better understanding and analysis of delayed feedback control
applied to chaotic systems.

Whilst we now have some hint of the guiding principles for this type of chaotic neural stimulus-
response system, we have left untouched the vexing problem ofdesirableresponses could be
learnt or encouraged by some type of Hebbian learning.

As things stand progressive modification of the weights of the system might easily cause a radical
modification of the geometry of the attractor, thereby possibly eliminating chaos altogether, or at least
altering the attractor to such an extent that all other stimulus-response pairs are radically disrupted
(progressive disruption is not so much of a conceptual problem). The problem of how a system such
as we have described migkarnis an area which we are content to leave to a future date.
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‘Appendix A

Solving Pseudoinverse via Singular Value
Decomposition

The least square fit (LSF) problem can be solved by calculating the pseudoinverse of a matrix. It is
important to demonstrate the uniqueness of the pseudoinverse of a matrix.

A.1 Some theoretical background
Theorem A.1.1. Every matrix possesses a unigue pseudoinverse.

Proof. First we just assume the existence of pseudoinverse (which can be established via the Singular
Value Decomposition as shown later) and try to show uniqueness.ALet R™*" be given and
suppose thak', Y € R"*™ are pseudoinverse of. Then

X =XAX (by pseudoinverse condition 1)
= X(AX)T (by pseudoinverse condition 3)
= XXTAT = X XTATYT AT (by transpose of pseudoinverse condition 1)
= XXTAT AY (by pseudoinverse condition 3)
= XAXAY (by pseudoinverse condition 3)
= XAY (by pseudoinverse condition 2) (A1)
= XAY AY (by pseudoinverse condition 1)
= XAATYTY (by pseudoinverse condition 4)
= ATXTATYTY (by pseudoinverse condition 4)
=ATYTy (by pseudoinverse condition 1)
=YAY (by pseudoinverse condition 4)
=Y (by pseudoinverse condition.2)

Therefore, X = Y and hence, the pseudoinversefis unique. [

To demonstrate the existence of the pseudoinverse of a matrix, we need to have a discussion of the
Singular Value Decompositioor SVD of any matrix. The SVD is based on a generalisation of the
resultin linear algebra that any symmetric matrix can be diagonalised via an orthogonal transformation.
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Theorem A.1.2 (Singular Value Decomposition).For any given non-zero matrid € R™*", there
exist orthogonal matrice§ € R™>*™, V € R™*" and positive real numbers; > wy > -+ > w, >
0, wherer = rank A, such that

A=UDVT (A.2)
whereD € R™*™ has entriedD;; = w; (1 < i < r) and all other entries are zero.

Proof. Supposen > n, thenAT A ¢ R**™ and AT A > 0 (meaning the entries are greater or equal
to zero). We first show there is an orthogonak » matrix V' such that

ATA=vxvT (A.3)
whereY € R"*™ is given by
1 0
Y= (A.4)
0 P

wherep; > us > --- > pu, are the eigenvalues of”' A, counted according to multiplicity. [ # 0,
then AT A # 0 and so has at least one non-zero eigenvalue. Thus there-ian » < n) such that

. W 0
P> o = 2 e > gy =0 = pp = 0. Write X = l 0 o 1,Where
w1 0
W = , (A.5)
0 W,
with w? = pq,... ,w? = p,. PartitonV asV = [Vq, V] whereV; € R™*" andV, € R** (=),

SinceV is orthogonal, its columns form pairwise orthogonal vectors, and’s&, = 0. We have

ATA=vxVT
w2 0
= (1, V&) 0 ] VT
. (A.6)
v
_ 2 1
- [VlW 70] ‘/QT
=nw2ve.
Hence
ViATAV, = Vv WP VTV, (A7)
=(V{"2)T=0 =0

so thatVl AT AV, = (AV;)T AV, = 0 and hencedV, = 0.

