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Abstract. When constructing non-parametric models from noisy data, itis useful to have informa-
tion regarding the statistical properties of the noise distribution. In many cases, such information
is not explicitly available, and must be estimated directlyfrom the data. Under the hypothesis of
additive noise, algorithms for estimating the variance of the noise distribution have appeared in
the literature. In this paper we present a novel algorithm for estimating the noise variance under a
multiplicative hypothesis.
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INTRODUCTION

Let f : R
m →R

n be a smooth function, mapping an inputx∈R
m to an outputy∈R

n. The
goal of statistical modelling is to estimate the functionf from a finite set of observations
S = {(x1,y1), . . . ,(xM,yM)}, a task made considerably more difficult by the presence of
noise in the data. In this paper,noise is defined to be that part of the output which
cannot be accounted for by any smooth transformation of the input. Noise is usually
represented by arandom variable, and simply knowing itsvariance σ2 is important
for many function estimation techniques. For example,σ2 is used to define a stopping
criterion for neural network training [1], and also to determine a threshold for wavelet
de-noising [2]. Noise is invariably assumed to beadditive:

y = f (x)+ r where E(r) = 0 (1)

The Gamma test [3] is a non-parametric algorithm for estimating the variance of additive
noise, using only the available data(xi,yi). A useful overview of the method can be found
in [4]. In [5], the estimate computed by the algorithm is shown to be (weakly) consistent
as the number of data points increases. In this paper, we present a related algorithm for
estimating the variance ofmultiplicative noise:

y = f (x)r where E(r) = 1 (2)

NOISE ESTIMATION

To illustrate the ideas underpinning our algorithm, we firstdescribe a new algorithm for
the estimating the variance of additive noise. Our algorithms exploit thenear-neigbour
structure of the input pointsx1, . . . ,xM, which may be computed in timeO(M logM)
usingkd-trees [6]. For any input pointx, choosex′ andx′′ to be any two points from
among its firstp nearest neighbours in the set{x1, . . . ,xM}; let y′ andy′′ be the outputs



corresponding tox′ andx′′, and letr′ andr′′ represent the noise measured on the outputs
y′ andy′′ respectively. We assume that the noise valuesr, r′ andr′′ are independent and
identically distributed, and also independent of the associated input pointsx, x′ andx′′;
the input points are also assumed to be independent and identically distributed.

Our algorithm for additive noise is based on the product ofdifferences (y−y′)(y−y′′).
Starting with (1) and applying the above conditions, it is easily shown that

E
(

(y− y′)(y− y′′)
)

= σ2 +E
(

( f (x)− f (x′))( f (x)− f (x′′))
)

(3)

whereσ2 is the variance of the noise distribution, and the expected value on the right is
taken with respect to the distribution of the input points. We think ofE

(

(y−y′)(y−y′′)
)

as an estimate ofσ2, while E
(

( f (x)− f (x′))( f (x)− f (x′′))
)

quantifies the associated
estimation error. Becausef is approximately locally linear1 atx, this error term satisfies

E
(

( f (x)− f (x′))( f (x)− f (x′′))
)

≈ G f E
(

|x− x′||x− x′′|
)

(4)

whereG f is related to the expected gradient off (with respect to the input distribution).
For k ∈ N, let xik denote thekth nearest neighbour ofxi among the input points

x1, . . . ,xM, and letyik denote the output corresponding toxik . For everyk ∈ {1, . . . , p}, we
estimate the expected valuesE

(

(y− y′)(y− y′′)
)

andE
(

|x− x′||x− x′′|
)

by the sample
means

Γk =
1
M

M

∑
i=1

(yi − yik)(yi − yik+1) and ∆k =
1
M

M

∑
i=1

|xi − xik ||xi − xik+1| (5)

respectively. In [5], is shown that sample means such asΓk and∆k satisfy a weak law of
large numbers, in the sense that they converge to their expected values in probability as
the number of data points increases. In view of this, we substitute the sample means of
(5) for the distribution means of (3) and (4), which yields

Γk ≈ σ2 +G f ∆k (6)

where we think ofG f as a (finite)constant, in the sense that it is independent of any
particular realisation of the sample data{(xi,yi)}. Finally, we exploit this (approximate)
linear relation betweenΓk and∆k, by performing linear regression on the pairs(∆k,Γk)
to estimate the value ofΓk in the limit as∆k → 0, which provides an estimate forσ2.

