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Abstract

We constructed non-linear predictive models for the River Kennet at

Theale and the River Thames at Windsor using river and precipitation

data from the Thames Valley region in the UK. Our approach used a novel

non-linear data analysis technique called the Gamma test, combined with

heuristic search techniques to provide a practical solution to the problem

of constructing forward predictions of river levels and flows. Our three

hour predictive model for the River Kennet at Theale calculated the level

to a standard error of 1 cm, and our four hour predictive model for the

River Thames at Windsor calculated the level to a standard error of 3cm.

The Gamma test is used to examine the relationship between inputs

and outputs in numerical data-sets. It is used prior to modelling to es-

timate the variance of the output that cannot be accounted for by the

existence of any smooth model based on the inputs, even though the

model is unknown. This error variance estimate provides a target Mean

Squared Error that any smooth non-linear model should attain on unseen

data. Building a model with greater accuracy than the error variance

indicated by the Gamma test will result in a model that has overtrained

on the data set and which cannot generalize well for unseen data.

Keywords: Data analysis, Gamma test, modelling, prediction, Thames

river, flood warning.

1 Introduction

In this paper we describe the application of a new non-linear analysis technique,

called the Gamma test, to the problem of modelling and predicting river level

and flow. This work, drawn from [Durrant, 2001], was a feasibility study for the

MAPFLOWS (Modular Automated Prediction and Flood Warning System)

project. We studied an area of the River Thames (UK) and a tributary, the

River Kennet, with the goal of predicting the River Kennet at Theale and the
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River Thames at Windsor. We used hourly rainfall, and river flow and level

data gathered for one year at various points in the Thames Valley. This data

was analysed using the Gamma test and modelled using neural networks.

We first briefly describe the Gamma test in section 2, then consider the rivers

and surrounding area in section 3. In section 4 we describe the analysis of the

data and in section 5 we show the modelling results.

2 The Gamma test

The Gamma test was first briefly reported in [Končar, 1997] and

[Aðalbjörn Stefánsson et al., 1997], and later discussed and used in

[Chuzhanova et al., 1998], [Guedes de Oliveira, 1999], [Tsui, 1999],

[Tsui et al., 2002], [Durrant, 2001] and [Jones et al., 2002]. A formal proof was

given in [Evans, 2001], [Evans and Jones, 2002a] and [Evans and Jones, 2002b].

The idea is quite distinct from earlier attempts at non-linear analysis. Sup-

pose we have a set of input–output observations of the form

{(xi, yi) | 1 ≤ i ≤ M} (1)

where the inputs x ∈ Rm are vectors confined to some closed bounded set

C ⊂ Rm and, without loss of generality, the corresponding outputs y ∈ R are

scalars.

Rather than pre-suppose some particular parametric form for the underlying

non-linear model we suppose that it belongs to some general class of functions.

In particular we suppose that the underlying relationship is of the form

y = f(x1, . . . , xm) + r (2)

where f is a suitably smooth and unknown function that maps the components

of the input vector x to the output y and r is a stochastic variable which

represents noise. We assume that the mean of the distribution of r is zero
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(since a constant bias can be subsumed into the unknown function f). Other

reasonable restrictions are made, for example that the variance of r, Var(r),

is bounded. Hence the domain of possible models is restricted to the class of

functions which have bounded first and second partial derivatives.

Even though the underlying function f is unknown the Gamma test can es-

timate Var(r) directly from the data. This estimate, called the Gamma statistic

and denoted by Γ, is calculated directly from the data in O(MlogM) time. To

compute Γ we calculate two quantities. First

δM (k) =
1
M

M∑

i=1

|xN [i,k] − xi|2 where 1 ≤ k ≤ p (3)

where N [i, k] denotes the index of the kth nearest neighbour to xi, and |.|
denotes Euclidean distance (typically p = 10). Thus δM (k) is the mean square

distance to the kth nearest neighbour. Second

γM (k) =
1

2M

M∑

i=1

(
yN [i,k] − yi

)2 (4)

Here yN [i,k] is the output value corresponding to the kth nearest neighbour of xi.

Finally we perform linear regression of the pairs (δM (k), γM (k)) (1 ≤ k ≤ p) and

return the constant term of this line as the noise variance estimate Γ. The gradi-

ent A of the regression line is also returned, as this gives an indication of model

complexity. It can be shown [Evans and Jones, 2002b, Evans and Jones, 2002a]

that

Γ → Var(r) as M → ∞ (5)

where the convergence is in probability. A useful graphical realization is the

Gamma scatter plot obtained by plotting all points (|xN [i,k] − xi|2, 1
2 (yN [i,k] −

yi)2) and overlaying the regression line, see for example Figure 9.

