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CHAPTER | Getting Started

1.1 Introduction

Data or observations can be considered as a spreadsheet of numbers in which the columns are
divided into two types. input columns and output columns. In any row we might wish to
determine the values of the outputs when these are not known but the corresponding inputs are
known.

A data model data model is an algorithm constructed from a set of observations (for which all
inputs and outputs are known) which enables usto predict the outputsfrom agiven set of inputs.
This software is concerned with constructing data models of a particular type.

1.1.1 The Purpose of the Softwar e

winGamma isasoftware packagewhichin thefirst instance estimatesthe least Mean Squared Error
(MSError)* that any smooth datamode! (e.g. atrained feed forward neural network) can achieveon
the given data without over-training.

winGamma can be used with multiple column Input/Output data files and single or multiple Time
Series.

winGamma assumes that non-determinism in a smooth model from inputs to outputsis due to the
presence of statistical noiseon the outputs. Not all phenomenathat one might seek to model fall into
this category. For example, if the outcome that one istrying to predict from observationsis highly
probabilistic then the model produced by winGamma will not be satisfactory as a prediction tool.

® However, the software is able to detect this situatior?.
The models that winGamma is designed to produce are of phenomena (more exactly outputs) that
aresmoothly determined by theinput variables. Mostly thelimiting factor onthe predictiveaccuracy
of the model will be measurement noise or insufficient data.
For agiven data set thewinGamma software executes the Gamma Test whi ch estimatesthe variance
of the noise on each output. Thiswill be an estimate of the best MSError that a smooth model can
achieve for the corresponding outpuit.

® |nputs and outputs should be continuous variables.

! See Appendix V for definitions.

21t will be reflected in ahigh Gamma statistic or a Vratio closeto 1.
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The estimate of that part of the variance of an output that cannot be accounted for by a smooth data
model is called the Gamma statistic. As the number of data samples increases the Gamma statistic
invariably® approaches an asymptotic value which is the variance of the noise on the particular
output.

The god of model identification for a particular output is to choose a selection of inputs that
minimises the asymptotic value of the modulus® of the Gamma statistic. All things being equal this
should result in amodel which has minimal MSError when used to predict the output using input
data not seen in the model construction process.

What happensif thefinal conclusion isthat the noise variance on the output we aretrying to predict
is unsatisfactory? We can attempt one or all of the following:

® | ncrease the accuracy of measurements of both the inputs and the outputs. The effective
noise variance on the output may be the result of measurement error on the inputs.

® Ask if we have included all the principa causative input variables liable to affect the
output. If some obviously important factor has been missed then thismay well explain why
we are currently unsuccessful in predicting the output variable.

® For atime series prediction we could increase the rate of sampling or consider if thereare
other time series which may have predictive value for the time series we are interested in
predicting (such time series are often called leading indicators).

One reason the Gamma test is so useful is that it can immediately tell us directly from the data
whether or not we have sufficient datato form asmooth non-linear model and how good that model
isliableto be. If theresult isthat the error of prediction istoo high, no matter how much datawe are
given, then we must address the above issues.

For each choice of inputsinvestigated, asthe number of data pointsincreaseswe attempt to establish
the asymptotic Gamma statistic for each output. We then choose the set of inputs for a particular
output that has the minimum asymptotic Gamma statistic - this is known as model identification.
Having established the best selection of inputs for each output, using the winGamma software,
models may be built by:

® Static local linear regression (fixed model).
® Dynamic local linear regression (model updated as new data becomes available).

or by using one of four different types of neural network training algorithms:

3 Convergence in probability.
* Because of sampling error if thevariance of thenoiselevel on an output isvery small the Gamma statistic

may sometimes be negative, even though avariance can never be negative. If thisoccurs we use the absolute value
or modulus of the Gamma statistic.

10
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® Two layer back propagation

® Meta-backpropagation (Not included in the Beta release)
e Conjugate gradient descent

® BFGS neura network

Predictions on new input data for which the outputs are unknown can also be made using one or
more of the models.

1.1.2. Therange of applicability.

The software is designed to anayse datawith the goal of producing anear optimal smooth function
from inputs to outputs using only the data provided. Both the inputs and outputs should be
continuous real variables from some bounded range. The software will be much less effective if
some of the input or output variables take only categorical values (e.g. O or 1). The underlying
function is presumed smooth and this means bounded first and second derivatives. If the unknown
function hasregions of very high curvatureit will be much harder to produce an accurate predictive
model.

It isalso assumed that the noise variance on each of the outputsis bounded and independent of the
input values. If the independence condition isfalsethisis not necessarily fatal, the Gammartest will
return an average noise variance over the whole input space.

Subject to these conditions winGamma can be applied to a wide variety of non-linear modelling
problems. It is particularly useful in the research and design of non-linear control systems.

1.2 L oading data files.

winGamma can analysetwo basi ctypesof numeric datafiles. |nput/Output data, where each column
corresponds to an input or an output, and Time Series data where each column corresponds to a
particular time series and successive rows represents successive values in time for each series.

Note all data files must contain only numerical data arranged in one of the alowed formats. (For
more detailsof datafileformatssee Appendix I1.) Toload adatafilelaunch the application fromthe
Start menu. Click on ‘File’ and then 'Open Analysis Data Set'.

1.2.1 Comma separated variable (*.csv) files from spreadsheets

If thefile dataisin the *.csv format (e.g as exported from Excel), on loading the file you will be
asked to specify which of the columns are outputs. Because a *.csv file does not indicate which
columnsareinputsand which are outputs, if thefileisan Input/Output fileit isnecessary to givethis
information to winGamma. Each column hasto be tagged asan input or output column. Thisisdone
asindicated in Figure 1.1.To changean input (default) to an output select it with the mouse or cursor
keysand pressthe "Enter’ (or ‘Return’) key, or toggle with adouble click on theleft mouse button.

11
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-
I Data Tranzformation |

Column Data | Input/Output |

1 0.010234 Inpi [% . . - .
> F £34003 Input Diata Settings  Time Senes Options |

3

Mumber of inputs per zernez |5
Mumber of outputz per zenes |2

M aving average width 1]

11

[ Differences

Use the cursors o mouse ko select & row.

Press return or double click to toggle the highlighted row between input and output,
Cancel | Appl
Daone | Sppiy

Figure 1-1 Toggle inputs to outputs as Figure 1-2 Selecting the number of inputs
required when loading a *.csv file as and outputs per time series.
Input/Output data.

For Time Series data specify all columns asinputs. Asin Figure 1.2 winGamma will then ask you
to specify the number of inputs and outputs per series. At present these are the same for all series.
In Figure 1.2 we are choosing to use 5 previous values of every time series to predict the next 2
values for each of the time series. Choosing more outputs will produce predictions further into the
future. The nature of thingsis such that the further wetry to predict into the future the less accurate
these predictions will be. This is reflected in a higher Gamma statistic for more distant future
predictions.

1.2.2 Input/Output data in standard format (*.asc) files.
Standard format for an Input/Output file is DOS I
ASCII in the following form. In each row the

inputs are separated by spaces and the list of [ ata Settings |
inputs terminated by acomma. Thelist of outputs

then follows, each separated by spaces. Theend of Diata type ‘ectar Function
arow issignified by CR/LF. Filedatain standard Inputs 2
Input/Output  form will be automaticaly Outputs 1
recognised as such. At present the numbersin the Yectars 10673
file must be in smple decimal format. S o
W Mormalise
Thefirst decision to be made after specifying the P&
filenameiswhether or notto‘ Transform’ (i.e.to Cancel | Aol
scale or normalise) the data. To normalise check ki =

the appropriate box as indicated in Figure 1.3 Figure 1-3 The "Normalise’ check box.

For afull discussion of the effects of scaling and
whether or not to scalein any particular case see section 2.14. Inaninitia investigation it isusualy
agood ideato scale Input/Output or multiple Time Series data.

12



The winGamma User Guide GETTING STARTED Version: 18 Jan 2002

1.2.3 Time Series data in standard format (*.asc) files.

Standard format for aTime SeriesfileisDOS ASCI| inthefollowing form. Each column represents
an individua time series. The rows represent values for each of the time series, successive rows
being successive values in time. Within arow each numeric value is separated by spaces. The end
of arow issignified by CR/LF.

1.2.4 Partitioning the data.

Select proportion of data zet for analysis I

Start 1 10578 End
[1 | | [5000

Cancel |

Figure 1-4 Selecting a proportion of the datafor initial analysis.

It is sometimes convenient to perform the initia analysis on a subset of the whole datafile. This
could happen for examplewherethe dataset wasvery large. ThereforewinGammawill next ask the
user to select the proportion of the data which should currently be used for analysis, see Figure 1.4.
We can later separate training and test data.

1.3 A first experiment.

Load the 2-input/1-output data file solar.csv and select column 3 as output. Initialy do not
normalise. Select all the datafor analysis, there are 10578 data points in thefile. After the data has
been successfully loaded winGamma displays the main screens, asin Figure 1.5.

The Experimentswindow inthe AnalysisManager showsthe different kinds of dataanalysisthat
can be performed. We shall discussthe meaning of these experiments and the interpretation of their
results fully in Chapter Il. For the present we shal simply illustrate the basic Gamma test
experiment.

The Data Set Manager shows the data that has been loaded asin Figure 1.5, where the windows
have been tiled.. Because datafiles may be very large the datarows are divided into “pages’ of 100
rowseach. In Figure 1.5 thefirst page has been sel ected. Each column represents acolumn of inputs
or outputsand islabelled as such. Thefirst four rowsgive the Mean, Sandard Deviation, Minimum
and Maximum of each column for the whole of the data selected for anaysis. The name of the
current data fileis aso displayed at the top of this window.

Handy Tip. Notethat most of the windows and sub-windowsincluding the column separatorsinthe
Data Set Manager data display can be resized using click and drag.

To perform aGammatest select the Analysis M anager and then Experiments. Highlight Gamma

test and select ‘New’. We can now toggle between the Experiment tab and the Mask tab. The only
option to be set from the Experiment tab in this experiment is the number of near neighbours. For

13
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the present leave this set to 10. The Mask tab is used to select which inputs to include. Leave this
set to * 171’ (i.e. both inputs are included).

@ win amma M= E3

File Edit Transzform Options  Yiew ‘wWindow Help
e | B W E
lB Analysiz Manager M=l E3

M e [Nelete | Snalyee Graph el | ljest ey what( - Eredict
E =periments | Mgde|g|

----- * [ncreasing ne{:&neighhnurs -
..... s M-Test

: e Maving window garnma test

- » Model |dentification d

lB Data Set Manager O] =]

FPage b File: zolarcay

[rput 1 Input 2 Output 1 ﬂ

L,

<enter aliaz H <enter aliaz H <enter aliaz H

3

é Mean [2.3339 E.5362 2.E583

E Std Dew [5.6474 2.2676 5.2239

7 bin -0.03514 0.33349 -5.928

2

q LI P ax 30.545 15679 2822 LI

| | | /4
Figure 1-5 The Analysis and Data Set M anager s after loading a datafile.

When these steps are complete click on ‘Execute’. Under the Analysis Manager the Settings
window will now show the settings for the current experiment. This is shortly augmented by a
Results window which shows the results of this experiment. We can switch between the Settings
and Results windows using the appropriate tabs. These results for the single output are presented
in a Results/Settings window along a single row (because there is only one output) and are shown
hereinthefirst column of Table 1- 1. If thereismorethan one output the software generatesasimilar
set of results for each output.

Finadly ‘Transform’ the data and repesat the experiment to obtain the scaled results in the last
column of Table 1-1.

1.3.1 Interpreting the results.
To interpret these results it helps to have some idea of how the Gamma statistic is calculated. We
shall describethismorefully in Chapter 11, but for now it isenough to know that the Gamma statistic

is calculated by determining aregression line based on near neighbour statistics derived from the
data - see Figure 1.6.

14
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Gamma

Thefirst row of Table 1-1 gives
the Gamma statistic (pmax = 10)
for the output as evaluated over
the data selected for analysis(in
this case the whole data set). As
one can see from Figure 1.6 the
Gamma datidtic is actualy the
vertical intercept of the
regresson line in the figure.
Thisisthe estimated variance of
the errorsfor any smooth model
built on the data. Since the
output variable range is
approximately [0, 30] this is a
relatively small error variance. It
means any smooth model built
on thisdatawill have astandard
deviation of the prediction error
of about v 0.020761 = 0.144 on

GETTING STARTED
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Table 1-1 Gammatest results with pmax = 10 for unscaled and scaled

solar.csv data.

Unscaed Scaed
Gamma 0.020761 0.000196
Gradient 0.244242 0.256910
Standard Error 0.002360 2.328010E-5
Vratio 0.000760 0.000785
Near Neighbours 10 10
Start 1 1
Unigue Points 10578 10578
Evaluated Output 1 1
Zero Near Neighbours 0 0
Upper 95% Confidence | O 0
Lower 95% Confidence | O 0
Mask (remaining entries) | 11 11

the unscaled data - which is about 0.5% of the range.

In generdl it is helpful to distinguish two cases:

® First, where the true noise variance is
zero. In this case the asymptotic Gamma
statistic should approach zero and thereis
no limit to how good a model we can
build provided only that we have more
and moredataof arbitrarily high precision.
For example, this can happen with
artificially generated datafor chaotic time
series.

® Second, and more redlistically, where
the true noise variance is positive. In this
case the asymptotic Gamma dHatistic
should aso be positive and there will
come a point where using more data to

Gamma statistic

Delta |

Figure 1-6 The Gamma statistic and the

Gradient/Sope.

build our model will not actually improvethequality of the predictionswhen compared with

the measured values of the output.

In the case of apositive asymptotic Gamma stati sti c we can determine the minimum amount
of training data required to build a smooth model with this MSError using the M-test

described in section 2.5.
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Gradient

The Sope or Gradient isthe dope of theregression linein Figure 1.6 used to cal cul ate the Gamma
dtatistic. It isactually arough measure of the complexity of the smooth function we are seeking to
construct. Inthis casethe gradient of A= 0.244 indicatesthat the output is arather smplefunction
of the two inputs. It isgenerally best to look at the Gradient for the scaled data since this refers to
a standardized output range.

Like the Gamma statistic the Gradient will eventually asymptote to a fixed value. However, the
number of data samples required to get a stable asymptote for the Gradient will usualy be much
larger than the number required to get a stable asymptote for the Gamma statistic.

Sandard Error (SE)

Thisisthe usua goodness of fit applied to the regression linein Figure 1.6. If thisnumber is close
to zero we have more confidence in the value of the Gamma statistic as an estimate for the noise
variance on the given output. In this case an SE = 0.00236 represents a good fit for the regression
line.

