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Abstract. We discuss the application of new techniques for the identification of smooth models of many
variables. Based on the Gammatest, these non-parametric methods enable usto quickly evaluate, prior to
model construction, an estimate for the best mean-squared error that can be achieved by a smooth model
on unseen data for a given selection of inputs. By examining this estimate for alternative selections of
inputs we show how the best choice of inputs for modelling a particular target output can be selected. We
also discuss how the distribution of the datain input space and the complexity of the unknown function
that we seek to model influence the size of the required data set. The techniques have been implemented
in a Windows application called winGamma™ licensed by the University of Wales, Cardiff. We
demonstrate sometypical winGamma analysesfor timeseriesprediction, including chaotictime serieswith
lags.

Introduction.

Suppose we are given an input/output data set of the form (x(i), y(i)) (1 < i < M), where x(i) € R™ and, without loss
of generality, y(i) € R. * Assume the data is described by an underlying model of the form

¥ =KX, o X)) 0 =f(X) +r (1)

where f is a smooth function with bounded partial derivatives, and r is a stochastic variable with mean zero and
bounded variance.

The Gamma test [Stefansson 1997], [Kon¢ar 1997] is designed to estimate the variance of r, Var[r], i.e. that part
of the variance of the output which cannot be accounted for by the existence of some underlying smooth model f
(even though f is unknown). A single run of the Gamma Test has a time complexity of O(MlogM) and depending
ontheinput dimension m, executesin afew secondsfor datasetsof areasonablesize (i.e. M < 1000). Thisalgorithm
requires certain pre-conditions:

® Assumptions. We assume that training and testing data are different sample setsin which:
() Input and output variables take continuous values,

(b) The training set inputs are non-sparse in input-space;
(c) Each output is determined from the inputs by a deterministic process which is the same for

! 1f y isavector we treat each component separately and at very little extra computational cost obtain an
individual estimate of the Gamma Test result for each output.

1
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both training and test sets;
(d) each output is subjected to statistical noise whose distribution may be different for different
outputs but which is the same in both training and test sets for corresponding outputs.

Here we shall not enter into the details of the algorithm or atheoretical discussion of its range of applicability. For
sampling distributionsin input space whose support have positive measure theoretical proofs of the algorithm have
been given. However, the test seems quite robust with respect to the probability density function ¢ of the sampling
distribution in input space and to the precise nature of its support. This is fortunate because many of the more
interesting applicationsinvolve chaotic (possibly noisy) time series, and with typical chaotic time seriesthe support
of ¢ (in the embedding space) has measure zero and a Hausdorff dimension which is often substantially less that
m. For such cases the test works well and the number of data points M required to obtain an accurate estimate of
Var[r] is substantially less than might otherwise be the case (e.g. if the sampling distribution were uniform over
input space).

Why isthetest useful?

Suppose we have some experimental data with m = 20 inputs and one output. We want to know the answers to
questions such as:

® Do the inputs determine the output by a smooth model ?

® Given an input vector x how accurately can we predict the output y?

® How many data points do | need to be able to make a prediction with the best possible accuracy?
o Which inputs are relevant in making the prediction and which are irrelevant?

Example. Noisy sine.

S‘EI WE‘ID 150 ZQIDL‘n‘quEZéI;E pm’iﬂ;ﬂ B;D 4E‘ID [%%D 500
-1.5 .
Figure 1 The noisy sine data (500 points). Figure 2 An M-test on the noisy sine data.

First get your input/output data and produce afilein Table 1 Gamma against expected error.
the correct format. The number of input/output pairs

should be as large as possible. Typicaly M < 200 is gamma (or I Average Absolute Error

going to yield poor results but one needs to take of Prediction

account of a number of factors which we shall discuss

shortly. Second run the software, |oad the datafile, and 0.01 0.100

run the Gamma Test. What is the resulting gamma 0.0025 0.050

value (i.e. IN? You can see the relevance in the

following table. 0.0001 0.010
0.000001 0.001

® The variance of the noise on the output determines
the best Mean Squared Error that can be obtained for a




Non-parametric smooth non-linear model identification and construction

prediction on the basis of the data.

Thusiif the resulting I" value is very low we can conclude that there is a smooth model which can make accurate
predictions.

Strictly, speaking we should compare the I" value with the variance of the actual output. It istheratio of these two
which isimportant. If V., = T'Var[y] = Var[r]/Var[y] islow then the output is highly predictable. This statistic is
closely related to what the statisticians call R?, infact R®=1-V,;,

Thedataillustrated in Figur e 1 was obtained by adding uniformly distributed noise with avariance of 0.075 to the
y values of y = sin(x) for 500 randomly selected values of x. The result of running the Gammatest on this datais
aGamma value of 0.07355 which is quite close to the theoretical noise variance. The Vratio of 0.12762 suggests
that we will not be able to predict the value of an output very accurately, which in view of the dataplot in Figure
lisnot too surprising. The SE is0.0037651 which indicates afair degree of reliability in this assessment.

