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Abstract

This paper proposes a simple methodology to con-
struct an iterative neural network which mimics a
given chaotic time series. The methodology uses the
Gamma test to identify a suitable (possibly irregu-
lar) embedding of the chaotic time series from which
a one step predictive model may be constructed. A
one-step predictive model is then constructed as a
feedforward neural network trained using the BFGS
method. This network is then iterated to produce a
close approximation to the original chaotic dynamics.

We then show how the chaotic dynamics may be
stabilized using time-delayed feedback. Delayed feed-
back is an attractive method of control because it has
a very low computational overhead and is easy to in-
tegrate into hardware systems. It is also a plausible
method for stabilization in biological neural systems.

Using delayed feedback control, which is activated
in the presence of a stimulus, such networks can be-
have as an associative memory, in which the act of
recognition corresponds to stabilization onto an un-
stable periodic orbit. Surprisingly we find that the
response of such systems is remarkably robust in the
presence of noise. We briefly investigate the stabil-
ity of the proposed control method and show that
whilst the control/synchronisation methods are not
always stable in the classical sense they may instead
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be probabilistically locally stable.
We also show how two independent copies of such a

chaotic iterative network may be synchronized using
variations of the delayed feedback method. Although
less biologically plausible, these techniques may have
interesting applications in secure communications.

1 Introduction

This work draws its inspiration from [1]. On the basis
of studies of the olfactory bulb of a rabbit Freeman
suggested that in the ‘rest state’ the dynamics of this
neural cluster is chaotic, but that when a familiar
scent is presented the neural system rapidly simpli-
fies its behaviour and the dynamics becomes more
orderly, more nearly periodic than when in the rest
state. We call this the ‘retrieval behaviour’ since it is
analogous to the act of recognition. This suggests an
interesting model of recognition in biological neural
systems which is quite different from earlier attempts
to use neural networks for pattern recognition or as
associative memories.

To construct such a system we have to consider
how best to construct neural models which exhibit
chaotic dynamics. Neural network models which are
dynamical systems are not (of course) new. The clas-
sical example is the Hopfield network [2], for which
the simplest case considers nodes whose outputs are
zero or one and where memories are associated with
specified (preferably uncorrelated) point attractors.
However, such a model cannot meet our needs. The
state space is finite, consisting of fixed length vectors
whose components are zero or one, and hence ‘chaos’
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in the classical sense of dynamical systems, with its
infinitely rich variety of modalities will never be ex-
hibited. Indeed for a symmetric Hopfield network the
dynamics are essentially trivial: starting from any
initial state the network will simply iterate to a fixed
point.

In contrast if the dynamics are chaotic then unsta-
ble periodic orbits are dense on the chaotic attractor
and there are infinitely many of them. Thus an as-
sociative memory such as described by Freeman, for
which the computations are performed to an arbi-
trary precision, could in principle accommodate in-
finitely many memories. At any rate such a system is
not subject to the conventional Hopfield upper bound
of 0.15n, where n is number of neurons [3]. Of course,
for the Hopfield net the situation is rather different.
In the Hopfield model memories are associated with
specified point attractors, whereas in the Freeman
paradigm memories would be associated with unsta-
ble periodic behaviours which could not be specified
ab initio. However, another attraction of the Free-
man approach is that it introduces the possibility of
responding to stimuli over varying time scales using
behaviours with different periodicities.

Plainly we need to work with network models hav-
ing continuous node outputs rather than the discrete
outputs of the classical Hopfield model.

Chaotic dynamics have been observed in many ar-
tificial neural systems, either in continuous-time sys-
tems [4] or discrete-time systems [5]. An early ex-
ample of a neural system which displays chaos at the
neural level is the voltage-controlled oscillator neuron
(or VCON) of [6]. This model, in contrast to all-or-
none neuron models, generates voltage spikes that
phase-lock to oscillatory stimulation, similar to the
phase-locking of action potentials to oscillatory volt-
age stimulation observed in Hodgkin-Huxley prepa-
rations of squid axons [7].

In this paper, building on existing knowledge of
smooth non-linear modelling techniques, we propose
a methodology, suggested in part by Takens theo-
rem [8], to build chaotic neural networks based on
an iterative model of a conventional feedforward net-
work trained to accurately model a given chaotic time
series. We show how such networks can readily be
constructed and give several examples, which are de-

scribed in detail in the ‘Supplementary materials and
experimental results’ html file associated with this
paper – [SupMat].

2 Using the Gamma test to se-
lect an irregular embedding

The Gamma test was originally discussed in [9, 10].
It was subsequently used in synchronization [11], and
control [12] of neural networks, and applied to fea-
ture selection for genetic sequence classification [13].
In [14] the Gamma test was elaborated for use in noise
distribution reconstruction and used in modelling a
river system. Finally a theoretical analysis and proof
were given in [15].