Vratio

The Vratio is defined as Gamma/Var (output). It thus represents a standardised measure of the
Gamma gtati ti c and enables ajudgement to beformed, independently of the output range, asto how
well the output can be modelled by a smooth function. In comparing different outputs, or outputs
from different data sets, the Vratio isagood number to study becauseit isindependent of the output
range. A Vratio close to zero indicates a high degree of predictability (by a smooth model) of the
particular output. If the Vratio is close to one the output is equivaent to random noise asfar asa
smooth model isconcerned. Inthis case Vratio = 0.00076 indicates|ow noise datawhich we should
be able to model quite accurately.

Near Neighbours (number of pmax)

This is the one user settable parameter in the Gamma test. When estimating the Gamma statistic
pmax should be selected in relation to the size of the data set. For large data sets, in the interests of
getting a more accurate Gamma statistic, we can afford to take the number of near neighbours
somewhat larger (this depends on a number of factors discussed in Chapter 11). In genera in a
Gammatest experiment we should keep the number of near neighbourslessthan 30. Usually 10-20
isagood choice.

Sart

This indicates the row identifier for the first vector selected.

Unique Points

16
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In some data sets the same input vector may occur severa or many times. Thisindicates how many
distinct input vectors are present in the data (see the discussion on zeroth near neighbours below).

Evaluated Output

Indicates to which output the results relate. In a file with multiple outputs all these results are
calculated for each output.

Zero(th) Near Neighbours

In some data sets the sameinput vector may occur several or many times. If an input vector appears
multipletimesthen, if it hasthe same output value(s), it might be construed as arepetition or it may
be a separate independent observation. In the first case there is no extrainformation and the data
vector should be deleted. In the second case there is useful information in the two vectors because
they aretelling us that for these inputs the outputs are identical, and so presumably subject to low
or zero noisevariance. If one or more outputs are different for the sameinput vector then again there
is useful information, because enough vectors of this type could give us an immediate grip on the
noise variance.

Therefore because it isimportant for an analyst to know if the same input vector occurs multiple
times winGamma provides this information by stating the maximum number of non-unique input
vectors. If thisnumber issmall in relation to the size of the dataset it can safely beignored on afirst
pass. If it islarge then the data should be subjected to some analysis outside of winGamma.

Upper 95% Confidence/Lower 95% Confidence

In the case where zeroth near neighbours are present these results are the lower and upper bounds
a the 95% confidence levels for the Gamma statistic estimated directly from the zeroth near
neighbours. Unless the data file has many repeated input rows these values can be ignored. If the
file has many repeated inputs then these val ues can be compared with the normal Gamma statistic
(which is computed in an entirely different way).

1.4 The basic controls of winGamma.

The use of these options will discussed fully in Chapter I1.

The Analysis Manager .
Experiments These are options used to determine the Gamma tatistic and to investigate
how reliable this statigtic is, i.e. to determine. the quality of amodel which might be built
using the data and a given selection of inputs. To invoke any of these options after loading
adataset smply select the AnalysisM anager and highlight the option required. Thenclick
on New’. For any particular option there are probably other parameterswhich requireto be

set before invoking “Execute'.

Gamma test: Finds the Gamma statistic and other relevant measures.

17
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Increasing near neighbours: Finds how the Gamma stati stic varieswith the number
of near neighbours used to compute it.

M-test: Shows how the Gamma statistic estimate varies as more data is used to
computeit. Thistest can aso tell us how much datawe are likely to need to obtain
amode of agiven quality.

Moving Window Gammartest: Showshow theestimatefor the Gamma statisticusing
afixed number of data points varies as we move afixed length window aong the
datafile. Thisisused to check the stability of the Gammadtatistic aswe move along
alargefile.

Model I dentification. These options are used to select those inputs which can best be used
to predict a selected output (some inputs may be noisy or irrelevant). The use of model
identification techniquesis discussed in Chapter I1.

Full Embedding
Genetic Algorithm
Hill Climbing
Sequential Embedding
Increasing Embedding

Other features. Are captioned in Figure 1.7.

ﬁ winGamma

Scale/unscale or partition the data —File—Edi Options Miew Window Help
Data Set Manager g URnEmebe:
— Partition analysiz data set
Current data file name — N | (T Data Se
Page of data sclected for display [ P22 ¥ Fie: solarcsv
. h v - Input 1 Input 2 Output 1
Analys1s Manager — 3 <enter alias H <enter alias H <enter alias
) T 4 Mean |0 [i 0
Delete selected experiment .~ {I5 T e e
| ;E& 7 ﬁAnal}lsis Manager
Select Allal)"SC for gfﬂphlcal g \N;’:T'-,' “ Delete Analyse  Graph Model ‘ jest [uen SwWhatlh Bredict
analyscs 10 Experiments | Modelsl Results I SEtlingsl
. 1 — -
Current Experiment type ———— |[42 | |E » Training Set Analysis 1l output |gutput1 vl
. 13| 7 E-e Gammatest
Current Experiment number o “mp Enperiment 1 Analysadhodsl Rovi 1

| ® |ncreasing near neighbours
Current Experiment results e M-Test
i b s Moving window gamma test
£l » Model Identification
» Full embedding
- w» [Genetic algarithm
- & Hill climbing 4

‘ T

\ \ [ 7
Figure 1-7 The Analysis and Data Set Manager windows after performing the initial
experiment.

Gradient IStandald Eror |%-Ratio
B 23265 0.00078571
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1.5 Two smple examples

In this section we further illustrate the use of winGamma using two test files provided with the
software.

1.5.1 An Input/Output file.

The data for the file Sn500.asc was created (via ¥

the Mathematica file DataGen.nb) using the |15 "

function y = Sin(x) and then adding uniformly L

distributed noise with a theoretical variance of | 1f | itEI

0.075 to the y values. A point plot of the data is R

shown in Figure 1.8. A B Y .

1511 The basic steps N PRl
r N ot

Load the data file and run a smple Gammatest | e

with the number of near neighbours set at 10 | _, e

(default), as described in section 1.3. Do not scale e

the data. Note that we do not need to specify the |15

number of inputs and outputs becausethisfileisin - £igyre 1-8 The noisy sine data.
standard format.

The Gamma datistic in the Results window is 0.07355 which is quite close to the theoretical noise
variance. The Vratio of 0.12762 suggests that we will not be able to predict the value of an output
very accurately, which in view of the data plot in Figure 1.8 is not too surprising. The SE is
0.0037651 which indicates afair degree of rdiability in this assessment.

Now click on Analyse. Thisenablesusto seethree analytica graphical displayswhich aredescribed
more fully in Chapter I1. Thefirst of these displaysisthe Gamma scatter plot and regression line of
Figure 1.6. The other two tabs give a 3D Histogram and an Angle histogram. These are different
ways of viewing the data in the scatter plot.

How stable is the Gamma statistic (with 10 near
neighbours) as the number of data points varies?
We can answer this question by clicking on the
Experimentstab andthen highlighting M-test. This
will run the Gammartest for an increasing number
(M) of data points. Now click on "New’ to begin
setting up the M-test. leave the number of near

neighbours set to 10 and click on the M-test tab.
Set theinitial sample sizeto 10, the final sample
sizeto 500, and the stepssizeto 10. Now click on
Executeto beginthe Experiment. After the Results
window comes up click on "Graph’ to obtain a
graph of the Gamma dtatistic values against the
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Figure 1-9 An M-test on the noisy sine data.
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number of data points. Thisisshown in Figure 1.9 and we can see that after around 425 pointsthe
graph isfairly stable. The fact that the data is rather noisy means we should try to optimise the
number of near neighboursfor the Gammatest if wewish to obtain amore accurate Gammadstatistic
and we shall see how to do thisin Chapter I1.

1.5.2 A chaotic Time Series.

1.5

0.5

-0.5

-1

-1.5

Figure 1-10 The first 100 points of the Figure 1-11 The surface which defines x,,,;
Hen500.asc time series. in the Henon map as a function of the two
previous values.

Herewe usethefile Hen500.asc. Thisfilecontains X (n+1)
time series data generated by iterating the Henon 1.5
map. It isdescribed in moredetail in The Gamma

test and how to useit: a practitioners guide. 1

Toget someideaof what thetimeseriesdatalooks | ™ =*=awsmrien & 51,
like we graph the first 100 points of the time ' i
series using any convenient software asin Figure |~ . T ¢ B o -
1.10. Although this time series looks quite At Sl "
unpredictable, nevertheless the underlying model '

which takes us from two successive values to the 1
next is a smooth function of the two successive
inputs and therefore does not violate the -1.5

requirement of the Gamma Test, see Figure 1.11.  Figyre 1-12 The distribution of pointsin the
input space for the Henon map.

A very important factor to consider when building
a non-linear model is the distribution of sample
pointsin the input space. In some cases these pointswill be uniformly distributed but in many cases
thiswill not be the situation. If we plot the distribution of the points (.., X,) for the Henon map data
fromthefileweobtain Figure 1.12 Peculiar distributions of datalike thiscan be very helpful in high
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dimensional input spaces, asit often meansthat we need less data to build agood model than would
be the case if the data were uniformly distributed over the whole space.

It is precisely the surface of Figure 1.11 which is
the model that we can seek to construct using
winGamma. We could take the time series and
create a 2-Input/1-Output data structure (X.1, X))
-> X..q. In fact any time series that evolves
according to some smooth iterative or dynamic
process can be treated thisway, provided only that
we can determinethe number of previousvalues of
the time series required to predict the next vaue
(thisis called the embedding dimension)®. In this
example we shdl pretend that we do not know the
embedding dimension and show how winGamma
can be used to get some idea of which previous
inputs are likely to produce a good model.

Note that the data in the file Hen500.asc is high
precision and not subject to noise.

1.5.2.1 The basic steps

1. Load Hen500.asc with 'Open Analysis Data
Set’.

2. Set the number of inputsto 10inthe Time Series
tab.

3. Donot enable’Nor malisation’ inthe check box.
Since the data is a single time series and each
sample is comparable we should not expect much
gain from scaling.

4. When prompted to sel ect aproportion of thedata
set for analysis use al the data (1-490) for the
initial analysis and click 'OK’

5. Select "Gamma test’ from the Experiments
Manager and then click on "New’

{D Results Visualiser

Select output: | Output 1 [

 Custom Chart |
% Series

Postion inList *
Primary ¢ & eries ot
Garmma - 010

I

oo !

Overlay 'Y Series 0084 -

- Mane - & 074 ---
o

Eoostl--
=

©a0s -t -

an4

[ 15]x]

Pasition in List v Gamma
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000

[% Pasttion in List

— Gamma

Figure 1-13 The result of an Increasing
Embedding on Hen500.asc withamaximum
of 10 inputs (using 10 nearest neighbours).

D Results Visualiser

Select output: | Output 1 [
(it
# Series

4
Unigue Data Pc ¥
Primary ¥ Series
Gamma i
Overlay Y Series
-None - i

[L[5]]

Unigue Data Points v Gamma

LA AR L S s e A e M L e e M
20 40 B0 80 100120140160 150200 220240260 260 300320 340 360 360400420 440460 480
Uniue Data Poirts

— Gamma

Figure 1-14 The result of an M-test on
Hen500.asc with 2 inputs (using 10 nearest
neighbours).

® Thefact that thisisso isby no meansobvious. It isaconsegquence of afairly deep theorem due originally

to Takens (1981).
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Initial results: The initial result gives a Gamma statistic of 0.117143 and a Vratio of
0.185337 whichisnot very encouraging. However, thereal reason for thisisthat most of the
inputs we have selected for the model are irrelevant or not very helpful.

6. Nextinthe ExperimentsM anager under Model | dentification highlight I ncreasng Embedding.
and then click on "New’. Leave the number of near neighbours set at 10 and click on "Execute'.
What this experiment does is to compute the Gamma statistic for a succession of models based on
1-Input (the previous vaue), 2-Inputs (the previous two values), etc. up to the maximum number of
inputs we have set (which is 10), where in each case the output is the current value.

Results. This gives us a succession of Gamma values which we can graph by clicking on
"Graph’. The result is shown in Figure 1.13. Here it becomes clear that the best of these
models (i.e the one having a Gamma statistic closest to zero) is the one which usesjust the
two previous vaues. The Gamma statistic for thismodel is approximately -0.000161 which
isvery closeto zero. The Vratio is-0.0001648 which again is close to zero.

7. Now that we have identified the relevant inputs pull down the "Transform’ menu and click on
“Transform thedataset’. Under the Time SeriesOptions select 2 inputsand 1 output and then leave
the proportion of data set for analysis set to 1-498.

8. Nextinthe AnalysisManager under Training Set Analysis select M-test and then click on "New’.
Inthe Experiment Editor click onthe M-test tab and set the Initial sample sizeto 10, leavethefina
samplesize set t0 498, and set the step sizeto 10. Now click on "Execute’ . We should liketo see how
stable the Gamma dtatistic is and how much data we are likely to need to get agood quality modd.
Finally when the resultswindow comesup click on "Graph’ to seetheresult of the experiment. This
isshown in Figure 1.14

Results. We see from the graph that we could probably build a pretty good model using only
around 100 points. However, if wewant to be sure then we should choose around 280 points
because from this point onwards the

variations in the M-test graph are very [EETEES

small. 280 points gives a Gamma Statistic z‘mlasw‘l Ajn;wmg.m| —
of -0.001054 and a Vratio of -0.001017. N

Gamma Scatter Plot

8. Highlight the result in question in row 28 and
click'Analyse'. Thescatter plot and regressionline
isshown in Figure 1.15.

Handy Tip. By left clicking and dragging the
mouse down and to the right we can zoom in on
any selected part of these graphs as shown in
Figure 1.15. We can dso move the contents
up/down and left/right by right clicking and

dragging. To restore the origina view smply left  ; gure 1-15 The scatter plot for 280 test

click and drag the mouse up and to the right. points on Hen500.asc with 2 inputs (using 10
nearest neighbours).
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It isinteresting to see the remarkable difference between this scatter plot and corresponding
scatter plot for the noisy sin datawe used in section 1.5. Here in Figure 1.15 we cannot fail
to observe the dmost empty wedge in the top left hand corner of the plot. We shall seein
Chapter 11 that such afeaturein the scatter plot isstrongly indicative of anoisefree smoothly
determined process. This observation is reinforced by the very small Vratio.

9. Finally examine and compare the other graphs produced by the Analyse tabswith those produced
for the noisy Sin datain section 1.5.1.1. We shall examine these tools more fully in Chapter I1.