The Gamma test is a non-parametric analysis technique and the results apply

regardless of the particular methods used to subsequently build a model of f .
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If, for example, the Gamma statistic is large (compared with the variance

of y) then it is unlikely that a smooth model exists to map the inputs to the

output, but if the Gamma statistic is close to zero then this becomes more likely.

We can standardize the result by considering Γ/Var(y), which returns a scale

invariant noise estimate which normally lies between zero and one1, which we

call Vratio.

We determine the reliability of the Γ statistic by running a series of Gamma

test for increasing M , to establish the size of data set required to produce a

stable asymptote. This is known as an M -test.

It is obviously pointless to attempt to fit the model beyond the stage where

the MSE on the training data is smaller than Var(r). This will cause over-

fitting, and although the resulting model may perform virtually perfectly on the

training data it will give poor prediction results on previously unseen data.

• Thus one problem of model construction solved by the Gamma test is at

what point to cease training.

We can also use the M -test to decide how much data we require to build a model

with a mean squared error which approximates the estimated noise variance.

However, the utility of the Gamma test goes beyond merely estimating the

noise variance and providing a criterion for ceasing training: we can also use it

to select the most predictively useful input variables. There are 2m − 1 possible

selections of inputs that we might use to build a model. Provided m is not too

large, say m ≤ 20, we can run a Gamma test for each possible selection. (For

larger m we can use a heuristic search technique, such as a genetic algorithm.)

The selection of inputs which provides the Gamma statistic closest to zero is
1We say Vratio is ‘normally’ in the range [0, 1] because if Var(r) is equal to (or close to)

zero (or M is too small), it can happen that Γ derived from the algorithm is negative (in

which case we might replace Γ by |Γ| for our estimate of Var(r)), similarly it is possible that

Γ > Var(y).
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then selected as the best. This is called a full embedding search.

In this study we used the software implementation2 winGamma described

in [Durrant, 2001]. We can quickly analyse continuous real valued data and

determine the extent to which the data can be modelled by a smooth input-

output model (bounded first and second partial derivatives). The software first

computes the Gamma statistic, which provides an estimate for the target mean

squared error (to be achieved on unseen data) by any smooth model built from

the data. Using a variety of non-linear modelling tools the system can then

quickly and efficiently construct such a model, using the Gamma statistic as a

stopping criterion to prevent overtraining.

Once precipitation has occurred the process of runoff, although highly com-

plex in any particular catchment area, is completely determined by physical

and hydraulic processes, geomorpholocal processes, boundary and initial con-

ditions, and any system parameter such as gating openings. Thus in many

respects downstream water flow/level prediction is an important application

ideally suited to the algorithms incorporated into winGamma. This is princi-

pally because once precipitation has occurred the entire water transport process

to the sites for which prediction is required is essentially determined by a smooth

(albeit complex) process with lags.

3 River level and flow prediction

River levels and flows can be forecast using indirect or direct methods.

The indirect methods initially involves prediction of runoff either through a

rainfall-runoff model or by routing the flow observed at an upstream gauge

to the desired location downstream. The predicted runoff is later con-
2winGammaTM is available under licence from the Department of Computer Science,

Cardiff University, Wales UK.
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verted to a water level by use of a rating curve. The rainfall-runoff mod-

els, for example [Kitadinis and Bras, 1980a, Kitadinis and Bras, 1980b] and

[Georgakakos, 1986a, Georgakakos, 1986b], require knowledge of underlying hy-

drology and the establishment of many rain gauges together with a good teleme-

try system. Routing techniques are more useful when the travel time is longer

and the downstream flow is low or controlled. For direct prediction of water lev-

els, statistical correlation techniques have been employed [Mutreja et al., 1987].

These techniques can provide accurate results in a reasonably wide range of

circumstances. However, the empirical models need careful construction for each

particular catchment area and it would be hard to envisage a general purpose

adaptive system that could proceed from such a basis.

[Thirumalaiah and Deo, 1988] used neural networks as a pattern recognition

technique for river stage forecasting in the Godavari Basin (India) and their

results showed that adaptive modelling for level prediction is quite practical.

More recently [Wright and Dastorani, 2001] gave an account of a neural network

based approach for ungauged catchment peak flow prediction.

Our approach will also be adaptive and use neural networks for non-linear

modelling of the river system. It is worth noting that the same basic techniques

might be applied to the management of hydroelectric reservoirs. An example

might be the operation of a reservoir with an uncontrolled inflow but which

has the means of regulating the outflow. If advance information regarding the

inflow is available then the reservoir can be operated, for example by a rule

based system, so as to optimize electricity production or minimize downstream

flood damage.