Now the equalityA” A = V; W2V, suggests at first sight that we might hope tHat= WV’
However, this cannot be correct in general, sintec R™*". whereasW VI € R"™*", and so
the dimensions are incorrect. However,lf € R**" satisfiesU”U = I, then VW2V =
VWUTUW VI and we might hope that = UWVI. We use this idea tdefinea suitableU.
Accordingly, we define

Uy =AW=t e R™*", (A.8)
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so thatAd = U; WV{T, as discussed above. We compute

vl =w=viATAviw = =1,. (A.9)
N—————

w2

This means that the columns ofU; are an orthonormal set of vectorsIity*. Let U, € R™*(m—7)
be such thal/ = [Uy, Us] is orthogonal inR™>*™ — thus the columns d¥, are made up ofm — r)
orthonormal vectors such that these, together with thogg pform an orthonormal set of: vectors.
ThusUJ'U; = 0 € R~ 7% andU{ U, = 0 € R"*(™~7), Hence we have

TA _ [ UlT A
U V= i UéT [VDX/Q]
[ UTA
= i, Vs
pa |V
[ UTAV, UTA
= UlT ' UlT v (A.10)
| UFAV, UF AV
[ UTAV, 0 .
= 1 (sinceAV;, = 0)
| USAV, 0
w0
L vFunwoo
usingU; = AViW ! andU{'U; = I, so thatW = U] AV,
W o .
UTAV = 0 0 1 (usingU{ Uy = 0). (A.11)
Hence,
0
A=U W VT, (A.12)
0 0

as claimed. Note that the condition > n means thain > n > r, and so the dimensions of the
various matrices are all valid.

If m < n in the other case, considé& = A” instead. Then by the same argument as above, we
get

w’ 0

o o v'T (A.13)

AT =B=U"

for orthogonal matrice§/’ € R"*™, V/ € R™*™ and where’? holds the positive eigenvalues of
AAT. Taking the transpose, we have

"0
a=v |V o' (A.14)
0O O
Finally, we observe that from the given form 4f it is clear thatank A = r. [

Using the above existence theorem, we can decompose any matrix as above and implicitly show
the existence of the pseudoinverse of any matrix. The calculation of the pseudoinverse is based on the
following theorem.
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Theorem A.1.3. Let A € R™*™ and letU € R™*™, V € R"*", W € R"*" be as given above via

0
the singular value decomposition df so thatA = UDV”T whereD = 0 € R™*™ Then
the pseudoinverse df is given by
A7 =V W UT. (A.15)
0o o
| S —
nxXm

Proof. To prove this is just a matter of checking théit' of (A.15) satisfies the defining conditions of

the pseudoinverse. We will verify two of these conditions as a simple illustrationXLetVHUT,

w-t o
0

whereH = [ € R™*™, Then

AXA=UDVTVvHUTUDVT

L o][w o
_ U[ 1VT . (A.16)
0 O 0 O

Similarly, one finds thaf{ AX = X. Next we consider
XA=VHUT"UDVT

w1 oo 0
=V W ]UTU[W ]VT

I 0 O[> 0 O
nxm mXxn (A17)
A
=V vt
0 0
——

nxn

which is clearly symmetric. Similarly, one can verify tha = (AX)7, and the proof is completa.

A.2 Computation of SVD

The actual computation of SVD of a matrik € R™*™ with m > n is described in detail ifGolub

and Van Loan 1996 which is based on the method describefiGolub and Kahan 1985Therefore,

only a concise description of the required steps which is basé@alub and Van Loan 1996s given

here. The method depends mainly on two main matrix decomposition operations, the Householder
transformations and Givens rotations.

A.2.1 Householder transformation

Letv € R™ be nonzero, then am x n matrix P of the form
T
P=T-22_ (A.18)
vtv
is called aHouseholder transformatigand very often being referred Householder matrior House-
holder reflection Such a vectow is called aHouseholder vectoif a vectorz is multiplied by P, then
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itis reflected in the hyperplangan{v}+. Note thatP is symmetric and orthogonal. The Householder
transformation can be used to zero selected components of a vector.