1.6 Linear models

winGamma is anon-linear modelling tool and makes very few assumptions about the nature of the
model. Because of thisfact it generally needsfar more datathan parametric analysiswherethe model
is presumed to have a particular form. If it is safe to assume that the model is linear then asimple
linear regression model should be built and tested using some other standard software (e.g.
Mathematica has very good linear regression facilities).

If you know nothing at all about the data being analysed it is always a good ideato check the linear
regression model before using winGamma.

If the data is fundamentally linear then winGamma will perform quite well using local linear
regression. However, winGamma will make less efficient use of the dataavailable than global linear
regression.

1.7 Exporting resultsfor use by other software
Data produced by winGamma is either Graphics or data such as predictions.
Data Files can be exported in:

1. Mathematica compatible format e.g. {} s are embedded to format lists and arrays.
2. Excel and spreadsheet compatible comma separated variable (*.csv) format.

These Export functionsare availabl e asan option under 'Edit’ in the main winGamma parent window,
aright click on the mouse button in the appropriate context, or by clicking the *»’ tab in the top left
corner of many of the graphics windows.

1.8 Customising the file and project directories

To customise the locations of data files and project files (discussed in Chapter I1) pull down the
"Options menuand click on "Customize' Y ou can modify the number of datafilesand project files
kept in the history (inisusually best to set these to their maximum of 9). Now under datafiles click
on ‘Modify’ and select the directory that should first appear when the process of loading adatafile
isinitiated. Whenthe desired | ocation hasbeen selected click on "OK’ . Gothough asimilar procedure
to locate the project directory. If you wish the windows settings to be saved each time winGamma
is closed down then check the appropriate box. Finally click on "Apply’ and exit the program.
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CHAPTER Il Performing an analysis

2.1 Introduction

An Experiment isaparticular type of calculation performed ontheanalysisdata. A new experiment
is started by highlighting the type of experiment required and then selecting ‘New’ inthe Analysis
Manager window. If wewant to perform the same cal culation but with different parameters (e.g. the
number of nearest neighbours) or anew method (e.g. M-test) then anew experiment is started.

In this chapter we discuss each type of Experiment, how to set the parameters and how to interpret
the results. Each Experiment is discussed using an example and illustrated with screen shots.

2.1.1 The user cycle

The user cycle for a full anaysis is not completely fixed and can be varied according to
circumstances. However the general approach can be summarised by the following steps.

Input/Output files.
1. Load the data and on the full data set (if not exceedingly large) do a simple Gamma test
scaled and unscal ed with the number of nearest neighbours set to the default of 10. If thedata

setisvery large use a subset of the data for initial experiments.

2. Run an Increasing Near Neighbourstest and use the minimum SE between (say) pmax =
5 and pmax = 50 to determine the most accurate Gamma statistic.

3. Using the value for pmax determined in Step 2 run an M-test to determine how stable the
Gamma statistic is with increasing data set Size.

4. If the M-test produces a stable asymptote decide if the noise varianceis likely to be:
® Zero (arbitrarily good models possible with enough high precision data).

or ® Non-zero (not much point isusing more datathan necessary to giveamode which
predicts at the Gamma statistic level).

On this basis decide how much datais likely to be needed to build a model.

5. Can we get a better Gamma datistic by discarding some of the input? To answer this
question run a Full Embedding if the number of inputsis small enough to allow this (say <
10 -15). Otherwise try the heuristic search techniques, such as Hill-climbing or Sequential
embedding (see 2.7.2 - 2.7.4), ending up with along GA run.

6. If abetter embedding is found then repeat steps 2, 3 and 4 to refine those conclusions.
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Time seriesfiles.

Time seriesandysisis complicated by the fact tat we probably do not know how far back intimewe
should look to build our prediction model. This initial decision is not irrevokable and should be
guided by some degree of commonsense analysis on what islikely to be the case for the given data
set and how much datais available.

E.g. For asingletime serieswith annua periodicity, wherethe samples are weekly, we might set the
number of inputsto 104 - the equivalent of two years. However, 104-dimensional space has*alot of
roomup there’ and we should need adata set going back many yearsto makethisworthwhile. If only
afew years data is available then perhaps we should first consider a model over the last severa
months or weeks.

1. Load the dataand do not initially normaliseif it isasingle time series. Set the number of
inputs to a reasonable maximum in the light of the data and the number of outputs initially
to one. Now perform asimple Gamma test on thefull data set (if not exceedingly large) with
the default number of near neighbours set to 10, to get aninitial idea. If the data set is very
large use a subset of the data for initial experiments.

2. Run an Increasing Embedding test to determine a likely embedding dimension.
3. Transfor m the data set to reset the maximum number of inputsto thelargest number from
the Increasing Embedding Experiment which still gives a comparatively smal Gamma

statistic.

4. Run aM-test to check the stability of the Gamma statistic If the M-test produces a stable
asymptote decide if the noise varianceis likely to be:

® Zero (arbitrarily good modes possible with enough high precision data).
or ® Non-zero (not much point isusing more datathan necessary to giveamodel which
predicts at the Gamma statistic level).
On this basis decide how much datais likely to be needed to build a model.
5. Can we get a better Gamma statistic by discarding some of the input? To answer this
question run a Full Embedding if the number of inputsis small enough to allow this (say <=
10 -15). Otherwise try the heuristic search techniques ending up with along GA run.
6. If abetter embedding is found then repeat steps 4, 5 and 6 to refine those conclusions.

7. Refine the number of near neighbours for the fina estimate of the Gamma statistic using
an Increasing Near neighbours test.

2.2 The Gammatest
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Thisfinds the Gamma statistic and other relevant measures. These are principaly the Gradient, the
Vratio and the Standard Error as described in Chapter I.

Oncethe inputs have been determined, either with preliminary Gammatests or becausethese are set
by the structure of the data, as in multiple Input/Output data sets, the only parameter to optimiseis
the number of near neighbours (often denoted by pmax). It is a remarkable fact that for many data
sets the default of pmax = 10 nearest neighbours is often nearly optimal.

A suitable size for pmax in the Gammartest principally depends on two factors. The number of data
samples M:: if M islarge thelocal number of data points close to agiven point can be expected to be
high The local curvature of the surface described by the unknown function f: other things being
equal, for a surface with high curvature we cannot afford to take neighbours too far away, so that
pmax will require to be smaller.

Systematic ways to determine the best choice for the number of near neighbours are described later
in section 2.4.

Note that the size of pmax in modelling the unknown function f using loca linear regression is
determined by other factorsdescribed in section 3.2. Whilst for the GammaTest it isusually the case
that we want to take pmax small, for local linear regression at high noise levelswe will need to take
pmax much larger.

2.3 The Gamma Test analysis graphs.

After performing an experiment highlight therow containing the Gammaresult to be scrutinised and
click ’Analyse'.

Clicking on the tabs will provide the other plots that are discussed below. In an experiment where
there are multiple Gamma results the graphs and plots will relate to the highlighted Gamma result.

® Therefore it isimportant to highlight the required result in the Results window.
2.3.1 The scatter plot and regression line.

The critical graph to look at first isthe scatter plots and ((p), y(p)) regression line, see Figure 2.1.
The scatter plot shows point pairs (3, y), where § is the squared distance of an input (x) from one of
its near neighbours and y is one haf of the squared distance between the two corresponding scalar
output (y) values. The pointsto which the regression lineisfitted are cal cul ated by finding the mean
d(p) of 6 and y(p) of y, where p refersto the first nearest-neighbour (p = 1), the second nearest
neighbour (p =2 ) and so on up to the maximum number of near neighbours (pmax) which has been
set by the user.

A good regression line with points (3(p), y(p)) approaching (3, y) = (0, 0) indicates that the scalar

output val ues of input-near-neighboursare close. If theregression linehasasteep dopethisindicates
that themodelling function f that we seek to approximateisliableto be quitedifficult to construct and

27



The winGamma User Guide PERFORMING AN ANALY SIS Version: 18 Jan 2002

alarge number of datapointsM will be required. If thelineisamost horizontal the functionisquite
smple.

A particular feature to look for here is an empty ‘wedge' in the top left corner of the scatter plot. If
thereare pointsin thetop | eft corner it meansthat there are input pointsin the origina dataset which
have [x(i) - x(j)| small (i.e. x(i) and x(j) are close together) but their corresponding output valuesy
have |y(i) -- y(j)| large (i.e. y(i) and y(j) are far apart). This is very bad from the viewpoint of
constructing a smooth model. It may be a reflection of a high intrinsic noise level on y (a high
gamma) or it may just be that there is no smooth underlying mode.

Gamma Scatter Plot
e R S S SRR
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Figure 2-1 Main Features of the scatter plot and regression line

An example where the underlying model isnot intrinsically smooth might be alogic function of the
input variables, eg XOR or m-bit parity. In m-bit parity the inputs are the vertices of the
m-dimensional unit hypercubeand the outputsare 1 or O. Infact one can put asmooth surfacethrough
these points but thisisarather meaningless exercise. Problemswith alarge number of discreteinput
or output variables are best tackled via a decision tree approach rather than trying to use smooth
modelling techniques.

The scatter plot can also give important clues on the nature of the data. For example it can happen
in some control applications that the system being modelled goes through two or more different
dynamical regimes. In one instance the scatter plot revealed that there were really two different
regresson lines each corresponding to a different dynamical regime. Moreover, each regime
corresponded to a distinct part of the input space. By spitting up the input space and building a
different model for each part a vast improvement on modelling capability was obtained.
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It is interesting to note that by taking the number of near neighbours pmax much larger than is
necessary (or desirable) for the Gammatest, the scatter plot can also reveal periodicitieson different
scales present in the data (although for large pmax the resulting Gamma statistic estimate will be
essentialy meaningless). Consider for example the data provided in ModSn5000.asc. Thisisa 1-
[nput/1-Output file derived from sampling the graph in Figure 2.2.

A

Figure 2-2 Modulated sine curve used to Figure 2-3 Scatter plot with pmax = 100 for
generate the Input/Output file ModSn5000.asc.
ModSn5000.asc

=

The scatterplot with pmax = 100isshownin Figure 2.3. Thisillustratesboth levelsof periodicity and
also shows why to get an accurate Gamma statistic we should take pmax fairly small.

2.3.2 The 3D histogram.

Thisisjust another way of viewing the scatter plot. The software can a so display the scatter plot as
a 3D histogram, as for example in Figure 2.10, which can be rotated and examined from different
viewpoints. Click theleft and right pointing red arrowsto rotate the viewpoint. Default isto display
frequency values linearly on the vertical axis but there is aso an option for a logarithmic vertical
scale.

This canillustrate more clearly the *wedge shaped' area. It can aso be used to quickly ascertain the
distribution of outliers. We shall call point pairs with large 6 (each is along way from its nearest
neighbour) and largey (they values of close inputs are far apart) strong outliers and techniques for
identifying and eliminating such points will be discussed in alater version of this document.

2.3.3 The angle histogram.

To help to further analyse the situation the software also produces an ‘angle histogram”, as for
examplein Figure 2.11, for each point in the scatter plot we imagine joining the gammaintercept on
thevertical axisof theregression line plot to the scatter point. Theangletheresulting line makeswith
the positive horizontal axisisthen computed. Thisangle liesbetween [-n/2, n/2]. A histogram of the
resulting anglesisthen displayed. Thefeatureto look for inthis histogram isthe frequency of angles
closeto the right-hand end, i.e. closeto /2. If there are no points close to ©/2 (= 90 degrees) thisis
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agood indicator for smooth modelling. If there are many points close to n/2 thisisavery bad sign.
Theimportance of the distribution closeto n/2 in the angle histogram isanother way to visualisethe
upper left hand wedge of the scatter plot.

Theremaining types of Experiment which can be performed are described in the following sections.
2.4 Increasing near neighbours

This experiment shows how the Gamma statistic (and the other resultsreturned by the Gammatest)
varies with the number of near neighbours used to compute it. It is used to get some idea of how
accurate the Gamma statistic is liable to be.

If we perform this experiment and use the graphing facility to plot the Gamma statistic and the SE
against the number of near neighbours, by examining the graphs together we can usually see which
choice for the number of near neighboursislikely to produce the most accurate estimate.

For examplein Figure 2.4 (produced from Sn500.asc we see that the SE first increases and then for
a while plateaus before (eventually) beginning to steadily increase. The range of the plateau is
roughly between 7-27 near neighboursand it minimisesat around pmax = 17 withaGamma statistic
dightly larger than 0.074, which we know (from the way the data was constructed) is close to the
correct vaue.
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Cugtomn Chart I
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I
0.a7v30 4 ! :
1 1
Owerlay v Senies norast ! ! 4
Standard Error i oo § B T N I, |
1 1 1 ] 1 1 1
E R S T it it e i B Sl it et e e Rl el i i St Tl il Sl et i -0.003 &
ED.D_HS': _____ :::JI_'::;::::::flzﬂlz:;::::::::::::ﬂlz_:_:_::_:_ _______ :_|:||:||:|3:I_n
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Figure 2-4 The variation of Gamma and SE as the number of near neighbours increases.
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We also note that the Gamma statistic is reasonably stable in the same range.

It is also sometimes interesting to observe when the Gamma statistic is at alocal minimum and the
Gradient isat aloca maximum as the number of near neighbours varies’. This criterion seemsto be
sengtive to noise on different scales of distance in input space.

2.5 M-test

Thistest isusedto show how the Gamma statistic (and the other resultsreturned by the Gammatest)
estimate varies as more data is used to compute it. Eventualy, if enough data is used the Gamma
statistic should asymptote to the true noise variance on the output for which it has been computed.

The M-test can also tell us how much datawe are likely to need to obtain amodel of agiven quality,
in the sense of predicting with a MSError around the noise level. In Figure 2.5 we see that in this
sense a perfectly adequate model can be built using anywhere from 150-200 data points, since the
variance of the Gamma statistic after this stage isrelatively small compared with its actua value.
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Figure 2-5 M-test graph for Sn500.asc Note the relatively stable asymptote.

® We call these the “Terry points after John Terry who first observed the phenomenon.
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Of course, using more data we can actually often progressively improve the modd (this can easily
be checked by building alocal linear regression model and usingthe W hatlf optionto recover aquite
good approximation of the original sine curve), but it isnot necessarily helpful to have an extremely
accurate mode if the output data we are comparing it with is subject to large amounts of noise.

2.6 Moving Window Gamma test

The Moving Window Gamma test shows how the estimate for the Gamma statistic (and other
relevant results returned by the Gammatest) using a fixed number of data points varies aswe move
along the datafile. It gives someindication of how stable the Gamma statistic iswhen estimated for
different subsets of the data all having the same size.

