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NOTICE

This program is experimental and should be used with caution. All such use is at
your own risk. To the extent permitted by applicable laws, all warranties,
including any express or implied warranties of merchantability or fitness for a
particular purpose, are hereby excluded. The authors and distributors of this
software disclaim all liability for direct, indirect, consequential, or other damages
in any way resulting from this software.

This program is protected by copyright. You may not copy this program or
accompanying documentation without the express written permission of the
copyright holder. You may not modify this program.
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1 See Appendix V for definitions.

2 It will be reflected in a high Gamma statistic or a Vratio close to 1.

CHAPTER I Getting Started

1.1 Introduction

Data or observations can be considered as a spreadsheet of numbers in which the columns are
divided into two types: input columns and output columns. In any row we might wish to
determine the values of the outputs when these are not known but the corresponding inputs are
known. 

A data model data model is an algorithm constructed from a set of observations (for which all
inputs and outputs are known) which enables us to predict the outputs from a given set of inputs.
This software is concerned with constructing data models of a particular type.

1.1.1 The Purpose of the Software

winGamma is a software package which in the first instance estimates the least Mean Squared Error
(MSError)1 that any smooth data model (e.g. a trained feed forward neural network) can achieve on
the given data without over-training. 

winGamma can be used with multiple column Input/Output data files and single or multiple Time
Series.

winGamma assumes that non-determinism in a smooth model from inputs to outputs is due to the
presence of statistical noise on the outputs. Not all phenomena that one might seek to model fall into
this category. For example, if the outcome that one is trying to predict from observations is highly
probabilistic then the model produced by winGamma will not be satisfactory as a prediction tool.

� However, the software is able to detect this situation2.

The models that winGamma is designed to produce are of phenomena (more exactly outputs) that
are smoothly determined by the input variables. Mostly the limiting factor on the predictive accuracy
of the model will be measurement noise or insufficient data.

For a given data set the winGamma software executes the Gamma Test which estimates the variance
of the noise on each output. This will be an estimate of the best MSError that a smooth model can
achieve for the corresponding output.

� Inputs and outputs should be continuous variables.
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4 Because of sampling error if the variance of the noise level on an output is very small the Gamma statistic
may sometimes be negative, even though a variance can never be negative. If this occurs we use the absolute value
or modulus of the Gamma statistic.
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The estimate of that part of the variance of an output that cannot be accounted for by a smooth data
model is called the Gamma statistic. As the number of data samples increases the Gamma statistic
invariably3 approaches an asymptotic value which is the variance of the noise on the particular
output.

The goal of model identification for a particular output is to choose a selection of inputs that
minimises the asymptotic value of the modulus4 of the Gamma statistic. All things being equal this
should result in a model which has minimal MSError when used to predict the output using input
data not seen in the model construction process. 

What happens if the final conclusion is that the noise variance on the output we are trying to predict
is unsatisfactory? We can attempt one or all of the following:

� Increase the accuracy of measurements of both the inputs and the outputs. The effective
noise variance on the output may be the result of measurement error on the inputs.

� Ask if we have included all the principal causative input variables liable to affect the
output. If some obviously important factor has been missed then this may well explain why
we are currently unsuccessful in predicting the output variable.

� For a time series prediction we could increase the rate of sampling or consider if there are
other time series which may have predictive value for the time series we are interested in
predicting (such time series are often called leading indicators).

One reason the Gamma test is so useful is that it can immediately tell us directly from the data
whether or not we have sufficient data to form a smooth non-linear model and how good that model
is liable to be. If the result is that the error of prediction is too high, no matter how much data we are
given, then we must address the above issues.

For each choice of inputs investigated, as the number of data points increases we attempt to establish
the asymptotic Gamma statistic for each output. We then choose the set of inputs for a particular
output that has the minimum asymptotic Gamma statistic - this is known as model identification.
Having established the best selection of inputs for each output, using the winGamma software,
models may be built by:

� Static local linear regression (fixed model).
� Dynamic local linear regression (model updated as new data becomes available).

or by using one of four different types of neural network training algorithms:
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� Two layer back propagation
� Meta-backpropagation (Not included in the Beta release)
� Conjugate gradient descent
� BFGS neural network

Predictions on new input data for which the outputs are unknown can also be made using one or
more of the models.

1.1.2. The range of applicability.

The software is designed to analyse data with the goal of producing a near optimal smooth function
from inputs to outputs using only the data provided. Both the inputs and outputs should be
continuous real variables from some bounded range. The software will be much less effective if
some of the input or output variables take only categorical values (e.g. 0 or 1). The underlying
function is presumed smooth and this means bounded first and second derivatives. If the unknown
function has regions of very high curvature it will be much harder to produce an accurate predictive
model.

It is also assumed that the noise variance on each of the outputs is bounded and independent of the
input values. If the independence condition is false this is not necessarily fatal, the Gamma test will
return an average noise variance over the whole input space.

Subject to these conditions winGamma can be applied to a wide variety of non-linear modelling
problems. It is particularly useful in the research and design of non-linear control systems.

1.2 Loading data files.

winGamma can analyse two basic types of numeric data files: Input/Output data, where each column
corresponds to an input or an output, and Time Series data where each column corresponds to a
particular time series and successive rows represents successive values in time for each series.

Note all data files must contain only numerical data arranged in one of the allowed formats. (For
more details of data file formats see Appendix II.) To load a data file launch the application from the
Start menu. Click on ‘File’ and then 'Open Analysis Data Set'.

1.2.1 Comma separated variable (*.csv) files from spreadsheets

If the file data is in the *.csv format (e.g as exported from Excel), on loading the file you will be
asked to specify which of the columns are outputs. Because a *.csv file does not indicate which
columns are inputs and which are outputs, if the file is an Input/Output file it is necessary to give this
information to winGamma. Each column has to be tagged as an input or output column. This is done
as indicated in Figure 1.1.To change an input (default) to an output select it with the mouse or cursor
keys and press the ̀ Enter’ (or ‘Return’) key, or toggle with a double click on the left mouse button.
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Figure 1-1 Toggle inputs to outputs as
required when loading a *.csv file as
Input/Output data.

Figure 1-2 Selecting the number of inputs
and outputs per time series.

Figure 1-3 The `Normalise’ check box.

For Time Series data specify all columns as inputs. As in Figure 1.2 winGamma will then ask you
to specify the number of inputs and outputs per series. At present these are the same for all series.
In Figure 1.2 we are choosing to use 5 previous values of every time series to predict the next 2
values for each of the time series. Choosing more outputs will produce predictions further into the
future. The nature of things is such that the further we try to predict into the future the less accurate
these predictions will be. This is reflected in a higher Gamma statistic for more distant future
predictions.

1.2.2 Input/Output data in standard format (*.asc) files.

Standard format for an Input/Output file is DOS
ASCII in the following form. In each row the
inputs are separated by spaces and the list of
inputs terminated by a comma. The list of outputs
then follows, each separated by spaces. The end of
a row is signified by CR/LF. File data in standard
Input/Output form will be automatically
recognised as such. At present the numbers in the
file must be in simple decimal format.

The first decision to be made after specifying the
file name is whether or not to ‘Transform’ (i.e. to
scale or normalise) the data. To normalise check
the appropriate box as indicated in Figure 1.3

For a full discussion of the effects of scaling and
whether or not to scale in any particular case see section 2.14. In an initial investigation it is usually
a good idea to scale Input/Output or multiple Time Series data.
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Figure 1-4 Selecting a proportion of the data for initial analysis.

1.2.3 Time Series data in standard format (*.asc) files.

Standard format for a Time Series file is DOS ASCII in the following form. Each column represents
an individual time series. The rows represent values for each of the time series, successive rows
being successive values in time. Within a row each numeric value is separated by spaces. The end
of a row is signified by CR/LF.

1.2.4 Partitioning the data.

It is sometimes convenient to perform the initial analysis on a subset of the whole data file. This
could happen for example where the data set was very large. Therefore winGamma will next ask the
user to select the proportion of the data which should currently be used for analysis, see Figure 1.4.
We can later separate training and test data.

1.3 A first experiment.

Load the 2-input/1-output data file solar.csv and select column 3 as output. Initially do not
normalise. Select all the data for analysis, there are 10578 data points in the file. After the data has
been successfully loaded winGamma displays the main screens, as in Figure 1.5.

The Experiments window in the Analysis Manager shows the different kinds of data analysis that
can be performed. We shall discuss the meaning of these experiments and the interpretation of their
results fully in Chapter II. For the present we shall simply illustrate the basic Gamma test
experiment.
The Data Set Manager shows the data that has been loaded as in Figure 1.5, where the windows
have been tiled.. Because data files may be very large the data rows are divided into ̀ pages’ of 100
rows each. In Figure 1.5 the first page has been selected. Each column represents a column of inputs
or outputs and is labelled as such. The first four rows give the Mean, Standard Deviation, Minimum
and Maximum of each column for the whole of the data selected for analysis. The name of the
current data file is also displayed at the top of this window.

Handy Tip. Note that most of the windows and sub-windows including the column separators in the
Data Set Manager data display can be resized using click and drag.

To perform a Gamma test select the Analysis Manager and then Experiments. Highlight Gamma
test and select ‘New’. We can now toggle between the Experiment tab and the Mask tab. The only
option to be set from the Experiment tab in this experiment is the number of near neighbours. For
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Figure 1-5 The Analysis and Data Set Managers after loading a data file.

the present leave this set to 10. The Mask tab is used to select which inputs to include. Leave this
set to ‘11’ (i.e. both inputs are included).

When these steps are complete click on ‘Execute’. Under the Analysis Manager the Settings
window will now show the settings for the current experiment. This is shortly augmented by a
Results window which shows the results of this experiment. We can switch between the Settings
and Results windows using the appropriate tabs. These results for the single output are presented
in a Results/Settings window along a single row (because there is only one output) and are shown
here in the first column of Table 1-1. If there is more than one output the software generates a similar
set of results for each output.

Finally ‘Transform’ the data and repeat the experiment to obtain the scaled results in the last
column of Table 1-1.

1.3.1 Interpreting the results.

To interpret these results it helps to have some idea of how the Gamma statistic is calculated. We
shall describe this more fully in Chapter II, but for now it is enough to know that the Gamma statistic
is calculated by determining a regression line based on near neighbour statistics derived from the
data - see Figure 1.6.
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Unscaled Scaled
Gamma 0.020761 0.000196
Gradient 0.244242 0.256910
Standard Error 0.002360 2.328010E-5
Vratio 0.000760 0.000785
Near Neighbours 10 10
Start 1 1
Unique Points 10578 10578
Evaluated Output 1 1
Zero Near Neighbours 0 0
Upper 95% Confidence 0 0
Lower 95% Confidence 0 0
Mask (remaining entries) 11 11

Table 1-1 Gamma test  results with pmax = 10 for unscaled and scaled
solar.csv data.

Figure 1-6 The Gamma statistic and the
Gradient/Slope.

Gamma

The first row of Table 1-1 gives
the Gamma statistic (pmax = 10)
for the output as evaluated over
the data selected for analysis (in
this case the whole data set). As
one can see from Figure 1.6 the
Gamma statistic is actually the
vertical intercept of the
regression line in the figure.
This is the estimated variance of
the errors for any smooth model
built on the data. Since the
output variable range is
approximately [0, 30] this is a
relatively small error variance. It
means any smooth model built
on this data will have a standard
deviation of the prediction error
of about �0.020761 = 0.144 on
the unscaled data - which is about 0.5% of the range.

In general it is helpful to distinguish two cases:

� First, where the true noise variance is
zero. In this case the asymptotic Gamma
statistic should approach zero and there is
no limit to how good a model we can
build provided only that we have more
and more data of arbitrarily high precision.
For example, this can happen with
artificially generated data for chaotic time
series.

� Second, and more realistically, where
the true noise variance is positive. In this
case the asymptotic Gamma statistic
should also be positive and there will
come a point where using more data to
build our model will not actually improve the quality of the predictions when compared with
the measured values of the output.

In the case of a positive asymptotic Gamma statistic we can determine the minimum amount
of training data required to build a smooth model with this MSError using the M-test
described in section 2.5.
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Gradient

The Slope or Gradient is the slope of the regression line in Figure 1.6 used to calculate the Gamma
statistic. It is actually a rough measure of the complexity of the smooth function we are seeking to
construct. In this case the gradient of A =  0.244 indicates that the output is a rather simple function
of the two inputs. It is generally best to look at the Gradient for the scaled data since this refers to
a standardized output range.

Like the Gamma statistic the Gradient will eventually asymptote to a fixed value. However, the
number of data samples required to get a stable asymptote for the Gradient will usually be much
larger than the number required to get a stable asymptote for the Gamma statistic.

Standard Error (SE)

This is the usual goodness of fit applied to the regression line in Figure 1.6. If this number is close
to zero we have more confidence in the value of the Gamma statistic as an estimate for the noise
variance on the given output. In this case an SE = 0.00236 represents a good fit for the regression
line.