Suppose we are given nonzero veetor R” and wantPz to be a multiple ok, where|le;||? = 1
and all components af; are zeroes except &t component which is 1. Now

T 2T
Pe=(1-2"Y0 Vao=az-""% (A.19)
vTv vTv

andPx € span{e; } imply v € span{x, e; }. Settingv = x + «e; gives

vl =Tz + axy (A.20)
and
vTv =2z + 20z, + o (A.22)
and therefore
Tz —+ axq vl
Pr=(1-2 —2a——e;. A.22
v < zTx + 20z +a2> T ATy ( )
In order to zero the coefficient af, we sete = +||x|| for then
vol
v=z= |z|e = Pz = (I—ZT):E:$||3:||61. (A.23)
v

Example A.2.1
Supposer = [1,3,1,5]7 andv = [7,3,1,5]7, then we have

~-1/6 —1/2 —1/6 —5/6
~1/2 1114 —1/14 -5/14

, (A.24)
—1/6 —1/14 41/42 —5/42
—5/6 —5/14 —5/42 17/42
which givesPzx = [-6,0,0,0] as in the calculation shown above. *

It is essential to know how a Householder reflection is applied to a matrix. Let the notation
A(r;ir;ciie;) denote the submatrix oft defined by rowr; to row r; and columne; to columnc;.

Also let[v, 3] = house (z) define the Householder transformationsowheres = 2/(vTv).

Suppose we havd € R™*" (m > n), we want to obtail3 = Q7 A where( is an orthogonal
matrix chosen so tha8;  ;.,, ;) = 0 for some;j that satisfied < j < n. Then we just first calculate
[v, 8] = house (A ;. ;)) to obtain the required Householder matfx= I,,, ;1 — BvvT and the
required

N Ij,1 0
Q[ 0 P

=1, — pooT, = [ 0 ] . (A.25)

A.2.2 Givens Rotations

Householder transformations are useful for introducing zeroes on a large scale by annihilating all but
the first component of a vector. Howev@&ijvens rotationsare the choice in calculations where it
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is necessary to zero elements more selectively. The Givens rotations are rank-two corrections to the
identity of the form

1 0 0 0
0 c s 0 )
Gli,j,0) = 0 75 C 0 } (A.26)
L) 0 A
i J

wherec = cos(#) ands = sin(#) for somed. Givens rotations are orthogonal and by pre-multiplication
by G(i, j,6)T amount to a counterclockwise rotationéfadians in the(, j) coordinate plane.

The basic purpose of Givens rotations is to zero an element. Givens scalaraalye® want to
computec = cos(f) ands = sin(6) so that

EMIHEH!

wherer is some scalar value.

A.2.3 Bidiagonalisation

Bidiagonalisationis an essential first step for solving SVD. This basically involves several House-
holder transformations. Suppoge € R™*™ andm > n. We next demonstrate how to compute
orthogonalUz (m x m) andVp (n x n) such that

B 0 |
0 da fo 0
UbAVE = J f : (A.28)
n—1 n—1
0 dy,
0

a bidiagonal matrix.
Basically,Ug = Uy ---U, andVg = V; - -- V,,_5 can each be determined as a product of House-
holder matrices as follows:

X X X X X X X X x x 0 0
X X X X 0 x x X 0 x X X
xxxxiOxxxL()xxx&
X X X X 0 x x X 0 x X X
| X X X X | | 0 x x x| | 0 x X x|
[ x x 0 0] [x x 0 0] [x x 0 0] x x 0 0
0 x x X 0 x x 0 0 x x 0 0 x x 0
OO><><£>OO><><£>OO><><&>OO><><
0 0 x x 0 0 x X 0 0 0 x 0 0 0 x
L 0 0 x x| L 0 0 x x| L0 0 0 x | 0 0 0 O
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Therefore, eacl,, introduces zeroes into thé" column, whileV;, zeroes the appropriate entries in
row k. The whole process is summarised in Algorithm A.1.

