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ABSTRACT

We have conducted an experiment with the intent to deter-
mine and quantify what properties of monophonic melo-
dies humans perceive as appealing. This was done in an
evolutionary setting: a population of melodies was sub-
jected to Darwinian selection with popular human vote ser-
ving as the basis for the fitness function. We describe the
experimental procedure, measures to avoid or minimise
possible experimental biases, and address the problem of
extracting maximum fitness information from sparse mea-
surements.

We have rigorously analysed the course of the resulting
evolutionary process and have identified several important
trends. In particular, we have observed a decline in com-
plexity of melodies over time, increase in diatonicity, con-
sonance, and rhythmic variety, well-defined principal di-
rections of evolution, and even rudimentary evidence of
speciation and genre-forming. We discuss the relevance
of these effects to the question of what is perceived as a
pleasant melody.

Such analysis has not been done before and hence the
novel contribution of this paper is the study of the psycho-
logical biases and preferences when popular vote is used
as the fitness function in an evolutionary process.

1. INTRODUCTION

Evolutionary approach to music composition is well de-
scribed in the literature: whether the fitness information is
provided by human evaluation [1, 2] or otherwise [3, 4].

Recently, the importance of consumers’ preference in dri-
ving the evolution of music was demonstrated in [2]. While
their conclusions were criticised (especially as to the role
of biases in selection [5]), the experiment of [2] was the
first large-scale attempt at music evolution with popular
vote serving as the fitness function. Further, [5, 6, 7] argue
that recombination and transformation of information ac-
cording to psychological biases of individuals are the cru-
cial element of cultural evolution.

In contrast to [2], where the process of evolution itself
was examined, this work concentrates on and attempts to
measure the above-mentioned psychological and cultural
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biases that guide the evolution of music, and hence at-
tempts to quantify what aspects of music the respondents
find appealing.

2. EXPERIMENTAL SETUP

In this experiment, we maintain and evolve a population of
melodies. To minimise the model bias, we have adopted
the simplest representation of the population in which the
phenotypes and genotypes of individuals are identically
equivalent. Each individual is represented by two lists: a
list of intervals (in semitones) between successive notes in
the melody, and a list of note durations (as integer multi-
plies of the time quantum, in this case ∆t = 1/16th note).
The total duration of each melody is capped at 64×1/16th,
which is equivalent to four bars in 4/4.

At the start of evolution, the population is initialised with
randomly generated melodies in which the intervals are
drawn from integer Gaussian distribution with µ = 0 and
σ = 7 semitones (middle C is chosen for the first note in
all melodies). Gaussian sampling is done to avoid biasing
the respondents towards diatonicity. The note durations in
the initial population are chosen equal (crotchets).

Thus, the initial melodies are results of Gaussian random
walks, in which the expected root-mean-square deviation
of the last note after n = 15 steps is σ

√
n ≈ 27 semitones.

The melodies were then confined (by taking the modulo)
to the range of ±1 octave from the starting note.

The population size is kept constant at every generation
(N = 100 exemplars), with the entire evolutionary history
being recorded for future analysis. The choice of the pop-
ulation size depends on two factors. First, the population
size should ideally be large enough for emergent phenom-
ena, such as speciation, to be observed. Second, too large
a population would not allow us to observe a substantial
number of generations: indeed, if ranking the population
involves O(N logN) comparisons, then given a budget of
C comparisons the number of generations we could ob-
serve is at most bC/O(N logN)c.

To sample popular opinion, we set up a website 1 which
offers the visitors two melodies from the current popula-
tion. The visitors are prompted to play back the melodies
and select the one which they prefer. Their response is
recorded and serves to update the population rank.

In contrast to [2], where respondents choose between five
categories, in our experiment they were presented with two
options (select the best from two melodies). The reason for

1 http://ontario.cs.cf.ac.uk/mutunes
The name “µTunes” is pronounced to rhyme with “mutants”.
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this is twofold. First, the problem of optimal ranking us-
ing expensive pairwise comparisons is well-studied in the
literature [8, 9]. This is a non-trivial task, since we need to
find the best estimate of the population rank given the lim-
ited number of pairwise comparisons which, in addition,
may be noisy (contradictory). In [9] an efficient ranking
algorithm is described which by adaptive pairwise queries
efficiently ranks the population. Due to its robustness un-
der noise this is the algorithm we used in our experiment.

After each comparison, with probability Nγ log(Nγ) a
new generation is produced. Above, N = 100 is the popu-
lation size and γ = 0.5 is a parameter controlling the rate
of evolution. This is equivalent to triggering a new genera-
tion on average every O(N logN) comparisons which are
required to rank N individuals.