The remaining sections deal with model identification, i.e.(in this context) the best choice of inputs
for predicting a given output.

2.7 Modd identification
2.7.1 Full embedding.

An embedding is a selection of inputs chosen from al the possible inputs. In winGamma an
embedding isdesignated by astring of ‘ 1'sand ‘ O's called amask. Thusif there five inputs the mask
10111 indicates that al inputs are to be used are to be used in the embedding except the second.

A full embedding tries every combination of inputs to determine which combination yields the
smallest absol utrg Gammavalue. It returnsthe number of resultsrequested. If thereare mscalar inputs
thenthereare2 - 1 possible embeddings (the embedding where no inputs are chosen can obvioudy
be omitted). If m = 20 this is around one million. To do a full embedding we therefore have to
perform one million or so Gammatests, which isfairly time consuming, athough it can be donein
about aweek on afast PC.

Even if mis sufficiently small to make this practical (say m < 20), before we perform a full
embedding (assuming say m > 10) we should ask if we have sufficient data to justify it - because
looking at around one million Gamma va ues the differences between many of them will probably
be quite small and so we should ask if our estimates of the Gamma values are accurate enough to be
able to make these distinctions. Whether or not the estimates are sufficiently accurate to choose the
absolutely best embedding will mainly depend on how much dataisavailable. It practicethe best few
embeddingswill usually have little to choose between them.

Because afull embedding on alarge number of inputsis often pointless or impractical winGamma
offersanumber of excellent heuristic methods to find a good embedding and these are described in
the following sections.

A useful feature associated with afull embedding or GA search isthe Embedding Histogram, which

shows the frequency of embeddings with a specific Gamma statistic. If the choice of embedding is
largely determined by statistical variations in the data this histogram tends to have a Gaussian or
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Normal distribution (see Figure 2.33). If on the other hand there are clear underlying dynamicsinthe
data then the histogram often shows a bimodal or multimodal distribution (see Figure 2.36).

2.7.2 Genetic Algorithm

This option searches the space of all masks using a Genetic Algorithm (GA) to find good
embeddings. The parameters which can be used to control this search are (default values of
parameters are given in brackets):

Population Sze (100) The size of the population of masks being used throughout the search.

Mutation Rate (0.01). The probability that an individual bit will be mutated during the
reproduction process.

Crossover Rate (0.5) The chance of inserting arandom length run of bitsfrom aparent mask
to a child mask (i.e. the probability that a crossover event occurs during the reproduction
process).

Gradient Fitness (0.1) The weighting in the GA fitness function for masks giving a low
gradient in the Gamma Test. Increasing this weighting will place more emphasis on the
relative smplicity of the modelling function

Intercept Fitness (0.8) The weighting in the GA fitness function for masks with a low
absolute value of the Gamma dtatistic. Increasing this weighting will place more emphasis
on the model accuracy.

Length Fitness(0.1) Theweighting inthe GA fitnessfunction for maskswith agiven number
of ‘1's. Increasing this weighting will encourage the selection of masks with fewer *1'sand
thereby place more emphasis on ssmpler models.

Note the three weightings selected for GA fitness should sumto 1.

Run Time (5 minutes) The (approximate) maximum time selected to perform the GA.
Setting the popul ation larger may improve the final fitness of the best mask found but only if alarge
run timeis permitted. For long masks (i.e. alarge number of inputs) and large data sets the GA will
require runs of several hours.
2.7.3 Hill Climbing
In hill climbing amask istaken (default isall onesfor the current number of inputs) and each bit is
flipped in turn calculating the Gamma until the end of mask is reached. This is repeated until no
singleit flip givesan improvement on the Gamma. Thisisarelatively fast heuristic but takeslonger

than a sequentia embedding.

2.7.4 Sequentia Embedding
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Hereasingle passthrough the current mask ismade, flipping each bit only if thereisan improvement
over the Gamma statistic obtained with the original mask. Again default isamask of al ones equal
to thelength of the current input vector- though asin the previous method aninitial mask of any kind
can be used provided its length does not exceed the current number of inputs. Thisis very fast.

2.7.5 Increasing Embedding

Thelncreas ng Embedding al gorithm startswith the mask obtained by taking only therightmost input
(in the case of atime series thisis the most recent) and obtains a Gamma statistic for this mask. It
progressively increases the number of bits set in the mask working from right to left performing a
Gammartest for each new mask. It runs to the maximum number of inputs and stops. We can then
examine the Gamma datistic for each mask. The best embedding found will be the one whose
Gamma dtatistic is closest to zero. This is useful in a time series to discover the underlying
embedding dimension as we saw in section 1.5.2.

In the next sections we shall give example anayses using these various options.
2.12 Analysing Input/Output data

2.12.1 The Ran500.asc data.

We begin with adata set which isatype of ‘worst | cutput
casg' in the sense that there is no smooth data 1
model for thisexample. ThefileRan500.ascisisa
4-1nput/1-Output file containing 500 1/O pairs of

completely random datagenerated using auniform | 0.5} - L ; .
distributionin[-1, 1] viathe Mathematica™ test file oo e
DataGen.nb. The output is actually pure noise e ..-.;-'”, R
having atrue variance of 0.333333. A point plot of I 'ﬁb' e 3@0 . :qﬁl,u" - '5.60 i
the output is given in Figure 2.6. A e
0.5 " . . .. ..: ..".. S .. : ,.‘ .'.‘ '-. .

If we run a smple Gamma test with pmax = 10 C e

near neighbourswe obtain theresultsin Table 2-1. ST ST
-1} T ' v .I. ' ..

Theestimated Gamma gtatistic = 0.31793indicates Figure 2-6 The Ran500.asc output plotted

_ahlgh noise level as does Vratlc_) = 0_.9782_1 which against the position in the file.

isvery closeto one. Theregression line with dope

A = 0.0575 on scaled datais close to horizontal.

With pure random non-smooth data the dope of the regression line will gradually increase as the
number of data points M isincreased - thisis because the continuity condition is not satisfied.
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Taken together, particularly with Table 2-1 The results of asimple Gammatest on the file Ran500.asc for
Vratio so close to one, these are  unscaled and scaled data

clear indicatorsthat it ispoin_tless Unscaled Scaled

to try to model_ the data with a Gamma 0.31793 0.24838

smooth  function. Next we  I'Gragient 0.08426 | 0.057506

%"’E‘ﬁu:ﬁe standard analysis  F§andard Error 0.01429 ] 0.012318
' Vratio 0.97821 0.99353

The Increasing Near Near Neighbours 10 10

Neighboursplot for pmax = 3to Sta_rt - 1 1

30 is given in Figure 2.7. This  |Jnique Points 00 00

suggests the best estimate for the | Evaluated Output 1 1

Gamma statigtic is obtained at [ Zero Near Neighbours | O 0

around pmax = 10. The M-test | Upper 95% Confidence
result of Figure 2.8 was obtained Lower 95% Confidence | - -
starting at M = 50 and increasing Mask (remaining entries) | 1111 1111
M to 500 in steps of 10. This

consstently gives a Gamma

statistic of around 0.3, but ideally

as the graph has not yet settled to an asymptote we should need more points to obtain an accurate
estimate for this 4-dimensiond data.

The scatter plot in Figure 2.9 contains points with small 6 but large y which also supports the
conclusion. At the sametimethe regression linefit is rather poor. The 3D histogram in Figure 2.10
shows no red indicators of an "empty wedge' and supports the genera conclusions that the datais
extremely noisy. The same istrue of the angle histogram in Figure 2.11.

Finaly the M oving Window Gamma test using awindow size of 300 in stepsof 10 in Figure 2.12
congistently shows a Gamma statistic between 0.29 and 0.38.

® These results together indicate that there is no point in going on and trying to produce a
smooth model for this data.
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2.12.2 The Sn500.asc data.

If we run a smple Gamma test
with pmax = 10 near neighbours

we obtain the results in Table 2- Unscaled Scaded
2. Gamma 0.07335 | 0.03190
. . Gradient 0.71122 4.0386
g%‘;gémﬁ?;m Srt:(‘;'dsgr‘;; Standard Error 0.00376 | 0.00163
o . Vratio 0.12762 0.12762
noise level as does Vratio = -
0.12762. Near Neighbours 10 10
Start 1 1
The regression lineonthe scaled | UNique Points 200 200
data with sope A ~ 40386 | Evauated Output 1 1
indicates definitely non-linear | Z€ro Near Neighbours | O 0
data. However if we pull up the Upper 95% Confidence | - -
Gradient plot we seethat it istill Lower 95% Confidence | - -
highly variable - so one should Mask (remaining entries) | 1 1

PERFORMING AN ANALY SIS

Version: 18 Jan 2002

Table 2-2 The Gammatest result (pmax = 10) for unscaled and scaled data

on the file Sn500.asc.

not have too much confidence in
this observation.

Taken together, these results indicate noisy but manageable non-linear data.

Thelncreasing Near Neighboursplot for pmax = 3to 30isgivenin Figure 2.13. Thissuggeststhe
best estimate for the Gamma Statistic is obtained at around pmax = 17. The M-test result of Figure
2.14 was obtained starting at M = 50 and increasing M to 500 in steps of 10. This consistently gives
a Gamma datistic of around 0.07, but ideally as the graph has not yet settled to an asymptote we
should need more points to obtain an accurate estimate for this noisy 1-dimensiona data.

The scatter plot in Figure 2.15 contains points with small 6 but large y which also supports the
conclusion. At the sametime the regression linefit israther poor. The 3D histogram in Figure 2.16
shows partia indicators of an "empty wedge and supports the general conclusions that the dataiis
noisy. Thesameistrue of theangle histogramin Figure 2.17. Finally the M oving Window Gamma
test, using awindow size of 300 in steps of 10, in Figure 2.18 consistently shows a Gamma statistic
between 0.072 and 0.076.

Theseresultstogether indicatethat we have noisy non-linear databut that model constructionisquite
feasible.
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2.12.3 The solar.csv data’.

The data considered in this 2-input/1-output file relates to the generation of electrical power by an
array of solar cells. Theinputsare ameasure of light intensity (South Plane I rradiance) to aprecision
of + 0.01 KW/n?, and the current temperature in degrees C to aprecision of + 0.5 °C.

Walue
Kl
Kevy
25 Irparl

20 B e

15

10

—l " s Data no.

'.' P
Eonn 40010 ] (1] 1] EI]I][i loonn

Figure 2-19 Plot against time of the irradiance and temperature from the training data file
solar.csv.

The output isthe voltage inverter AC power output measured to a precision of £0.01 kW. Thefile
congists of these values sampled every minute.

Figure 2.19 illustrates the graphs of the two inputs and the output against time (position in thefile).
We note that at low Irradiance the recorded power output values are irregular and sometimes
negative. Thisisaresult of thefact that intelligent circuits are attempting to determinewhether or not
toinitialise the system asthe sun rises or sets. The effect isto produce noise on the output power at
low Irradiance levels. We are just using the data as an example, but if one wanted to use the data to
build areally accurate model obviously one should filter out the data having low or zero Irradiance.

" Datafor this example were provided by Newcastle Photovoltaics Applications Centre at the University
of Northumbria at Newcastle UK. These data were collected as part of a project with funding from the European
Commission (THERMIE Programme) and the UK Department of Trade and Industry.
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Figure 2-23 3D Histogram (pmax = 20) for
solar.csv.
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Figure 2-24 Angle histogram for solar.csv
(pmax = 20).
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Figure 2-25 Moving window Gamma test
(pmax = 20) on 8400 points in steps of 100
from solar.csv.
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There are some other factors of interest in this particular situation. As it happens the sensor which
measures Irradianceisontheroof of the building, whereasthe solar array isin anearby location. The
solar array is shaded at certain times of day by a chimney and a nearby building and this shading is
not measured by the Irradiance sensor. Since the shading is obvioudy afunction of the time of day
and thetime of year thishasthe effect of introducing smooth non-linearitiesinto the situation, which
would be extremely hardto model analytically. One couldimagineincluding thetimeof day and year
into the data set and then building a different and much more accurate model. By examining the
difference between the two models we could actually quantify the effect of shading without having
an anaytic model. This would be a good example of one type of application of winGamma to
scientific data. However, sincethe datain thisfile only runs over about one week we do not consider
this extra complication here

If werun aquick Gammatest on the full data set with pmax = 10 near neighbours we get the results
of Table 1-1 in Chapter I.

The unscaled Gamma dtatistic of 0.020761 seems high but in view of the output range (approx [0,
30]) is actualy quite good. A better measure is the V, i, = 0.000760 (defined as the ratio
GammalVar[output]), which islow and shows that the output is highly predictable from the inputs.
Because the data clearly falls into two distinct classes (day and night) we should be aware that
representativetraining and test datashouldinclude both types. Thepoint to grasp hereisthat although
the time series data varies from moment to moment (as clouds obscure the sun) the relationship
between sunlight input at a given temperature and power output is asmooth (almost linear) model.

The next step in a more careful Table 2-3. The results of the Gamma test (pmax = 20) for unscaled and
andysisisto run an Increasing Scaled datafrom solar.csv.

near Neighbours test. This will Unscaled Scaed
give us some idea of the best  ['Gamma 0.020328 | 0.000221
pmax to choose to givethemost  ["Gragjient 0.250261 | 0.230184
accurate Gamma test results.  Fonqa g Error 0.00205L | 3.095267E-5
Fi gure 2.20_ shows the _result of Vraio 0.000724 0.000884
the increasing near neighbours Near Noiahbours 0 >0
test run for pmax = 3 to 50. We :!
note the SE first increases and Sta_rt - 1 1
then plateaus. Along the plateaua Unigue Points 10578 10578
minimum SE occurs at around | Evaluated Output 1 1
pmax = 20, which from now on | Zero Near Neighbours | O 0
we take as the best pmax for | Upper 95% Confidence | O 0
further analysis of this data. Lower 95% Confidence | O 0

Mask (remaining entries) | 11 11

Figure2.21 Showsthe M-test and

we can seethat for M = 9000 we

are beginning to get a stable

asymptote. From thiswe infer that around 9000 data pointswill be required to build amode which
will predict with an accuracy about equal to the noise level. The result of a Gammatest on pmax =
20 near neighbours using the full data set is shown in Table 2-3.
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Figure 2.22 showsthe scatter plot and regression line (zoomed). Thisistypical of dightly noisy data
but the regression linefit is good. The desirable empty wedge isthe top left corner is not obviously
present, another indication that the data is somewhat noisy.