Given A € R™ ", m > n, this will calculateB = UL AV which is upper bidiagonal antiz =
Uy---U,andVg =V, -V, _o.

Procedure Householder Bidiagonalisation 4)

for j=1tondo

[v, B] = house (A ), Ul =

I 0
0 In_ji1— povT ]

A=UTA

if 7 <n—2then

[v, 8] = house (Ag;-’jﬂm)), V=

I 0
0 I,_;— BovT ]
A=AV,
end if
end for
B=AUg=U,---U,,Vg=V1--- Vo
return Ug, Vs, B)

Algorithm A.1: Householder Bidiagonalisation (an illustrative version without optimisation of speed
and storage)

A.2.4 The SVD algorithm

Given A € R™*™, m > n, we can calculate the SVD of first by reducingA to upper bidiagonal
form as described above in Algorithm A.1 so to obtain

B dq f1 0
0 do :
B
UL AVE = o B = e R™*", (A.29)
. . fnfl
L 0 - 0 dn

Then the remaining problem is to compute the SVBofThe immediate next step is to try to diago-
nalise B by reducing eaclf; to zero. The steps are:

e Compute the eigenvalueof

(A.30)

2+ 2y do1fa-
T(nflzn,nfl:n) = [ ! f 2 1f !

dn—lfn—l d%"’frzl—l
that is closer tal? + f2

n—1-

e Computer; = cos(1) ands; = sin(#;) such that

G
—s1 ¢ di f1 0

and seG; = G(1,2,6,), a Givens rotation.
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Then we apply the Givens rotati@s, above toB directly. For illustration, we assume= 6 and this
gives

x x 0 0 0 0
+ x x 0 0 0
0 0 0 O
B — BG, = o (A.32)
0 0 0 x x O
0 0 0 0 x x
| 00 0 0 0 x|
We then can determine Givens rotatiéhs V>, Us, . .. , V,,_1 andU,,_, to chase the unwanted nonzero
element down the bidiagonal as follows:
(X x 4+ 0 0 0|
0 x x 0 0 O
B UTH— 0 0 x x 0 O
0 0 0 x x O
0 0 0 0 x x
| 00 0 0 0 x|
[ x x 0 0 0 0|
0 x x 0 0 O
0 0 O
B BV, = o (A.33)
0 0 0 x x O
0 0 0 0 x x
| 00 0 0 0 x|
[ x x 0 0 0 0]
0 x x 4+ 0 0
B UQTB _ 0 0 x x 0 0
0 0 0 x x 0
0 0 0 0 x x
i 0O 0 0 0 0 x ]
and so on. Eventually we obtain a new bidiagoBRal
B=UT |- -U"B(G\Va---V,u_1) =T BV. (A.34)

However, the above procedure can only applief}.ibnddy, are non-zeros. If;, = 0 for somek, then
B can be split into

B; 0 k
0 By n—=~k (A.35)
k n—k

two matricesB; and B, and the original SVD problem therefore decouples into two smaller problems.
If d, = 0 for k < n, then by pre-multiplying a sequence of Givens transformations canfzereor
example, ifn = 6 andk = 3, then by rotating in row planes (3,4), (3,5), and (3,6) we can zero the
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entire third row as follows:

[« x 0 0 0 0] [« x 0 0 0 0]
0 x x 0 0 O 0 x x 0 0 O
0 0 0 x 0 O0|@ayl|[ O O 0 x 0 O
B = S
0 0 0 x x 0 0O 0 0 0 4+ O
0 0 0 0 x X 0O 0 0 0 x x
0 0 0 0 0 x 0O 0 0 0 0 x
- z - Z (A.36)
x x 0 0 0 O x x 0 0 0 O
0 x x 0 0 O 0 x x 0 0 0
350 0 0 x 0 0 |@e| 0 0 0 x 0 O
— —
0O 0 0 0 0 + 0O 0 0 0 0 O
0 0 0 0 x x 0 0 0 0 x x
i 0 0 0 0 0 x | i 0O 0 0 0 0 x |