If we consider measurements of input-output data
collected from a smooth (unknown) process f we can
write y = f(x1, . . . , xm)+r where x = (x1, . . . , xm) ∈
Rm is the input vector, the scalar y is the associ-
ated output and r is a stochastic variable with mean
zero which describes the noise on the measurement
of the variable y. Despite the fact that f is unknown
the Gamma test algorithm uses M such input-output
pairs (xi, yi) (1 ≤ i ≤ M) to obtain an estimate for
the variance Var(r) in O(M log M) time. By exam-
ining different selections of input variables and find-
ing that selection which produces an estimated noise
variance closest to zero we can use the Gamma test
as a feature selection algorithm.

One classical approach to modelling time series
data is to construct the model by choosing the past
values, up to some number m (often called the em-
bedding dimension) to form the inputs of the model.
The output is then the current value of the time se-
ries. The formal basis for this approach for dynamical
system modelling was first studied by Takens [8].

Thus an embedding of a time series is a selection
of past values which are used to predict the current
value via a model constructed from the data. A reg-
ular, or full embedding, takes all past values up to
some value m. A suitable value for m is often found
by a technique known as the false nearest neighbour
(FNN) algorithm [16], although we can also use the
Gamma test for this purpose by computing Gamma
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values for progressively increasing m. Comparative
experiments indicate that these two approaches seem
to give very similar estimates for the embedding di-
mension, although in practice FNN seems somewhat
faster.

An irregular embedding chooses some subset of the
m past values, and there are 2m − 1 possible irregu-
lar embeddings once m is chosen. Provided m is not
too large, say m ≤ 20, we may search all possible
irregular embeddings for one which gives a Gamma
estimate closest to zero. This approach to locating
suitable irregular embeddings was described with ex-
amples in [17]. The examples given in [SupMat] are
also constructed in this way: we start from low or
zero noise time series data, determine the embedding
dimension, and then use the Gamma test approach
to find a suitable irregular embedding. This irregu-
lar embedding is then used in the construction of a
chaotic net as described in the next section.

3 A generic chaotic neural
model architecture

Having identified a suitable embedding using the
Gamma test we have illustrated in [SupMat] how the
chaotic feedforward network is trained on the time
series data using the BFGS algorithm [18], which pro-
vides progressive adjustment of the neural networks
weights by gradient descent. This is a quasi-Newton
method performed iteratively using successively im-
proved approximations to the inverse Hessian, in-
stead of the true inverse. The improved approxima-
tions are obtained from information generated during
the gradient descent process.

A generic scheme for such a stimulus-response re-
current network is shown in Fig 1. The single output
of the network feeds back into the inputs using delay
buffers according to the irregular embedding previ-
ously determined by the Gamma test experiments.
This embedding should contain enough information
for predicting the next system state.
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Figure 1: Generic chaotic neural net scheme.

4 Controlling neural network

Having seen how to exhibit neural chaos the next
question becomes how to control it? We originally
approached this issue [19] by considering a range
of existing techniques which since 1989 have been
used to control an enormous diversity of chaotic sys-
tems. Historically the first of these was a technique
due to Ott, Grebogi and Yorke, known as the OGY
method [20]. The basic idea is that a chaotic sys-
tem exhibits numerous unstable periodic orbits and,
having located one such behaviour, the OGY method
seeks to stabilize this orbit using small variations of
some accessible system parameter.

Most such methods require careful and system-
atic analysis of the chaotic dynamical behaviour and
prior specification of the target unstable fixed point,
which is difficult and computationally expensive, be-
fore successful control can be achieved. Moreover,
such control techniques are external to the system be-
ing controlled, whereas for a neural system to behave
as described by [1] the control should be intrinsic to
the neural dynamics. Nevertheless, such preliminary
studies served as a useful starting point for studying
the control of neural chaos. A simple example of con-
trolling a chaotic artificial neural network using such
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techniques is given in [21].
The dynamics of large neural ensembles are high-

dimensional, and whilst the OGY technique is an ef-
fective tool for the control of low dimensional chaos
it needs further elaboration for effective control of
higher dimensional systems. Indeed, for higher di-
mensional systems it may be that other types of con-
trol procedures will prove far more effective.

To investigate the control of higher dimensional
chaos we examined a well studied dynamical system
described by a modified form of the Euler equations,
the chaotic satellite attitude control problem. In [22]
we apply various techniques to a variation of the
chaotic satellite attitude control problem and show
that it is possible to stabilize the system in a situa-
tion where five of the six sensors (three angular veloc-
ities and three attitude angles) and two of the three
thrusters are inoperative. It emerged from the work
of that paper that a remarkably simple and effective
method of stabilization onto an unstable periodic be-
haviour can be effected by the application of delayed
feedback. Delayed feedback to control continuous dy-
namical systems exhibiting chaos was first suggested
in [23]. We use a modified version of this approach to
stabilize an iterative neural model (previously trained
to generate chaotic behaviour in the ‘rest state’) in
the presence of an input stimulus.