The 3D Histogramin Figure 2.23 shows similar features except that we can seethe actual frequency
distribution of pointsin the scatter plot and this shows that strong outliers or “empty wedge’ points
although present are relatively infrequent. The Angle histogram of Figure 2.24 shows aroll-off in
frequency as we approach angles close to n/2

Thefinal Moving Window Gamma Test of Figure 2.25 isintended to show the relative stability of
the Gammatest result. In this case it really fails to do so because the order of the data should really
be randomised (sinceit isvery time periodic). Even so when we examinethe vertica scaleof Figure
2.25 we see that the relative variation is not very large.

We see shall later in Chapter I11 how to take the results of this analysis and build and test models
using the solar.csv file.

2.13 Analysing Time Series data

2.13.1 The DH(34)5000.asc data (Delayed Henon Map).

1.5

0.5

20 4 a0 JIEI 100

~0.5

Figure 2-26 The first 100 points of the Figure 2-27 The return map (X1, X,,) for the
delayed Henon map time series. delayed Henon map.

This Time Series datawas generated by aprocessvery smilar to the Henon map, except that where
the current value of the Henon map time series depends the last two values of the series, for the
Delayed Henon map the current value is determined by the values three and four steps in the past.
This changes things in a number of respects.

Theplot of thetime seriesis given in Figure 2.26 and Figure 2.27 shows the return map for (X, 1, X))
which isanaogousto Figure 1.12. We observe that this distribution looks quite different.
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We now proceed through the steps outlined in section 2.1.1 for Time Series.

1. Load the data and do not initially normalise (it isa single time series). Set the number of
inputsto 20 the number of outputsinitially to one. Now perform asimple Gammatest on the
full data set (which gives 4985 I/O pairswith 20 inputs) to get an initia idea. If the data set
isvery large use a subset of the data for initial experiments.

Results. This gives an initid Gamma
datistic of 0.0042614 and a Vratio of
0.007481. The SEfor thisresultis0.00125.
These initial results are encouraging.

Position in List v Gamma

0.035
0.050
0045
00404----
0035

2. Next run an Increasing Embedding test
to determine a likely embedding e
dimension. ® o

005
[k}

Results. If we zoom in on the resulting e
graph we see Figure 2.28 and infer that a '
good mode islikely to be obtained with 4
or 5 previous vaues.

o ] Figure 2-28 The result of an Increasing
The Gamma statigtic for 4 is 0.00019635, Empeddi ng for the delayed Henon map.
for 5itis0.0002997 but thelowest value of

all isfor 7 past valueswhich gives-1.5E-7.
Thesevery low values suggest that thetime seriesis consists of very low noise, or noisefree,
data. Examination of the scatter plot and associated graphics supports this view.

3.We next Transform the data set to reset the maximum number of inputsto 8.

4. We next run a M-test to check the
stability of the Gamma datistic If the M- [@
test produces a stable asymptote we can [ ==t K
decide if we really have enough data to
support these conclusions. A reasonable
choiceisto start at 100in stepsof 100 until
the end of the data.

Unigue Data Puoints v Gamma and Gradient
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0034 -

o8 1
oot f-

Results. The M-test graphs of the Gamma Bl
datistic together with the Gradient are N

shown in Figure 2.29. From thiswe see a ety

0ot 4--

good asymptote and conclude that with8 | b= e

;
500 1000 1500 2000 3500 4000 4500

inputs agood model can be obtained using s
around 3000 points. It also lookslikely that e G
we have an essentially zero noise time

Figure 2-29 The M-test graph (pmax =10
number of inputs = 8) for the delayed Henon
map.

series.
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5. Can we get abetter Gamma statistic by discarding still more of theinputs? To answer this
question we run a Full Embedding on 7 inputs. (To do this we have to transform the data

again).
Results. If we make a small table of the best 5 masks found we obtain:

Gamma 2.3228E-6 1.3276E-5 -1.888E-5 -2.176E-5 -2.438E-5
Mask 0001101 1101100 1111111 0001100 1011101

From this we infer that lags 3 and 4 (remember we have to count from the right) are very
important but that the marginally best model should be obtained using lags 1, 3 and 4.

It is worth examining the Embedding
Histogram associated with the embedding
search. In this case we see a somewhat
irregular multimodal histogram (thereare |~ womsfe
only 15 possible embeddings). ame x| vomis

0000035 % =1

Standard Error 1 0.000030 EE
6. If we now fix on the embedding 1101 | pil
& 0.000015 4

having a Gamma datistic of around ¥ oamenny -

0.000005 | -

2.3228E-6 then we might next do an P Bl

00000054 = |4

IncreasingNear Neighbour sExperiment

-0.000015 % -

to optimise the choice of near neighbours e

-
345678 9101121314151617 18192021 2223 24 2526 27 262930

in estimating the Gamma tatistic. New e

ear Neighbours w Gamma and Standard Erar

0.000055 4~

10413 pUERURIS

Theminimum SE isobtained uSing pmax = test on the embedding 1101 for the delayed
7 nearest neighbours and correspondsto a  Henon map.

final Gamma statistic of 2.3228E-6 so that
optimising the number of near neighbours
hardly changed the Gamma statistic at all in this case.

Thusthefina analysisof DH(34)5000.ascisthat it
is a noise free time series. Using a few thousand  [rrriee
points we should be able to construct a model | ssu
capable of one step prediction with an estimated |y, “
MSError of around 2.23E-6. .

4500

2.13.2 The FTSE weekly closing price data L S

2500 ¢ f

The file FTSEcls.asc contains the FTSE weekly |, § Ve

closing price from 9 May 1988 - 26 January 1998 o FJ-,‘&?'.‘;. '

which gives 508 samples. Figure 2.31 shows the F,,,f{‘:,;"'ag STy

time series over the full run of the data. T T Ty e (e

Figure 2-31 A plot of the FTSE close data.
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If we perform afull embedding on the last 20 weeks (on a convenient Unix station!) using pmax =
10 we obtain the histogram in Figure 2.33. This has the characteristic Gaussian shape of mainly
statistically determined data.

From the table of the best embeddings we select the embedding which gives the smallest positive
gamma. Thisis 11011100110000111101.

Handy Tip. Typinginlong maskscan beerror prone and tedious. Thereisno need to do this. A mask
can be copied to the clipboard and pasted in whenever required using aright click on the mouse.

Frequency
Custom Chat | 140000

b
Unique Data Pc » Unitgue Data Points v Gamena and Gradient
T
i .

RS
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L B SR
1001207140 160 180 200220 240 260 260 300 320 340360 360 400 420 440 460 480
Unigue Data Poinits

-
-Ennn ] 000 4000 Eo0n 000 1ooan
— Gamma — Gradient

Figure 2-32 The M-test graph for the FTSE Figure 2-33 The frequency histogram for
data using the best embedding of length 20. embeddings of length 20 using the FTSE
data.

This choice of embedding should be treated with some caution. The M-test graph of Figure 2.32
(pmax = 10, Randomised, 3 repetitions) shows that the estimated gamma vaues have not yet
stabilised (M isnot sufficiently large) so the error in estimating the Gamma statistic for any particul ar
embedding is sufficiently high to make the outcome of a full embedding search itself extremely
unreliable. The resulting very low Gamma statistic of around 0.007 is an artifact of the statistics of
the situation (with over a million embeddings to search we are quite likely to find one with avery
small Gamma). The associated SE is 517! This clearly illustrates that alow Gamma Statistic on a
single data set is not enough to ensure a good model - we need to be sure that the SE is acceptable
and that an M-test illustrates the estimate has stabilised.

Inreality using thetime seriesa onewe arelucky to predict theweekly closing FTSE priceto within
astandard deviation of 80 (i.e. the true Gamma statistic is around 6400).

Thereisafurther complication in that we have no real reason to suppose either that the underlying
system is describable by a smooth dynamic model, or that if so the dynamical system is constant.
Indeed towardsthe end of the 10 year period it isnoticeablethat thelocal variance of both the system
behaviour and (as we shall see in Chapter I11) of the errors of predictions increase. From this we
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conclude that either the dynamical system is itself varying or at the very least the constant noise
variance assumption is suspect.

2.13.3 The sunspot data.
Junspot Actiwity 1T00-13713

1F
0n.%
0.6

r
0.4
.z f \‘ \‘ ‘|l
1750 Lsnn 1550 1300 1450

Figure 2-34 Plot of the sunspots data file Sun280.asc.

The data used in this experiment was FTP-ed from ftp address: ftp.santafe.edu, directory:
pub/Time-Series/data. Its origin, normalization and training/test regions are described in [Weigend
1990]. The dataconsists of 280 points representing sunspot activity over the period 1700 - 1979 and
was used in [Weigend 1991]. The range of the data has been scaled to [0, 1] and we found the
variance to be 0.0410558. Figure 2.34 shows the variation of sunspot activity over the full range of
the data.

Itisknown that the primary sunspot cycleisapproximately periodic over 11 years. Other shorter and
longer cyclesare aso known. For radio propagation the short period cycle of 28 daysis particularly
significant. Thedataused hereiscollected from tel escopi c observations projected onto awhite paper
card. The sunspots are counted and classified by size and a correction factor applied depending on
the magnification of thetelescope. The virtue of thisdataisthat it has been regularly collected since
1700. Of course, if onewereredly interested in predicting sunspot activity much more accurate data
is available. The data provided is often used as a test of prediction techniques and can give a
reasonable model of gross sunspot activity.
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SHecting a best embedding. If weare prepared for aseveral day runwe can usethe Full-Embedding
option of the softwareto search for agood embedding. I n thisexamplewe searched over the previous

15 years.

5 . -
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Figure2-35 TheM-test graph for the sunspot
data data using the best embedding of length
15.

Figure 2-36 The frequency histogram of all
embeddings of length 15 using the sunspot
data.

The best embedding found was 001001000010111. Here the most recent data comes last. So this
embedding says that to predict this year's sunspot activity x(t) we should use the data x(t-1), x(t-2),
X(t-3), X(t-5), x(t-10) and x(t-13), an embedding of dimension six. It isinteresting to note the bimodal
distribution of the Full Embedding Histogram of Figure 2.36. The bimodal distribution is partly
explained by the observation that only 2.38% of the embeddings with a Gamma statistic > 0.008
include x(t-1) as compared with 99.8% of those having a Gamma statistic < 0.008. Put plainly this
says that the most important predictive factor for the sunspot activity this year is the value for last

year. It is aso interesting to see which
variablesappear inthe best few embeddings.
These indicate that the last few years, plus
the vaue approximately one 11 year cycle
back, plusavalue about half way throughthe
previous cycle, give the best results. Thisis
rather impressive since the software has no
way of knowing about sunspot cycles.

If we run the Gamma test on the six
inputs/one output 1/0O data file constructed
using thismask we get Gamma = 0.0015 and
V.40 = 0.036 (SE = 0.00093) Note the M-test
of Figure 2.35 indicates that there is not
really enough data (the graph has not
stabilized). Thereforeif weconstruct amodel
and test on unseen data we might expect to
get a higher MSError than the estimated
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Figure 2-37 A test of the LLR model on the data
set SunPairs.asc (blue predicted, green actual, red
error).
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gammavalue. If we now predict the last 59 years data, using loca linear regression with k = 60 near
neighbours and a threshold of 0.0001 (we shall see how to do thisin the next chapter), on the basis
of al the previous years we obtain Figure 2.37 which givesa MSError around 0.007. In cases such
asthis, where thereisinsufficient data, it is not uncommon to seeaMSError on unseen dataaround
an order of magnitude greater than the Gamma statistic.

2.14 Handling multipletime series.
In later releases we plan to include a TimeSeries Editor to facilitate the direct manipulation of
multipletime series. However, using acombination of winGamma and Excel at present it ispossible

to accomplish multiple time series manipulation relatively easlly.

Suppose we have severa time series TSL, ..., TSm, which we wish to use to predict a target time
series Target.

Step 1.

Suppose the time series are in an Excel file which is structured as follows:

Table 2-4 Excd file for multiple time series.

Date TS1 | TS2 .. | TSm | Target
10/07/1981 16 |10.39 132.06 | 606.8
10/14/1981 15.5] 10.34 132.92 | 606.8
10/21/1981 15.5] 10.38 130.43 | 626

In Excel del ete the date column because thisisnot numerical that can be used asinput for winGamma
notice now that the only factor which preserves the time relationship is the order of the rows.

Hint: It isimportant when dealing with multipletime seriesthat al the datain arow
is sampled at the same time. If one measurement is sampled weekly and another
monthly thenwe can uselinear interpolation to construct weekly datasamplesfor the
monthly sampled data.

Step 2. Savethefilefrom Exce in CSV format - you should include the first row of text descriptors
of the time series as winGamma can handle these and they will be useful later.

Step 3. Load thefile just saved into atext editor which can SaveAs ASC DOS text files and search
and replace the commas separating the numeric dataonly . Do not the replace the commas separating
the commas separating the text headers. Save the new file asa ASC DOS text file with the filename
suffix *.csv (Edit the file name after saving if the text editor indgsts on putting an extra* .txt on the
suffix.)
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Step 4. Decide the maximum lag you are likely to need in analysis and modelling. For example, if
you think the maximum lag likely to be needed in two months and the dataiis sampled weekly then
the Number of Inputs to be set in winGamma will be 8. Load the *.csv file into winGamma (which
because the numeric entries are separated by spaces will treat the file as a multiple time series).
Selecting the number of inputs as 8 and, assuming that you wish to produce a one week ahead
forecast select the Number of Outputs as 1. Do not at this stage normalise/scale the data, this can
easily be done later but cannot be undoneif it is done at this stage. Y ou aso have to decide at this
stage whether you want to include a running window average for each time series as an input and
whether you wish to include successive differences as possible inputs.

Without the running window average or successive differences, the datal oaded into winGammawill
now be ordered into the following columns;

TS1:t-8,..,TS1:t-1, TS2: t-8, ..., TS2t-1, ..., TSm: t-8, ..., Tsm: t-1, Target :t-8, ..., Target : t-1, TS1:t, ..., TSm:t, Target : t

where the outputs (at timet) have been underlined. (Thisisarather tricky manipulation to do from
scratch in Excel.)

Notice that athough we set out with the intention of trying to model the time series Target, we have
created afilein which every time series has an out put that we can moddl . Y ou can del ete these extra
outputsin Step 6 if you wish.

Y ou can beginimmediately with experimentsonthisfilebut, sincenot al theseinputs may be needed
for the model, you can also proceed asfollows.