3.1 The Thames Valley

The river system data used in this analysis was measured in the Thames river

basin above Windsor, see Figure 1. The data was provided by the UK Envi-
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Figure 1: The Thames study area.

ronment Agency. It consists of flow rate (cubic metres per second) and level

readings (metres) for the rivers at Newbury, Shaw, Brimpton, Theale, Reading,

Twyford, Bourne End and Windsor. The rainfall, measured in mm/hour, at five

sites in the region was also collected. All of the measurements were collected

hourly over the year from 10am on 1st January 1999 to 9am on 1st January

2000. The river and rainfall sensor positions are marked on the map. The

general direction of flow is from west to east.

3.2 Data Pre-processing

The data was first scanned for sensor malfunctions, missing values or data entry

errors. A plot of the raw data in Figure 2 over the entire period gives a general

indication of data quality for the river level and flow measurements. In some

cases these data errors continue for significant intervals. Their cause is unknown,

but could be due to sensor failure or periods of routine maintenance.

It was apparent that the data would have to be cleaned to reduce the effect

of faulty sensor readings prior to analysis or modelling. We identified ‘incorrect

measurements’ as being those that were significantly different from the previous
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(b) The raw river flow rate data.

Figure 2: The raw river level and flow rate data. Faulty sensor readings are

indicated on the graphs by the plunging vertical lines.

reading taken at the same site. A simple thresholding algorithm3, designed to

operate in real-time when future sensor values would not be known, was used to

correct obviously faulty readings by replacing them with their last known reliable

value. This routine is effective with time-series values that can be expected

to change relatively smoothly over time. It is obviously inappropriate for the

rainfall measurements, where the values were effectively discontinuous, and we

did not attempt to adjust the rainfall data.

An illustrative graph of the cleaned level data is given in Figure 3. Similar

graphs were obtained for the cleaned flow data. In most cases where there were

single missing values the data cleaning procedure provided a simple and effective

approximation. A disadvantage of this technique occurs when a string of missing

values are assigned the last valid measured value. For long strings this algorithm

would in all likelihood produce increasingly inaccurate approximations.

3.3 Sensor consistency

Apart from the issue of data errors, we also discovered an issue regarding the

accuracy and/or reliability of sensor readings which, although not obviously in

error, nevertheless produced some puzzling results when correlated with other
3An appropriate threshold was set individually for each time series.
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Figure 3: Cleaned river level data at the various sites.
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sensor readings taken at the same site. For example, if we correlate flow and

level readings taken at the same site at the same time we might expect to see

a simple functional relationship, in which increased flow produces a non-linear

increase in level. Figure 4 shows Flow-Level correlation plots for the various

sensor sites shown in the map of Figure 1.

We can see that in some instances (River Wye at Bourne End, River En-

bourne at Brimpton, River Lambourn at Shaw, and to some extent River Kennet

at Theale) our expectations are confirmed. However, in other instances (River

Kennet at Newbury, River Thames at Reading, River Loddon at Twyford, and

River Thames at Windsor) the flow-level correlations show very unpredictable

and widely differing scatter plots and are open to interpretation. For exam-

ple, in Figure 4(d) examining the River Thames at Reading we might suspect

progressive sensor drift. Indeed closer inspection of the data (the point colour

changes progressively through the spectrum from red to blue over the calendar

year) shows that the different coloured ‘lines’ visible on the scatter plot often

occur at intervals throughout the year. An alternative explanation might be

that the river was dredged or altered periodically and this fact was reflected

in changes to the flow-level relationship. However, other examples, such as the

River Kennet at Newbury or the River Thames at Windsor are less easy to

interpret.

The inspection and cleaning of the raw data in conjunction with the interpre-

tation of the Flow-Level correlation plots indicates that there is a serious issue

of data accuracy and consistency to be addressed by the responsible agencies.

3.4 The rainfall data

The raw data for the five hourly rainfall sites over the data period of one calendar

year is shown in Figure 5 and illustrates that the rainfall measurements were

relatively stochastic and discontinuous.
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Figure 4: The flow-level correlations of the river data measured at each sensor
site. The hue of the points indicates the time of measurement (the colours
change progressively through the spectrum: red points were measured at the
start of the period and blue points at the end).
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Figure 5: The rainfall monitored at the sites shown in Figure 1.

Prolonged periods of rain will saturate the catchment area and fill under-

ground reservoirs, resulting in a change in the runoff dynamics where more water

arrives in the tributaries and main watercourses, and it arrives more rapidly.

To incorporate these long term effects into the model and to investigate

their relevance, the rainfall measurements were aggregated over different time

intervals: 24-hours, 7-days and 28-days.

4 Data Analysis

Given this data one could build predictive models for both level and flow, but

we report here on level models. Examination of the regional map in Figure 1

shows that two models can be sensibly constructed from the data measured at

the marked sensor sites:

• Theale area model:

Theale predicted using river measurements from Newbury, Shaw and

Brimpton together with rainfall statistics.
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• Windsor area model:

Windsor predicted using river measurements from Theale, Reading,

Twyford, Bourne End together with rainfall statistics.