THE ALGORITHM

To estimate the variance of multiplicative noise, rather than look at the product of
differences(y − y′)(y − y′′) we now consider the product ofratios (y/y′)(y/y′′), or

1 The unknown functionf is assumed to be smooth, and is therefore approximately linear in sufficiently
small regions aroundx. Here, the region of interest is thep-nearest neighbour ball, centred atx and
having thepth nearest neighbour ofx on its boundary. Whether this ball is ‘sufficiently small’ to ensure
local linearity depends on the density of the input distribution nearx.



equivalentlyy2/y′y′′. Because the noise valuesr, r′ andr′′ are independent of the inputs
x, x′ andx′′, starting from (2) it easily follows that

E(y2)

E(y′y′′)
= (σ2 +1)

(

E( f (x)2)

E( f (x′) f (x′′))

)

(7)

where we have used the fact thatE(r′r′′) = E(r′)E(r′′) = 1 andE(r2) = σ2−1. Fur-
thermore, becausef is smooth, by Taylor’s theorem

f (x)2 ≈ f (x′) f (x′′)−
(

(x− x′) f (x′′)+(x− x′′) f (x′)
)

∇ f (x) (8)

Thus by (7), and using the fact thatx, x′ andx′′ are identically distributed,

E(y2)

E(y′y′′)
≈ (σ2 +1)+G f E

(

(x− x′)+(x− x′′)
)

(9)

where
G f = −(σ2 +1)E

(

f (x)∇ f (x)
)

/E( f (x′) f (x′′)) (10)

Becausef is smooth,G f is bounded provided the noise varianceσ2 is finite, and
also providedf is bounded (and not identically zero) over the set of possible inputs.
Following the discussion leading to (5), for everyk ∈ {1, . . . , p} we estimate the ratio
E(y2)/E(y′y′′) and the expected valueE

(

(x− x′)+(x− x′′)
)

by the empirical values

Γk =
∑M

i=1y2
i

∑M
i=1yikyik+1

and ∆k =
1
M

M

∑
i=1

(

(xi − xik)+(xi − xik+1)
)

(11)

respectively. As in (6), we then replace the expected valuesof (9) by the empirical values
of (11), leading to

Γk ≈ (σ2 +1)+G f ∆k (12)

Finally, we compute our estimate forσ2 by exploiting this approximate linear relation
betweenΓk and∆k, using simple linear regression to estimate the value ofΓk in the limit
as∆k → 0 (note that because the intercept estimatesσ2 +1, we must subtract one from
this to get the final estimate). It is interesting to note thatthe gradient of the regression
line can be interpreted as an estimate ofG f , and might therefore represent some useful
information regarding the unknown functionf .

Our algorithm is explicitly stated as Algorithm 1.

Algorithm 1
1. Compute thep-nearest neighbour structure of the input points{x1, . . . ,xM}.
for k ∈ {1, . . . , p} do

2. Compute the pair(∆k,Γk) as defined in (11).
end for
3. Perform linear regression on the pairs{(∆k,Γk) : k = 1, . . . , p}.
4. Return the intercept of the regression line with the∆k = 0 axis (minus one).



EXPERIMENTAL RESULTS

We generated a set of 2000 pointsxi, each selected uniformly at random from the unit
interval [0,1], and a set of 2000 noise valuesri, each selected according to a Gaussian
distribution of unit mean and variance 0.2. The output pointsyi were then constructed
according to the ruleyi = f (xi)ri where f (x) = 3sin(8πx)+cos(23πx).

The left-hand plot of Figure 1 shows the output pointsyi plotted against the input
points xi. The multiplicative nature of the noise is evident here – thenoise becomes
more pronounced as the distance between the underlying curve f (x) and they = 0 axis
increases.
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FIGURE 1. The noisy data(xi,yi) and the regression plot produced by the algorithm.

The data set{(xi,yi)} was processed according to Algorithm 1, withp = 30. The re-
sulting regression plot is shown on the right of Figure 1, where it can be seen that the
intercept of the regression line (solid line) is in close agreement with the variance of the
noise (dashed line). It can also be seen that the point estimatesΓk become increasingly
inaccurate as∆k increases. Experimental evidence suggests that our algorithm can suc-
cessfully estimate the variance of multiplicative noise, provided there are sufficient data
available. We have observed that more data points are required as the compexity of the
function f increases, a fact that will be addressed in a future study.
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