When a new generation is triggered, the highest ranked
α = 20% of the individuals take part in sexual reproduc-
tion. Pairs are formed by uniform random sampling from
the top α = 20% of the population. Breeding involves
a one-point crossover operation: a time tf in the female
melody is selected uniformly randomly (at any point, in-
cluding in the middle of notes), with tf being quantised to
1/16th notes; similarly tm is selected for the male individ-
ual. The melodies (intervals and note durations) are sliced
at tf and tm.

Breeding produces two offsprings: one shares a begin-
ning with the female parent, and an end with the male par-
ent, and vice-versa for the other offspring. Such crossover
can result in a note being broken in two, as slicing time
t is not guaranteed to coincide with the note boundaries.
When this occurs, with probability β = 50% the notes
at the cut-point are fused. This way, we ensure that the
rhythmic granularity does not unnecessarily increase due
to crossover. A better approach would be to estimate β dy-
namically to explicitly ensure that the crossover operation
does not affect the average granularity in the population.

Finally, mutation occurs in one of the offspring. The off-
spring to be mutated is chosen uniformly randomly. Muta-
tion affects only the intervals. One interval, selected again
uniformly at random, is incremented or decremented by
one. The bottom α = 20% of the population are removed
from the population and replaced with the newly generated
offspring. The rhythm was not explicitly subjected to mu-
tation to simplify the experiment; however, variability in
rhythm naturally arises as the result of the crossover oper-
ation, which splices the melodies as described above.

3. ANALYSIS AND RESULTS

So far into the experiment, we have registered ≈ 7, 000
comparisons which resulted in 45 generations of evolution.
We have also carried out a control experiment in which
the evolution proceeded under the same conditions (and
the same initial population) except the responses were re-
placed with random Bernoulli-distributed values (p = 1/2,
fair coin).

Below we describe the various features of the population
that we measured over time as the evolution progresses:
entropy of melody and rhythm, repetitiveness, properties
of melodic contour, and pitch distribution.
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Figure 1. Change in average entropy of melody (above)
and rhythm (below).
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Figure 2. Average number of consecutive repetitions of
pitches (above) and rhythmic values (below).
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Figure 3. Average number of extrema in the melodic con-
tour.

ENTROPY. It has been hypothesised [10, 11] that sim-
plicity in art is appealing. It hence seems natural to mea-
surewhat happens to the complexity of melodies in the pop-
ulation. To do so, we estimate the average Shannon’s en-
tropy [12] of melodies and their rhythms, assuming that in-
tervals between notes and note durations are symbols from
a finite alphabet. The entropy is simply

H(X) = −
∑
i

P (xi) log2 P (xi), (1)

where X is a string of intervals (or durations), P (xi) is
the probability of occurrence of symbol xi (estimated from
frequency).

Figure 1 shows the average population entropy over time
(in this and other figures the bold blue line indicates the
difference between the experiment and control). We ob-
serve that the melodic entropy is noticeably decreasing.
This indicates that the respondents tend to select simpler
melodies. This is in line with predictions of [10, 11].

Remarkably, the opposite result is observed for rhythm:
the entropy is noticeably increasing, which suggests the
preference for more rhythmically varied melodies. (The
rhythm entropy in the control experiment is not constant
due to a defect in the crossover operator: it does not ensure
that the average granularity remains the same. However,
the difference from the control shows significant increase
of rhythm entropy over time.)

REPETITIVENESS. We also investigated whether the re-
petitiveness is selected for. To measure repetitiveness, we
count the number of adjacent identical intervals (and note
durations) and normalise by the length of the melodies.
Figure 2 illustrates the trend in thus computed average re-
petitiveness. Again, we observe increase in melodic and
decrease in rhythmic repetitiveness.

We note that higher repetitiveness implies lower entropy,
but not the other way round: a repeated alternation between
two notes (e.g. trill) will have low entropy, but not high
repetitiveness.
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Figure 4. Above: Histogram of interval classes (vertically)
over time (horizontally); red = high frequency, blue = low
frequency . Below: the interval class histogram at the last
generation.
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low: the pitch class histogram at the last generation.



Figure 6. Embedding of the melodies in R2 over time. The generation numbers are shown in the corner. Pale gray dots
represent all melodies ever alive, large white dots — melodies alive in the current generation. Background colour shows
the estimated density (using KDE [15]).