Vratio

The Vratio is defined as Gamma/Var(output). It thus represents a standardised measure of the
Gamma statistic and enables a judgement to be formed, independently of the output range, as to how
well the output can be modelled by a smooth function. In comparing different outputs, or outputs
from different data sets, the Vratio is a good number to study because it is independent of the output
range. A Vratio close to zero indicates a high degree of predictability (by a smooth model) of the
particular output. If the Vratio is close to one the output is equivalent to random noise as far as a
smooth model is concerned. In this case Vratio = 0.00076 indicates low noise data which we should
be able to model quite accurately.

Near Neighbours (number of pmax)

This is the one user settable parameter in the Gamma test. When estimating the Gamma statistic
pmax  should be selected in relation to the size of the data set. For large data sets, in the interests of
getting a more accurate Gamma statistic, we can afford to take the number of near neighbours
somewhat larger (this depends on a number of factors discussed in Chapter II). In general in a
Gamma test experiment we should keep the number of near neighbours less than 30. Usually 10-20
is a good choice.

Start

This indicates the row identifier for the first vector selected.

Unique Points



 The winGamma User Guide GETTING STARTED Version: 18 Jan 2002

17

In some data sets the same input vector may occur several or many times. This indicates how many
distinct input vectors are present in the data (see the discussion on zeroth near neighbours below).

Evaluated Output

Indicates to which output the results relate. In a file with multiple outputs all these results are
calculated for each output.

Zero(th) Near Neighbours

In some data sets the same input vector may occur several or many times. If an input vector appears
multiple times then, if it has the same output value(s), it might be construed as a repetition or it may
be a separate independent observation. In the first case there is no extra information and the data
vector should be deleted. In the second case there is useful information in the two vectors because
they are telling us that for these inputs the outputs are identical, and so presumably subject to low
or zero noise variance. If one or more outputs are different for the same input vector then again there
is useful information, because enough vectors of this type could give us an immediate grip on the
noise variance.

Therefore because it is important for an analyst to know if the same input vector occurs multiple
times winGamma provides this information by stating the maximum number of non-unique input
vectors. If this number is small in relation to the size of the data set it can safely be ignored on a first
pass. If it is large then the data should be subjected to some analysis outside of winGamma.

Upper 95% Confidence/Lower 95% Confidence

In the case where zeroth near neighbours are present these results are the lower and upper bounds
at the 95% confidence levels for the Gamma statistic estimated directly from the zeroth near
neighbours.  Unless the data file has many repeated input rows these values can be ignored. If the
file has many repeated inputs then these values can be compared with the normal Gamma statistic
(which is computed in an entirely different way).

1.4 The basic controls of winGamma. 

The use of these options will discussed fully in Chapter II.

The Analysis Manager.

Experiments These are options used to determine the Gamma statistic and to investigate
how reliable this statistic is, i.e. to determine. the quality of a model which might be built
using the data and a given selection of inputs. To invoke any of these options after loading
a data set simply select the Analysis Manager and highlight the option required. Then click
on ̀ New’. For any particular option there are probably other parameters which require to be
set before invoking `Execute’.

Gamma test: Finds the Gamma statistic and other relevant measures.
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Figure 1-7 The Analysis and Data Set Manager windows after performing the initial
experiment.

Increasing near neighbours: Finds how the Gamma statistic varies with the number
of near neighbours used to compute it.

M-test: Shows how the Gamma statistic estimate varies as more data is used to
compute it. This test can also tell us how much data we are likely to need to obtain
a model of a given quality.

Moving Window Gamma test: Shows how the estimate for the Gamma statistic using
a fixed number of data points varies as we move a fixed length window along the
data file. This is used to check the stability of the Gamma statistic as we move along
a large file.

Model Identification. These options are used to select those inputs which can best be used
to predict a selected output (some inputs may be noisy or irrelevant). The use of model
identification techniques is discussed in Chapter II.

Full Embedding
Genetic Algorithm
Hill Climbing
Sequential Embedding
Increasing Embedding

Other features. Are captioned in Figure 1.7.
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Figure 1-8 The noisy sine data.

Figure 1-9 An M-test on the noisy sine data.

1.5 Two simple examples

In this section we further illustrate the use of winGamma using two test files provided with the
software.

1.5.1 An Input/Output file.

The data for the file Sin500.asc was created (via
the Mathematica file DataGen.nb) using the
function y = Sin(x) and then adding uniformly
distributed noise  with a theoretical variance of
0.075 to the y values. A point plot of the data is
shown in Figure 1.8.

1.5.1.1 The basic steps

Load the data file and run a simple Gamma test
with the number of near neighbours set at 10
(default), as described in section 1.3. Do not scale
the data. Note that we do not need to specify the
number of inputs and outputs because this file is in
standard format.

The Gamma statistic in the Results window is 0.07355 which is quite close to the theoretical noise
variance. The Vratio of 0.12762 suggests that we will not be able to predict the value of an output
very accurately, which in view of the data plot in Figure 1.8 is not too surprising. The SE is
0.0037651 which indicates a fair degree of reliability in this assessment.

Now click on Analyse. This enables us to see three analytical graphical displays which are described
more fully in Chapter II. The first of these displays is the Gamma scatter plot and regression line of
Figure 1.6. The other two tabs give a 3D Histogram and an Angle histogram. These are different
ways  of viewing the data in the scatter plot.

How stable is the Gamma statistic (with 10 near
neighbours) as the number of data points varies?
We  can answer this question by clicking on the
Experiments tab and then highlighting M-test. This
will run the Gamma test for an increasing number
(M) of data points. Now click on `New’ to begin
setting up the M-test. leave the number of near
neighbours set to 10 and click on the M-test tab.
Set  the initial sample size to 10, the final sample
size to  500, and the steps size to 10. Now click on
Execute to begin the Experiment. After the Results
window  comes up click on `Graph’ to obtain a
graph of the Gamma statistic values against the
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Figure 1-10 The first 100 points of the
Hen500.asc time series.

Figure 1-11 The surface which defines xn+1
in the Henon map as a function of the two
previous values.

Figure 1-12 The distribution of points in the
input space for the Henon map.

number of data  points. This is shown in Figure 1.9 and we can see  that after around 425 points the
graph is fairly stable.  The fact that the data is rather noisy means we should try to optimise the
number of near neighbours for the Gamma test if we wish to obtain a more accurate Gamma statistic
and we shall see how to do this in Chapter II.

1.5.2 A chaotic Time Series.

Here we use the file Hen500.asc. This file contains
time series data generated by iterating the Henon
map. It is described in more detail in The Gamma
test and how to use it: a practitioners guide.

To get some idea of what the time series data looks
like we  graph the first 100 points of the  time
series using any convenient software as in Figure
1.10. Although this time series looks quite
unpredictable, nevertheless the underlying model
which takes us from two successive values to the
next is a smooth function of the two successive
inputs and therefore does not violate the
requirement of the Gamma Test, see Figure 1.11.

A very important factor to consider when building
a non-linear model is the distribution of sample
points in the input space. In some cases these points will be uniformly distributed but in many cases
this will not be the situation. If we plot the distribution of the points (xn-1, xn) for the Henon map data
from the file we obtain Figure 1.12 Peculiar distributions of data like this can be very helpful in high
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Figure 1-13 The result of an Increasing
Embedding on Hen500.asc with a maximum
of 10 inputs (using 10 nearest neighbours).

Figure 1-14 The result of an M-test on
Hen500.asc with 2 inputs (using 10 nearest
neighbours).

dimensional input spaces, as it often means that we need less data to build a good model than would
be the case if the data were uniformly distributed over the whole space.

It is precisely the surface of Figure 1.11 which is
the model that we can seek to construct using
winGamma. We could take the time series and
create a 2-Input/1-Output data structure  (xn-1, xn)
-> xn+1. In fact any time series that evolves
according to some smooth iterative or dynamic
process can be treated this way, provided only that
we can determine the number of previous values of
the time series required to predict the next value
(this is called the embedding dimension)5. In this
example we shall pretend that we do not know the
embedding dimension and show how winGamma
can be used to get some idea of which previous
inputs are likely to produce a good model.

Note that the data in the file Hen500.asc is high
precision and not subject to noise.

1.5.2.1 The basic steps

1. Load Hen500.asc with ’Open Analysis Data
Set’.

2. Set the number of inputs to 10 in the Time Series
tab.

3. Do not enable ’Normalisation’ in the check box.
Since the data is a single time series and each
sample is comparable we should not expect much
gain from scaling.

4. When prompted to select a proportion of the data
set for analysis use all the data (1-490) for the
initial analysis and click ’OK’

5. Select `Gamma test’ from the Experiments
Manager and then click on `New’
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Figure 1-15 The scatter plot for 280 test
points on Hen500.asc with 2 inputs (using 10
nearest neighbours).

Initial results: The initial result gives a Gamma statistic of 0.117143 and a Vratio of
0.185337 which is not very encouraging. However, the real reason for this is that most of the
inputs we have selected for the model are irrelevant or not very helpful.

6. Next in the Experiments Manager under Model Identification highlight Increasing Embedding.
and then click on `New’. Leave the number of near neighbours set at 10 and click on `Execute’.
What this experiment does is to compute the Gamma statistic for a succession of models based on
1-Input (the previous value), 2-Inputs (the previous two values), etc. up to the maximum number of
inputs we have set (which is 10), where in each case the output is the current value.

Results. This gives us a succession of Gamma values which we can graph by clicking on
`Graph’. The result is shown in Figure 1.13. Here it becomes clear that the best of these
models (i.e the one having a Gamma statistic closest to zero) is the one which uses just the
two previous values. The Gamma statistic for this model is approximately -0.000161 which
is very close to zero. The Vratio is -0.0001648 which again is close to zero.

7. Now that we have identified the relevant inputs pull down the `Transform’ menu and click on
`Transform the data set’. Under the Time Series Options select 2 inputs and 1 output and then leave
the proportion of data set for analysis set to 1-498.

8. Next in the Analysis Manager under Training Set Analysis select M-test and then click on ̀ New’.
In the Experiment Editor click on the M-test tab and set the Initial sample size to 10, leave the final
sample size set to 498, and set the step size to 10. Now click on ̀ Execute’. We should like to see how
stable the Gamma statistic is and how much data we are likely to need to get a good quality model.
Finally when the results window comes up click on ̀ Graph’ to see the result of the experiment. This
is shown in Figure 1.14

Results. We see from the graph that we could probably build a pretty good model using only
around 100 points. However, if we want to be sure then we should choose around 280 points
because from this point onwards the
variations in the M-test graph are very
small. 280 points gives a Gamma statistic
of -0.001054 and a Vratio of -0.001017.

8. Highlight the result in question in row 28 and
click 'Analyse'. The scatter plot and regression line
is shown in Figure 1.15.

Handy Tip. By left clicking and dragging the
mouse down and to the right we can zoom in on
any selected part of these graphs as shown in
Figure 1.15. We can also move the contents
up/down and left/right by right clicking and
dragging. To restore the original view simply left
click and drag the mouse up and to the right.
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It is interesting to see the remarkable difference between this scatter plot and corresponding
scatter plot for the noisy sin data we used in section 1.5. Here in Figure 1.15 we cannot fail
to observe the almost empty wedge in the top left hand corner of the plot. We shall see in
Chapter II that such a feature in the scatter plot is strongly indicative of a noise free smoothly
determined process. This observation is reinforced by the very small Vratio.

9. Finally examine and compare the other graphs produced by the Analyse tabs with those produced
for the noisy Sin data in section 1.5.1.1. We shall examine these tools more fully in Chapter II.

1.6 Linear models

winGamma is a non-linear modelling tool and makes very few assumptions about the nature of the
model. Because of this fact it generally needs far more data than parametric analysis where the model
is presumed to have a particular form. If it is safe to assume that the model is linear then a simple
linear regression model should be built and tested using some other standard software (e.g.
Mathematica has very good linear regression facilities).

If you know nothing at all about the data being analysed it is always a good idea to check the linear
regression model before using winGamma.

If the data is fundamentally linear then winGamma will perform quite well using local linear
regression. However, winGamma will make less efficient use of the data available than global linear
regression.

1.7 Exporting results for use by other software

Data produced by winGamma is either Graphics or data such as predictions.

Data Files can be exported in:

1. Mathematica compatible format e.g. {}s are embedded to format lists and arrays.
2. Excel and spreadsheet compatible comma separated variable (*.csv) format.

These Export functions are available as an option under ’Edit’ in the main winGamma parent window,
a right click on the mouse button in the appropriate context, or by clicking the ‘�’ tab in the top left
corner of many of the graphics windows.

1.8 Customising the file and project directories

To customise the locations of data files and project files (discussed in Chapter II) pull down the
`Options’ menu and click on ̀ Customize’ You can modify the number of data files and project files
kept in the history (in is usually best to set these to their maximum of 9). Now under data files click
on `Modify’ and select the directory that should first appear when the process of loading a data file
is initiated. When the desired location has been selected click on ̀ OK’. Go though a similar procedure
to locate the project directory. If you wish the windows settings to be saved each time winGamma
is closed down then check the appropriate box. Finally click on `Apply’ and exit the program.
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CHAPTER II Performing an analysis

2.1 Introduction

An Experiment is a particular type of calculation performed on the analysis data. A new experiment
is started by highlighting the type of experiment required and then selecting `New’ in the Analysis
Manager window. If we want to perform the same calculation but with different parameters (e.g. the
number of nearest neighbours) or a new method (e.g. M-test) then a new experiment is started.

