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We construct a feedforward neural network so that when the outputs are fed back into the
inputs and the system is iterated it behaves chaotically. We call this the “rest state”. Suppose
now that an input stimulus is added to one or more inputs. Following a biologically inspired
model suggested by Freeman [1991], under these conditions we should want the behavior of the
network to stabilize into an unstable periodic orbit of the original system. We call this the
“retrieval behavior” since it is analogous to the act of recognition. Standard methods of chaos
control, such as OGY for example, used to elicit the retrieval behavior would be inappropriate,
since such methods involve calculations external to the system being controlled and can be
considered unlikely in a biological neural network. Using a chaos control method originally
suggested by Pyragas [1992] we show that retrieval behavior can occur as a result of delayed
feedback and examine the variety of the responses that arise under different types of stimuli
and under noise. This artificial neural system has a strong dynamical parallel to Freeman’s
observed biological phenomenon.

1. Introduction

On the basis of studies of the olfactory bulb of a

rabbit Freeman [1991] suggested that in the rest
state the dynamics of this neural cluster is chaotic

but that when a familiar scent is presented the neu-

ral system rapidly simplifies its behavior and the
dynamics becomes more orderly, more nearly peri-

odic than when in the rest state. This suggests an
interesting model of recognition in biological neu-

ral systems. To realize this in an artificial neural
system, some form of control of the chaotic neural

behavior is necessary to achieve periodic dynamical

behavior, from the normally chaotic behavior, when
a stimulus is presented.

There is now an extensive literature demon-
strating experiments on controlling chaotic physical
systems using the original chaos control techniques,
such as the OGY method [Ott et al., 1990] or its
similar variants. Many such methods require care-
ful and systematic analysis of the chaotic dynami-
cal behavior, which is usually difficult and compu-
tationally expensive, before successful control can
be achieved. Moreover, such control techniques are
external to the system being controlled, whereas
for a neural system to behave as described by
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Freeman [1991] the control should be intrinsic to
the neural dynamics.

Therefore for our iterative neural model, we
implement a much simpler control method based
on delayed feedback and similar to Pyragas’ [1992]
original continuous delayed feedback technique.
One of the attractions of this method is that it has
a very low computational overhead and so is ex-
tremely easy to implement in hardware. It would
also be very easy to implement in biological neu-
ral circuitry and so offers one plausible mechanism
whereby such stabilization might occur.

We first produce a chaotic neural system by
training a feedforward neural network on a chaotic
iterative map. The map used here is in fact the
Ikeda map. However, the precise nature of the sys-
tem used to produce the training data is largely
immaterial, as is the precise accuracy of the neural
network model. All that is required is that when
outputs are fed back into inputs and the trained
neural network is iterated it exhibits a sufficiently
rich chaotic dynamical behavior.

Delayed feedback is then introduced into the
model and this provides a mechanism for stabiliza-
tion onto unstable periodic behaviors. The partic-
ular unstable periodic orbit which is stabilized de-
pends quite strongly on the precise character of the
applied stimulus. Thus the system can act as an
associative memory in which the act of recognition
corresponds to stabilizing onto an unstable periodic
orbit which is characteristic of the applied stimu-
lus. The entire artificial system therefore exhibits
an overall behavior and response to stimulus which
precisely parallels the biological neural behavior
observed by Freeman.

2. A Trained Chaotic Neural Net

In our experiment, the chaotic neural net is sim-
ply a standard feedforward neural network, with
2 inputs, 2 output neurons and two hidden lay-
ers with 10 neurons each (i.e. 2-10-10-2) trained on
the input/output data from the chaotic Ikeda map
[Hammel et al., 1985] as in [Tsui & Jones, 1997].
The map is defined by

zn+1 = g(zn) = γ +Rzei
(
κ− α

1 + |z|2
)

(1)

where α = 5.5, γ = 0.85, κ = 0.4, R = 0.9 and
z is a complex variable of the form x + yi and

z can also be identified with the point (x, y) in
the R2 plane. This chaotic attractor is shown in
Fig. 1. With only 4000 input/output data pairs
{(xn, yn), (xn+1, yn+1)} (re-scaled into the range
[0, 1]) we can train the feedforward neural network,
with the described architecture and sigmoid neuron

Fig. 1. The Ikeda strange attractor, for parameter values
α = 5.5, γ = 0.85, κ = 0.4 and R = 0.9.