How stable isthe Gamma statistic asthe number of data points varies? We can answer this question by evaluateing
the Gamma statistic for increasing M. The result is shown in Figur e 2 and we can see that after around 425 points
the graph isfairly stable. Here the standard error is 0.003765 and we can see that the estimate of I = 0.073354 is
accurate to 2.19%.

Probably the most useful aspect of the Gammatest is that it can be used to determine the relative importance of
independent variables. Of course the test itself is independent of the particular non-linear modelling technique
selected but it has a so proved very useful in reducing the number of feedforward neural networkstrained by atrial
and error approach, since it allows us to estimate when a network has reached optimum performance.

Another, potentially more important application of this method, is that it makes it possible to avoid wasting time
on developing forecasting systems that, because of lack of data or lack of dependencies in the data, will never
produce sufficiently accurate predictions whatever the choice of modelling paradigm.

How much dataisrequired?

Assuming al the preconditions are satisfied (later versions of the software will automatically check for gross
violations) then the principal factors which will determine how accurately the returned value of T" estimates Var[r]
are:

® The number of data points M, which affects the local density of sampling in input space.

® Thecomplexity of theunknown surfacef. Complex surfaceswith high curvaturewill require many more
data points.

The M-test.

One of the key questions we need to answer in a practical situation is how much data do | need to get an accurate
estimate of gamma and to subsequently build a model which can predict with this Mean Squared Error.

This question can be answered by running an M-test (asin Figure 2). All thismeansisthat we run the Gamma Test
using increasing M and then plot a graph of gamma against M. Typically what will happen isthat for small M the
graph will show large variability but as M increases the graph will stabilize to an asymptote which reflects the true
value of the noise variance. When the graph has stabilized there is nothing much to be gained by using alarger M.
Selecting a good embedding for time series prediction

The standard approach for time series modelling is to construct a predictive model based on some number of
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previous values (this number is called the embedding dimension).

® \We can estimate the required embedding dimension by running the Gamma test with an increasing
number of past values m as the inputs and the output being the current value.

Typically wefind that the Gammaval uefirst decreasesas more past valuesareincluded and theincreases. Thevalue
of mwhich minimise the Gamma value gives agood initial estimate of the embedding dimension.

If we were following Takens theorem exactly we should include al past values up to the embedding dimension as
inputs for our predictive model. However, we have found that often it is better to omit some previous values an
include others - aso called irregular embedding [Oliveira 1999], [ Tsui 1999].

The Gammatest is sufficiently fast that we can probably search over al 2™ - 1 embeddings provided m < 20. For
larger mwe can search using a genetic algorithm.

Example: The sunspot data.

Sunspot Activity 1700-1979

0.8
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Figure 3 Variation of sunspot activity.

Thedataused in this experiment was FTP-ed from ftp address: ftp.santafe.edu, directory: pub/Time-Series/data. Its
origin, normalization and training/test regions are described in [Weigend 1990]. The data consists of 280 points
representing sunspot activity over the period 1700 - 1979 and was used in [Weigend 1990]. The range of the data
has been scaled to [0, 1] and we found the variance to be 0.0410558. Figure 3 shows the variation of sunspot
activity over the full range of the data.

Itisknown that the primary sunspot cycle is approximately periodic over 11 years. Other shorter and longer cycles
arealso known. For radio propagation the short period cycle of 28 daysisparticularly significant. The dataused here
iscollected from telescopic observations projected onto awhite paper card. The sunspotsare counted and classified
by size and a correction factor applied depending on the magnification of the telescope. The virtue of thisdatais
that it has been regularly collected since 1700. Of course, if onewerereally interested in predicting sunspot activity
much more accurate dataisavailable. The dataprovided is often used asatest of prediction techniquesand can give
areasonable model of gross sunspot activity.
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Selecting a best embedding. If we are prepared for a several day run we can use the Full-Embedding option of the
software to search for a good embedding. In this example we searched over the previous 15 years.

Frecquency
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Figur e 4 Histogram of gamma values for all embeddings up to length 15 for the sunspot data.