In this chapter we discuss each type of Experiment, how to set the parameters and how to interpret
the results. Each Experiment is discussed using an example and illustrated with screen shots. 

2.1.1 The user cycle

The user cycle for a full analysis is not completely fixed and can be varied according to
circumstances. However the general approach can be summarised by the following steps.

Input/Output files.

1. Load the data and on the full data set (if not exceedingly large) do a simple Gamma test
scaled and unscaled with the number of nearest neighbours set to the default of 10. If the data
set is very large use a subset of the data for initial experiments.

2. Run an Increasing Near Neighbours test and use the minimum SE between (say) pmax =
5 and pmax = 50 to determine the most accurate Gamma statistic.

3. Using the value for pmax determined in Step 2 run an M-test to determine how stable the
Gamma statistic is with increasing data set size.

4. If the M-test produces a stable asymptote decide if the noise variance is likely to be: 

� Zero (arbitrarily good models possible with enough high precision data).

or � Non-zero (not much point is using more data than necessary to give a model which
predicts at the Gamma statistic level).

On this basis decide how much data is likely to be needed to build a model.

5. Can we get a better Gamma statistic by discarding some of the input? To answer this
question run a Full Embedding if the number of inputs is small enough to allow this (say �
10 -15). Otherwise try the heuristic search techniques, such as Hill-climbing or Sequential
embedding (see 2.7.2 - 2.7.4), ending up with a long GA run.

6. If a better embedding is found then repeat steps 2, 3 and 4 to refine those conclusions.
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Time series files.

Time series analysis is complicated by the fact tat we probably do not know how far back in time we
should look to build our prediction model. This initial decision is not irrevokable and should be
guided by some degree of commonsense analysis on what is likely to be the case for the given data
set and how much data is available.

E.g. For a single time series with annual periodicity, where the samples are weekly, we might set the
number of inputs to 104 - the equivalent of two years. However, 104-dimensional space has ‘a lot of
room up there’ and we should need a data set going back many years to make this worthwhile. If only
a few years data is available then perhaps we should first consider a model over the last several
months or weeks.

1. Load the data and do not initially normalise if it is a single time series. Set the number of
inputs to a reasonable maximum in the light of the data and the number of outputs initially
to one. Now perform a simple Gamma test on the full data set (if not exceedingly large) with
the default number of near neighbours set to 10, to get an initial idea. If the data set is very
large use a subset of the data for initial experiments.

2. Run an Increasing Embedding test to determine a likely embedding dimension. 

3. Transform the data set to reset the maximum number of inputs to the largest number from
the Increasing Embedding Experiment which still gives a comparatively small Gamma
statistic.

4. Run a M-test to check the stability of the Gamma statistic If the M-test produces a stable
asymptote decide if the noise variance is likely to be: 

� Zero (arbitrarily good models possible with enough high precision data).
or � Non-zero (not much point is using more data than necessary to give a model which

predicts at the Gamma statistic level).

On this basis decide how much data is likely to be needed to build a model.

5. Can we get a better Gamma statistic by discarding some of the input? To answer this
question run a Full Embedding if the number of inputs is small enough to allow this (say <=
10 -15). Otherwise try the heuristic search techniques ending up with a long GA run.

6. If a better embedding is found then repeat steps 4, 5 and 6 to refine those conclusions.

7. Refine the number of near neighbours for the final estimate of the Gamma statistic using
an Increasing Near neighbours test.

2.2 The Gamma test 



 The winGamma User Guide PERFORMING AN ANALYSIS Version: 18 Jan 2002

27

This finds the Gamma statistic and other relevant measures. These are principally the Gradient, the
Vratio and the Standard Error as described in Chapter I.

Once the  inputs have been determined, either with preliminary Gamma tests or because these are set
by the structure of the data, as in multiple Input/Output data sets, the only parameter to optimise is
the number of near neighbours (often denoted by pmax). It is a remarkable fact that for many data
sets the default of pmax = 10  nearest neighbours is often nearly optimal.

A suitable size for pmax in the Gamma test principally depends on two factors. The number of data
samples M: if M is large the local number of data points close to a given point can be expected to be
high The local curvature of the surface described by the unknown function f: other things being
equal, for a surface with high curvature we cannot afford to take neighbours too far away, so that
pmax will require to be smaller.

Systematic ways to determine the best choice for the number of near neighbours are described later
in section 2.4.

Note that the size of pmax in modelling the unknown function f using local linear regression is
determined by other factors described in section 3.2. Whilst for the Gamma Test it is usually the case
that we want to take pmax small, for local linear regression at high noise levels we will need to take
pmax much larger.

2.3 The Gamma Test analysis graphs.

After performing an experiment highlight the row containing the  Gamma result to be scrutinised and
click ’Analyse’.

Clicking on the tabs will provide the other plots that are discussed below. In an experiment where
there are multiple Gamma results the graphs and plots will relate to the highlighted Gamma result.

� Therefore it is important to highlight the required result in the Results window.

2.3.1 The scatter plot and regression line.

The critical graph to look at first is the scatter plots and ( (p), (p)) regression line, see Figure 2.1.
The scatter plot shows point pairs ( , ), where  is the squared distance of an input (x) from one of
its near neighbours and  is one half of the squared distance between the two corresponding scalar
output (y) values. The points to which the regression line is fitted are calculated by finding the mean
(p) of  and (p) of ,  where p refers to the  first nearest-neighbour (p = 1), the second nearest

neighbour (p =2 ) and so on up to the maximum number of near neighbours (pmax) which has been
set by the user.

A good regression line with points ( (p), (p)) approaching ( , ) = (0, 0) indicates that the scalar
output values of input-near-neighbours are close. If the regression line has a steep slope this indicates
that the modelling function f that we seek to approximate is liable to be quite difficult to construct and
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HIGH NOISE
        OR

MULTIPLE VALUES

STRONG

OUTLIERS

Figure 2-1 Main Features of the scatter plot and regression line

a large number of data points M will be required. If the line is almost horizontal the function is quite
simple.

A particular feature to look for here is an empty ’wedge’ in the top left corner of the scatter plot. If
there are points in the top left corner it means that there are input points in the original data set which
have |x(i) - x(j)| small (i.e. x(i) and x(j) are close together) but their corresponding output values y
have |y(i) -- y(j)| large (i.e. y(i) and y(j) are far apart). This is very bad from the viewpoint of
constructing a smooth model. It may be a reflection of a high intrinsic noise level on y (a high
gamma) or it may just be that there is no smooth underlying model.

An example where the underlying model is not intrinsically smooth might be a logic function of the
input variables, e.g XOR or m-bit parity. In m-bit parity the inputs are the vertices of the
m-dimensional unit hypercube and the outputs are 1 or 0. In fact one can put a smooth surface through
these points but this is a rather meaningless exercise. Problems with a large number of discrete input
or output variables are best tackled via a decision tree approach rather than trying to use smooth
modelling techniques.

The scatter plot can also give important clues on the nature of the data. For example it can happen
in some control applications that the system being modelled goes through two or more different
dynamical regimes. In one instance the scatter plot revealed that there were really two different
regression lines each corresponding to a different dynamical regime. Moreover, each regime
corresponded to a distinct part of the input space. By spitting up the input space and building a
different model for each part a vast improvement on modelling capability was obtained.



 The winGamma User Guide PERFORMING AN ANALYSIS Version: 18 Jan 2002

29

Figure 2-2 Modulated sine curve used to
g e n e r a t e  t h e  I n p u t / Ou tpu t  f i l e
ModSin5000.asc

Figure 2-3 Scatter plot with pmax = 100 for
ModSin5000.asc.

It is interesting to note that by taking the number of near neighbours pmax much larger than is
necessary (or desirable) for the Gamma test, the scatter plot can also reveal periodicities on different
scales present in the data (although for large pmax the resulting Gamma statistic estimate will be
essentially meaningless). Consider for example the data provided in ModSin5000.asc. This is a 1-
Input/1-Output file derived from sampling the graph in Figure 2.2.

The scatterplot with pmax = 100 is shown in Figure 2.3. This illustrates both levels of periodicity and
also shows why to get an accurate Gamma statistic we should take pmax fairly small.

2.3.2 The 3D histogram.

This is just another way of viewing the scatter plot. The software can also display the scatter plot as
a 3D histogram, as for example in Figure 2.10, which can be rotated and examined from different
viewpoints. Click the left and right pointing red arrows to rotate the viewpoint. Default is to display
frequency values linearly on the vertical axis but there is also an option for a logarithmic vertical
scale.

This can illustrate more clearly the ‘wedge shaped’ area. It can also be used to quickly ascertain the
distribution of outliers. We shall call point pairs with large  (each is a long way from its nearest
neighbour) and large  (the y values of close inputs are far apart) strong outliers and techniques for
identifying and eliminating such points will be discussed in a later version of this document.

2.3.3 The angle histogram.

To help to further analyse the situation the software also produces an ‘angle histogram'’, as for
example in Figure 2.11, for each point in the scatter plot we imagine joining the gamma intercept on
the vertical axis of the regression line plot to the scatter point. The angle the resulting line makes with
the positive horizontal axis is then computed. This angle lies between [- /2, /2]. A histogram of the
resulting angles is then displayed. The feature to look for in this histogram is the frequency of angles
close to the right-hand end, i.e. close to /2. If there are no points close to /2 (= 90 degrees) this is
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Figure 2-4 The variation of Gamma and SE as the number of near neighbours increases.

a good indicator for smooth modelling. If there are many points close to /2 this is a very bad sign.
The importance of the distribution close to /2 in the angle histogram  is another way to visualise the
upper left hand wedge of the scatter plot.

The remaining types of Experiment which can be performed are described in the following sections.

2.4 Increasing near neighbours 

This experiment shows how the Gamma statistic (and the other results returned by the Gamma test)
varies with the number of near neighbours used to compute it. It is used to get some idea of how
accurate the Gamma statistic is liable to be.

If we perform this experiment and use the graphing facility to plot the Gamma statistic and the SE
against the number of near neighbours, by examining the graphs together we can usually see which
choice for the number of near neighbours is likely to produce the most accurate estimate.

For example in Figure 2.4 (produced from Sin500.asc we see that the SE first increases and then for
a while plateaus before (eventually) beginning to steadily increase. The range of the plateau is
roughly between 7-27 near neighbours and it minimises at around pmax = 17 with a Gamma statistic
slightly larger than 0.074, which we know (from the way the data was constructed) is close to the
correct value.
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Figure 2-5 M-test graph for Sin500.asc Note the relatively stable asymptote.

We also note that the Gamma statistic is reasonably stable in the same range.

It is also sometimes interesting to observe when the Gamma statistic is at a local minimum and the
Gradient is at a local maximum as the number of near neighbours varies6. This criterion seems to be
sensitive to noise on different scales of distance in input space.

2.5 M-test

This test is used to show  how the Gamma statistic (and the other results returned by the Gamma test)
estimate varies as more data is used to compute it. Eventually, if enough data is used the Gamma
statistic should asymptote to the true noise variance on the output for which it has been computed.

The M-test can also tell us how much data we are likely to need to obtain a model of a given quality,
in the sense of predicting with a MSError around the noise level. In Figure 2.5 we see that in this
sense a perfectly adequate model can be built using anywhere from 150-200 data points, since the
variance of the Gamma statistic after this stage is relatively small compared with its actual value.
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Of course, using more data we can actually often progressively improve the model (this can easily
be checked by building a local linear regression model and using the WhatIf option to recover a quite
good approximation of the original sine curve), but it is not necessarily helpful to have an extremely
accurate model if the output data we are comparing it with is subject to large amounts of noise.

2.6 Moving Window Gamma test

The Moving Window Gamma test shows how the estimate for the Gamma statistic (and other
relevant results returned by the Gamma test) using a fixed number of data points varies as we move
along the data file. It gives some indication of how stable the Gamma statistic is when estimated for
different subsets of the data all having the same size.

The remaining sections deal with model identification, i.e.(in this context) the best choice of inputs
for predicting a given output.

2.7 Model identification

2.7.1 Full embedding.

An embedding is a selection of inputs chosen from all the possible inputs. In winGamma an
embedding is designated by a string of ‘1’s and ‘0’s called a mask. Thus if there five inputs the mask
10111 indicates that all inputs are to be used are to be used in the embedding except the second.

A full embedding tries every combination of inputs to determine which combination yields the
smallest absolute Gamma value. It returns the number of results requested. If there are m scalar inputs
then there are 2

m
 - 1 possible embeddings (the embedding where no inputs are chosen can obviously

be omitted). If m = 20 this is around one million. To do a full embedding we therefore have to
perform one million or so Gamma tests, which is fairly time consuming, although it can be done in
about a week on a fast PC.