Fig. 2. Attractor for chaotic network with architecture 2-
10-10-2 (with inputs and outputs re-scaled to [0, 1]).
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with transfer function

act(x) =
1

1 + e−x/T
(2)

where T = 1, to capture the essential features
of the chaotic attractor of the Ikeda map know-
ing the fact that a feedforward network can learn
dynamical behavior [Welstead, 1991; Dracopoulos
& Jones, 1993]. The recursive behavior can sim-
ply be achieved by feeding the outputs into the in-
puts, output x is fed back into input x and out-
put y is fed back into input y. With the training
MSE error of about 9.9 × 10−5, this network al-
ready produces a chaotic attractor similar to the
original Ikeda map, see Fig. 2. The Lyapunov ex-
ponents are {0.368973,−0.769616} as opposed to
{0.403642,−0.614225} for the original Ikeda map
from which the training data is drawn.

3. Controlling Chaos with
Delayed Feedback

To control our chaotic neural network, we im-
plement a discrete version of a delayed feedback
technique not too different from the Pyragas’
original continuous form [Pyragas, 1992]. The
Pyragas method for continuous-time control applies
to a chaotic system which can be represented by a
set of ordinary differential equations

dy

dt
= P (y, x) + F (t) ,

dx

dt
= Q(y, x) . (3)

Here y is the output variable and the vector x de-
scribes the remaining variables of the dynamic sys-
tem which are not available. The feedback control
signal F (t) disturbs only the first equation, corre-
sponding to the output variable. We suppose that
without an input signal the system being considered
has a strange attractor.

The idea behind this method is to construct the
feedback control signal F (t) in such a way that it
vanishes when the system moves along the desired
unstable periodic orbit. One approach suggested by
Pyragas [1992] is to use

F (t) = −k[y(t)− y(t− τ)] = −kD(t) , (4)

where k > 0. Here τ is a delay time and y(t− τ) is
the delayed system state. Therefore the magnitude
of the control signal is proportional to the difference
D(t) = y(t)− y(t− τ). If this time τ coincides with
the period of the unstable periodic orbit τ = τ0

then the perturbation becomes zero for the solution
of the system (3), i.e. y(t) = y(t− τ0).

Stabilization of the system can often be accom-
plished by choosing an appropriate weight k so that
a negative feedback is achieved. Though Qu [Qu
et al., 1993] argued that in some cases, a positive
feedback is needed. Therefore there are two vari-
ables, k and τ that can be adjusted in the experi-
ment. The delay τ is expected to be the period of
the stabilized orbit from the controlled chaotic sys-
tem if the system eventually stabilizes. Some ex-
perimental results can be found in [Pyragas, 1993;
Pyragas & Tamaševičius, 1993; Celka, 1994; Cooper
& Schöll, 1995; Tsui & Jones, 1998].

4. Delayed Feedback Applied to
the Chaotic Neural Net

A simple delayed feedback, similar to the Pyragas’
delayed feedback, can be added to the chaotic neu-
ral net to control the chaotic behavior with a careful
choice of the parameters k and τ . The basic control
setup of the neural model is shown in Fig. 3. Here
the trained chaotic feedforward neural net described
earlier is now equipped with extra delayed feedback
control circuitry, which is activated on presentation
of an external stimulus. The delayed feedback is
added to the state variable yn to effect the con-
trol. External stimulation is performed by feeding
signals into the input line xn of the network. Let
FF be the feedforward network mapping such that
FF [(xn, yn)] = (xn+1, yn+1) then the controlled
system with external stimulation sn at time n is
described by

(xn+1, yn+1) = FF [(xn + sn, yn + pn)] (5)

Fig. 3. Delayed feedback on chaotic neural net.
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where pn = k(yn−τ − yn) is the delayed feedback
control signal.

After some initial investigation we fixed k = 0.5
and τ = 6 for the experiments. These values stabi-
lized the system with control switched on but with
no external stimulus present. Other values of k and
τ can also stabilize the system (xn, yn) successfully.