MELODIC CONTOUR. To investigate whether the shape
of the melodic contour is significant in respondents’ selec-
tion, we use a simple measure of monotonicity: we com-
pute the number of local extrema in a melody and nor-
malise by the length of the melody. High number of ex-
trema would be indicative of oscillating melodic contours,
low number would indicate more monotonously ascending
or descending contours. Figure 3 shows the change in aver-
age monotonicity over time and illustrates a noticeable de-
cline in this parameter, indicating negative preference for
complex, undulating melodies.
PITCH AND INTERVAL DISTRIBUTION. At each genera-
tion, we measured the distribution of intervals in the melo-
dies and the resulting pitch classes. Figure 4 (top) shows
the evolution of the interval histogram over time. The in-
tervals in Figure 4 are shown modulo 12, and inversions of
intervals are placed in the same bin (e.g. perfect fourth and
perfect fifth, denoted 5/7 in Figure 4, are in the same bin,
and similarly for other intervals). We observe a marked
preference for consonant, diatonic intervals, and the semi-
tone (0, 1/11, 5/7); the augmented fourth is actively se-
lected agaist (bottom row, 6); interestingly, the prevalence
of the major 3rd (4/8) is smaller than that of the major
2nd (2/10) and the minor 3rd (3/9). Figure 4 (bottom)
compares the distribution of intervals to that in the control
group as well as to that in a corpus of Western classical mu-
sic [13] and English folk music [14]. We show the correla-
tion matrix for these distributions in Table 1. We observe
that the resulting distribution of pitch classes appears to
be more characteristic of the Western classical music than
of folk music. Figure 5 shows the evolving histogram of
pitch classes (top row corresponds to C, second to D-flat
etc.) Again we observe a marked tendency towards dia-
tonicity: note, for example, the high values in the F-minor
triad (F-Ab-C).
EUCLIDEAN EMBEDDING AND CLUSTERING. We re-

gard the space of all melodies as a metric space with the

Exp. W.C. E.F.

Exp. - 0.0532 0.0497
W.C. 0.0532 - 0.7787
E.F. 0.0497 0.7787 -

Table 1. Correlation between the difference from control
in interval class distribution in this experiment vs. that of
Western classical music vs. English folk music.

Levenshtein distance [16] (edit distance) applied to strings
of intervals forming the melodies (and strings of note dura-
tions) as the metric. Having computed pairwise distances
between all melodies in the population, we can compute
the embedding of the melodies into Euclidean Rn space.
Multidimensional Scaling [17] delivers such embedding,
as well as optimal (in the least-squares sense) embeddings
into reduced dimensionality spaces Rm, m < n. In partic-
ular, for visualisation it is convenient to embed the melo-
dies into R2. Figure 6 shows such embedding. All melo-
dies that ever lived are shown (pale gray), the ones cur-
rently alive are marked by large white circles. To illustrate
the tendency, in the background we show the distribution
density obtained using kernel density estimator [15]. We
remark that having started from the initial cluster (Figure 6
top left) the evolution diverges into well-defined directions
(downwards and to the right in Figure 6), and new mutu-
ally dissimilar stable clusters of melodies are formed. We
speculate that this phenomenon is analogous to speciation
in biological evolution. Admittedly, a larger scale experi-
ment is required to more accurately study this effect. To
illustrate the principal modes in which the evolution pro-
gresses, we have clustered all the melodies by similarity
(using classic k-means algorithm [18] on the melodies em-
bedded in Rn). Figure 7 show the resulting clusters to-
gether with the melodies nearest to the cluster centroids.
These correspond to relatively stable melodic “species” in
our experiment.
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4. DISCUSSION AND CONCLUSIONS

We have conducted an experiment to evolve a population
of melodies by popular vote (incidentally, in Figure 8 we
show the best ranking melodies over generations). We have
performed statistical analysis of the resulting evolutionary
history. We have thus used the evolutionary setting in order
to examine the popular vote as the fitness function in terms
of perceptual biases of the respondents.

By measuring the average entropy, repetitiveness, and va-
riability in melody in rhythm over time, we have come
to the conclusion that the respondents are biased towards
melodically straightforward, consonant, diatonic, while, on
the other hand, rhythmically varied melodies. We have
observed that out of chaos emerges the preference for the
Western diatonic scale. We also speculate that the forma-
tion of stable clusters in diverging branches of evolution
may be an effect analogous to speciation. While the above
results may already be intuitively familiar to expert musi-
cians, we have for the first time demonstrated that evolu-

tionary setting is a useful tool for studying psychological
perceptual biases and æsthetic preferences in humans.

A larger scale experiment would merit more accurate ana-
lysis of socio-cultural background of the respondents. It
could potentially reveal interesting correlations between
the background and musical preferences. It would be also
very interesting to conduct a similar experiment with other
musical systems, for example those not based on 12-tone
scale. Further work would also include a more extensive
analysis of the emergent phenomena related to tonality,
mode, and key.

Although this experiment is ongoing, and the corpus of
data is continuously growing, we believe our preliminary
findings may be of interest to the computational music com-
munity.
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