Even if m is sufficiently small to make this practical (say m � 20), before we perform a full
embedding (assuming say m > 10) we should ask if we have sufficient data to justify it - because
looking at around one million Gamma values the differences between many of them will probably
be quite small and so we should ask if our estimates of the Gamma values are accurate enough to be
able to make these distinctions. Whether or not the estimates are sufficiently accurate to choose the
absolutely best embedding will mainly depend on how much data is available. It practice the best few
embeddings will usually have little to choose between them.

Because a full embedding on a large number of inputs is often pointless or impractical winGamma
offers a number of excellent heuristic methods to find a good embedding and these are described in
the following sections.

A useful feature associated with a full embedding or GA search is the Embedding Histogram, which
shows the frequency of embeddings with a specific Gamma statistic. If the choice of embedding is
largely determined by statistical variations in the data this histogram tends to have a Gaussian or
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Normal distribution (see Figure 2.33). If on the other hand there are clear underlying dynamics in the
data then the histogram often shows a bimodal or multimodal distribution (see Figure 2.36).

2.7.2 Genetic Algorithm

This option searches the space of all masks using a Genetic Algorithm (GA) to find good
embeddings. The parameters which can be used to control this search are (default values of
parameters are given in brackets):

Population Size (100) The size of the population of masks being used throughout the search.

Mutation Rate (0.01). The probability that an individual bit will be mutated during the
reproduction process.

Crossover Rate (0.5) The chance of inserting a random length run of bits from a parent mask
to a child mask (i.e. the probability that a crossover event occurs during the reproduction
process).

Gradient Fitness (0.1) The weighting in the GA fitness function for masks giving a low
gradient in the Gamma Test. Increasing this weighting will place more emphasis on the
relative simplicity of the modelling function

Intercept Fitness (0.8) The weighting in the GA fitness function for masks with a low
absolute value of the Gamma statistic. Increasing this weighting will place more emphasis
on the model accuracy.

Length Fitness (0.1) The weighting in the GA fitness function for masks with a given number
of ‘1’s. Increasing this weighting will encourage the selection of masks with fewer ‘1’s and
thereby place more emphasis on simpler models.

Note the three weightings selected for GA fitness should sum to 1.

Run Time (5 minutes) The (approximate) maximum time selected to perform the GA.

Setting the population larger may improve the final fitness of the best mask found but only if a large
run  time is permitted. For long masks (i.e. a large number of inputs) and large data sets the GA will
require runs of several hours.

2.7.3 Hill Climbing

In hill climbing a mask is taken (default is all ones for the current number of inputs) and each bit is
flipped in turn calculating the Gamma until the end of mask is reached. This is repeated until no
single it flip gives an improvement on the Gamma. This is a relatively fast heuristic but takes longer
than a sequential embedding.

2.7.4 Sequential Embedding
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Figure 2-6 The Ran500.asc output plotted
against the position in the file.

Here a single pass through the current mask is made, flipping each bit only if there is an improvement
over the Gamma statistic obtained with the original mask. Again default is a mask of all ones equal
to the length of the current input vector- though as in the previous method an initial mask of any kind
can be used provided its length does not exceed the current number of inputs. This is very fast.

2.7.5 Increasing Embedding

The Increasing Embedding algorithm starts with the mask obtained by taking only the rightmost input
(in the case of a time series this is the most recent) and obtains a Gamma statistic for this mask. It
progressively  increases the number of bits set in the mask working from right to left performing a
Gamma test for each new mask. It runs to the maximum number of inputs and stops. We can then
examine the Gamma statistic for each mask. The best embedding found will be the one whose
Gamma statistic is closest to zero. This is useful in a time series to discover the underlying
embedding dimension as we saw in section 1.5.2.

In the next sections we shall give example analyses using these various options.

2.12 Analysing Input/Output data

2.12.1 The Ran500.asc data.

We begin with a data set which is a type of ‘worst
case’ in the sense that there is no smooth data
model for this example. The file Ran500.asc is is a
4-Input/1-Output file containing 500 I/O pairs of
completely random data generated using a uniform
distribution in [-1, 1] via the Mathematica™ test file
DataGen.nb. The output is actually pure noise
having a true variance of 0.333333. A point plot of
the output is given in Figure 2.6.

If we run a simple Gamma test with pmax = 10
near neighbours we obtain the results in Table 2-1.

The estimated Gamma statistic � 0.31793 indicates
a high noise level as does Vratio � 0.97821 which
is very close to one. The regression line with slope
A � 0.0575 on scaled data is close to horizontal.

With pure random non-smooth data the slope of the regression line will gradually increase as the
number of data points M is increased - this is because the continuity condition is not satisfied.
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Unscaled Scaled
Gamma 0.31793 0.24838
Gradient 0.08426 0.057506
Standard Error 0.01429 0.012318
Vratio 0.97821 0.99353
Near Neighbours 10 10
Start 1 1
Unique Points 500 500
Evaluated Output 1 1
Zero Near Neighbours 0 0
Upper 95% Confidence - -
Lower 95% Confidence - -
Mask (remaining entries) 1111 1111

Table 2-1 The results of a simple Gamma test on the file Ran500.asc for
unscaled and scaled data.

Taken together, particularly with
Vratio so close to one, these are
clear indicators that it is pointless
to try to model the data with a
smooth function. Next we
examine the standard analysis
tests in turn.

T h e  I n c r e a s i n g  N e a r
Neighbours plot for pmax = 3 to
30 is given in Figure 2.7. This
suggests the best estimate for the
Gamma statistic is obtained at
around pmax = 10. The M-test
result of Figure 2.8 was obtained
starting at M = 50 and increasing
M to 500 in steps of 10. This
consistently gives a Gamma
statistic of around 0.3, but ideally
as the graph has not yet settled to an asymptote we should need more points to obtain an accurate
estimate for this 4-dimensional data.

The scatter plot in Figure 2.9 contains points with small  but large  which also supports the
conclusion. At the same time the regression line fit is rather poor. The 3D histogram in Figure 2.10
shows no real indicators of an `empty wedge’ and supports the general conclusions that the data is
extremely noisy. The same is true of the angle histogram in Figure 2.11.

Finally the Moving Window Gamma test using a window size of 300 in steps of 10 in Figure 2.12
consistently shows a Gamma statistic between 0.29 and 0.38.

� These results together indicate that there is no point in going on and trying to produce a
smooth model for this data.



 The winGamma User Guide PERFORMING AN ANALYSIS Version: 18 Jan 2002

36

Figure 2-7 Increasing near neighbours (3-30)
on Ran500.asc Gamma/SE

Figure 2-8 M-test (pmax = 10) on
Ran500.asc.

Figure 2-9 Scatterplot and regression line
(pmax = 10) for Ran500.asc.

Figure 2-10 3D Histogram (pmax = 10) for
Ran500.asc.

Figure 2-11 Angle histogram for Ran500.asc
(pmax = 10).

Figure 2-12 Moving window Gamma test
(pmax = 10) on 300 points in steps of 10
from Ran500.asc.
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2.12.2 The Sin500.asc data.

If we run a simple Gamma test
with pmax = 10 near neighbours
we obtain the results in Table 2-
2.

The estimated Gamma statistic �
0.07335 indicates a moderate
noise level as does Vratio �
0.12762.

The regression line on the scaled
data with slope A � 4.0386
indicates definitely non-linear
data. However if we pull up the
Gradient plot we see that it is still
highly variable - so one should
not have too much confidence in
this observation.

Taken together, these results indicate noisy but manageable non-linear data.

The Increasing Near Neighbours plot for pmax = 3 to 30 is given in Figure 2.13. This suggests the
best estimate for the Gamma statistic is obtained at around pmax = 17. The M-test result of Figure
2.14 was obtained starting at M = 50 and increasing M to 500 in steps of 10. This consistently gives
a Gamma statistic of around 0.07, but ideally as the graph has not yet settled to an asymptote we
should need more points to obtain an accurate estimate for this noisy 1-dimensional data.

The scatter plot in Figure 2.15 contains points with small  but large  which also supports the
conclusion. At the same time the regression line fit is rather poor. The 3D histogram in Figure 2.16
shows partial indicators of an `empty wedge’ and supports the general conclusions that the data is
noisy. The same is true of the angle histogram in Figure 2.17. Finally the Moving Window Gamma
test, using a window size of 300 in steps of 10, in Figure 2.18 consistently shows a Gamma statistic
between 0.072 and 0.076.

These results together indicate that we have noisy non-linear data but that model construction is quite
feasible.

Unscaled Scaled
Gamma 0.07335 0.03190
Gradient 0.71122 4.0386
Standard Error 0.00376 0.00163
Vratio 0.12762 0.12762
Near Neighbours 10 10
Start 1 1
Unique Points 500 500
Evaluated Output 1 1
Zero Near Neighbours 0 0
Upper 95% Confidence - -
Lower 95% Confidence - -
Mask (remaining entries) 1 1

Table 2-2 The Gamma test result (pmax = 10) for unscaled and scaled data
on the file Sin500.asc.
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Figure 2-13 Increasing near neighbours (3-
30) on Sin500.asc Gamma/SE

Figure 2-14 M-test (pmax = 17) on
Sin500.asc.

Figure 2-15 Scatterplot and regression line
(pmax = 17) for Sin500.asc.

Figure 2-16 3D Histogram (pmax = 17) for
Sin500.asc.

Figure 2-17 Angle histogram for Sin500.asc
(pmax = 17).

Figure 2-18 Moving window Gamma test
(pmax = 17) on 300 points in steps of 10
from Sin500.asc.
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Figure 2-19 Plot against time of the irradiance and temperature from the training data file
solar.csv.

2.12.3 The solar.csv data7.

The data considered in this 2-input/1-output file relates to the generation of electrical power by an
array of solar cells. The inputs are a measure of light intensity (South Plane Irradiance) to a precision
of ± 0.01 kW/m2, and the current temperature in degrees C to a precision of ± 0.5 �C.

The output is the voltage inverter AC power output measured to a precision of ±0.01 kW. The file
consists of these values sampled every minute.

Figure 2.19 illustrates the graphs of the two inputs and the output against time (position in the file).
We note that at low Irradiance the recorded power output values are irregular and sometimes
negative. This is a result of the fact that intelligent circuits are attempting to determine whether or not
to initialise the system as the sun rises or sets. The effect is to produce noise on the output power at
low Irradiance levels. We are just using the data as an example, but if one wanted to use the data to
build a really accurate model obviously one should filter out the data having low or zero Irradiance.
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Figure 2-20 Increasing near neighbours (3-
50) on solar.csv Gamma/SE

Figure 2-21 M-test (pmax = 20, Randomised,
2 repetitions) on solar.csv.

Figure 2-22 Scatterplot and regression line
zoomed (pmax = 20) for solar.csv.

Figure 2-23 3D Histogram (pmax = 20) for
solar.csv.

Figure 2-24 Angle histogram for solar.csv
(pmax = 20).

Figure 2-25 Moving window Gamma test
(pmax = 20) on 8400 points in steps of 100
from solar.csv.
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There are some other factors of interest in this particular situation. As it happens the sensor which
measures Irradiance is on the roof of the building, whereas the solar array is in a nearby location. The
solar array is shaded at certain times of day by a chimney and a nearby building and this shading is
not measured by the Irradiance sensor. Since the shading is obviously a function of the time of day
and the time of year this has the effect of introducing smooth non-linearities into the situation, which
would be extremely hard to model analytically. One could imagine including the time of day and year
into the data set and then building a different and much more accurate model. By examining the
difference between the two models we could actually quantify the effect of shading without having
an analytic model. This would be a good example of one type of application of winGamma to
scientific data. However, since the data in this file only runs over about one week we do not consider
this extra complication here

If we run a quick Gamma test on the full data set with pmax = 10 near neighbours we get the results
of Table 1-1 in Chapter I.

The unscaled Gamma statistic of 0.020761 seems high but in view of the output range (approx [0,
30]) is actually quite good. A better measure is the Vratio = 0.000760 (defined as the ratio
Gamma/Var[output]), which is low and shows that the output is highly predictable from the inputs.
Because the data clearly falls into two distinct classes (day and night) we should be aware that
representative training and test data should include both types. The point to grasp here is that although
the time series data varies from moment to moment (as clouds obscure the sun) the relationship
between sunlight input at a given temperature and power output is a smooth (almost linear) model.

The next step in a more careful
analysis is to run an Increasing
near Neighbours test. This will
give us some idea of the best
pmax to choose to give the most
accurate Gamma test results.
Figure 2.20 shows the result of
the increasing near neighbours
test run for pmax = 3 to 50. We
note the SE first increases and
then plateaus. Along the plateau a
minimum SE occurs at around
pmax = 20, which from now on
we take as the best pmax for
further analysis of this data.

Figure 2.21 Shows the M-test and
we can see that for M � 9000 we
are beginning to get a stable
asymptote. From this we infer that around 9000 data points will be required to build a model which
will predict with an accuracy about equal to the noise level. The result of a Gamma test on pmax =
20 near neighbours using the full data set is shown in Table 2-3.