If d,, = 0, then the last column can be zeroed with a series of column rotations in glanes
1,n),(n—2,n),...,(1,n). In summary, we can decouplefif--- f,_1 =0o0rd;...d, = 0. The
precise background idea is presentefGolub and Kahan 1965; Golub and Van Loan 1986 which
this description is based. The whole process can be summarised in Algorithm A.2.

Given a bidiagonal matri8 € R™*" having no zeroes on its diagonal or super diagonal, the algofithm
will return B = U BV, orthogonal matrixU' and orthogonal matri¥’.
Procedure Golub-Kahan SVD Step B)
Let 1 be the eigenvalue of the trailiriyx 2 submatrix ofl’ = BT B that is closer td,,,,.
y=ti1—p
z =119
for k=1ton—1do

Determinec = cos(6) ands = sin(6) such that[ y =z } [ € ] = [ * 0 }
—S C

Vi = G(k,k + 1,6) whereG is a Givens rotation.

B = BV}

Y =bri; 2 = brt1k

T
Determinec = cos(f) ands = sin(6) such that 0 ] [ Y ] = [ * ]
—S C z

U = G(k,k + 1,60) whereG is a Givens rotation.
B=U!'B
if k <n—1then
Y =bp k1) 2 = bi kg2
end if
end for
U=UUy - Uy_;V=VVa--V,4
B=B
return(B,U, V)

Algorithm A.2: Golub-Kahan SVD step.

Typically, after a few of the Golub-Kahan SVD step in Algorithm A.2, the super diagonal entry
fn_1 becomes negligible. Some criteria for smallness withis band can then be used to zero such
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negligible values. Typically, the criteria is of the form

|fil < e(|di| + |dita])

(A.37)
|di| < €| B]|

wheree is a small multiple of the unit roundoff arjg || is some form of norm.

Combining all of these ideas, we can then obtain the full SVD algorithm in Algorithm A.3. This is
only a crude description demonstrating the steps necessary to calculate the SVD. Many details in terms
of computational implementation have been deliberately omitted &b and Van Loan 199tkas
provided a thorough discussion on the derivation and the possible implementation. Depending on how
much information is needed from SVD, the computational time is in ord€¥(@in?) + O(n?) (see
also[Golub and Van Loan 1995 A SVD algorithm in terms of C in source code is readily available
from [Presset al. 1994.
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Given A € R™*" (m > n) ande, a small multiple of the unit roundoff, the algorithm returns orthog-

onalU € R™*", orthogonall’ € R™*" and diagonal matrix € R™*" such that/7AV =X + E

whereFE is an error matrix.

Procedure SVD (4)
Use Algorithm A.1 to compute the bidiagonalisation:

B

0 <—(U1~-~Un)TA(V1-~-Vn_2)
U=U,---Uy, V=V-V,_»
while ¢ # n do

fori=1ton —1do
if [biiv1| < €(|bii| + [bit1,it1]) then
Setb; ;41 to zero
end if
end for
Find the larges and the smallesi such that ifB can be represented by

By 0 0 p
0 Baa 0 n—p—gq
0 0 Bss q

p n—=—p—q g

then Bs3 is diagonal and3s, has nonzero super diagonal.
if ¢ < nthen
if any diagonal entry irB,, is zerothen
Zero the super diagonal entry in the same row. Update
UpdateU andV accordingly to the orthogonal transforms used.
else
Apply Algorithm A.2 to B, to getU andV/.
B =diag(I,,U, I;4m-m)" Bdiag(1,,V,1,)
U =Udiag(l,,U, Iy+m-m); V = Vdiag(l,,V,1,)
end if
end if
end while
5 B
0
return (U,X,V)