Here ‘rainfall statistics’ indicates some combination of lagged and aggregated

rainfall measurements.

Since the river Kennet at Theale flows into the higher reaches of the Thames

this choice enables us to investigate whether a modular system could be built

using the output of one model as an input into another. Thus the Windsor

area model allows us to use either the real data measured at Theale, or the

predicted river levels from the first model. In this particular case, because of

the location of the sensors, both models will give a 4 hour prediction and so

there is actually no advantage. In general, such a modular structure would

enable longer prediction times: the tradeoff is the utility of longer prior warning

against an initially reduced level of accuracy.

4.1 Normalization of data

Since different data types such as flow, level and rainfall were in different units

and over significantly different range scales, all data was normalized prior to

analysis by mapping the mean to zero and the standard deviation to 1
2 . In

general the process of normalization attempts to initially equalize the relative

numerical significance between the input variables and to aid the analysis rou-

tines, especially in the absence of any prior knowledge regarding input variable

relevance.

Normalizing the data will produce a different set of near neighbour relation-

ships compared to those for the un-scaled data. However, any two metrics on a

Euclidean space are equivalent to within a constant, so a Gamma test analysis

on normalized data will not affect the asymptotic nature of the Gamma statis-
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tic. Normalization can however affect the rate of convergence of the Gamma

statistic and the quantity of data required to produce a model of given quality.

4.2 Determining the lags

One simple measure of the performance of a model on unseen data for which

the measured outputs are known is the mean-squared error (MSE) over the test

data. If {yi : i ∈ U} is a previously unseen set of measured values of an output

and {ŷi : i ∈ U} is a set of predictions for yi then the mean-squared error of the

predictions is given by

MSE =
1
|U |

∑

i∈U

(ŷi − yi)2 (6)

The MSE is not an ideal measure in all respects. For example, we may have a

time series model with a small MSE, but which shows no particular propensity

to accurately anticipate turning points, a factor of particular interest in the

present context.

Our early experiments in river level and flow prediction indicated, as one

might expect, that an embedding model constructed from time series data

recorded at a single site could not be used to produce a model that effectively

predicted turning points. Although we were able to obtain models with a rela-

tively low MSE, these models invariably lagged the actual data by one time step

(in attempts to build predictive models for a random walk we see an identical

behavior) and so were ineffective in anticipating future changes of level or flow.

This is entirely reasonable, since what affects the behavior at a particular point

on the river is predominately determined by the input from upstream, not the

previous behavior at the same point. Obviously one should use upstream data,

taken prior to the time of prediction, to model flow or level at downstream sites.

Only in this way can we be sure of genuinely capturing the flow dynamics.

One way to determine the correct transfer times between successive mea-
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surement points is by direct on-site measurement, preferably under a variety

of flow rate conditions. This would obviously be the recommended approach

in a real system. It is relatively straightforward to accomplish and, once per-

formed, leaves no room for doubt. Additionally such physical measurements act

to validate algorithmic approaches to determining lags. We investigated two

algorithmic techniques to determine the transfer times directly from the data

measurements: the Time-lag Gamma test4 and Delta correlation.

The Time-lag Gamma test compares the target time series y(t) with an

input time series x(t) (1 ≤ t ≤ M) by computing Gamma statistics for data

sets (x(t−d), y(t)) for d = 1, 2, 3, . . . and then choosing the lag d which produces

a Γ closest to zero. Although this worked well on simulated river flow data it

proved less effective on real data.

Instead we used the second approach of Delta correlation and then validated

our choice of inputs using the Gamma test. The delta correlation ∆c(d) of y(t)

with x(t) (1 ≤ t ≤ M) at lag d is defined by

∆c(d) =
1

AB

M−d−1∑

i=1

(x(i + 1) − x(i)) (y(i + 1 + d) − y(i + d)) (7)

where
A2 =

∑M−d−1
i=1 (x(i + 1) − x(i))2

B2 =
∑M−d−1

i=1 (y(i + 1 + d) − y(i + d))2

The idea here is to correlate changes in the input time series with later changes

in the output time series at some lagged time d. The time lag with the highest

positive correlation5 should indicate the flow time between sensor points.
4This had been called the sliding-ones Gamma test in previous work.
5In the context of river flows, the correlations will be positive since the expectation is that

as an upstream river rises (or falls) then downstream the river will correspondingly rise (or fall)

at a later point in time. In general, for other types of problem, strong negative correlations

may be as significant as strong positive ones.
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An important aspect of Delta Correlation is that it is very fast - so one

can obtain an initial overview of what lags are likely to be important very

quickly. Usually identification of lags for flow and level time series was not

too difficult: we simply picked the lag time with the largest delta correlation,

provided this was consistent with out understanding of the relative distances

involved. Rainfall and aggregated rainfall lags were often harder to decide.