Unscaled Scaled
Gamma 0.020328 0.000221
Gradient 0.250261 0.230184
Standard Error 0.002051 3.095267E-5
Vratio 0.000744 0.000884
Near Neighbours 20 20
Start 1 1
Unique Points 10578 10578
Evaluated Output 1 1
Zero Near Neighbours 0 0
Upper 95% Confidence 0 0
Lower 95% Confidence 0 0
Mask (remaining entries) 11 11

Table 2-3. The results of the Gamma test (pmax = 20) for unscaled and
scaled data from solar.csv.
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Figure 2-26 The first 100 points of the
delayed Henon map time series.

Figure 2-27 The return map (xn-1, xn) for the
delayed Henon map.

Figure 2.22 shows the scatter plot and regression line (zoomed). This is typical of slightly noisy data
but the regression line fit is good. The desirable empty wedge is the top left corner is not obviously
present, another indication that the data is somewhat noisy.

The 3D Histogram in Figure 2.23 shows similar features except that we can see the actual frequency
distribution of points in the scatter plot and this shows that strong outliers or `empty wedge’ points
although present are relatively infrequent. The Angle histogram of Figure 2.24 shows a roll-off in
frequency as we approach angles close to /2

The final Moving Window Gamma Test of Figure 2.25 is intended to show the relative stability of
the Gamma test result. In this case it really fails to do so because the order of the data should really
be randomised (since it is very time periodic). Even so when we examine the vertical scale of Figure
2.25 we see that the relative variation is not very large.

We see shall later in Chapter III how to take the results of this analysis and build and test models
using the solar.csv file.

2.13 Analysing Time Series data

2.13.1 The DH(34)5000.asc data (Delayed Henon Map).

This Time Series data was generated by a process very similar to the Henon map, except that where
the current value of the Henon map time series depends the last two values of the series, for the
Delayed Henon map the current value is determined by the values three and four steps in the past.
This changes things in a number of respects.

The plot of the time series is given in Figure 2.26 and Figure 2.27 shows the return map for (xn-1, xn)
which is analogous to Figure 1.12. We observe that this distribution looks quite different.
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Figure 2-28 The result of an Increasing
Embedding for the delayed Henon map.

Figure 2-29 The M-test graph (pmax =10
number of inputs = 8) for the delayed Henon
map.

We now proceed through the steps outlined in section 2.1.1 for Time Series.

1. Load the data and do not initially normalise (it is a single time series). Set the number of
inputs to 20 the number of outputs initially to one. Now perform a simple Gamma test on the
full data set (which gives 4985 I/O pairs with 20 inputs) to get an initial idea. If the data set
is very large use a subset of the data for initial experiments.

Results. This gives an initial Gamma
statistic of 0.0042614 and a Vratio of
0.007481. The SE for this result is 0.00125.
These initial results are encouraging.

2. Next run an Increasing Embedding test
to determine a likely embedding
dimension. 

Results. If we zoom in on the resulting
graph we see Figure 2.28 and infer that a
good  model is likely to be obtained with 4
or 5 previous values.

The Gamma statistic for 4 is 0.00019635,
for 5 it is 0.0002997 but the lowest value of
all is for 7 past values which gives -1.5E-7.
These very low values suggest that the time series is consists of very low noise, or noise free,
data. Examination of the scatter plot and associated graphics supports this view.

3.We next Transform the data set to reset the maximum number of inputs to 8.

4. We next run a M-test to check the
stability of the Gamma statistic If the M-
test produces a stable asymptote we can
decide if we really have enough data to
support these conclusions. A reasonable
choice is to start at 100 in steps of 100 until
the end of the data.

Results. The M-test graphs of the Gamma
statistic together with the Gradient are
shown in Figure 2.29. From this we see a
good asymptote and conclude that with 8
inputs a good model can be obtained using
around 3000 points. It also looks likely that
we have an essentially zero noise time
series.
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Figure 2-30 An Increasing Near Neighbours
test on the embedding 1101 for the delayed
Henon map.

Figure 2-31 A plot of the FTSE close data.

5. Can we get a better Gamma statistic by discarding still more of the inputs? To answer this
question we run a Full Embedding on 7 inputs. (To do this we have to transform the data
again).

Results. If we make a small table of the best 5 masks found we obtain:

Gamma 2.3228E-6 1.3276E-5 -1.888E-5 -2.176E-5 -2.438E-5
Mask 0001101 1101100  1111111  0001100  1011101

From this we infer that lags 3 and 4 (remember we have to count from the right) are very
important but that the marginally best model should be obtained using lags 1, 3 and 4.

It is worth examining the Embedding
Histogram associated with the embedding
search. In this case we see a somewhat
irregular multimodal histogram (there are
only 15 possible embeddings).

6. If we now fix on the embedding 1101
having a Gamma statistic of around
2.3228E-6 then we might next do an
Increasing Near Neighbours Experiment
to optimise the choice of near neighbours
in estimating the Gamma statistic. 

Results. The result is shown in Figure 2.30.
The minimum SE is obtained using pmax =
7 nearest neighbours and corresponds to a
final Gamma statistic of 2.3228E-6 so that
optimising the number of near neighbours
hardly changed the Gamma statistic at all in this case.

Thus the final analysis of DH(34)5000.asc is that it
is a noise free time series. Using a few thousand
points we should be able to construct a model
capable of one step prediction with an estimated
MSError of around 2.23E-6. 

2.13.2 The FTSE weekly closing price data.

The file FTSEcls.asc contains the FTSE weekly
closing price from 9 May 1988 - 26 January 1998
which gives 508 samples. Figure 2.31 shows the
time series over the full run of the data.
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Figure 2-32 The M-test graph for the FTSE
data using the best embedding of length 20.

Figure 2-33 The frequency histogram for
embeddings of length 20 using the FTSE
data.

If we perform a full embedding on the last 20 weeks (on a convenient Unix station!) using pmax =
10 we obtain the histogram in Figure 2.33. This has the characteristic Gaussian shape of mainly
statistically determined data.

From the table of the best embeddings we select the embedding which gives the smallest positive
gamma. This is 11011100110000111101.

Handy Tip. Typing in long masks can be error prone and tedious. There is no need to do this. A mask
can be copied to the clipboard and pasted in whenever required using a right click on the mouse.

This choice of embedding should be treated with some caution. The M-test graph of Figure 2.32
(pmax = 10, Randomised, 3 repetitions) shows that the estimated gamma values have not yet
stabilised (M is not sufficiently large) so the error in estimating the Gamma statistic for any particular
embedding is sufficiently high to make the outcome of a full embedding search itself extremely
unreliable. The resulting very low Gamma statistic of around 0.007 is an artifact of the statistics of
the situation (with over a million embeddings to search we are quite likely to find one with a very
small Gamma). The associated SE is 517! This clearly illustrates that a low Gamma statistic on a
single data set is not enough to ensure a good model - we need to be sure that the SE is acceptable
and that an M-test illustrates the estimate has stabilised.

In reality using the time series alone we are lucky to predict the weekly closing FTSE price to within
a standard deviation of 80 (i.e. the true Gamma statistic is around 6400).

There is a further complication in that we have no real reason to suppose either that the underlying
system is describable by a smooth dynamic model, or that if so the dynamical system is constant.
Indeed towards the end of the 10 year period it is noticeable that the local variance of both the system
behaviour and (as we shall see in Chapter III) of the errors of predictions increase. From this we
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Figure 2-34 Plot of the sunspots data file Sun280.asc.

conclude that either the dynamical system is itself varying or at the very least the constant noise
variance assumption is suspect.

2.13.3 The sunspot data.

The data used in this experiment was FTP-ed from ftp address: ftp.santafe.edu, directory:
pub/Time-Series/data. Its origin, normalization and training/test regions are described in [Weigend
1990]. The data consists of 280 points representing sunspot activity over the period 1700 - 1979 and
was used in [Weigend 1991]. The range of the data has been scaled to [0, 1] and we found the
variance to be 0.0410558. Figure 2.34 shows the variation of sunspot activity over the full range of
the data.

It is known that the primary sunspot cycle is approximately periodic over 11 years. Other shorter and
longer cycles are also known. For radio propagation the short period cycle of 28 days is particularly
significant. The data used here is collected from telescopic observations projected onto a white paper
card. The sunspots are counted and classified by size and a correction factor applied depending on
the magnification of the telescope. The virtue of this data is that it has been regularly collected since
1700. Of course, if one were really interested in predicting sunspot activity much more accurate data
is available. The data provided is often used as a test of prediction techniques and can give a
reasonable model of gross sunspot activity.
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Figure 2-35 The M-test graph for the sunspot
data data using the best embedding of length
15.

Figure 2-36 The frequency histogram of all
embeddings of length 15 using the sunspot
data.

Figure 2-37 A test of the LLR model on the data
set SunPairs.asc (blue predicted, green actual, red
error).

Selecting a best embedding. If we are prepared for a several day run we can use the Full-Embedding
option of the software to search for a good embedding. In this example we searched over the previous
15 years.

The best embedding found was 001001000010111. Here the most recent data comes last. So this
embedding says that to predict this year’s sunspot activity x(t) we should use the data x(t-1), x(t-2),
x(t-3), x(t-5), x(t-10) and x(t-13), an embedding of dimension six. It is interesting to note the bimodal
distribution of the Full Embedding Histogram of Figure 2.36. The bimodal distribution is partly
explained by the observation that only 2.38% of the embeddings with a Gamma statistic > 0.008
include x(t-1) as compared with 99.8% of those having a Gamma statistic < 0.008. Put plainly this
says that the most important predictive factor for the sunspot activity this year is the value for last
year. It is also interesting to see which
variables appear in the best few embeddings.
These indicate that the last few years, plus
the value approximately one 11 year cycle
back, plus a value about half way through the
previous cycle, give the best results. This is
rather impressive since the software has no
way of knowing about sunspot cycles.

If we run the Gamma test on the six
inputs/one output I/O data file constructed
using this mask we get Gamma � 0.0015 and
Vratio = 0.036 (SE � 0.00093) Note the M-test
of Figure 2.35 indicates that there is not
really enough data (the graph has not
stabilized). Therefore if we construct a model
and test on unseen data we might expect to
get a higher MSError than the estimated
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gamma value. If we now predict the last 59 years data, using local linear regression with k = 60 near
neighbours and a threshold of 0.0001 (we shall see how to do this in the next chapter), on the basis
of all the previous years we obtain Figure 2.37 which gives a MSError around 0.007. In cases such
as this, where there is insufficient data, it is not uncommon to see a MSError on unseen data around
an order of magnitude greater than the Gamma statistic.

2.14 Handling multiple time series.

In later releases we plan to include a TimeSeries Editor to facilitate the direct manipulation of
multiple time series. However, using a combination of winGamma and Excel at present it is possible
to accomplish multiple time series manipulation relatively easily.

Suppose we have several time series TS1, ..., TSm, which we wish to use to predict a target time
series Target.

Step 1.

Suppose the time series are in an Excel file which is structured as follows:

In Excel delete the date column because this is not numerical that can be used as input for winGamma
notice now that the only factor which preserves the time relationship is the order of the rows.

Hint: It is important when dealing with multiple time series that all the data in a row
is sampled at the same time. If one measurement is sampled weekly and another
monthly then we can use linear interpolation to construct weekly data samples for the
monthly sampled data.

Step 2. Save the file from Excel in CSV format - you should include the first row of text descriptors
of the time series as winGamma can handle these and they will be useful later.

Step 3. Load the file just saved into a text editor which can SaveAs ASC DOS text files and search
and replace the commas separating the numeric data only . Do not the replace the commas separating
the commas separating the text headers. Save the new file as a ASC DOS text file with the filename
suffix *.csv (Edit the file name after saving if the text editor insists on putting an extra *.txt on the
suffix.)

Date TS1 TS2 ... TSm Target
10/07/1981 16 10.39 132.06 606.8
10/14/1981 15.5 10.34 132.92 606.8
10/21/1981 15.5 10.38 130.43 626
... ... ... ... ... ...

Table 2-4 Excel file for multiple time series.
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Step 4. Decide the maximum lag you are likely to need in analysis and modelling. For example, if
you think the maximum lag likely to be needed in two months and the data is sampled weekly then
the Number of Inputs to be set in winGamma will be 8. Load the *.csv file into winGamma (which
because the numeric entries are separated by spaces will treat the file as a multiple time series).
Selecting the number of inputs as 8 and, assuming that you wish to produce a one week ahead
forecast select the Number of Outputs as 1. Do not at this stage normalise/scale the data, this can
easily be done later but cannot be undone if it is done at this stage. You also have to decide at this
stage whether you want to include a running window average for each time series as an input and
whether you wish to include successive differences as possible inputs.

Without the running window average or successive differences, the data loaded into winGamma will
now be ordered into the following columns:

TS1 : t-8,..., TS1 :t-1, TS2 : t-8, ..., TS2t-1, ..., TSm : t-8, ..., Tsm : t-1, Target :t-8, ..., Target : t-1, TS1 : t, ..., TSm : t, Target : t

where the outputs (at time t) have been underlined. (This is a rather tricky manipulation to do from
scratch in Excel.)

Notice that although we set out with the intention of trying to model the time series Target, we have
created a file in which every time series has an out put that we can model. You can delete these extra
outputs in Step 6 if you wish.