Algorithm A.3: The SVD algorithm.
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Appendix

Normal vector

Theorem B.0.1. Given a set of linearly independedidimensional vectora;, (1 < j < d — 1), the

vector orthogonal to the spdn;, as, ... ,a4—1] is given by expressing the determinant
el 62 oo ed
a1 a12 s a1d
(B.1)
A(d—1)1 QAd-1)2 " Q(d-1)d

in terms ofe;,, the first row elements of the determinant, whegeaare d-dimensional vectors with all
elements equal to zeroes except atilfeposition the element is 1, i.e. they are forming a basis for the
d-dimensional space.

Proof. Let e;, be vectors as defined in the theorem, anadlet (b1, ... ,bq) anda; = (a;1, ... ,a5q)
(1 < j <d—1)bed-dimensional vectors. Also let

a11 a12 ce Q14
azi a2 c a2d
A= . : _ : (B.2)
A(d—1)1 Ad-1)2 " G(d-1)d

be a(d — 1) x d matrix formed by the row vectors;.
Consider the following determinant

by bo . b
a1 a12 ce a1d
det(A,b) = ] ] . ] (B.3)
Ad-1)1 Ad-12 " G(d-1)d
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which can be expanded by the first row into

a2 te a1d a11 t G1d
det(A,b) = by : ; — by
Ad-12 *°° Gd—1)d Ad-1)1 " d—1)d
T e (B.4)
4+ (1) by
ad-n1 - Ad—1)(d—1)
d
== Zbkek Vg€ = b-’U,
k=1
expressing in terms af = (v1,... ,vq) Where
v = (—1)* 1 det(4y) (1<k<d) (B.5)

and A, is the submatrix of4 with the k™ column removed. Budet(A, b) = 0 if and only if eitherb
is orthogonal tav or b is linearly dependent to the sp@ml, e ,a(d,l)} or the set of vectora,, are
linearly dependent, i.e. the elementsuadire all zeroes.

Provided the vectorg; are linearly independent or in other wordgs a non-zero vector, we can al-
ways choosé such thatlet(A, b) = 0. This implies that we can choose any span[ah cee a(d_l)]
such that is orthogonal tch. Hence,

i is o id
ail a12 te Qa1d
v = . . _ . (B.6)
A(d—1)1 Ad-1)2 " G(d-1)d
is always orthogonal to spdn, ... ,a_1)]- n
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Appendix

Point location in Delaunay cell via LP

This is an alternative methd&ukuda 1998for efficiently determining the nearest point set associated
with the Delaunay cell containing a given pointc R?. This is done by translating the problem
into a standard linear programming (LP) problem, which can easily be solved by using the simplex
method or other similar techniques. This may provide a more efficient method for simplex location
to improve the geometrical method, LDT, on data modelling. The idea is first to realise that the
Delaunay triangulation can be represented by the convex hull of appropriately lifted polts in

and the projectetbwer facets of the convex hull coincide with the Delaunay triangulation once they
are projected to the original spaf*!, as discussed in Section 3.2.2. The technique to find the
Delaunay cell containing the pointcan be simplified to locate the first facet of a polyhedron “hit” by
aray.

C.1 Reformulation into LP
As described earlier we first lift the point infef+!. Let
flx) =22+ a3+ + 23 (C.1)
and let
p=(p f(z)) e RT! (C.2)

for p € S, i.e. in the given seP of points and the position of the poiptis indicated bye.

Then the lower convex hulP of the lifted points,S = {p : p € S}, represents the Delaunay
complex. For any fixed vectay € R**! andy, € R, letg - ¢ > —y, denote a general inequality of a
vectorz € R+, For such an inequality to represent a facePoit must be satisfied by all points in
S,

P> -y, VpeS, (C.3)

and by any points shifted vertically upwards, that is point with the last compgnpent> 0.