4.2.1 Determining the lags for the Theale area model

The Delta correlation on the Theale area data produced the graphs in Figure

6. The level and flow measurements at Newbury, Shaw and Brimpton were cor-

related to the level and flow measurements taken at Theale. After determining

the lags by selecting the maximum correlation we arrive at the Delta correlation

results shown in Table 1.

The Delta correlation analysis unambiguously identifies the lags from Shaw

and Brimpton to Theale to be 8 hours and 3 hours respectively. The lag between

Newbury and Theale is less clear cut. The analysis produces a 3 hour lag using

the flow data and a 9 hour lag using the level data. The distance between

Newbury and Shaw would suggest that the lag to Theale should indeed be

around 9 hours. A closer examination of the data used to produce Figure 6

shows that the 3 hour lag had a correlation of 0.0735 and a correlation of 0.0732

for 9 hours. We can conclude that the likely lag is indeed 9 hours given all of

the available evidence.

For the regional rainfall aggregated over 28 days we obtain a Theale level

correlation of 0.111 corresponding to a lag of 7 hours, whereas for the flow we

obtain a correlation of 0.102 corresponding to a lag of 4 hours. In this case

the meaning of a lag against a 28 day aggregated rainfall is less clear cut, but

examining the graphs we decide that a 7 hour lag may be more appropriate

here. The Delta correlations between individual rainfall sensor sites and Theale
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Figure 6: The Delta correlation plots for the Theale model.
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Delta used

measurement level flow lag

Newbury level 9 9 9

Newbury flow 3 3 9

Shaw level 8 8 8

Shaw flow 8 8 8

Brimpton level 3 3 3

Brimpton flow 3 3 3

Regional rainfall 1-hour 13 13 13

Regional rainfall 1-day 4 4 4

Regional rainfall 7-days 8 8 8

Regional rainfall 28-days 7 4 7

Marlborough rainfall 13 9 13

Lambourn rainfall 13 9 9

Chieveley rainfall 13 13 13

Kingsclere rainfall 20 20 8

Table 1: Estimated lags for the Theale area measurements. The lags chosen

for the analysis were derived from the Delta correlation analysis. The lag for

Kingsclere rainfall was manually selected as 8 hours.

were also analyzed, as they could introduce additional local information that

the aggregated regional rainfall cannot describe.

It is interesting to note that the results of the Delta correlation analysis are

relatively consistent, regardless of whether the level or flow are used.

The lags calculated in Table 1 were used to construct a data set for the Theale

area model. The choice of inputs was then validated using the full-embedding

routine. This analysis determined that the rainfall at Lambourn and the flow at
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Including Excluding

Lambourn rainfall Lambourn rainfall

and Newbury flow and Newbury flow

|Γ| 0.00077 2.0638 × 10−6

Gradient A 0.01865 0.022833

Standard error 0.00066 0.00037164

|Vratio| 0.00306 8.255 × 10−6

Near neighbours 10 10

M 8076 8076

Mask 11111111111111 11011111101111

Table 2: The Gamma test analysis results on the scaled Theale level area data

set. The two results compare the effect of including or excluding the Lambourn

rainfall and the Newbury flow (indicated by a 1 or 0 in the mask respectively).

Newbury were irrelevant (|Γ| = 0.00077 with Lambourn rainfall and Newbury

flow and |Γ| = 2.1×10−6 excluding Lambourn rainfall and Newbury flow). The

results of the analysis are shown in Table 2.

The discovery that the rainfall measured at Lambourn and the flow at New-

bury were not useful led us to try a number of manual revisions to the lag times,

but at each stage the feature selection routines discarded the measurements.

This observation may have arisen for a number of reasons. The Lambourn rain-

fall measurement site is relatively distant from Theale, making it difficult to

find a correlation. Considering that when rain occurs it is actually distributed

across a region, it may well be the case that the Lambourn rainfall measure-

ments, insofar as they contribute at all, are contributing at around the noise

level. The Newbury flow-level correlation, shown in Figure 6(c), indicates that

flow and level are not highly correlated. The analysis has consequently selected
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the most useful of the Newbury measurements and discarded the less reliable

flow information.

The result of the analysis is to use the inputs and lags in the Theale model

that correspond to those shown in Table 1 without the rainfall measurements

at Lambourn and the flow measurements at Newbury.

4.2.2 Determining the lags for the Windsor area model

The Delta correlation for the Windsor area data produced the graphs shown

in Figure 7. The level and flow measurements at Theale, Reading, Twyford

and Bourne End were correlated to the level and flow measurements taken at

Windsor. The lags shown in Table 3 were then determined from the Delta

correlations.