You can begin immediately with experiments on this file but, since not all these inputs may be needed
for the model, you can also proceed as follows.

Step 5. Use some other software such as Mathematica to perform data analysis on the last file using
tools not yet provided by winGamma. For example, one useful analysis tool is to take the average
lagged correlations of successive differences of the target time series with the successive differences
of all the time series (e.g. for lags from 1 to 8 in the above example). (This tool is available as
DeltaCorrelation  in the Mathematica suite provided with winGamma.). We may choose to take only
those lags which have the largest absolute lagged delta correlation. This may suggest that some
columns could be deleted from the *.csv file we have produced.

Step 6. Load the *.csv file into Excel and delete the columns which have been selected as unlikely
to be useful. Re-save the result as a *.csv file and proceed (as if from the end of Step 4) with
winGamma analysis on the resulting file. Further inputs may be set to zero in the mask as a result of
winGamma analysis.

Notice that when you reload this file into winGamma it will be treated as an Input/Output file for
which you have to specify the inputs and outputs. Becuase the data is not now recognised as multiple
time series data the Iterate (Model) option will not be available (at present this can only be used with
a single time series).
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2.15 To scale or not to scale?

If two input variables are incompatible (e.g. temperature in degrees K and altitude in metres) both in
semantics and in range then the effects of a change in one of them can completely outweigh the
effects of a change in the other. To ensure that all variables at least start with an equal chance to
contribute to an output prediction it is often helpful to apply a standard normalization.

In this software the standard normalization is that the mean of each input variable is mapped to zero
and the standard deviation to 0.5. In later versions we may include an option for the user to select the
standard deviation (this can have some advantages in model building).

The effect of normalizing the data is two fold. First, since the output is also rescaled this will affect
the Gamma statistic in a trivial way (it will divide it by the square of the new output range). The
Vratio however will not change due to this effect. Second, rescaling the inputs can change the near-
neighbourhood relationships and hence possibly change the associated Gamma value. We can detect
if this happens as it will also cause Vratio to change.

Whether normalization is a good or bad idea depends largely on the circumstances. If input variables
are incompatible then it is probably a good idea to normalize.

Normalization of just the input values will not change the asymptotic Gamma statistic or Vratio,
provided we imagine that as the number of data points becomes large we also increase pmax by a
suitable constant factor8, but a good scaling will cause the M-test to converge more rapidly to the
asymptote, so improving the accuracy of the noise estimate for a given amount of data. A good
scaling can also improve the accuracy of a model constructed using a fixed amount of data.

The effect of masking is ‘all or none’ and it may be better to apply a suitable weight to each input
variable. For example, it is a general observation regarding near-neighbour classifiers that they
perform well given the right weighting of inputs but that at present there are no general techniques
for finding such weightings. However, if weights are applied then of course the data must NOT then
be renormalised.

2.16 Projects

A Project is the collection of all Experiments performed on a given data set. A given Project is
determined initially once the data set for analysis is defined. At Project creation time the number of
inputs and outputs to a time series have to be set and options to normalise or scale the data. There is
also an option to generate a parallel moving average and/or difference series alongside a time series.

As successive Experiments are completed the parameter settings for each Experiment and the results
are added to the Project which can be saved as a file and reloaded at a later date. Thus there is no need
to repeat the same experiment- which may have taken a while to compute.
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Handy Tip The Project file (*.gpr) contains the path of the data file used in the project, in fact the data
file name and path are the first item in the Project file. Project files are in DOS ASCII format and can
be edited (as long as the file is saved in the same format after editing). This can be useful to know if
the data has been moved or renamed, or you have moved both the Project file and the data file to
another system where the path is different. One way to handle this is to just edit the path in the Project
file. However, if winGamma cannot find the data file associated with a project it will ask you to
Browse for the file and you can indicate the new location. (It is important to select the right file -
which must not have been altered.)



CHAPTER III Building and testing a model

3.1 Introduction

We now assume that you have analysed the data and decided which inputs and how much data to use.
To actually build the model winGamma offers several techniques:

Local linear regression
Dynamic local linear regression
Neural networks using various types of learning algorithm.

Local linear regression models are fast to construct and quite fast to execute a query. Local linear
regression models can also be easily updated as new training data becomes available, which is not
the case with neural networks (where a prolonged extra period of training, or starting training all over
again,  may be required to modify the model on the basis of new data). Indeed winGamma also offers
a dynamic local linear regression option which is exactly local linear regression with dynamic
updating (this option is quite useful for time series prediction).

Usually local linear regression is extremely accurate in parts of the input space where the training data
density is high. However, local linear regression will not generalise well to parts of the input space
for which training data is sparse.

Neural network models take time to construct but in parts of the input space where data is sparse tend
to generalise better than local linear regression. It is often quite hard to get a neural network to train
down to a very small Gamma statistic (say 10

-6
 or 10

-7
 which can easily happen with zero noise

dynamical system time series), i.e. it may take several attempts, each of which takes a long time.
However, neural networks can make predictions at blinding speeds compared with local linear
regression based algorithms, so for some applications it is well worth the time and effort to construct
a neural model.

3.2 Local linear regression

To make a prediction for a given query point in input space local linear regression (LLR) first finds
the k nearest neighbours of the query point from the given data set (where the number k is supplied
by the user) and then builds a linear model using these k data points. Finally the model is applied to
the query point thus producing a predicted output. Because of the way winGamma analyses the data
to compute the Gamma statistic the k nearest neighbours of any point in input space can be found
very rapidly. Consequently local linear regression using the k nearest neighbours (in the training data)
of the query point can be accomplished quickly. Thus local linear regression is a very fast and capable
predictive tool.

LLR is most effective in regions of the input space with a high density of data points. If data points
are few and far between in the vicinity of the query point then LLR will not be very effective if the
underlying function we are trying to model is truly non-linear.
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It may seem odd that although winGamma is all about constructing smooth models the global
function produced by patching together many LLR predictions in general is not even continuous!
However, as the number of data points increases, the global function produced by LLR will converge
rapidly to  the unknown function generating the data, provided this is itself a smooth function. You
can easily see this by using the winGamma WhatIf facility on LLR models built from increasing
sized data sets, for example on the data from Sin500.asc. 

LLR can produce very accurate predictions in regions of high data density in input space, but it is
liable to produce unreliable results for non-linear functions in regions of low data density. In other
words LLR does not generalise well but is a very good interpolative tool if we have large amounts
of data.

There are three user settable parameters in LLR: the number of near neighbours, whether or not to
include a constant term in the linear model, and a threshold value for filtering the local eigenvectors.

The choice of the number of near neighbours k in LLR is quite critical. If the noise level on the output
(i.e. the asymptotic Gamma statistic) is low then some small multiple of the number of inputs should
suffice. If the noise level on the output is high then k needs to be larger to obtain better noise
cancellation. Unfortunately if the unknown function f we seek to model is highly non-linear (has
regions of high curvature) then, unless we have a very large amount of data, setting k large may mean
that in the region of these k points the assumption that the unknown function can be locally
approximated by a linear model may be false. In this case the resulting predictions would be
inaccurate. We have not yet developed rules of thumb for this situation but in practice it is not a major
problem to optimise the choice of k using a test set.

There is also an option whether or not to include a constant term in the locally linear model. In
general  it is better to include this term.

The final user settable parameter is equivalent to a local principal components threshold filter on the
eigenvectors of the local linear model. We are tying to predict along the tangent plane of the local
flow and eigenvectors corresponding to relatively small eigenvalues probably represent noise and lie
outside the tangent plane. The threshold decides which eigenvectors we should ignore. Setting it low
or zero will essentially include all eigenvectors in the local model, the default is around 10

-6
. Raising

this threshold will filter out more and more eigenvectors. For noisy time series one often finds that
0.001 gives quite good results. Again the best approach is to experiment on a test set.

3.3 Dynamic local linear regression

This option is mainly designed for time series analysis. It is basically identical to LLR with the
additional feature that as new data is seen for the first time it is incorporated into the model. You can
see the effect of this by starting the model with very little training data and running a test on a large
amount of data. As new test data is encountered (but after the attempt at prediction of course)
dynamic LLR  will make steadily better predictions. This is interesting to observe but is not actually
the best way to use dynamic LLR. It is better to start with a reasonable training set size because then
the initial kd-tree (a data structure used extensively by winGamma) will be more balanced and query
times will be reduced.
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Figure 3-1 The first set-up menu for two
layer backpropagation.

Figure 3-2 The second set-up menu for two
layer backpropagation.

Under the circumstance it is not surprising that if the same test data is presented to the model a second
time the MSError will reduce dramatically.

3.3 Two layer back propagation

This option uses the standard backpropagation algorithm to produce a two-layer feedforward neural
network.

With all the neural network training algorithms one should note the option to recalculate the target
MSError. This is useful in the event that the partition of the data for training and testing has been
altered. Clicking ’Recalc’ will cause a new Gamma statistic for that part of the data selected as
training data to be calculated, and hence set a new target MSError for training.

Alternatively the user can set any target MSError. However, if the target MSError is much less than
the Gamma statistic on the training data then (i) the network may end up being ̀ overtrained’ resulting
in poor predictions, or (ii) the training algorithm may never be able to reach the (possibly) unrealistic
target MSError.

User settable options:

For each of the neural training algorithms we shall need to specify the number of hidden units. Thus
each neural network option needs

The number of units in the two hidden layers (default 5, 5)

The number of units required to achieve a good model will depend on the complexity of the unknown
function we are trying to approximate. Unfortunately here there are few general rules to guide us. One
useful guide is that if the Gradient value returned by the Gamma test is large then the unknown
function has regions of high curvature and we shall require more hidden units to approximate it
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Figure 3-3 The Analysis Manager during backpropagation training.

accurately. The best approach is to try to train using relatively few units (the defaults are set quite
low) and if training fails to converge to the target MSError progressively increase the numbers of
hidden units in the two layers.

Two layer backpropagation also requires:

The initial learning rate (must be positive). This controls the initial step size in weight
adjustment.

Momentum constant (must be positive). This controls the extent to which the size and
direction of the current step in weight space is influenced by the size and direction of the
previous step. Setting this parameter to zero means there is no momentum term in the weight
adjustment at each step.

Regularisation constant (must be positive). This limits the size of weights. A zero here
corresponds to no restriction on weight magnitude.

These options are configured using the set-up menu shown in Figure 3.1. There is a second tab which
allows the user to specify the maximum amount of time to spend on trying to attain the MSError goal.
This is shown in Figure 3.2.
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Handy Tip. Backpropagation along with most other processes in winGamma can be paused/resumed
or terminated using the buttons on the top level menu. Terminating an operation does not necessarily
loose everything. Any results already calculated will be displayed and in the case of neural net
training the model created so far will be retained.

Figure 3.3 shows the Analysis Manager during backpropagation training. Note that the graphical
window can be zoomed and moved using the left and right mouse buttons.

Because the number of layers, the number of hidden units, and the slope of the sigmoidal are fixed,
limiting the size of the weights also limits the magnitudes of the partial derivatives of the neural
network as a function of its inputs. Thus if the unknown function to be approximated has regions of
high curvature the training algorithm with regularisation may find it difficult to obtain the desired
approximation. We can get some idea if this is likely to be the case by examining if the Gradient
returned by the Gamma test is unusually large.

These parameters may be left at default until fine tuning of the model is required.

3.4 Conjugate gradient descent

This a variation and improvement on two-layer vanilla backpropagation, it is generally more effective
but requires more memory. The procedures for set up are very similar.

3.5 BFGS neural network

Probably the fastest and most efficient neural network training algorithm offered by winGamma is
a modified version of the Broyden-Fletcher-Goldfarb-Shanno learning algorithm. This algorithm
uses second differences and is sometimes degraded by very noisy data, but generally it is probably
best to use this option first when trying to produce a neural model.

3.6 Example model construction and testing for solar.asc

We return to the example solar panel data we analysed in 2.12.3. Using the first 8400 data and scaling
we initially build a local linear regression model with k = 20. We then test this model on the remaining
points in the data file.

3.6.1 Building and testing a LLR model

We initially build a LLR model using the first 8400 points (the results of our earlier analysis suggest
that slightly more points are required for a really good model). 

1. Load solar.csv. Do not normalise and use all the data for analysis. Execute a simple
Gamma test. these steps are described in 1.3 and 2.12.3.

Handy Tip. winGamma requires that at least a simple Gamma test Experiment be conducted before
any attempt to build a LLR model (a kd-tree is required).
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Figure 3-4 Selecting a proportion of the data for testing.

Figure 3-5 Result of LLR test for solar.csv.

2. After the Gamma test results appear click on `Model’ in the Analysis Manager.

3. Select the training set as 1-8400.

4. In the Modelling Editor leave the model type set at Local Linear Regression,set the
number of nearest neighbours at 20, leave the Add constant box checked, and leave the
Define local flow threshold option at 1E-6. Then click on `Build’.

5. When the Test, Query, WhatIf and Predict buttons become active in the Analysis
Manager the model is built and ready to be used. Click on `Test’.