Furthermore any non-vertical facet can be represented by such an inequalify witk 1. For a
given pointe, leté = (¢, 0) and letL()\) = & + Aegqi1, A > 1, wheree,, ; is the unit vector ifR?+!
whose last component is 1.
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Determining the Delaunay cell containings equivalent to finding the first facet hit by the halfline
L. Therefore, we need to find a non-vertical facet inequality such that the intersection point of the
corresponding hyperplare: : y - = —y,} and the halflineL(\), A > 0, is highest possible.

By substitutingL(\) for  in y - € = —yo with 4.1 = 1, we obtain

A= —Y% —Y-C (C4)
wherey denotes the vectay without the last coordinatg;,,. The LP formulation is therefore

minimise z=yo+y-c
(C.5)
subjectto f(p)+yo+y-p>0 foralpes.
Although an optimal solutionyg,y) to this LP problem does not directly determine any facet in gen-
eral, the simplex method can return an optimal basic solution which can determine a facet inequality
in this case. The Delaunay cell containiads the one determined by the set of pointsSirwhose
corresponding inequalities are satisfied with equality at an optimal solution.
In some cases, the above LP might be unbounded. This corresponds to the case in i&hich
in any Delaunay cell, or in other words, not in the convex hulbof
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‘Appendix D

Function optimisation for neural network
training

The aim of learning in a typical feedforward artificial neural network (FANN) or multilayer perceptron
(MLP) is to minimise the instantaneous squared error of the output signay modifying the total
number ofn synaptic weightsv = (w1, wa, ... ,w,) (Simply labelled by single subscript for the ease

of explanation) of the whole network, on the given set of input-output data pairs. Therefore, we want
to minimise the scalar cost functidfi(w) subject tow € R™. Without going into details, the usual
technique is to train the network, so that the global minimun&¢év) is attained. This is done via
backpropagatiorusing a gradient steepest descent approach to update the weights. At adting

cycle, the weights are changed by the following heuristic rule,

wl Tt — (@ _ u(i)VwE(w(“) (D.1)
wherep() > 0 is the learning rate and it usually has a fixed value ®iglis the gradient operator
with respect taw, i.e

_[0E OE oE 1"
T Owy Owy T dw,, |
However, alternative techniques for choostngo minimise E(w), based on known function optimi-
sation techniques, are proven to have a much faster convergence rate in many practical applications.

VuwE(w) =VE(w) (D.2)

D.1 Error function optimisation strategies

There following are several optimisation strategies which are suitable for neural network training. The
ideas are introduced with minimal but sufficient information for implementation. Much theoretical
background is omitted.

D.1.1 The Newton’s method

Newton’s methods a well known technique for simple function optimisation but is presented here for
the higher dimensional approach necessary for neural network training. The fuAgtionnear the
pointw(? can be approximated by the first few terms of the Taylor series expansion

E(w) =~ E(w(“) + (w — w(i))TVE(w(i)) + %(w — w(i’))TV2E(w("’))(w — w(i)), (D.3)
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where

d*E 9*E L 9*E
aw% Owi1 Ows Owq 0wy,
o’E ’E . ’E

Owo 0w ow? Owo 0wy,

V?E(w) = s 2 B , (D.4)

’E o’E . o’E

Ow, Owy Ow, Ows ow?

the Hessian matrix of the scalar functidi{w). To minimise this series the next poiat*+') must
satisfy

VE(wY) + V2E(w®)(w ™Y —w®) =0 (D.5)

because, at a minimum poirﬁ% = 0. If the inverse matrix of the Hessian matrix exists, the above
(D.5) can be rewritten as

w ) = w® — [V2E(w®)] "' VE(w®) (D.6)

This is the basic updating rule which can be used for the weights training in a MLP. The main disad-
vantages are to require the calculation of the first and second order derivatives and the calculation of
the inverse of the Hessian matfi¥2 E(w)] !, with the possible problems of computational difficul-

ties and singularity. If the starting poimi(°) is far away from a minimum, the algorithm may diverge.