Step 5. Use some other software such as Mathematica to perform data analysison thelast fileusing
tools not yet provided by winGamma. For example, one useful analysistoal is to take the average
lagged correlations of successive differencesof the target time serieswith the successive differences
of all the time series (e.g. for lags from 1 to 8 in the above example). (This tool is available as
DédtaCorrelation inthe Mathematica suite provided withwinGamma.). Wemay choosetotakeonly
those lags which have the largest absolute lagged delta correlation. This may suggest that some
columns could be deleted from the *.csv file we have produced.

Step 6. Load the *.csv file into Excel and delete the columns which have been selected as unlikely
to be useful. Re-save the result as a *.csv file and proceed (as if from the end of Step 4) with
winGamma analysis on the resulting file. Further inputs may be set to zero in the mask asaresult of
winGamma anaysis.

Notice that when you reload this file into winGamma it will be treated as an Input/Outpuit file for
which you haveto specify theinputs and outputs. Becuase the datais not now recognised asmultiple
timeseriesdatathe I terate (Model) option will not beavailable (at present thiscan only be used with
asingletime series).
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2.15 To scaleor not to scale?

If two input variables areincompatible (e.g. temperature in degreesK and altitude in metres) both in
semantics and in range then the effects of a change in one of them can completely outweigh the
effects of a change in the other. To ensure that al variables at least start with an equal chance to
contribute to an output prediction it is often helpful to apply a standard normalization.

In this software the standard normalization isthat the mean of each input variableis mapped to zero
and the standard deviation to 0.5. Inlater versonswe may include an option for the user to select the
standard deviation (this can have some advantages in model building).

The effect of normalizing the dataistwo fold. First, since the output is a so rescaled thiswill affect
the Gamma statistic in atrivia way (it will divide it by the square of the new output range). The
Vratio however will not change dueto this effect. Second, rescaling the inputs can change the near-
nei ghbourhood rel ationships and hence possibly change the associated Gamma value. We can detect
if this happens asit will also cause Vratio to change.

Whether normalization isagood or bad ideadependslargely on the circumstances. If input variables
are incompatible then it is probably a good idea to normalize.

Normaization of just the input values will not change the asymptotic Gamma statistic or Vratio,
provided we imagine that as the number of data points becomes large we a so increase pmax by a
suitable constant factor®, but a good scaling will cause the M-test to converge more rapidly to the
asymptote, so improving the accuracy of the noise estimate for a given amount of data. A good
scaling can aso improve the accuracy of amodel constructed using a fixed amount of data.

The effect of masking is ‘all or none’ and it may be better to apply a suitable weight to each input
variable. For example, it is a general observation regarding near-neighbour classifiers that they
perform well given the right weighting of inputs but that at present there are no general techniques
for finding such weightings. However, if weights are applied then of coursethe datamust NOT then
be renormalised.

2.16 Projects

A Project is the collection of al Experiments performed on a given data set. A given Project is
determined initially once the data set for analysisis defined. At Project creation time the number of
inputs and outputs to atime series have to be set and options to normalise or scalethe data. Thereis
also an option to generate aparallel moving average and/or difference seriesalongside atime series.

Assuccessive Experiments are compl eted the parameter settingsfor each Experiment and theresults
are added to the Project which can be saved asafileand reloaded at alater date. Thusthereisno need
to repeat the same experiment- which may have taken awhile to compute.

8 All distance functionsare equivalent to within a constant. But rescaling changes specific near neighbour
relationships.
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Handy Tip The Project file (*.gpr) containsthe path of the datafile used inthe project, infact thedata
filenameand path arethefirst iteminthe Project file. Project filesarein DOS ASCII format and can
be edited (aslong asthefileis saved in the same format after editing). This can be useful to know if
the data has been moved or renamed, or you have moved both the Project file and the datafile to
another systemwherethe pathisdifferent. Oneway to handlethisistojust edit the path in the Project
file. However, if winGamma cannot find the data file associated with a project it will ask you to
Browse for the file and you can indicate the new location. (It isimportant to select the right file -

which must not have been altered.)
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CHAPTER I11 Building and testing a mode

3.1 Introduction

Wenow assumethat you have analysed the dataand decided which inputsand how much datato use.
To actudly build the model winGamma offers several techniques:

Local linear regression
Dynamic local linear regression
Neura networks using various types of learning agorithm.

Local linear regression models are fast to construct and quite fast to execute a query. Local linear
regression models can also be easily updated as new training data becomes available, which is not
the casewith neural networks (whereaprolonged extraperiod of training, or starting training all over
again, may berequired to modify themodel on the basisof new data). Indeed winGamma a so offers
a dynamic locd linear regression option which is exactly loca linear regresson with dynamic
updating (this option is quite useful for time series prediction).

Usually local linear regressionisextremely accuratein partsof theinput spacewherethetraining data
density is high. However, local linear regression will not generalise well to parts of the input space
for which training data is sparse.

Neural network modelstaketimeto construct but in partsof theinput space where datais sparsetend
to generalise better than local linear regress on._Ié IS oftg? quite hard to get aneural network to train
down to a very smal Gamma statistic (say 10 ~ or 10~ which can easily happen with zero noise
dynamical system time series), i.e. it may take severa attempts, each of which takes a long time.
However, neural networks can make predictions at blinding speeds compared with local linear
regression based agorithms, so for some applicationsit iswell worth the time and effort to construct
aneural model.

3.2 Local linear regression

Tomakeaprediction for agiven query pointininput spacelocal linear regression (LLR) first finds
the k nearest neighbours of the query point from the given data set (where the number k is supplied
by the user) and then builds alinear moddl using these k data points. Finally the model is applied to
the query point thus producing a predicted output. Because of the way winGamma analyses the data
to compute the Gamma statistic the k nearest neighbours of any point in input space can be found
very rapidly. Consequently locd linear regression using thek nearest neighbours (in thetraining data)
of the query point can be accomplished quickly. Thuslocal linear regressionisavery fast and capable
predictive tool.

LLR ismost effective in regions of the input space with ahigh density of data points. If data points
arefew and far between in the vicinity of the query point then LLR will not be very effective if the
underlying function we are trying to moded is truly non-linear.
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It may seem odd that although winGamma is all about constructing smooth models the global
function produced by patching together many LLR predictions in general is not even continuous!
However, asthe number of datapointsincreases, theglobal function produced by LLRwill converge
rapidly to the unknown function generating the data, provided thisisitself a smooth function. You
can easlly see this by using the winGamma Whatlf facility on LLR models built from increasing
Sized data sets, for example on the data from Sn500.asc.

LLR can produce very accurate predictions in regions of high data density in input space, but it is
liable to produce unrdiable results for non-linear functions in regions of low data density. In other
words LLR does not generalise well but isavery good interpolative tool if we have large amounts
of data

There are three user settable parametersin LLR: the number of near neighbours, whether or not to
include aconstant termin thelinear model, and athreshold valuefor filtering thelocal elgenvectors.

The choice of the number of near neighbourskin LLR isquitecritical. If thenoiselevel onthe output
(i.e. the asymptotic Gamma statistic) islow then some small multiple of the number of inputsshould
suffice. If the noise level on the output is high then k needs to be larger to obtain better noise
cancdlation. Unfortunately if the unknown function f we seek to model is highly non-linear (has
regionsof high curvature) then, unlesswe haveavery large amount of data, setting k large may mean
that in the region of these k points the assumption that the unknown function can be locally
approximated by a linear model may be false. In this case the resulting predictions would be
inaccurate. We have not yet devel oped rules of thumb for thissituation but in practiceitisnot amajor
problem to optimise the choice of k using atest set.

There is also an option whether or not to include a constant term in the locally linear moddl. In
genera it is better to include this term.

Thefinal user settable parameter isequivalent to aloca principa componentsthreshold filter onthe
eigenvectors of the local linear model. We are tying to predict aong the tangent plane of the local
flow and elgenvectorscorresponding to relatively small eigenval ues probably represent noiseandlie
outside thetangent plane. Thethreshold decideswhich eigenvectorswe should ignore. Set_lgng itlow
or zerowill essentially includeal eigenvectorsintheloca model, thedefaultisaround 10 . Raising
this threshold will filter out more and more eigenvectors. For noisy time series one often finds that
0.001 gives quite good results. Again the best approach is to experiment on atest set.

3.3 Dynamic local linear regression

This option is mainly designed for time series analysis. It is basically identical to LLR with the
additional featurethat as new datais seen for thefirst timeit isincorporated into the model. Y ou can
see the effect of thisby starting the model with very little training data and running atest on alarge
amount of data. As new test data is encountered (but after the attempt at prediction of course)
dynamic LLR will make steadily better predictions. Thisisinteresting to observe but isnot actually
the best way to usedynamic LLR. It isbetter to start with areasonable training set size because then
theinitial kd-tree (adata structure used extensively by winGamma) will be more balanced and query
times will be reduced.
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Under thecircumstanceitisnot surprising that if the sametest datai s presented to the model asecond
time the MSError will reduce dramatically.

3.3 Two layer back propagation

Modelling Editor I Modelling Editor I
 ackpropagation Two Layer He Model type IEackpropagahonTwo LayerNeuraj
Metwork Parameters | Training Parameters | Metwork Parameters  Training Parameters |
~Metwork Architectme—[}“'— ~Training Parameters
Humber of nodes in first layer Initial learring rate:
b j IU.25 MNebwark, initialization time:
: Seconds Minutes
Mumber of nodes in second layer: Momentum: N |
| I
5 = 0.5 ok et
Feqularisation: etwork training bime:
~Train to IUeUgUu:nsa l . Minutes Hours Davs
Target MSE: : ! /
000105462113952337  Recae [\\S
Cancel Buid Cancel Buid
Figure 3-1 The first set-up menu for two Figure 3-2 The second set-up menu for two

layer backpropagation. layer backpropagation.

Thisoption uses the standard backpropagation algorithm to produce atwo-layer feedforward neura
network.

With al the neural network training algorithms one should note the option to recal culate the target
MSError. Thisis useful in the event that the partition of the data for training and testing has been
atered. Clicking 'Recalc’ will cause a new Gamma dtatistic for that part of the data selected as
training data to be calculated, and hence set a new target MSError for training.

Alternatively the user can set any target MSError. However, if thetarget MSError ismuch lessthan
the Gamma statistic onthetraining datathen (i) the network may end up being “overtrained’ resulting
inpoor predictions, or (ii) thetraining algorithm may never be ableto reach the (possibly) unredlistic
target MSError.

User settable options:

For each of the neural training algorithms we shall need to specify the number of hidden units. Thus
each neural network option needs

The number of unitsin the two hidden layers (default 5, 5)
Thenumber of unitsrequired to achieve agood model will depend on the complexity of theunknown
functionwearetryingto approximate. Unfortunately heretherearefew general rulestoguideus. One

useful guide is that if the Gradient value returned by the Gamma test is large then the unknown
function has regions of high curvature and we shall require more hidden units to approximate it
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accurately. The best approach isto try to train using relatively few units (the defaults are set quite
low) and if training fails to converge to the target MSError progressively increase the numbers of
hidden unitsin the two layers.

§0) winGamma - [Analyziz Manager] M=l B
Eile Edit  Tranzform Options  Yiew ‘wWindow Help _|E|5|
= = R BRI
et [Ielete | Snalpee  [Eraph i el | ljesf (e wWhahlh Eredict
E xperiments Mu:u:lelsl Sefings Feal Time Evaluation
- - Local Linear Regression Models 9

s Locallinear regression Training Mean Sguared Errar

¢ b e Dynamic local linear regression

= & Meural Metwarks 0,60
El »  Two laper backpropagation neural
 omp [y |
----- » Conjugate gradient neural netwark,
teo @ BFGS neural netwark

0404

MWSE

0304

— e — b m T == 4 ==

1T b T T e . e e e A

0104

1 1
- I
=T-"0- - r
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 ]
LLE LIS AL LS IR LI IS LA LN LN AL LS UL L LS LA
o2 4 6 &8 10121416 13 20 22 24 26 25 30 32 34
Cycles
[ - msE — Target MSE ||
1] i B
Initialising ‘weights Best MSE Found 0.0414 EEREEEREEEEEEEEEEEEEEEEEE

Figure 3-3 The Analysis Manager during backpropagation training.

Two layer backpropagation also requires:

The initial learning rate (must be positive). This controls the initiad step size in weight
adjustment.

Momentum constant (must be positive). This controls the extent to which the size and
direction of the current step in weight space is influenced by the size and direction of the
previous step. Setting this parameter to zero meansthereisno momentum term in theweight
adjustment at each step.

Regularisation constant (must be positive). This limits the size of weights. A zero here
corresponds to no restriction on weight magnitude.

These optionsare configured using the set-up menu shownin Figure 3.1. Thereisasecond tabwhich

allowsthe user to specify the maximum amount of timeto spend ontrying to attain the MSError goal.
Thisis shown in Figure 3.2.
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Handy Tip. Backpropagation along with most other processesin winGamma can be paused/resumed
or terminated using the buttons on thetop level menu. Terminating an operation does not necessarily
loose everything. Any results aready calculated will be displayed and in the case of neural net
training the model created so far will be retained.

Figure 3.3 shows the Analysis Manager during backpropagation training. Note that the graphical
window can be zoomed and moved using the left and right mouse buttons.

Because the number of layers, the number of hidden units, and the dope of the sigmoidal are fixed,
limiting the size of the weights also limits the magnitudes of the partial derivatives of the neura
network as afunction of itsinputs. Thusif the unknown function to be approximated has regions of
high curvature the training algorithm with regularisation may find it difficult to obtain the desired
approximation. We can get some idea if thisis likely to be the case by examining if the Gradient
returned by the Gammatest is unusualy large.

These parameters may be left at default until fine tuning of the model is required.
3.4 Conjugate gradient descent

Thisavariation andimprovement on two-layer vanillabackpropagation, itisgeneraly moreeffective
but requires more memory. The procedures for set up are very similar.

3.5 BFGS neural network
Probably the fastest and most efficient neural network training algorithm offered by winGamma is
amodified version of the Broyden-Fletcher-Goldfarb-Shanno learning algorithm. This algorithm

uses second differences and is sometimes degraded by very noisy data, but generally it is probably
best to use this option first when trying to produce a neural mode.

3.6 Example model construction and testing for solar.asc

Wereturn to the example solar pand datawe analysedin 2.12.3. Using thefirst 8400 dataand scaling
weinitially build alocal linear regression modd with k=20. Wethentest thismodel ontheremaining
pointsin the datafile.

3.6.1 Building and testing a LL R model

Weinitidly build aL LR model using the first 8400 points (the results of our earlier anaysis suggest
that dightly more points are required for areally good model).