The best embedding found was 001001000010111. Here the most recent data comes last. So this embedding says
that to predict this year’s sunspot activity x(t) we should use the datax(t-1), x(t-2), x(t-3), x(t-5), x(t-10) and x(t-13),
an embedding of dimension six. It is interesting to note the bimodal distribution of Figure 4. The bimodal
distribution is partly explained by the observation that only 2.38% of the embeddingswith I" > 0.008 include x(t-1)
as compared with 99.8% of those having I" < 0.008. Put plainly this says that the most important predictive factor
for the sunspot activity thisyear isthe value for last year. It is also interesting to see which variables appear in the
best few embeddings. These indicate that the last few years, plus the value approximately one 11 year cycle back,
plus a value about half way through the previous cycle, give the best results. This is rather impressive since the
software has no way of knowing about sunspot cycles.

If we run the Gamma test on the six inputs/one output I/O data file constructed using this mask we get I" =~ 0.0015
andV,,;, = 0.036 (SE = 0.00093) with the summary of resultsin Table 2. Note the M-test of Figure5 indicates that
thereis not really enough data (the graph has not stabilized). Therefore if we construct amodel and test on unseen
datawe might expect to get a higher M SError than the estimated gammavalue. If we now predict the last 59 years
data, using local linear regression with p, .., = 60, on the basis of all the previous years we obtain Figure 6, which
gives a M SError around 0.007. In cases such as this, where there is insufficient data, it is not uncommon to seea
MSError on unseen data around an order of magnitude greater than the gamma value.
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s | Table 2 Basic results for Sunpairs (267 points).
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Figur e 6 Predicting sunspots on unseen data.

Figur e 6 shows predictions using dynamic local linear regression on unseen data, using all the other datafor model
building. As we can see this is really rather good, especialy considering that the test data contains a totally
unprecedented sequence of increasing sunspot maxima.

Example: The Mackey-Glass equation.

TheMackey-Glassequationisatimedelayed differential equationwhich producesachaotically evolving continuous

dynamic system. The version used to generate the datain MGIs500.asc is given by
ax 0.1x(t) = 0t - 1) @)
dt 1+ xt - 1)

wheret =30 (N.B. t > 17). Weintegrated the equation over t € [0, 5000] with theinitial condition x(t) = 2. No noise

was added. The graph of the function over t € [0, 1000] isgivenin Figure7.

Thefile MGIS500 was created by writing out the values of x(t) at t = 10, 20, 30, ..., 5000 (At = 10) giving 500 data
points of a chaotic time series. If smaller time steps are taken then using several previous values to predict x(t) we
find that the resulting I"is extremely small, indicating that predicting this function small steps ahead is very easy.
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Figure 7 The Mackey-Glass time series.

Suppose we examine the prospect of trying to predict x(t) using the last 5 values. Since 2° - 1 = 31 it isno problem
to do afull embedding search. Wefind that the best embedding (i.e. the embedding with smallest I") is 11110, which
means that we predict x(t) using x(t-2.At), x(t-3.At), x(t-4.At) and x(t-5.At).

On thisbasiswe generate theresultsin Table 3. It isinteresting to note that the full embedding search obtained the
best model by omitting x(t-1.At). Why isthis? Inthe original time delay equation the valuex(t) dependsonthevalue
X(t-30) and on the derivative. x(t-20) is probably needed to estimate the derivative at x(t-30) but x(t-10) isnot needed
at all, asthe software discovered.

Given areasonable amount of data, predicting a chaotic time series a small time ahead is usually not too difficult.
The problemisto predict along way ahead. Here At = 10 is a modest time ahead.

The embedding 11110 provides afour input/one output set of I/O pairs. The low noiselevel I" = 0.001, combined
with the rapid fall off of the M-test graph, and V ., = 0.016 indicates the existence of areasonably accurate smooth
model. Taken together these are clear indicators that it should be quite straightforward to construct a predictive
model using around 500 data points with an expected M SE around 0.001.
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v Table 3 Basic results for MGIS500 using 11110.
006 | 0.287
\ 0.266
oot 0246 MGIs500 with embedding 11110 (p,., = 10)
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o | e True noise 0
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Equivalence Classes
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Figure 8 M-test for MGIS500 using the embedding

11110. The upper trace isthe slope A.

Itis now straightforward to generate alocally linear regression model using the given embedding. A locally linear
regression model was trained on the first 400 points from the 495 points generated using the embedding 11110.
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Figur e 9 Predicting the Mackey-Glass time series on unseen data.

Figure 9 shows the results of testing the model on the remaining 95 previously unseen points. The resulting
MSError is 0.001468 which is remarkably close to the value predicted by the Gamma test.

Using the Gammatest software we could al soinvestigate how the error of predictionisliableto vary as Atincreases,
where we search for the best embedding for each At.

Conclusions

Wehave briefly illustrated the utility of the Gammatest in constructing non-linear models. All the results presented
herewere generated using thewinGamma™ software. What islessapparent in such apresentationistheextreme ease
of with which models can be identified and constructed using this software.
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