Estimating the variance of multiplicative noise
Dafydd Evans

School of Computer Science, Cardiff University, 5 The Parade, Cardiff CF24 3AA, Wales, UK

Abstract. When constructing non-parametric models from noisy data useful to have informa-
tion regarding the statistical properties of the noiseritligtion. In many cases, such information
is not explicitly available, and must be estimated direfttyn the data. Under the hypothesis of
additive noise, algorithms for estimating the variance of the noistriution have appeared in
the literature. In this paper we present a novel algorithme&timating the noise variance under a
multiplicative hypothesis.
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INTRODUCTION

Let f : R™— R" be a smooth function, mapping an input R™to an output € R". The
goal of statistical modelling is to estimate the functiofiom a finite set of observations
S={(x1,¥1),---,(Xm,ym)}, a task made considerably more difficult by the presence of
noise in the data. In this papemwise is defined to be that part of the output which
cannot be accounted for by any smooth transformation ofripati Noise is usually
represented by aandom variable, and simply knowing its/ariance o2 is important

for many function estimation techniques. For exampiejs used to define a stopping
criterion for neural network training [1], and also to detame a threshold for wavelet
de-noising [2]. Noise is invariably assumed toduielitive:

y=f(X)+r  where E(r)=0 (1)

The Gamma test [3] is a non-parametric algorithm for esiimgathe variance of additive
noise, using only the available ddtq, ;). A useful overview of the method can be found
in [4]. In [5], the estimate computed by the algorithm is shdwbe (weakly) consistent
as the number of data points increases. In this paper, wergragelated algorithm for
estimating the variance ofultiplicative noise:

y=f(x)r where E(r)=1 (2)

NOISE ESTIMATION

To illustrate the ideas underpinning our algorithm, we filsscribe a new algorithm for
the estimating the variance of additive noise. Our algorglexploit thenear-neigbour
structure of the input pointsy,...,xu, which may be computed in tim@&(MlogM)
usingkd-trees [6]. For any input point, choosex' andx” to be any two points from
among its firstp nearest neighbours in the det, ..., xv }; lety andy” be the outputs



corresponding ta’ andx”, and letr’ andr” represent the noise measured on the outputs
y andy’ respectively. We assume that the noise valyesandr” are independent and
identically distributed, and also independent of the aissed input pointx, X andx’;
the input points are also assumed to be independent andcalgntistributed.

Our algorithm for additive noise is based on the produdliféérences (y—y')(y—y”).
Starting with (1) and applying the above conditions, it isigashown that

E((y—y)(y—Y") = 0 +E((f() — f (<) (f(x) — f(x"))) 3)

whereo? is the variance of the noise distribution, and the expectdaievon the right is
taken with respect to the distribution of the input point® tMnk of E((y—y)(y—y"))
as an estimate af?, while E((f(x) — f(X))(f(x) — f(x"))) quantifies the associated
estimation error. Becaudeis approximately locally linearatx, this error term satisfies

E((f(x) = f(X))(f(x) — £(x"))) ~ GrE(Jx—X|]x—x"]) (4)

whereG; is related to the expected gradientfofwith respect to the input distribution).

For k € N, let x;, denote thekth nearest neighbour of among the input points
X1,...,Xm, and lety;, denote the output correspondingdgp For evenk e {1,..., p}, we
estimate the expected valug$(y —y)(y—y”)) andE(|x— X|[x—x"|) by the sample
means

1 M 1
M= M i;(Yi —Yi) i _Yik+1) and Ay = M i;b(i — X, | % _Xik+1’ (5)

respectively. In [5], is shown that sample means sudh.a@ndAy satisfy a weak law of

large numbers, in the sense that they converge to their tsgbgalues in probability as
the number of data points increases. In view of this, we #ulsthe sample means of
(5) for the distribution means of (3) and (4), which yields

Mk~ 0%+ Gl (6)

where we think ofG; as a (finite)constant, in the sense that it is independent of any
particular realisation of the sample dd{;,y;) }. Finally, we exploit this (approximate)
linear relation betweehy andAy, by performing linear regression on the pdifs, Ny)

to estimate the value df in the limit asA, — 0, which provides an estimate for.