1. Load solar.csv. Do not normalise and use all the data for analysis. Execute a smple
Gammatest. these steps are described in 1.3 and 2.12.3.

Handy Tip. winGamma requires that at least a simple Gammatest Experiment be conducted before
any attempt to build aLLR model (akd-tree is required).
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2. After the Gamma test results appear click on "Modd’ in the Analysis Manager .

3. Select the training set as 1-8400.

4. In the Modédlling Editor leave the model type set at Local Linear Regression,set the
number of nearest neighbours at 20, leave the Add constant box checked, and leave the
Define local flow threshold option at 1E-6. Then click on "Build’.

5. When the Test, Query, Whatlf and Predict buttons become active in the Analysis
Manager the model is built and ready to be used. Click on "Test’.

6. Inthe Select proportion of data set for model testing window set the range of test data
to 8400-10578 as shown in Figure 3.4.

Select proportion of data set for model testing

Start 1 10578 End
5400 | | =2

Cancel | (] 4 |

Figure 3-4 Selecting a proportion of the datafor testing.

D Model Tester = E
Select Dutput to vievs (IR -
Mean Squared Erar; 0.077959
Chart | Data I
g Model Tester

T T T T T T T T T T
0 200 400 BO0 500 1000 1200 1400 1§00 1800 2[%430

| — Actual  — Predicted — Errar I

Figure 3-5 Result of LLR test for solar.csv.
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We have used the points from 8400 - 10578 for testing. A sequence of such experiments for the
number of near neighbours k = 10, 15, 20, 25 shows that k =20 seemsto give the smallest MSError
~0.011959 on the test set. Thisis somewhat better than the Gammatest result led us to believe but
very much inthesameball park. Theresults of thetest with k= 20 are shownin Figure 3.5. Herewe
can seethat the agreement between the predicted (blue trace) and the actual test data (green trace) is
very close. The red trace indicates the error.

3.6.1.1 Using the WhatIf and Query options on the LLR model

TheWhatlf option allowsusto seewhat happensif we set valuesfor al of theinputsexcept oneand
vary the remaining input over some range. Thisisavery useful tool in avariety of contexts.

For example, in asales and marketing campaign we may be able to answer the question “If | spend
X onadvertisngon TV and Y on advertising in newspapers how will the sales of the soft drink vary
with the mean day time temperature”?

Similarly the Query option alows a particular selection of al inputs to be queried. The use of
Predict isdiscussed in section 3.8.

Having analysed the data, built and tested a model, we can now ask some interesting questions
regarding the solar.csv data. For example, using the Whatlf options we can answer the question:

® How does the power output vary when the temperature is fixed at 7 degrees and the
Irradiance varies from O to 30?

The answer is given in Figure 3.6 As expected at a fixed temperature the power output is almost
linear with the Irradiance.

@ What If Viewer [_[Z]x] @ What If Viewer [—5]<]

Select Output to view ¥R

Select Output to view ¥R

i’ What If i’

s
2afa
zf--
0 «:——
18 -:--
18
14
12
O .

006 18 336 48 BE6 78 995108 12 132144 162174185 204216228 24 252264 282294 1 156212288324 38 436492548604 65 716772 855912968 1052 1136 122 1304 1388 1472
riout Init

Figure 3-6 The variation of output power as Figure 3-7 The variation of output power as
Irradiance varies from 0 to 30 and Temperature varies from 1 to 15 and
temperature is 7 degrees. Irradianceis 10.

Similarly we can ask
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® How does the power output vary when the Irradiance isfixed at 10 and the Temperature

from 1 to 15?

The answer is given in Figure 3.7. Here the
result issomewhat different. Oneinteresting
feature is the dight rolloff of power output
with increasing temperature. This is a rea
effect and isaconsequence of the physics of
solar cells.

3.6.1.2 A histogram of prediction errors for
LLR model

If we savethe data produced by the results of
the LLR test then we can examine an error
histogram for the predictions. Thisis shown
in Figure 3.8 The vertical gridlines are one
standard deviation either side of the mean,
whichiscloseto zero. Thisisthefinal test of
our mode!.

3.6.2 Building and testing a neural model

Freguency

0.2

.05

Errors

-0.6 -0.4 -0.2 i] 0.2 0.4 0.6

Figure 3-8 An error histogram for the LLR test.

We can now repesat the model building process using a neural mode.

3.6.3 Visualising the data.

For a 2-Input/1-Output data set we can
visuadlise the modd as a 2-dimensiona
surface and using suitable software plot this
surface directly from the data. Of course in
higher dimensional spaces such graphical
realisationsarenot possible. Moreovey, if the
dataisvery noisy such asurfacewill bevery
jagged and not much use as amodel.

Nevertheless now that we have finished
studying solar.csv it would be interesting to
see what the surface constructed from the
dataactually lookslike. Figure 3.9. Thisisa
topographic plot of the surface in which
lower power outputs are blue and higher
power outputs are red. We could regard our
Whatlf graphs as cross sections (using the

Temperature

Irradiance 29

30

Figure 3-9 A topographic plot of the solar.csv data.

model) of a surface which isvery similar to this plot.
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3.7 Example model construction and testing for DH(34)5000.asc

In Chapter |1 we analysed this data and concluded that it represented alow or zero noisetime series
for which the current sample could be predicted accurately on the basis of between 4 and 7 previous
samples. The mask 1101 was identified as a good mask.

1. Load the file DH(34)5000.asc.

2. In the Time Series options specify 4 inputs and 50 outputs. This gives 4952 samples for
analysis.

We are going to build alocal linear regression model and this needs akd-tree so it is necessary first
run a Gamma test.

3. Inthe Experimentstab highlight  [IEIET [ [8]x]
Gamme test. Leave the number of - 075 B8 5

near neighbours set at the default of | ot |oaa |

10. Inthe Mask tab enter themask as | * Mol Tester N
so are trying to predict a maximum

1101. Now click "Execut€'. I
| j I
of 50 stepsinto the future. If we just

look at the one step prediction then D U“ W VU | Uu W U“ VU

Result. We specified 50 outputs and

the result for the first output is a
Gamma statistic of -6.089E-5 witha SRS S O S S S O S U B
$ Of 43118E_5 3,000 3,020 3,040 3,060 3,060 3,100 320 3,140 3,160 3,180 3,200

| — Actual  — Predicted — Error l

4 For output 1 select Model’. Our - riq 16310 A test of the LLR model on the data

previous experiments suggest that g DH(34)5000.asc (blue predicted, green actual,
about 3000 data points are need to red error).

obtain a good mode (a fact

confirmed by a M-test for this

embedding - which curiously gives small negative results increasing towards zero!) Select
alocal linear regression modd with 10 nearest neighbours and set the Mask to 1101.

Results The MSError over the test set 3000 - The MSError of the test set 3000-3200 is
8.2303E-6. The graph of predictions, actual values and errorsis shown in Figure 3.10.

3.7.1 How the prediction quality degradesinto the future.
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Results. From the result of Step 3in
last experiment we actually got 50 bania
output Gamma statistic results. The | 4.5
graph of Gammaagainst the number
of steps ahead is shown in Figure
3.11. Hereweseeanexponentia rise | v.01i5
in the error of prediction, whichis |
typical of achaotic process.

0.01%

We conclude that the Time Seriesdataisof | v.uis
a low/zero noise smooth process which is
chaotic and that we can make accurate short
term predictionsbut that long term prediction
becomes exponentially more difficult.

itepsahead
H

Figure 3-11 How the Gamma dtatistic varies
against the number of steps ahead for

DH(34)5000.asc.
Building and testing model swhen you know (39 ax

the outputs for a corresponding set of inputs

IS quite interesting but it is purely an academic exercise. Sooner or later you will want to make
predictionsthat matter and where the outcomes are not known. Perhaps from some large quantity of
input data.

3.8 Using a prediction file

To accomplishthisitisfirst necessary to have a prediction’ file, i.e. theinput dataisplaced in afile
without the corresponding inputs.

3.8.1 Using a prediction file on Input/Output data.

Load the data file EXAMPLE NEEDED HERE

3.8.2 Using a prediction file on Time Series data.

Load the data file EXAMPLE NEEDED HERE

3.9 Using the neural networ ks outside of winGamma

If the neural models are used outside of winGamma (i.e. in other software) it is necessary to know
some technical details of the implementation.

3.9.1 The activation function and the sigmoidal.

The activation function used by the neura networksis
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act(x) = En: W%
j=1
i#i

where w;; isthe weight of the connection fromunit j to unit i and X isthe output of unit j.

The sigmoidal used by each neural node as an output function is

sigmoidal (act) = scaleFactor. 2 -1
1 + e—acTJTemperature

where act isthe activation (weighted sum of inputs), scaleFactor = 1.5, and Temperature = 0.8333

To speed up neural computationsthis function isimplemented in winGamma as afine grained | ook-
up table, whereas for feedforward computations when the weights are loaded into other software it
can be implemented directly as afunction. This may cause very small differencesin neura output
calculations using the same weights outside winGamma.

3.9.2 NetReader.

NetReader.nb is a Mathematica program supplied with winGamma which can read the neural
network weights saved from winGamma and implement the neural network for feedforward testing.
Which type of network training was used in the creation of the weights is automatically identified
from the weightsfile.

3.9.3 Exporting and using Neural network modelsin Excel.

After winGamma has built a neural network model it may be exported as an Excel Macro and used
directly in Excd (Thisfacility isnot currently available for LLR models.). Weillustrate this process
using an example.

Step 1. Build amodel.

In winGamma load data file Sun280.asc thisis asingle time seriesfile.
Transform the datato 3 inputs 1 output

Export transformed data as test.csv

Perform Gamma analysis.

Train neural network model on the transformed data

Step 2. Export the model
Right click on ‘M odél’

Select ‘Export’
Choose ‘ Save astype
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Set to ‘Excel Macro’ (*.mac)
Enter directory and file name
Export model

Step 3. Setting up the data and model in Excel.

Start up Excdl

Load data from test.csv

Save the file as an Excel Workbook

Right click on workshest tab ‘test’ at the bottom left corner.
Select ‘Insert’

Select ‘M SExcel 4.0 Macro'. Hit OK

This now opens a macro sheet

Load ‘test.mac’ into Notepad, select all text, and copy.

Paste text into macro sheet in Excel incell Al

Highlight column A

Do Insert\Name\Define

In the macro box set to * Function’

Set name to ‘model’. Hit OK

Now when in the macro sheet with column A highlighted you should see ‘modél’ in
the top left name box.

Switch back (using the tabs at the bottom) to the ‘test” worksheet.
Enter heading ‘model’ in cell F1

In cell F2 type “= model(A2:C2)” (no quotes) and press ‘Return’
Y ou should now see the model output value in cell F2 as compared to the actual
output in cell D2.

Select cell F2 and copy

Highlight the range of cells from F3 to F278 and paste.

Y ou should now have all the model predicted values for each row.
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Shipping list

1. Compact disc
2. Thismanual.
3. The gammatest and how to use it: a practitioners guide.

Hardwar e requirements
This software is PC based and normal minimum requirements are:
Pentium processor 133 MHz or preferably faster.

RAM 32-64 Mbytes. The amount of memory you will need to run winGamma is not really
constrained by the program so much asthe size of the data setsthat you wish to andyse. With
the possible exception of the neural network training a gorithmsthe theoretical average case
computation times of the main agorithms in winGamma scae like O(MlogM), where M is
the number of rows in the data file. However, under some conditions some algorithms in
winGamma may require quite alot of memory to achieve the theoretical scaling.

An example is Increasing Near Neighbours when pmax is large. Suppose we consider
solar.csv sith 10578 rows of three numbers each and set pmax = 100. This demand will
require approximately 0.25 Mgbytesfor thedata, 0.25 Mgbytesfor the kd-tree but morethan
4 Mgbytes for the 10° numbers which constitute the list of 100 nearest neighbours for each
of the 10578 input vectors in the data file. To perform a Gamma test each of the near
neighbour indices must be instantly available and they could be anywhere in the range 1-
10578. If the system has less than 4Mgbytes of available RAM then it will have to keep
paging datain and out fromthe hard disk. Thiswill dramatically low thealgorithm and may
infact render the entire computation infeasible. If you observe alarge amount of continuous
paging disk activity then (a) Close down al other applications (b) Consider if it isfeasible
to performtheanalysison asubset of thedata. If the problems continue you need more RAM.
In most cases 64 Mgbytesis sufficient for any reasonable data set.

At least 50 Mbytes remaining hard disk space.

Operating system: Windows 95 or 98, or Windows NT4.0 were the original development
targets but we have so far observed no problems with later versions of Windows operating
systems. Licensesfor ascript file driven UNIX version of the Gamma Test software may be
available by specia arrangement.

Installation
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Beta release; At present smply copy al filesin the winGamma directory into a convenient
directory on your hard disk. If you experience problems getting the help system to work you
may have an older version of Explorer. To update run the file hhupd.exe.

V 1release: Place CD in drive. Follow instal instructions from screen.

List of filesand directory structure after installation

<DIR>

<DIR>

Program and associated files
Directory of C:\WinGamma

11/20/98 12:28p <DIR> Data
10/30/98 02:37p <DIR> TestFiles
02/09/98 02:00a 29,952 BORLNDMM.DLL
02/09/98 02:00a 996,872 CP3240MT.DLL
11/05/98 06:28p 471,840 hhupd.exe (Run to update HTML if problemswith help
occur)
10/24/98 04:01a 420,864 TeedC.bpl
02/09/98 02:00a 1,455,736 vcl35.bpl
02/22/99 02:31p 107,677 winGamma.chm
03/02/99 04:08p 1,228,288 winGamma.exe
03/02/99 04:20p 968,704 winGammaBaseComponents.bpl
02/17/99 03:32p 35,328 winGammaComponents.bpl
Red datafiles
Data
02/04/99 02:35p <DIR> Solar
11/21/98 11:51a 430,515 Solar.csv
12/11/98 03:37p <DIR> Sunspot
03/19/98 07:52p 2,240 Sun280.asc
04/20/98 02:15p 24,543 SunPairs.asc
Artificialy generated test data files
TestFiles
01/04/99 02:18p <DIR> Noise
04/16/98 12:21p 50,183 Ran500.asc
03/27/98 03:04p 20,539 Sin500.asc
03/02/99 12:43p <DIR> NoNoise
09/15/98 04:58p 1,958 Hen100.asc
09/15/98 04:59p 9,830 Hen500.asc
09/15/98 05:00p 19,666 Hen1000.asc
10/29/98 01:26p 983,909 Hen50000.asc
04/22/98 12:51p 9,617 MGIs500.asc
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10/22/98 05:09p 96,097 MGIs5000.asc
02/24/99 02:44p 205,286 ModSin5000.asc
12/09/98 03:02p 98,966 DH(34)5000.as¢

Mathematica™ 3.01 files

12/19/98 04:25p 2,317 DataAnay.m

12/19/98 04:25p 2,812,869 DataAnaly.nb
03/02/99 07:13p 8,831 DataGen.m

03/02/99 07:13p 946,827 DataGen.nb

10/01/98 2:07p 38,062 mathlinkGamma.nb
01/28/99 04:36p 253,440 GammaT estProject.exe
10/29/98 4:18p 50,773 NetReader.nb

Problemsreported

Graphicsfiles saved are in billions of colours and cause “out of memory’ errors when attempts are
made to load them into some software including WPCorel V8 and Graphics Workshop.
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All datafilesarein plain ASCII and have the file name suffix * .asc. Datafiles may be created using
Excel™ as *.csv files and imported into winGamma. Data files for winGamma are in two basic
formats.