We imagine that the presence of an external
stimulus excites (activates) the control circuitry
which is otherwise inhibited. Thus to achieve a sta-
bilized dynamical regime in response to a stimulus
the control is switched on at the same time as the
external signal is fed into the input line xn. By
varying the external signal in small steps and hold-
ing the new setting fixed long enough for the system
to stabilize we can observe the response of the net-
work to small changes in stimulus.

In Fig. 4 the system is iterated for 100 cycles
to eliminate any initial transients. Next an external
constant stimulus sn = s is applied for 400 steps.
In Fig. 4 the stimulus s is varied in steps of 0.025
over the interval [0, 1] for every 400 network itera-
tions. We can see that the system exhibits a fairly
“smooth” transition of stabilized behavior from one

stimulus to the next. For the most part in this case
the response is a 1-period behavior but a 2-period
behavior is also exhibited after the strength of the
external signal crosses a threshold at around 0.8
which is therefore a bifurcation point. For a stimu-
lus sn = s with s > 0.2 the delayed feedback con-
trol signal quickly becomes small, which indicates
that the system has stabilized onto one of its own
unstable periodic behaviors. However, for a stim-
ulus sn = s with s < 0.2 a large feedback control
signal pn often seems to create some new periodic
behavior.

We can study the response of the system as the
stimulus 0.2 is applied and removed and as control
is turned on and off. This is shown in Fig. 5. In
general terms the system stabilizes after about 50
iterations. If the stimulus is applied without control
the dynamical regime seems not to correspond to an
unstable periodic behavior of the original network,
but with control switched on the dynamics quickly
stabilizes to a 1-period corresponding to an unsta-
ble periodic behavior of the iterated network.

Note that in the transition sc→ s in Fig. 5,
in which the control is removed but the stimulus
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(a) Response of xn. (b) Response of yn.
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(c) Size of delayed feedback control signal pn.

Fig. 4. Results of external constant stimulation s ∈ [0, 1] varying in steps of 0.025. The stimulus changes at 400 iteration
steps after an initial 100 iterations to eliminate transients. The control parameters were k = 0.5 and τ = 6.
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Fig. 5. Responses of xn and yn to presentation and removal of stimulus s = 0.2 with and without control. Intervals labeled
“s” indicate the presence of the stimulus, intervals labelled “c” indicate control is switched on, a label “sc” indicates both,
and no label indicates no stimulus and no control. The particular regime is changed every 200 iterations after 100 iterations
have been allowed for transient removal. k = 0.5 and τ = 6.

remains, surprisingly the system shifts from a 1-
period to a 2-period, rather than reverting to the
more chaotic regime illustrated in the first 400 step
interval, where the same stimulus without control
proved unable to stabilize the system.

In some cases, the external stimulation signal
is enough to stabilize the system without switch-
ing on the control module. The explanation of this
might be that when such an external signal is strong
enough, or it is a particular kind of signal, it may
shift the underlying dynamics from a chaotic region
into a periodic region in the bifurcation diagrams,
as shown in Fig. 6. This figure originally appeared
in [Tsui & Jones, 1997] which studied the same
feedforward neural network. A similar shift from
a chaotic behavior to a more stabilized retrieval
behavior is also observed in a large scale model
with structured synaptic connections in [Adachi &
Aihara, 1997].

Apart from a constant external stimulation sig-
nal applied to one of the inputs other forms of sn

can also be used. Low period square waves can also
result in stabilized periodic responses as shown in
Fig. 7.

A completely different way of applying a stimu-
lus was suggested in [Hoff, 1994]. The stimulus can
be applied directly to the control variable k. In this
way different behaviors can be achieved by using
the external signal sn to directly modify k. Some
results of this type of control applied to our system
are illustrated in Fig. 8.

These experiments are merely illustrative and
many variations are possible. For example, delayed
feedback could equally be applied to several (or all)
of the network outputs. With the same τ and mul-
tiple feedbacks it should be easier to achieve sta-
bilization compared to the case where feedback is
applied to just one variable. However, if delayed
feedback on different network outputs also had dif-
fering τ then the outcome is less predictable. There
remain many possibilities for exploring this type of
neural model.