6. In the Select proportion of data set for model testing window set the range of test data
to 8400-10578 as shown in Figure 3.4.
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Figure 3-6 The variation of output power as
Irradiance varies from 0 to 30 and
temperature is 7 degrees.

Figure 3-7 The variation of output power as
Temperature varies from 1 to 15 and
Irradiance is 10.

We have used the points from 8400 - 10578 for testing. A sequence of such experiments for the
number of near neighbours k = 10, 15, 20, 25 shows that k �20 seems to give the smallest MSError
�0.011959 on the test set. This is somewhat better than the Gamma test result led us to believe but
very much in the same ball park. The results of the test with k = 20 are shown in Figure 3.5. Here we
can see that the agreement between the predicted (blue trace) and the actual test data (green trace) is
very close. The red trace indicates the error.

3.6.1.1 Using the WhatIf and Query options on the LLR model

The WhatIf option allows us to see what happens if we set values for all of the inputs except one and
vary the remaining input over some range. This is a very useful tool in a variety of contexts.

For example, in a sales and marketing campaign we may be able to answer the question “If I spend
X on advertising on TV and Y on advertising in newspapers how will the sales of the soft drink vary
with the mean day time temperature”?

Similarly the Query option allows a particular selection of all inputs to be queried. The use of
Predict is discussed in section 3.8.

Having analysed the data, built and tested a model, we can now ask some interesting questions
regarding the solar.csv data. For example, using the WhatIf options we can answer the question:

� How does the power output vary when the temperature is fixed at 7 degrees and the
Irradiance varies from 0 to 30?

The answer is given in Figure 3.6 As expected at a fixed temperature the power output is almost
linear with the Irradiance.

Similarly we can ask
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Figure 3-8 An error histogram for the LLR test.

Figure 3-9 A topographic plot of the solar.csv data.

� How does the power output vary when the Irradiance is fixed at 10 and the Temperature
from 1 to 15?

The answer is given in Figure 3.7. Here the
result is somewhat different. One interesting
feature is the slight rolloff of power output
with increasing temperature. This is a real
effect and is a consequence of the physics of
solar cells.

3.6.1.2 A histogram of prediction errors for
LLR model

If we save the data produced by the results of
the LLR test then we can examine an error
histogram for the predictions. This is shown
in Figure 3.8 The vertical gridlines are one
standard deviation either side of the mean,
which is close to zero. This is the final test of
our model.

3.6.2 Building and testing a neural model

We can now repeat the model building process using a neural model.

3.6.3 Visualising the data.

For a 2-Input/1-Output data set we can
visualise the model as a 2-dimensional
surface and using suitable software plot this
surface directly from the data. Of course in
higher dimensional spaces such graphical
realisations are not possible. Moreover, if the
data is very noisy such a surface will be very
jagged and not much use as a model.

Nevertheless now that we have finished
studying solar.csv it would be interesting to
see what the surface constructed from the
data actually looks like. Figure 3.9. This is a
topographic plot of the surface in which
lower power outputs are blue and higher
power outputs are red. We could regard our
WhatIf graphs as cross sections (using the
model) of a surface which is very similar to this plot.
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Figure 3-10 A test of the LLR model on the data
set DH(34)5000.asc (blue predicted, green actual,
red error).

3.7 Example model construction and testing for DH(34)5000.asc

In Chapter II we analysed this data and concluded that it represented a low or zero noise time series
for which the current sample could be predicted accurately on the basis of between 4 and 7 previous
samples. The mask 1101 was identified as a good mask.

1. Load the file DH(34)5000.asc.

2. In the Time Series options specify 4 inputs and 50 outputs. This gives 4952 samples for
analysis.

We are going to build a local linear regression model and this needs a kd-tree so it is necessary first
run a Gamma test.

3. In the Experiments tab highlight
Gamma test. Leave the number of
near neighbours set at the default of
10. In the Mask tab enter the mask as
1101. Now click `Execute’.

Result. We specified 50 outputs and
so are trying to predict a maximum
of 50 steps into the future. If we just
look at the one step prediction then
the result for the first output is a
Gamma statistic of -6.089E-5 with a
SE of 4.3118E-5.

4 For output 1 select `Model’. Our
previous experiments suggest that
about 3000 data points are need to
obtain a good model (a fact
confirmed by a M-test for this
embedding - which curiously gives small negative results increasing towards zero!) Select
a local linear regression model with 10 nearest neighbours and set the Mask to 1101.

Results The MSError over the test set 3000 - The MSError of the test set 3000-3200 is
8.2303E-6. The graph of predictions, actual values and errors is shown in Figure 3.10.

3.7.1 How the prediction quality degrades into the future.
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Figure 3-11 How the Gamma statistic varies
against the number of steps ahead for
DH(34)5000.asc.

Results. From the result of Step 3 in
last experiment we actually got 50
output Gamma statistic results. The
graph of Gamma against the number
of steps ahead is shown in Figure
3.11. Here we see an exponential rise
in the error of prediction, which is
typical of a chaotic process.

We conclude that the Time Series data is of
a low/zero noise smooth process which is
chaotic and that we can make accurate short
term predictions but that long term prediction
becomes exponentially more difficult.

3.8 Using a prediction file

Building and testing models when you know
the outputs for a corresponding set of inputs
is quite interesting but it is purely an academic exercise. Sooner or later you will want to make
predictions that matter and where the outcomes are not known. Perhaps from some large quantity of
input data.

To accomplish this it is first necessary to have a ̀ prediction’ file, i.e. the input data is placed in a file
without the corresponding inputs.

3.8.1 Using a prediction file on Input/Output data.

Load the data file EXAMPLE NEEDED HERE

3.8.2 Using a prediction file on Time Series data.

Load the data file EXAMPLE NEEDED HERE

3.9 Using the neural networks outside of winGamma

If the neural models are used outside of winGamma (i.e. in other software) it is necessary to know
some technical details of the implementation.

3.9.1 The activation function and the sigmoidal.

The activation function used by the neural networks is
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sigmoidal(act) � scaleFactor. 2

1 � e �act/Temperature
� 1

act(x) � �
n

j � 1
j�i

wijxj

where wij is the weight of the connection from unit j to unit i and xj is the output of unit j.

The sigmoidal used by each neural node as an output function is

where act is the activation (weighted sum of inputs), scaleFactor = 1.5, and Temperature = 0.8333

To speed up neural computations this function is implemented in winGamma as a fine grained look-
up table, whereas for feedforward computations when the weights are loaded into other software it
can be implemented directly as a function. This may cause very small differences in neural output
calculations using the same weights outside winGamma.

3.9.2 NetReader.

NetReader.nb is a Mathematica program supplied with winGamma which can read the neural
network weights saved from winGamma and implement the neural network for feedforward testing.
Which type of network training was used in the creation of the weights is automatically identified
from the weights file.

3.9.3 Exporting and using Neural network models in Excel.

After winGamma has built a neural network model it may be exported as an Excel Macro and used
directly in Excel (This facility is not currently available for LLR models.). We illustrate this process
using an example.

Step 1. Build a model.

In winGamma load data file Sun280.asc this is a single time series file.
Transform the data to 3 inputs 1 output
Export transformed data as test.csv
Perform Gamma analysis.
Train neural network model on the transformed data

Step 2. Export the model

Right click on ‘Model’
Select ‘Export’
Choose ‘Save as type’
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Set to ‘Excel Macro’ (*.mac)
Enter directory and file name
Export model

Step 3. Setting up the data and model in Excel.

Start up Excel
Load data from test.csv
Save the file as an Excel Workbook
Right click on worksheet tab ‘test’ at the bottom left corner.
Select ‘Insert’
Select ‘MS Excel 4.0 Macro’. Hit OK
This now opens a macro sheet
Load ‘test.mac’ into Notepad, select all text, and copy.
Paste text into macro sheet in Excel in cell A1
Highlight column A
Do Insert\Name\Define
In the macro box set to ‘Function’
Set name to ‘model’. Hit OK
Now when in the macro sheet with column A highlighted you should see ‘model’ in
the top left name box.
Switch back (using the tabs at the bottom) to the ‘test’ worksheet.
Enter heading ‘model’ in cell F1
In cell F2 type “= model(A2:C2)” (no quotes) and press ‘Return’
You should now see the model output value in cell F2 as compared to the actual
output in cell D2.
Select cell F2 and copy
Highlight the range of cells from F3 to F278 and paste.
You should now have all the model predicted values for each row.



APPENDIX I General Information

Shipping list

1. Compact disc
2. This manual.
3. The gamma test and how to use it: a practitioners guide.

Hardware requirements

This software is PC based and normal minimum requirements are:

Pentium processor 133 MHz or preferably  faster.

RAM 32-64 Mbytes. The amount of memory you will need to run winGamma is not really
constrained by the program so much as the size of the data sets that you wish to analyse. With
the possible exception of the neural network training algorithms the theoretical average case
computation times of the main algorithms in winGamma scale like O(MlogM), where M is
the number of rows in the data file. However, under some conditions some algorithms in
winGamma may require quite a lot of memory to achieve the theoretical scaling.

An example is Increasing Near Neighbours when pmax is large. Suppose we consider
solar.csv sith 10578 rows of three numbers each and set pmax = 100. This demand will
require approximately 0.25 Mgbytes for the data, 0.25 Mgbytes for the kd-tree but more than
4 Mgbytes for the 106 numbers which constitute the list of 100 nearest neighbours for each
of the 10578 input vectors in the data file. To perform a Gamma test each of the near
neighbour indices must be instantly available and they could be anywhere in the range 1-
10578. If the system has less than 4Mgbytes of available RAM then it will have to keep
paging data in and out from the hard disk. This will dramatically slow the algorithm and  may
in fact render the entire computation infeasible. If you observe a large amount of continuous
paging disk activity then (a) Close down all other applications (b) Consider if it is feasible
to perform the analysis on a subset of the data. If the problems continue you need more RAM.
In most cases 64 Mgbytes is sufficient for any reasonable data set.

At least 50 Mbytes remaining hard disk space.

Operating system: Windows 95 or 98, or Windows NT4.0 were the original development
targets but we have so far observed no problems with later versions of Windows operating
systems. Licenses for a script file driven UNIX version of the Gamma Test software may be
available by special arrangement.

Installation
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Beta release: At present simply copy all files in the winGamma directory into a convenient
directory on your hard disk. If you experience problems getting the help system to work you
may have an older version of Explorer. To update run the file hhupd.exe.

V 1 release: Place CD in drive. Follow install instructions from screen.

List of files and directory structure after installation

Program and associated files
Directory of C:\WinGamma

11/20/98  12:28p        <DIR>          Data
10/30/98  02:37p        <DIR>          TestFiles

02/09/98  02:00a 29,952 BORLNDMM.DLL
02/09/98  02:00a 996,872 CP3240MT.DLL
11/05/98  06:28p 471,840 hhupd.exe (Run to update HTML if problems with help

occur)
10/24/98  04:01a 420,864 Tee4C.bpl
02/09/98  02:00a 1,455,736 vcl35.bpl
02/22/99  02:31p 107,677 winGamma.chm
03/02/99  04:08p 1,228,288 winGamma.exe
03/02/99  04:20p 968,704 winGammaBaseComponents.bpl
02/17/99  03:32p 35,328 winGammaComponents.bpl

Real data files

<DIR>          Data
02/04/99  02:35p        <DIR>          Solar
11/21/98  11:51a 430,515 Solar.csv
12/11/98  03:37p        <DIR>          Sunspot
03/19/98  07:52p 2,240 Sun280.asc
04/20/98  02:15p 24,543 SunPairs.asc

Artificially generated test data files

<DIR>          TestFiles
01/04/99  02:18p        <DIR>          Noise
04/16/98  12:21p 50,183 Ran500.asc
03/27/98  03:04p 20,539 Sin500.asc
03/02/99  12:43p        <DIR>          NoNoise
09/15/98  04:58p 1,958 Hen100.asc
09/15/98  04:59p 9,830 Hen500.asc
09/15/98  05:00p 19,666 Hen1000.asc
10/29/98  01:26p 983,909 Hen50000.asc
04/22/98  12:51p 9,617 MGls500.asc
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10/22/98  05:09p 96,097 MGls5000.asc
02/24/99  02:44p 205,286 ModSin5000.asc
12/09/98  03:02p 98,966 DH(34)5000.asc

Mathematica™ 3.01 files

12/19/98  04:25p 2,317 DataAnaly.m
12/19/98  04:25p 2,812,869 DataAnaly.nb
03/02/99  07:13p 8,831 DataGen.m
03/02/99  07:13p 946,827 DataGen.nb
10/01/98  2:07p 38,062 mathlinkGamma.nb
01/28/99  04:36p 253,440 GammaTestProject.exe
10/29/98  4:18p 50,773 NetReader.nb

Problems reported

Graphics files saved are in billions of colours and cause `out of memory’ errors when attempts are
made to load them into some software including WPCorelV8 and Graphics Workshop.



APPENDIX II Data file formats

All data files are in plain ASCII and have the file name suffix *.asc. Data files may be created using
Excel™ as *.csv files and imported into winGamma. Data files for winGamma are in two basic
formats.