® Timesseries data.

Example: a singletime Series.

0.0262
0.0575
0.0837
0.1203
0.1883
0.3033
0.1517

€tc.
Each number followed by a carriage return/linefeed.

Example: multiple time Series. it isthe responsibility of the user to prepare the data so that
fields referring to the same time are on the correct line (most recent datais last).

0.0262 1000.26
0.05751031.78
0.0837 1037.86
0.1203 1038.567
0.1883 1040.810
0.3033 1100.721
0.1517 1027.851

Each number followed by one or more spaces. The last number on a line followed by a
carriage return/linefeed. There must be the same number of data fields on each row.

® | nput/Output data.

Example: a 4-input/1-output file.

0.36368593157164 0.3304959949667 -0.21811098544356 -0.20933961443087, -0.0220710621963
-0.00591105325917 -0.9085902611647 0.19548859472561 -0.34015487882487, -0.0064356217878
0.86221883819100 -0.5929180658183 -0.36843151702318 -0.89277930056707, 0.6617039028787
0.59877814813365 0.9562473549851 0.25582643936911 0.97996127233012, 0.4810764303063
0.13712162278232 0.9035299186427 0.29916358157799 -0.22014139763247, 0.7734356912106
-0.42696607632396 -0.4827254329784 0.98919821679839 -0.20449324659299, 0.5789449769352

etc.
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Each number followed by one or more spaces. The end of the input vector issignified by a
comma. What follows the commais one or more outputs separated by one or more spaces.
Thelast number onaline should befollowed by acarriage return/linefeed. There must bethe
same number of data fields before and after the comma on each row.

® Prediction file data.
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A number of Mathematica files for data generation/manipulation, data analysis, and model testing
are supplied withwinGamma. Thereisaso a C-code executable MathLink file which can be used to
execute the Gamma test from within Mathematica. To use these files you will need to have
Mathematica installed and be familiar with Mathematica notebooks.

At alater stageit is hoped to supply equivaent filesin Matlab.
DataGen.nb ( Data Generator)

This file enables the creation of Input/Output files and Time Series files of data with our without
added noise. In includes a large number of examples and shows how every test file used in this
manual was crested.

DataAnal.nb (Data Analyser)

This file is useful for producing graphics such as histograms and performing various types of
supplementary data analysis.

GammaTestProject.exe

This is a C-code executable which communicates with Mathematica via MathLink and enables a
variety of Gamma test computations to be called directly from Mathematica. It cannot be executed
as a standalone program.

mathlinkGamma.nb

Thisshows how to load and usethe file GammaTestPr oject.exe and gives exampl es of each function
that can be called.

NetReader.nb

This notebook can read in any neural network created and saved by winGamma. The program
identifiesthe network type and can then run the network. There may be very small differencesinthe
results owing to the fact that this notebook uses a pure form of the sigmoidal function whereas
winGamma uses a fine grained discrete |ookup table for speed in training.



APPENDIX IV Generating test files

Generating your own data files.

Datafilesmay be generated using awide variety of softwaretools. All datafiles used by winGamma
are in plain ASCII format. One convenient method of generating data files is to use Excel to
manipulate your data into the required rows and columns and then save the data in *.csv format.
Another convenient method for creating data files is to use Mathematica. winGamma is supplied
along with anumber of useful Mathematica programs for generating, manipulating and saving data
in the correct formats. These are described in Appendix I11.

Dataisgeneraly dividedintofour types: analysis, training, testing, and prediction. Predictionfiles
aredifferent in that they contain no output val ues but otherwi se use the same formatting conventions.
We use prediction files when we genuinely do not know the corresponding output values and want
to generate predictions. For the prediction file the output fields are empty becauseit is assumed that
the outputs are unknown. The use of prediction filesis discussed in section 3.10.

Ingeneral datafilescan bedividedinto two main categories. input/output filesand timeseriesfiles.
Creating data files using Excel

If datais prepared in a spreadsheet it can be exported to winGamma in the *.csv format. Make sure
that the numbers exported are in pure decimal format. At present winGamma may read numbersin
the XEy format incorrectly.

When a*.csv fileisloaded the user will be automatically prompted to nominate particular columns
as inputs or outputs by selecting with the mouse or using up/down cursor keys and the Enter (or
Return) key. The mouse may also be used to select then double clicking will change an input to an
output an vice versa.



APPENDI X V Definitions

Model. A smooth data model is a differentiable function from inputs x = (x4, ..., X,,) to each output
y. It isassumed that the data can be represented by an unknown model f so that

y = f(X;, . X)) + 1

wherer is a stochastic variable which represents noise.

Gammatest. An algorithm to estimate the variance of the noise Var(r) associated with a particular
output. Not to be confused with the variance of the output..

Gamma statigtic. Often referred to asa Gammavalu€e' . It isthe vertical intercept of the regression
line plot and represents our best estimate for Var(r).

Embedding. A selection of past values of atime series used to predict the current value.

Mean squared error (MSError). If y(i) (1 < i < M) isaset of values of an output and y* (i) isa set
of predictions for y(i) then the MSError of the predictionsis given by

= LS i) - v
MSError = M-Z (y=(i) - y())
i=1

Standard Error (SE) Thisisthe standard error about aregression line and is calculated as

pmax _
(I - \ln—%Z Zl (i) - T)?

whereI'(i) is the ith Gamma regression point value and I is their mean.

Over -training describes the effect when we attempt to produce a model by exactly following the
training data. Consider the effect of trying to produce amodel by drawing aline through every point
inthenoisy sinedatain Figure 1.8. It would look nothing like asine curve and if we asked thismodel
to predict y for a particular value of x we should little faith in the prediction. One of the main
advantages of winGammaisthat it givesusthe necessary information to prevent over-training before
we begin to build asmooth model such as a neural network.

GA Fitness. In order to better control the GA search it is useful to know how the GA fitnessis
caculated. Theoveral fitness of amask iscomposed of three parts, corresponding to the fitness due
totheintercept (i.e. theactually Gamma statistic) because mainly wewant maskswith small Gamma,
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the fitness due to the Gradient because if we have enough data to estimate the Gradient accurately
it might in model construction to choose a mask with alow Gradient which will correspond to a
simpler model, and the fitness due to the number of 1'sin the mask because shorter masks also mean
simpler models. The contribution of each of these terms is controlled by three weights Wi cenys
Woradient, @0 Wigngih @ccording to the formula

fitness(mask) = W, cqp-INterceptritness(mask) +
Wy agient-Or adientFitness(mask) +
Wiengtnl ENGthFitness(mask)

The component fitness calculations are described below, where Vratio(mask) and Gradient(mask)
return the Vratio and Gradient as cal cul ated by the Gammartest on the data set for mask, outputrange
isthe range of the output and |.| denotes absolute value.

interceptFitness(mask) = 1 - (1 - 10.Vratio(mask)) %, ifVratio(mask) < O

2 - 2(1 + Vratio(mask)) !, otherwise

gradientFitness(mask) = 1 - (1 + |gradient(mask)|/outputRange) *

numofones(mask)

lengthFitness(mask) =
J e ) length(mask)
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APPENDIX VI Frequently asked questions

Why isthe Gamma statistic sometimes negative?

Sometimes the Standard Error (the error obtained from the (8, y) regression which is always stated
when a Gamma result is obtained) is large enough to account for a negative intercept by the
regressionline. Thisismost likely to occur when thetrue asymptotic Gamma statistic iscloseto zero.
It can also happen when the data fails to fulfill the basic requirement that inputs and outputs are
drawn from a continuous range. If many inputs are categorical it is also possible to get a negative
Gamma dtatistic.

How should | choosetheright number of inputsfor a Time Series?

Initially set the number of inputs large (but reasonable in the context of the data). Then do an
'Increasing embedding’. Thiswill compute successive Gamma statistics based on one input (the
historically most recent sample of thetime series(rightmost on the mask), then ontwo inputs(thetwo
most recent samples) and so on up to the maximum number of inputs you have selected.

The minimum Gamma statistic obtained will determine an upper bound for the maximum number
of inputsit is useful to consider.

An optimum for the number of near neighbours used in the Gamma test should now be obtained.
Then the maximum number of inputs can be checked again using that number of near neighbours
in the Gammartest. (If the maximum number of inputs changes then the optimum number of near
neighbours should be checked again). Finally using the best maximal number of inputs a check for
the best embedding can be run, this may cause some inputs to be discarded.

How should | choose a method for establishing an optimal embedding (mask)?

The best method for choosing amask on theinputsis’Full embedding’. The problems comewith this
method when the run times required become too long. Runtime is a function of the input
dimensionality (the number of inputs, m), the number of nearest neighbours (pmax ) and the length
of thedata(M). If runtimesarejust too long then the Genetic Algorithm (GA) can be used with Hill
climbing’ and a’Sequential embedding’ embedding to do asmall search around the candidates offered
by the GA.

How should | choose the optimal number of near neighbour s (pmax) in the Gamma test?
See section 2.4 of the manual.

How should | choosetheoptimal number of nearest neighbours(k) in Local linear regresson?

By experiment with atest set.
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What is" the best Gamma" and what does it mean?

The "best Gamma in the context of a Gammatest is the closest approximation to the asymptotic
Gamma statistic, which should approach the true noise variance.

The "best Gamma’ in the context where we have a number of Gamma estimates for different
selections of inputs (essentially different models), assuming these estimates are accurate, is the
Gamma dtatistic closest to zero - because that suggests the model which should have smallest
MSError when predicting outputs from inputs not used in the model construction process.

Notethat if thetrue noisevarianceisactually zero (and the datais of arbitrarily high precision) there
isno limit to how accurately we can model the unknown function, provided only that we have more
and more data.

In most redl life Stuations there is a positive noise variance remaining even after optimising the
selection of inputs (because real measurements are subject to error) and thereisno point in building
more and more accurate model s (for example by using the noise cancelling features of local linear
regression) because the predictions of the model will never agree with our measured data unlessthe
measurement error is decreased (for example).

An exception to thismight be if are trying to get some idea about an underlying theoretical model
and winGamma can help in this respect but determining a theoretical model (as opposed to an
accurate numerical model) lies outside the competence of winGamma.

How should I choose between alocal linear regression (LLR) method and aneural net method
of modéd building?

Netstake along timeto train but may generalise better than LLR in regions of theinput space where
datais sparse. A high Gamma statistic on the training data may make neural network training even
more difficult. If datais densaly distributed over the input space then LLR may be abetter choicein
this Situation.

The particular application aso has an influence on which may be the best modelling tool to select.
For example, to learn new datait may be necessary to retrain a neural network from scratch which
is time consuming, whereas dynamic LLR can easily accommodate new training data.

Local linear regresson models are very fast to build, but take relatively longer to query because a
kd-treeis used to find the near neighbours of the query point. If the final target applicationisarea
time system neural networks offer the advantage that they can be implemented in hardware.

How should | choose between local linear regression and dynamic local linear regression?
For amodel to adapt it must be dynamic. Every datarow (vector) "seen" by adynamic LLR model

will be added to the model, but of course eventually the model becomes memory hungry and starts
to dow down. At this point the model will have to be pruned. If the phenomenathat you are trying
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tomode islikely to befixed then astatic model isbest. If the underlying dynamicsthemsel ves might
be changing (e.g. the stock market) then a dynamic model is more sensible.

How should | choose between the Backpr opagation, Conjugate Gradient Descent and BFGS
neural net algorithms?

Backpropagation is the origina feedforward neural network training algorithm. It is reasonably
effective onsmpleproblemsbut only makesuse of thefirst differential sof theerror surfaceinweight
space. Therefore backpropagation can take longer to train than other more sophisticated neura
training algorithms and may fail to convergeto thetarget MSError derived by the Gammatest at all.
But compared to more recent algorithms backpropagation is inexpensive on memory.

CGD offer some improvements over BP at the cost of extramemory.

BFGS uses the second differences of the error surface in weight space which in most cases gives
faster convergence at the expensive of a more complicated algorithm and more memory.

What do all the fields associated with a Gamma Result mean?

See section 1.3.1 of this manual.

What does a high gradient suggest?

If thereis enough data to give a stable Gradient asymptote then a high Gradient (computed values
on artificial test setscan come out as high as 20,000) suggests acomplicated unknown function with
on average regions of high curvature.

Why isthe Vratio useful?

It provides a standardised estimate of the noise which is independent of the output variable range.
What isthe use of the Standard Error?

It tellsushow reliablethe Gamma statistic isas an estimate of the variance of the noise on the output.
What file formats ar e per mitted for data to be analysed by winGamma?

See Appendix I1.

How much data should | usefor training?

If the Gamma dtatisticis asymptoti ng to zero you can use as much data as is practical and models
with M SErrors of order 10 are quite feasible.
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If the Gamma statistic is asymptoting to a positive value agood rule of thumb isto use as much data
aswill give a standard deviation (the square root of the variance) of the Gamma values about the
asymptote, of around 10% of the asymptote value on the last 10% of the data.

When should | use external files of data for testing?

When the analysis data set doesn't include the test data or further tests need to be made on amodel.
When should | use the moving aver age option?

Usually when you have plenty of data and want to determine if the number of data samples used to
e_sti mate the Gamma statistic gives a stable value over arange of different sample sets of the same
size.

Thistest isaso useful to investigate if the underlying dynamicsisitself varying.

When should | usethedifferential option?

It may improve the MSError for difficult time series.

Which input isthe differential (or moving average) input?

When these options are activated the new data column is placed in the highest numbered positions

with differential first and moving average last. This can be confirmed by placing the cursor over the
vertical column and dragging it wider thus revealing the applicable legend.
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