The Delta correlation lag analysis identified that the lag between Theale

and Windsor should be approximately 18 hours. The lag between Reading

and Windsor was chosen to be 11 hours. Using Figure 7 we deduced that the

remaining lags were likely to be 8 and 4 hours between Twyford and Windsor,

and Bourne End and Windsor, respectively.

The regional rainfall was much harder to correlate. The evidence seems to

suggest a lag of either 1 or 8 hours for hourly and weekly aggregated rainfall.

Since we need a lag equal to or longer than the lag for Bourne End we chose

8 hours. A longer lag of 8 hours seems appropriate for the daily, 28 day, and

Caversham rainfall.

The results of the Delta correlation analysis for level and flow were not as

consistent as those calculated for the Theale area model. This could be due

to the low correlation between level and flow measurements at the Reading,

Twyford and Windsor sensors (Figure 4).

Gamma analysis on the scaled data set in Table 4 suggests that the inputs

corresponding to Reading Flow and Caversham rainfall should be discarded.
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Theale, Reading, Twyford and Bourne End mea-

sured against the river flow at Windsor.
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Figure 7: The Delta correlation plots for the Windsor model.

22



Delta used

measurement level flow lag

Theale level 18 18 18

Theale flow 19 18 18

Reading level 12 11 11

Reading flow 10 1 11

Twyford level 8 7 8

Twyford flow 6 3 8

Bourne End level 4 1 4

Bourne End flow 4 1 4

Regional rainfall 1-hour 1 8 8

Regional rainfall 1-day 6 8 8

Regional rainfall 7-days 1 1 8

Regional rainfall 28-days 1 8 8

Caversham rainfall 11 8 8

Table 3: Estimated lags for the Windsor area measurements. The lags chosen

from the analysis were derived primarily from the Delta correlation analysis.

However, the model complexity leaving out these inputs (as judged by the gra-

dient A) is approximately twice as large. It emerged that slightly better results

could be obtained by retaining these inputs and building the simpler model than

by discarding them.

5 Modelling Results

Data files were constructed using the appropriate lags and imported into

winGamma. These data files were used to build models for the Theale and
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Including Excluding

Caversham rainfall Caversham rainfall

and Reading flow and Reading flow

|Γ| 0.00015385 1.254 × 10−5

Gradient A 0.032345 0.062577

Standard error 0.000211 0.00027477

|Vratio| 0.0006154 4.5017 × 10−5

Near neighbours 10 10

M 8071 8071

Mask 1111111111111 1110111101111

Table 4: The Gamma test analysis results on the scaled Windsor level area data

set. The two results compare the effect of including or excluding the Caversham

rainfall and Reading flow (indicated by a 1 or 0 in the mask respectively).

Windsor areas.

5.1 Theale area model results

The best predictive inputs for the level at Theale were selected in section 4.2.1.

We next use the Gamma test with this input mask to analyze the quantity of

data, using the M -test to determine whether there was sufficient data to provide

an asymptotic Gamma estimate and subsequently a reliable model. The results

of this analysis are shown in Figure 8. To average the seasonal effects implicit

in the data, an M -test was performed on order-randomized data and the results

plotted. As the M -test proceeded, the Gamma test algorithm was exposed to

points randomly sampled throughout the year. This produced an asymptotic

convergence of the Gamma statistic, Γ = 0.0007, and indicated that there was

sufficient data at around M = 6500 data points.
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Figure 8: M -test performed on the Theale area model randomized, scaled data.

The red lines correspond to the Gamma statistic calculated for the river level

at Theale and the blue lines correspond to the flow. The dashed line shows that

the data asymptotes at around 6500 points.
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Figure 9: A Gamma scatter plot generated from the data for the Theale area

model using level as the output. The scatter plot shows a moderate level of

noise for the optimal choice of lags and inputs.
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The form of the charts in Figure 8 indicates that there is very little difference

between modelling the level or the flow (the measurements are reasonably well

correlated at Theale, shown in Figure 4(f)).

An M -test analysis (and common sense) shows that in order to capture the

seasonal dynamics of the river system, the river environment must be sampled

for at least a full year. Since in this case we only have one year of available data

we cannot build a successful model using the data in chronological order, by

selecting one continuous time period for model training and a second disjoint

period for testing. Instead we chose to order-randomize the data and use a

proportion of the data for training and a separate proportion for testing. Using

the M -test in Figure 8 we know that at least 6000 randomized data points would

be required to build a reliable model.

The Gamma scatter plot for this data set shows a moderate level of noise,

Figure 9, even though the lags have been optimized and the best combination

of inputs selected.

Selected Theale

area inputs

|Γ| 0.0008407

Gradient A 0.025359

Standard error 0.0004489

|Vratio| 0.0034078

Near neighbours 10

M 6500

Table 5: The Gamma test analysis result on the randomized, scaled Theale level

area data set to determine the target MSE.