THE ALGORITHM

To estimate the variance of multiplicative noise, ratheanthook at the product of
differences(y — y')(y — y’) we now consider the product oftios (y/y)(y/y’), or

1 The unknown functiorf is assumed to be smooth, and is therefore approximatelgrlinesufficiently
small regions around. Here, the region of interest is th@nearest neighbour ball, centred atx and
having thepth nearest neighbour ofon its boundary. Whether this ball is ‘sufficiently small’ tosaire
local linearity depends on the density of the input distiidounearx.



equivalentlyy? /y'y". Because the noise valugs’ andr” are independent of the inputs
X, X andx”, starting from (2) it easily follows that

E) E(f(x)?)
Eyyy @Y (E(f(x,)f(x,,)))

where we have used the fact tafr'r”) = E(r')E(r"”) = 1 andE(r?) = g% — 1. Fur-
thermore, becauskis smooth, by Taylor’s theorem

(7)

f(x)%~ f(X)F(X") — (x=xX)F(X") + (x=xX") f (X)) Of(x) (8)
Thus by (7), and using the fact thatx’ andx” are identically distributed,
2
EE(W) ~ (0% +1) + GE((x—X) + (x—X")) (©)
where
Gt = — (0% + DE(f(x)Of(x))/E(F(X)f(X")) (10)

Becausef is smooth,Gs is bounded provided the noise variang@ is finite, and
also providedf is bounded (and not identically zero) over the set of possitgputs.
Following the discussion leading to (5), for evéey {1,..., p} we estimate the ratio
E(y?)/E(yy") and the expected vallg((x— X) + (x—x")) by the empirical values

o= g and e 3 (0660 00%,0) (11)
Zi'\ilyiKYikH M i; k k+1

respectively. Asin (6), we then replace the expected valti€d) by the empirical values
of (11), leading to
M ~ (0'2+1)+GfAk (12)

Finally, we compute our estimate for® by exploiting this approximate linear relation
betweer  andAy, using simple linear regression to estimate the valug.ah the limit
as/ — 0 (note that because the intercept estimatés- 1, we must subtract one from
this to get the final estimate). It is interesting to note thatgradient of the regression
line can be interpreted as an estimat&ef and might therefore represent some useful
information regarding the unknown functidn

Our algorithm is explicitly stated as Algorithm 1.

Algorithm 1

1. Compute the-nearest neighbour structure of the input poi®s ..., xu }.
for ke {1,...,p} do
2. Compute the paifAg, k) as defined in (11).
end for
3. Perform linear regression on the p&ifay,MNy) : k=1,...,p}.
4. Return the intercept of the regression line withMe= 0 axis (minus one).




EXPERIMENTAL RESULTS

We generated a set of 2000 pointseach selected uniformly at random from the unit
interval [0, 1], and a set of 2000 noise valugseach selected according to a Gaussian
distribution of unit mean and variance20 The output pointy; were then constructed
according to the rulg; = f(x)r; wheref(x) = 3sin(87mx) + coq237x).

The left-hand plot of Figure 1 shows the output poiptplotted against the input
pointsx;. The multiplicative nature of the noise is evident here —ribese becomes
more pronounced as the distance between the underlying €gxy and they = 0 axis
increases.
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FIGURE 1. The noisy datdx;,y;) and the regression plot produced by the algorithm.

The data sef(x;,yi)} was processed according to Algorithm 1, wjth= 30. The re-
sulting regression plot is shown on the right of Figure 1, sehecan be seen that the
intercept of the regression line (solid line) is in closeesmynent with the variance of the
noise (dashed line). It can also be seen that the point dstsiiabecome increasingly
inaccurate ady increases. Experimental evidence suggests that our tigodan suc-
cessfully estimate the variance of multiplicative noisemvided there are sufficient data
available. We have observed that more data points are sztjag the compexity of the
function f increases, a fact that will be addressed in a future study.
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