This happens when the Hessian matrix ispagitive definite- a symmetric matrid € R™*™ is said

to bepositive definitef the quadratic forme”™ Az > 0 forall  # 0, x € R™.

D.1.2 The quasi-Newton method

The quasi-Newton methgalso called theariable metric methodis designed to overcome the prob-
lem of computing the Hessian matrix in Newton’s method. It is performed by iteratively using suc-
cessively improvedpproximationgo the inverse Hessian instead of the true inverse. The improved
approximation are obtained from the information generated during the gradient descent optimisation
process. The sequential quasi-Newton method employs the differences of two successive iteration
points and the difference of the corresponding gradients to approximate the inverse Hessian matrix.
One implementation of this powerful and sophisticated quasi-Newton method is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algoritifietcher 1987, It can be formulated by the following
equations,

w ™ = w® 4,04, (D.7)
where
d; =~ w' —w® = —_H,VE(w®). (D.8)
Be defining
y;, = VE(w'™*) - VE(w®), (D.9)
we can update the matrild by
Hi, = <1 - Zleny> H,; (I - Zf;j) + ZT‘;T (D.10)
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The learning ratg:() > 0 is determined from the one-dimensional line search
1 = arg In>iIolE [w(i) — uH,VE(w®)|. (D.11)
u>

The matrix H; denotes the current approximation[86*E(w)]~!. The iterative procedure starts at
an arbitrary pointw (%), preferably close to the true minimum point, with an initial approximafidp
usually taken to be the identity matrix This type of variable metric method has eliminated the need
of deriving the second-order derivatives. A C-implementation of this method can be follRtess
etal.1994.

D.1.3 The conjugate gradient method

The conjugate gradient methad an alternative function optimisation technique which is often used
in neural network training. This unconstrained minimisation is derived in such a way that it will
work well, or even exactly, if applied to a quadratic function (usually with positive definite Hessian
H). This method is said to be derived frongaadratic model Also this method is derived with the
property ofquadratic terminatiorwhich means that the method will locate the minimising pairit
of a quadratic function in a known finite number of iterations, yet can be well applied iteratively to
minimise non-quadratic functions. In this case, the non-quadratic function is the feedforward neural
network.

A particular way of obtaining a quadratic termination is to invoke the concept afdhgigacyof
a set of non-zero vectorsV), v(?, ..., v(™ to a given positive definite matrikl that is

v Ho@ =0 Vij. (D.12)

A conjugate direction methots one which generates such directions when applied to a quadratic
function with HessiarH .

The conjugate gradient method is a technique, of the combination of the conjugate direction infor-
mation and steepest descent method, often enable us to improve the convergence speed of the optimi-
sation. A simple form of this algorithm is formulated by the following equations,

w ) = w® 4 O, (D.13)
d; = Bidi_1 — VE(w"), (D.14)

where

[VE(w™)[?
= = D.15
¥ = WBwi )P (©-19)
and
(1) — ; (%) )

I arg 1:121101E [w + udz} . (D.16)

Therefore, the conjugate gradient algorithm uses information about the direction deardfom the
previous iteration in order to accelerate the convergence, and each search direction is conjugate if the
objective function is quadratic.

Theoretically, the algorithm will minimise a quadratic functiomilor fewer iterations but in prac-
tice, it is usually necessary to restart the optimisation process periodically due to numerical inaccuracy
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of the results in a search direction and/or due to the non-quadratic nature of the problem. The con-
jugate gradient method can be regarded as lying in between the method of steepest descent and the
quasi-Newton methods in terms of the convergence properties and the complexity. The advantage of
the conjugate gradient algorithm is its simplicity for estimation of optimal values of the paraméters

andg; and no Hessian matrix need to be generated. However, in practice this gradient method does
not seem to be as effective as BFGS (quasi-Newton) method. Details of the theoretical background
can be found ifFletcher 198Y.
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