� Times series data.

Example: a single time Series.

0.0262
0.0575
0.0837
0.1203
0.1883
0.3033
0.1517

etc.

Each number followed by a carriage return/linefeed.

Example: multiple time Series. it is the responsibility of the user to prepare the data so that
fields referring to the same time are on the correct line (most recent data is last).

0.0262 1000.26
0.0575 1031.78
0.0837 1037.86
0.1203 1038.567
0.1883 1040.810
0.3033 1100.721
0.1517 1027.851

Each number followed by one or more spaces. The last number on a line followed by a
carriage return/linefeed. There must be the same number of data fields on each row.

� Input/Output data.

Example: a 4-input/1-output file.

 0.36368593157164  0.3304959949667 -0.21811098544356 -0.20933961443087, -0.0220710621963
-0.00591105325917 -0.9085902611647  0.19548859472561 -0.34015487882487, -0.0064356217878
 0.86221883819100 -0.5929180658183 -0.36843151702318 -0.89277930056707,  0.6617039028787
 0.59877814813365  0.9562473549851  0.25582643936911  0.97996127233012,  0.4810764303063
 0.13712162278232  0.9035299186427  0.29916358157799 -0.22014139763247,  0.7734356912106
-0.42696607632396 -0.4827254329784  0.98919821679839 -0.20449324659299,  0.5789449769352

etc.
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Each number followed by one or more spaces. The end of the input vector is signified by a
comma. What follows the comma is one or more outputs separated by one or more spaces.
The last number on a line should be followed by a carriage return/linefeed. There must be the
same number of data fields before and after the comma on each row.

� Prediction file data.



APPENDIX III Using the Mathematica 4.0 files

A number of Mathematica files for data generation/manipulation, data analysis, and model testing
are supplied with winGamma. There is also a C-code executable MathLink file which can be used to
execute the Gamma test from within Mathematica. To use these files you will need to have
Mathematica installed and be familiar with Mathematica notebooks.

At a later stage it is hoped to supply equivalent files in Matlab.

DataGen.nb ( Data Generator)

This file enables the creation of Input/Output files and Time Series files of data with our without
added noise. In includes a large number of examples and shows how every test file used in this
manual was created.

DataAnal.nb (Data Analyser)

This file is useful for producing graphics such as histograms and performing various types of
supplementary data analysis.

GammaTestProject.exe

This is a C-code executable which communicates with Mathematica via MathLink and enables a
variety of Gamma test computations to be called directly from Mathematica. It cannot be executed
as a standalone program.

mathlinkGamma.nb

This shows how to load and use the file GammaTestProject.exe and gives examples of each function
that can be called.

NetReader.nb

This notebook can read in any neural network created and saved by winGamma. The program
identifies the network type and can then run the network. There may be very small differences in the
results owing to the fact that this notebook uses a pure form of the sigmoidal function whereas
winGamma uses a fine grained discrete lookup table for speed in training.



APPENDIX IV Generating test files

Generating your own data files.

Data files may be generated using a wide variety of software tools. All data files used by winGamma
are in plain ASCII format. One convenient method of generating data files is to use Excel to
manipulate your data into the required rows and columns and then save the data in *.csv format.
Another convenient method for creating data files is to use Mathematica. winGamma is supplied
along with a number of useful Mathematica programs for generating, manipulating and saving data
in the correct formats. These are described in Appendix III.

Data is generally divided into four types: analysis, training, testing, and prediction. Prediction files
are different in that they contain no output values but otherwise use the same formatting conventions.
We use prediction files when we genuinely do not know the corresponding output values and want
to generate predictions. For the prediction file the output fields are empty because it is assumed that
the outputs are unknown. The use of prediction files is discussed in section 3.10.

In general data files can be divided into two main categories: input/output files and time series files.

Creating data files using Excel

If data is prepared in a spreadsheet it can be exported to winGamma in the *.csv format. Make sure
that the numbers exported are in pure decimal format. At present winGamma may read numbers in
the xEy format incorrectly.

When a *.csv file is loaded the user will be automatically prompted to nominate particular columns
as inputs or outputs by selecting with the mouse or using up/down cursor keys and the Enter (or
Return) key. The mouse may also be used to select then double clicking will change an input to an
output an vice versa.
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APPENDIX V Definitions

Model. A smooth data model is a differentiable function from inputs x = (x1, ..., xm) to each output
y. It is assumed that the data can be represented by an unknown model f so that

where r is a stochastic variable which represents noise.

Gamma test. An algorithm to estimate the variance of the noise Var(r) associated with a particular
output. Not to be confused with the variance of the output..

Gamma statistic. Often referred to as a `Gamma value’. It is the vertical intercept of the regression
line plot and represents our best estimate for Var(r).

Embedding. A selection of past values of a time series used to predict the current value.

Mean squared error (MSError). If y(i) (1 � i � M) is a set of values of an output and y*(i) is a set
of predictions for y(i) then the MSError of the predictions is given by

Standard Error (SE) This is the standard error about a regression line and is calculated as

where (i) is the ith Gamma regression point value and ¯  is their mean.

Over-training describes the effect when we attempt to produce a model by exactly following the
training data. Consider the effect of trying to produce a model by drawing a line through every point
in the noisy sine data in Figure 1.8. It would look nothing like a sine curve and if we asked this model
to predict y for a particular value of x we should little faith in the prediction. One of the main
advantages of winGamma is that it gives us the necessary information to prevent over-training before
we begin to build a smooth model such as a neural network.

GA Fitness. In order to better control the GA search it is useful to know how the GA fitness is
calculated. The overall fitness of a mask is composed of three parts, corresponding to the fitness due
to the intercept (i.e. the actually Gamma statistic) because mainly we want masks with small Gamma,
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fitness(mask) � Wintercept.interceptFitness(mask) �

Wgradient.gradientFitness(mask) �

WlengthlengthFitness(mask)

interceptFitness(mask) � 1 � (1 � 10.Vratio(mask))�1, ifVratio(mask) < 0
� 2 � 2(1 � Vratio(mask))�1, otherwise

gradientFitness(mask) � 1 � (1 � �gradient(mask)�/outputRange)�1

lengthFitness(mask) �
numofones(mask)

length(mask)

the fitness due to the Gradient because if we have enough data to estimate the Gradient accurately
it might in model construction to choose a mask with a low Gradient which will correspond to a
simpler model, and the fitness due to the number of 1’s in the mask because shorter masks also mean
simpler models. The contribution of each of these terms is controlled by three weights Wintercept,
Wgradient,, and Wlength according to the formula

The component fitness calculations are described below, where Vratio(mask) and Gradient(mask)
return the Vratio and Gradient as calculated by the Gamma test on the data set for mask, outputrange
is the range of the output and |.| denotes absolute value.



APPENDIX VI Frequently asked questions

Why is the Gamma statistic sometimes negative?

Sometimes the Standard Error (the error obtained from the ( , ) regression which is always stated
when a Gamma result is obtained) is large enough to account for a negative intercept by the
regression line. This is most likely to occur when the true asymptotic Gamma statistic is close to zero.
It can also  happen when the data fails to fulfill the basic requirement that inputs and outputs are
drawn from a continuous range. If many inputs are categorical it is also possible to get a negative
Gamma statistic.

How should I choose the right number of inputs for a Time Series?

Initially set the number of inputs large (but reasonable in the context of the data). Then do an
’Increasing embedding’. This will compute successive Gamma statistics based on one input (the
historically most recent sample of the time series (rightmost on the mask), then on two inputs (the two
most recent samples) and so on up to the maximum number of inputs you have selected.

The minimum Gamma statistic obtained will determine an upper bound for the maximum number
of inputs it is useful to consider.

An optimum for the number of near neighbours used in the Gamma test should now be obtained.
Then the maximum  number of inputs can be checked again using that number of near neighbours
in the Gamma test. (If the maximum number of inputs changes then the optimum number of near
neighbours should be checked again). Finally using the best maximal number of inputs a check for
the best embedding can be run, this may cause some inputs to be discarded.

How should I choose a method for establishing an optimal embedding (mask)?

The best method for choosing a mask on the inputs is ’Full embedding’. The problems come with this
method when the run times required become too long. Runtime is a function of the input
dimensionality (the number of inputs, m), the number of nearest neighbours (pmax ) and the length
of the data (M). If run times are just too long then the Genetic Algorithm (GA) can be used with ’Hill
climbing’ and a ’Sequential embedding’ embedding to do a small search around the candidates offered
by the GA. 

How should I choose the optimal number of near neighbours (pmax) in the Gamma test?

See section 2.4 of the manual.

How should I choose the optimal number of nearest neighbours (k) in Local linear regression?

By experiment with a test set.
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What is "the best Gamma" and what does it mean?

The `best Gamma’ in the context of a Gamma test is the closest approximation to the asymptotic
Gamma statistic, which should approach the true noise variance.

The `best Gamma’ in the context where we have a number of Gamma estimates for different
selections of inputs (essentially different models), assuming these estimates are accurate, is the
Gamma statistic closest to zero - because that suggests the model which should have smallest
MSError when predicting outputs from inputs not used in the model construction process.

Note that if the true noise variance is actually zero (and the data is of arbitrarily high precision) there
is no limit to how accurately we can model the unknown function, provided only that we have more
and more data.

In most real life situations there is a positive noise variance remaining even after optimising the
selection of inputs (because real measurements are subject to error) and there is no point in building
more and more accurate models (for example by using the noise cancelling features of local linear
regression) because the predictions of the model will never agree with our measured data unless the
measurement error is decreased (for example).

An exception to this might be if are trying to get some idea about an underlying theoretical model
and winGamma can help in this respect but determining a theoretical model (as opposed to an
accurate numerical model) lies outside the competence of winGamma.

How should I choose between a local linear regression (LLR) method and a neural net method
of model building?

Nets take a long time to train but may generalise better than LLR in regions of the input space where
data is sparse. A high Gamma statistic on the training data may make neural network training even
more difficult. If data is densely distributed over the input space then LLR may be a better choice in
this situation.

The particular application also has an influence on which may be the best modelling tool to select.
For example, to learn new data it may be necessary to retrain a neural network from scratch which
is time consuming, whereas dynamic LLR can easily accommodate new training data.

Local linear regression models are very fast to build, but take relatively longer to query because a
kd-tree is used to find the near neighbours of the query point. If the final target application is a real
time system neural networks offer the advantage that they can be implemented in hardware.

How should I choose between local linear regression and dynamic local linear regression?

For a model to adapt it must be dynamic. Every data row (vector) "seen" by a dynamic LLR model
will be added to the model, but of course eventually the model becomes memory hungry and starts
to slow down. At this point the model will have to be pruned. If the phenomena that you are trying
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to model is likely to be fixed then a static model is best. If the underlying dynamics themselves might
be changing (e.g. the stock market) then a dynamic model is more sensible.

How should I choose between the Backpropagation, Conjugate Gradient Descent and BFGS
neural net algorithms?

Backpropagation is the original feedforward neural network training algorithm. It is reasonably
effective on simple problems but only makes use of the first differentials of the error surface in weight
space. Therefore backpropagation can take longer to train than other more sophisticated neural
training algorithms and may fail to converge to the target MSError derived by the Gamma test at all.
But compared to more recent algorithms backpropagation is inexpensive on memory.

CGD offer some improvements over BP at the cost of extra memory.

BFGS uses the second differences  of the error surface in weight space which in most cases gives
faster convergence at the expensive of a more complicated algorithm and more memory.

What do all the fields associated with a Gamma Result mean?

See section 1.3.1 of this manual.

What does a high gradient suggest?

If there is enough data to give a stable Gradient asymptote then a high Gradient (computed values
on artificial test sets can come out as high as 20,000) suggests a complicated unknown function with
on average regions of high curvature.

Why is the Vratio  useful?

It provides a standardised estimate of the noise which is independent of the output variable range.

What is the use of the Standard Error?

It tells us how reliable the Gamma statistic is as an estimate of the variance of the noise on the output.

What file formats are permitted for data to be analysed by winGamma?

See Appendix II.

How much data should I use for training?

If the Gamma statistic is asymptoting to zero you can use as much data as is practical and models
with MSErrors of order 10-7 are quite feasible.
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If the Gamma statistic is asymptoting to a positive value a good rule of thumb is to use as much data
as will give a standard deviation (the square root of the variance) of the Gamma values about the
asymptote, of around 10% of the asymptote value on the last 10% of the data.

When should I use external files of data for testing?

When the analysis data set doesn’t include the test data or further tests need to be made on a model.

When should I use the moving average option?

Usually when you have plenty of data and want to determine if the number of data samples used to
estimate the Gamma statistic gives a stable value over a range of different sample sets of the same
size.

This test is also useful to investigate if the underlying dynamics is itself varying.

When should I use the differential option? 

It may improve the MSError for difficult time series.

Which input is the differential (or moving average) input? 

When these options are activated the new data column is placed in the highest numbered positions
with differential first and moving average last. This can be confirmed by placing the cursor over the
vertical column and dragging it wider thus revealing the applicable legend.
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