The estimated model performance was then determined using the Gamma
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test, the results of which are shown in Table 5. The target MSE for the model

was 0.0008407 (scaled) for M = 6500.

We constructed a feedforward 12-10-10-1 neural network trained using the

BFGS algorithm [Press et al., 1992] which produced the results shown in Figure

10. Since the minimum lag used is the 3 hour lag from Brimpton to Theale,

these models give a three hour ahead prediction.
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(b) A closer inspection of the BFGS model

performance on the (order-randomized)

unseen data shows an acceptable error

level.

Figure 10: The performance of the 3 hour look-ahead BFGS Theale area model.
The green line shows the actual river level at Theale, the blue line shows the
model prediction for the river level, and the red line shows the error between
the actual and predicted level.

On the unscaled data the neural network reached a MSE of 8.002× 10−5 on

the training set and 0.000115 on the unseen test set (Table 6). The similarity

of these two values would seem to indicate that the model generalized well and

had not been overtrained.

Overall the results are rather encouraging. In Table 6 the unscaled MSE of

0.000115 translates to an error standard deviation deviation6 of 0.0107m, for

the 3 hour neural network prediction, i.e. around 1cm.
6Calculated by taking the square root of the MSE.
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MSE (scaled) MSE (unscaled)

Training data 0.000863 8.002 × 10−5

Test data 0.00124 0.000115

Table 6: The MSE values of the Theale area neural network model. The scaled

MSE is measured using the same scaling as used for the Γ value. The unscaled

MSE is measured in the same units as the river level.

5.2 Windsor area model results

The best predictive inputs for the level at Theale were selected in section 4.2.2.

We next use the Gamma test with this input mask to analyze the quantity of

data, using the M -test to determine whether there was sufficient data to provide

an asymptotic Gamma estimate and subsequently a reliable model.

Figure 11 shows that the Windsor level and flow Gamma statistics on scaled

data do not converge to approximately the same value, as did the correspond-

ing values for scaled Theale data, see Figure 8. There is no reason in principle

why these values should be the same. For example, differing precision in mea-

surement of flow and level could cause different degrees of noise. In the Theale

data, flow and level were highly correlated, whereas in the Windsor data the

correlation between level and flow was not as significant.

The results of the M -tests in Figure 11 show that the seasonal effects can

indeed be eliminated this way. The M -test performed on the randomized data

shows that the Gamma statistic asymptotes on scaled data to Γ ≈ 0.00015, at

approximately 6500 points.

The estimated model performance was then determined using the Gamma

test, the results of which are shown in Table 7.

A training data set was created from 6500 randomly selected data points

using all of the available inputs (see Table 4 for the analysis). The target MSE
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Figure 11: M -test performed on the Windsor area model randomized, scaled

data. The red lines correspond to the Gamma statistic calculated for the river

level at Windsor and the blue lines correspond to the flow (scaled data) . The

dashed lines show the asymptotic Γ values for level and flow (approximately

0.00015 and 0.00035 respectively.)

All Windsor

area inputs

|Γ| 0.00029824

Gradient A 0.031805

Standard error 0.0002325

|Vratio| 0.0012537

Near neighbours 10

M 6500

Table 7: The Gamma test analysis result on the randomized, scaled Windsor

level area data set to determine the target MSE.

for the model was 0.00029824 (scaled) for M = 6500.

We constructed a 13-20-15-1 feedforward neural network trained using the
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BFGS method. The model is shown in Figure 12. Since the minimum lag used

is the 4 hour lag from Bourne End to Windsor, these models gave us a four hour

ahead prediction.
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performance on the (order-randomized)
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Figure 12: The performance of the 4 hour look-ahead BFGS Windsor area
model. The green line shows the actual river level at Windsor, the blue line
shows the model prediction for the river level, and the red line shows the error
between the actual and predicted level.

MSE (scaled) MSE (unscaled)

Training data 0.0031426 0.0004565

Test data 0.0049463 0.0007185

Table 8: Results for the Windsor area BFGS model showing the performance on

the test and training sets. The scaled MSE is measured using the same scaling

as used for the Γ value. The unscaled MSE is measured in the same units as

the river level.

The neural network reached a MSE of 0.0004565 on the training set which

evaluated to an MSE 0.00071853 on the unseen test test on the unscaled data.

These MSE figures are shown in Table 8. The neural network predicts with an

error standard deviation of 0.026m, i.e. of the order of 3cm for an average level
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of around 6.3603m, which gives a percentage error of well under 0.5%.