One of the attractions of delayed feedback stabi-
lization is that it has a very low computational over-
head and so is extremely easy to implement in hard-
ware. It would also be very easy to implement in
biological neural circuitry and so offers one plausible
mechanism whereby such stabilization might occur.

We illustrate this process using the previously con-
structed examples. Again the experimental details
are given in [SupMat].

For stabilization control a multiple (gain constant)
of the delayed feedback is added to each neural net-
work input specified by the irregular embedding,
based on the idea from Pyragas’ delayed feedback
control. The control module is shown in Fig 1 and
the control perturbation for the ith input at the nth

iteration is ki(xi(n − i − τ) − xi(n − i)), where ki is
a gain constant and τ is the delay time.

We imagine that the presence of an external stim-
ulus excites (activates) the control circuitry, which is

otherwise inhibited. Thus to achieve a stabilized dy-
namical regime in response to a stimulus the control
is switched on at the same time as the external signal
is fed into the input line xn. By varying the exter-
nal signal in small steps and holding the new setting
fixed long enough for the system to stabilize we can
observe the response of the network to small changes
in stimulus.

In the diagram, τ is the same for each control per-
turbation but of course, we could set τ to be different
on each control line. External stimulus of the network
can be applied to the controlled inputs as shown in
the diagram. The control module should switch on
automatically and simultaneously whenever there is
an external stimulation. Variations of stimulation,
such as on the control delayed feedback lines may
also be used.

We determine that the response to a particular
stimulus is remarkably robust in the face of noise. A
result which we found to be rather surprising whilst
at the time extremely encouraging.

The particular unstable periodic orbit which is sta-
bilized depends quite strongly on the precise charac-
ter of the applied stimulus. Thus the system can act
as an associative memory in which the act of recogni-
tion corresponds to stabilizing onto an unstable peri-
odic orbit which is characteristic of the applied stim-
ulus. The entire artificial system therefore exhibits
an overall behaviour and response to stimulus which
precisely parallels the biological neural behaviour ob-
served by Freeman.

5 Synchronization

The idea of synchronising two independent copies of
identical chaotic dynamical systems has been of in-
creasing recent interest. Results shown by Skarda
and Freeman [24] support the hypothesis that neural
dynamics are heavily dependent on chaotic activity.
Nowadays it is believed that synchronization plays a
crucial role in information processing in living organ-
isms and could also lead to important applications in
speech and image processing [25]. Moreover, due to
the important role that secure communications plays
in industrial and banking communications, the po-
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Figure 2: FFT of the Hénon map time series training
data.

tential application of chaotic synchronization to se-
cure communications is receiving increased attention.

We show how two identical copies of a chaotic neu-
ral system may be synchronized using two variations
of the method used for control. The methods used
here for synchronisation are discrete versions of a
variation of Pyragas’ method but are not identical
to the method for stabilization. The second of these
methods was first demonstrated in [11].

Whilst less biologically plausible than our method
of control, the synchronisation techniques may possi-
bly have interesting applications. As things stand we
do not claim that using chaotic carriers as an encryp-
tion technique is a particularly secure method but, if
one is intending to use such encryption techniques, it
is our belief that the use of chaotic neural networks
may offer several advantages. Using the methods de-
scribed in the present paper a neural network can be
trained on virtually any map, for example a hyper-
chaotic system which has a more complex time signal
(and might therefore be expected to be more difficult
for a third party to synchronize). Iterated using hard-
ware such neural networks could provide very high
frequency chaotic carriers and the feedback methods
of control have the advantage of being extremely easy
to integrate into such a hardware implementation.

One can imagine having implemented a neural net-
work with fixed input, hidden, and output layers
in hardware and just by downloading a new set of
weights having a different chaotic signal to act as a
carrier. This also offers another potential advantage,
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Figure 3: FFT of the Hénon map trained neural net-
work (cycles per iteration).

since the chaotic map can readily be changed in such
a system the effective ‘noise’ spectrum of the carrier
can easily be manipulated to have particular (desir-
able) characteristics without modification of the un-
derlying hardware. Fig 2 illustrates the FFT (M =
1000) of the training data for the Hénon map and
can be compared with Fig 3 the FFT for the output
of the iterated trained Hénon network, which is the
amplitude of the transmitted carrier.