Fig. 6. Bifurcation diagrams for the outputs xn+1 and yn+1 using an external variable s added to the input xn.
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(c) Size of delayed feedback control signal pn.

Fig. 7. Results of periodic stimulation sn ∈ {j, 0, j, 0, . . .} of strength j from 0 to 1 in steps of 0.05. The stimulus changes
at 400 iteration steps after an initial 100 iterations to eliminate transients. The control parameters were k = 0.5 and τ = 6.

(a) Response of xn. (b) Response of yn.
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Fig. 8. Results of external signal sn = s added to the value k from −0.5 to 0.5 in steps of 0.025. The stimulus changes every
400 network iterations after 100 initial iterations with no stimulus and no control. k = 0.5 and τ = 6.
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We also investigated the response of the sys-
tem when sensory input was perturbed by stochas-
tic noise. The stimulus was perturbed at each it-
eration step by multiplying it by Gaussian noise
with a mean of 1 and a variance σ, where σ var-
ied from σ = 0 to σ = 0.1. The response was sur-

prisingly robust as illustrated in Figs. 9–11. These
results should be compared with the non-noisy case
in Fig. 4. The noisy dynamics remain essentially
unchanged, although as one might expect the at-
tractor becomes progressively “blurred” as the noise
level increases.

Fig. 9. The response of the system to noise. The stimulus sn is replaced by snr at each iteration step, where r is Gaussian
noise with mean 1 and variance Var(r) = 0.005. The stimulus changes at 400 iteration steps after an initial 100 iterations to
eliminate transients. The control parameters were k = 0.5 and τ = 6.

Fig. 10. The response of the system to noise. The stimulus sn is replaced by snr at each iteration step, where r is Gaussian
noise with mean 1 and variance Var(r) = 0.01. The stimulus changes at 400 iteration steps after an initial 100 iterations to
eliminate transients. The control parameters were k = 0.5 and τ = 6.

Fig. 11. The response of the system to noise. The stimulus sn is replaced by snr at each iteration step, where r is Gaussian
noise with mean 1 and variance Var(r) = 0.1. The stimulus changes at 400 iteration steps after an initial 100 iterations to
eliminate transients. The control parameters were k = 0.5 and τ = 6.
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5. Local Stability Analysis

Little theoretical analysis is available for the
Pyragas method of continuous delayed feedback
control, let alone for the discrete form of the method
used here. However, a discrete version of a varia-
tion of Pyragas’ method has already been success-
fully applied to the synchronization of two identical
iterative chaotic maps in [Oliveira & Jones, 1998].
The version used there for synchronization is simi-
lar to but not identical to the method used here for
stabilization. Oliveira and Jones [1998] also con-
tained a suggestive discussion of the local stability
properties of the method used. For both the Hénon
map and the chaotic neural network used here it
was shown that whilst the synchronization control
method used by Oliveira and Jones [1998] was not
locally stable it was nevertheless probabilistically
locally stable.

We next try to provide a similar empir-
ical analysis for the method of stabilization
proposed here in the case where no external
stimulus is present. First, we note the stabilized
state when control is switched on with k = 0.5,

τ = 6 and no external stimulus is applied. This
gives a 2-period controlled behavior {ξF1, ξF2} =
{(0.81808, 0.569261), (0.543838, 0.264166)}.

If we define a measure of contraction

µn =
min(|ξn+1 − ξF1|, |ξn+1 − ξF2|)

min(|ξn − ξF1|, |ξn − ξF2|)
(6)

towards {ξF1, ξF2} from step n to step n+ 1 then
µn depends on the eigenvalues of the Jacobian of
the associated four-dimensional system {ξn, ξn+1}
in the vicinity of {ξF1, ξF2} and these (although
bounded) can be much larger than 1. Thus it is
simply not true that with this control method the
system will monotonically approach the unstable
periodic behavior. However, if we examine the ef-
fects of control after several iterations we find that
the probability that the cumulative net contraction
becomes small is very large.

To establish this we generate a random initial
point ξ0 and iterate the controlled system. At the
nth iteration we define

ρn =
min(|ξn − ξF1|, |ξn − ξF2|)
min(|ξ0 − ξF1|, |ξ0 − ξF2|)

. (7)

Fig. 12. Histograms of ρn at n = 20 (top left), 40 (top right), 60 (bottom left), 80 (bottom right) of 1000 random initial
starting points for control k = 0.5 and τ = 6.
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The quantity ρn gives us a measure of the extent
to which after n iterations with control the system
has contracted towards the unstable 2-period.