6 Discussion of Modelling Results

There was evidence in the Windsor area model that perhaps other factors, be-

yond the rainfall and flow considered during the modelling, were affecting the

river levels. In comparing the model predictions to the actual data we discov-

ered there seemed to be occasional periodic (in fact daily) activity that affected

river levels. Figure 13, where the vertical grid-lines indicate 24 hour intervals

starting at midnight, illustrates an interval displaying this periodic behaviour of

the river levels. The phenomenon is a rapid rise and then fall in level. Preceding

the rise the model is often over-estimating the level.

Although only occasional, when it occurs the effect is too regular to be ex-

plained through coincidence or data measurement errors, but instead is either

an environmental effect or has arisen through human intervention7. The ap-

proximate time for the peaks in river level are daily between 5pm and 10pm,

with most being measured between 7pm and 8pm. This could be attributed

to human domestic activity, regular engineering or agricultural work, or some

other regular activity.

If we could attribute these fluctuations to periodic extractions and replace-

ments, such as those created by industrial or human use of the river water, then

we could use our techniques to develop an automatic monitoring program for

detecting the (unlicensed) use of river water.

7Sometimes termed an ethnocentric signal
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Figure 13: A comparison between the Windsor area model (blue) and the actual

observations (green) shows that the model does not predict the daily fluctua-

tions. The periodic fluctuations show up in the error (red), which is plotted on

the right-hand scale.

7 Modular System

Finally we constructed a modular prediction system of the River Thames at

Windsor using the predicted behaviour of the River Kennet at Theale as an

input to the Windsor area model, replacing the measured data at Theale. This

approach demonstrates the feasibility of a modular flood prediction system.

Table 9 describes the performance of the Windsor area model using the modified

data set and should be compared with Table 8.

This work demonstrates a modular system consisting of many sub-regional

models can be built. Unfortunately because of the location of sensors in this

case-study we were unable to increase the prediction time. However, given

an appropriate tributary structure and sensor placement we could enhance the

look-ahead prediction time.

The data sets described as hybrid data 1 and 2 in Table 9 are data sets

derived from the original training and tests sets, respectively. The original sets
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MSE

Hybrid data 1 0.0006696

Hybrid data 2 0.0008865

Table 9: A comparison of the MSE values of the two Windsor area models.

The actual river measurements at Theale have been substituted by predicted

values from the Theale area model. In all other respects, the data sets were

identical to those used in the Windsor area model described in Section 5 and

which produced the results in Table 8.

were used to train and test the Windsor area model in Section 5. The only

difference between these hybrid data sets and the original data sets is that

the hybrid sets include the predictions for Theale rather the original Theale

measurements. In addition, hybrid data set 1 was not used for training, because

the model had already been constructed during our earlier experiments, but was

used to compare the two models.

The results here compare favourably to the results of the original Windsor

area model (Table 8). The MSE on the original test set was 0.0007185 awhich

becomes 0.0008865 in the hybrid model. This represents a 11% greater error

standard deviation in the modular system and translates to an average error of

2.97cm in the prediction, which remains under 0.5% of the average level 6.3603m

at Windsor.

8 Conclusions

It would appear that there is no barrier in principle to producing very accurate

post-precipitation river level and flow predictions apart from the data quality

issue.
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In addition to providing predictions using observable data, the overall utility

of the system could be enhanced by providing facilities to run what-if scenarios

to predict what effect certain activities would have on the river. For example,

long-term weather forecast could be used to provide an advanced warning of the

possibility of flooding.8

Provided these issues are adequately addressed then it would seem entirely

feasible to develop an adaptive modular system for modelling and predicting

river flow and levels over a time scale basically determined by the delay between

the precipitation occurring and the water arriving at the prediction point.

One significant advantage of such an integrated monitoring, telemetry, and

modelling system is that, subject to careful choice of sensor location, the entire

system is independent of the actual location or river basin being modelled, i.e.

having designed and produced the hardware and software, the entire package

could be sold as a complete system capable of being installed at any location

and producing effective river data modelling within a period of two to three

years following installation.9

Of course, there are other issues that become necessary to resolve. One no-

table failure of conventional level prediction techniques was the Columbia River

(Oregon-Washington, USA) flood of February 1996, in which accumulated snow

in the mountains melted rapidly when the temperature rose sharply accom-

panied by high rainfall. Upstream flooding was widespread and only extreme

measures prevented the west coast city of Portland from serious flooding. Thus,

apart from the obvious input variables considered here, it would be wise to

include the current depth of surface snow, ambient temperature, relative hu-

midity etc. and to augment the modelling techniques to accommodate these
8Of course, predicting the weather is a complicated undertaking, but if done with a suitable

level of accuracy could enable the flood prediction system to provide accurate early warning

alerts.
9MAPFLOWS is such a conceptual software system but has yet to receive funding.
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variables. This would require further research which was outside of the scope

of this feasibility study.
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