6 Conclusions

We have outlined a systematic methodology which
reduces the construction of an iterative neural net-
work, which closely models time series data from a
given chaotic system, to a relatively automatic pro-
cess. This construction method is based on finding
a suitable (usually irregular) embedding using the
Gamma test and has been illustrated in [SupMat]
using several examples. The only decisions which re-
main to be made in the construction process are the
neural network architecture and the actual training
algorithm. The architecture will be determined by
the complexity of the surface being modelled. Since
we know from the Gamma test an estimate for the
MSError we can start with a simple network and in-
crease the number of hidden nodes until the training
algorithm reaches the required target error. We have
found that in practice a slightly modified form of the
BFGS algorithm produces quite rapid convergence to
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the target MSError and compares very favourably
with other forms of gradient descent.

Prompted by the work of Freeman [1] we are in-
terested in biologically plausible mechanisms of sta-
bilization for chaotic neural networks and have illus-
trated that all the examples considered can be stabi-
lized via time-delayed feedback onto to unstable peri-
odic attractors which are to a large degree character-
istic of the applied stimulus. Moreover we have found
that these behaviours are relatively robust in the face
of noise. We conclude that if stabilization of chaos is
significant in biological information processing then
time delayed feedback is one possible mechanism by
which this might be achieved. However, one should
note that in the model we have described the response
of the system to a particular stimulus cannot be spec-
ified ab initio and it remains an open question as to
how such a system might be encouraged to learn par-
ticular responses without destroying the features of
interest (such as the chaotic behaviour).

Another aspect of this model is that since the re-
sponse may be a high-order periodic behaviour we
could imagine a system which responds in a continu-
ing way over a longer time scale. Thus, for example,
the smell of a known predator could trigger a gait
circuit and produce an evasion behaviour as long as
the stimulus remained present.

In a similar way it is conjectured that synchroni-
sation of different neural clusters may also play an
important role in biological information processing.
Again we have shown that synchronisation of two
identical chaotic networks can be achieved very eas-
ily by means of time delayed feedback. We have il-
lustrated using several examples two possible ways of
accomplishing this.

Finally, irrespective of the interest of chaotic neu-
ral synchronisation in biological information process-
ing there is the potential application of these ideas
to secure communications. We have taken one of the
synchronisation examples and illustrated how a sim-
ply encoded binary message may be masked by the
chaotic neural carrier and then transmitted and re-
covered by an identical neural system at the receiver.
As discussed in the introduction if chaotic carriers
were to prove viable as a method of encryption then
the use of neural networks may offer several advan-

tages. In particular, to switch from one chaotic car-
rier to another could be done without having to re-
configure the underlying hardware.
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[10] Končar, N. (1997) Ph.D. thesis (Department of
Computing, Imperial College of Science, Tech-
nology and Medicine, University of London,
UK).

[11] Oliveira, A. R. G. d & Jones, A. J. (1998) In-
ternational Journal of Bifurcation and Chaos 8,
2225–2237.

[12] Tsui, A. P & Jones, A. J. (1999) International
Journal of Bifurcation and Chaos 9, 713–722.

6



[13] Chuzhanova, N. A, Jones, A. J, & Margetts, S.
(1998) Bioinformatics 14, 139–143.

[14] Durrant, P. J. (2001) Ph.D. thesis (Department
of Computer Science, Cardiff University).

[15] Evans, D & Jones, A. J. (2001) Proceedings of
the Royal Society Series A. Submitted paper.

[16] Kennel, M. B, Brown, R, & Abarbanel, H. D. I.
(1992) Physical Review A 45, 3403–3411.

[17] Tsui, A. P. M, Jones, A. J, & Oliveira, A. R.
G. d. (2001) Neural Computing & Applications.
Forthcoming.

[18] Fletcher, R. (1987) Practical Methods of Opti-
mization. (John Wiley & Sons), 2nd edition.

[19] Tsui, A. P. M. (1999) Ph.D. thesis (Department
of Computing, Imperial College of Science, Tech-
nology and Medicine, University of London).

[20] Ott, E, Grebogi, C, & Yorke, J. (1990) Physical
Review Letters 64, 1196–1199.

[21] Tsui, A. P & Jones, A. J. (1997) Parameter
choices for control of a chaotic neural network,
Frontiers in Artificial Intelligence and Applica-
tions ed. Morabito, F. (AMSE, SIGEF and
BUFSA, IOS Press, University of Reggio Cal-
abria, Italy), Vol. 41, pp. 118–123.

[22] Tsui, A. P & Jones, A. J. (1999) Physica D 135,
41–62.

[23] Pyragas, K. (1992) Physics Letters A 170, 421–
428.

[24] Skarda, A & Freeman, W. (1987) Behavioural
and Brain Sciences 10, 161–195.

[25] Ogorzallek, M. (1993) IEEE Transactions on
Circuits and Systems - I: Fundamental Theory
and Applications 40, 693–699.

7