By showing that ρn becomes small with high
probability, i.e. ρn → 0 as n → ∞, where the con-
vergence is in probability, we can establish that the
method is probabilistically locally stable.

We repeated the calculation of ρn for 1000 dif-
ferent initial starting points and n ≤ 80 and create
histograms showing the frequency of ρn against the
value. These results are shown in Fig. 12. These
histograms suggest that ∀ε > 0,

P [|ρn| < ε]→ 1 (8)

as n → ∞. Thus the system without stimulus is
probabilistically locally stable.

The application of an external stimulus ba-
sically modifies the system dynamics by shifting
the dynamic behavior along the bifurcation dia-
grams as mentioned earlier. Many new chaotic and
nonchaotic behaviors are produced by the neural
system which are different from its initial built-in
dynamics without stimulation. Thus the delayed
feedback control seems to act as a supporting tool
for stabilizing the system into periodic states. Al-
though there is insufficient theoretical explanation
for the dynamical behavior of our neural system,
the above heuristic analysis seems to fit very well
with the observed simulation results.

6. Conclusions

We have shown how a conventional artificial feed-
forward neural network equipped with delayed feed-
back can simulate the type of rest behavior and
response to stimuli observed by Freeman in the ol-
factory bulb of the rabbit. The system is in effect
an associative memory in which the act of recogni-
tion corresponds to the stabilization of the system
onto an unstable periodic orbit characteristic of the
applied stimulus.

If the dynamics is chaotic then unstable peri-
odic orbits are dense on the chaotic attractor and
there are infinitely many of them. Thus such an
associative memory for which the computations are
performed to an arbitrary precision could in princi-
ple accommodate infinitely many memories; at any
rate such a system is not subject to the conven-
tional Hopfield upper bound of 0.15n, where n is the
number of neurons [Amit et al., 1987]. Of course,
for the Hopfield net the situation is rather different.

In the Hopfield model memories are associated with
specified (preferably uncorrelated) point attractors,
whereas in the present model memories are associ-
ated with unstable periodic behaviors which cannot
be specified ab initio. This introduces the possibil-
ity of responding to stimuli over varying time scales.

Our experiments were based on high precision
digital simulations. In a low arithmetical precision
analog implementation it is possible that much of
the rich variety of dynamical behavior would be
lost.

Nevertheless, the model has a certain com-
pelling simplicity which is suggestive. The re-
sponses described are intrinsic to the network
model and control is not artificially applied from
outside the network itself. The method of delayed
feedback is simple to apply in hardware and feasible
in biological neural circuitry.

As with the many applications of the method
of Pyragas to control more conventional chaotic dy-
namics our approach lacks a full formal analysis.
However, we have investigated the local stability
properties of the method applied to the particu-
lar model described here and have concluded that
although control is not stable in the conventional
sense it is nevertheless probabilistic locally stable.

The experiments described here raise several in-
teresting issues. An investigation of essentially the
same model could be performed with delayed differ-
ential equations using a more biologically accurate
description of the neurons. In [Tsui & Jones, 1998]
we describe delayed feedback control applied to the
stabilization of a six-dimensional smooth dynamical
system and this illustrates that the ideas described
here could quite probably be applied successfully to
a similar model based on differential equations.

Another question which naturally arises is
whether “the basin of attraction” of a particular
unstable periodic orbit, which has emerged as the
response to a specific stimulus, could be “widened”
by repeated presentations using some form of weight
adjustment based on Hebbian learning. The crit-
ical aspect to investigate here would be whether
this could be done without destroying the essential
underlying chaotic dynamics or other conditioned
responses.

The periodic responses exhibited are common
in coupled oscillator models (e.g. [Stewart, 1992])
which are very different from the model described
here. It is therefore interesting to note that,
by incorporating delayed feedback, periodic neu-
ral responses can be achieved with an essentially
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conventional feedforward neural network model
without the introduction of an oscillator neuron.
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