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Abstract
Paralinguistic analysis of speech remains a challenging task due
to the many confounding factors which affect speech production.
In this paper, we address the Interspeech 2018 Computational
Paralinguistics Challenge (ComParE) which aims to push the
boundaries of sensitivity to non-textual information that is con-
veyed in the acoustics of speech. We attack the problem on
several fronts. We posit that a substantial amount of paralinguis-
tic information is contained in spectral features alone. To this
end, we use a large ensemble of Extreme Learning Machines
for classification of spectral features. We further investigate
the applicability of (an ensemble of) CNN-GRUs networks to
model temporal variations therein. We report on the details of the
experiments and the results for three ComParE sub-challenges:
Atypical Affect, Self-Assessed Affect, and Crying. Our results
compare favourably and in some cases exceed the published
state-of-the-art performance.
Index Terms: social signal processing, speech analysis, com-
putational paralinguistics, affective computing, deep learning,
ensemble methods

1. Introduction
Paralinguistics is the study of non-verbal aspects of speech [1],
and is increasingly becoming a mainstream topic within the do-
mains of signal processing and machine learning, and is one of
the hot research topics within Social Signal Processing [2]. In its
tenth consecutive year, the Interspeech 2018 Computional Par-
alinguistics Challenge (ComParE) [3] offers three new corpora
in the form of sub-challenges for recognition of Atypical Affect,
Self-assessed affect, and Crying.

The objective of the Atypical Affect sub-challenge is to pre-
dict emotional state of individuals who have been diagnosed with
mental, neurological, or physical disabilities. This sub-challenge
is based on the Emotional Sensitivity Assistance System for
People with Disabilities (EmotAsS) corpus, details of which
were published at Interspeech 2017 [4]. While considerable
research has focussed on emotion recognition from speech [5],
the EmotAsS corpus is particularly challenging since it focuses
on emotions of individuals with disabilities. Hante et al. [4]
report that they observed very different emotional responses
from individuals with disabilities for the same task. They state,
for example, “we found that very different emotional responses
could be observed for the same task; for example, a woman
laughed with joy when she had to describe a picture with a hurt
dog because she simply liked the dog. Another woman wept
over the picture because she had just lost her dog”.

The Self-Assessed Affect sub-challenge deals with the pre-
diction of mood of individuals from their speech recordings,
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specifically, the valence of their emotions. As reported in [3],
the objective of this sub-challenge is to lay foundations for appli-
cations that support individuals with affective disorders, as well
as monitor rapport between therapists and patients.

The third sub-challenge, Crying, is somewhat unique in the
sense that it focuses on infant vocalisations, instead of that of
adults. The objective of this sub-challenge is to develop methods
which can automatically recognise between vocalisations which
represent neutral/positive mood of the infant, fussing, and just
crying. This challenge is particularly important since automatic
classification of infant vocalisation has many application for
remote monitoring of children in intensive care units, as well as
children wards.

2. Datasets
The Atypical Affect sub-challenge uses speech recordings which
are part of the EmotAsS corpus [4], published at Interspeech
2017. There are however some significant changes. For this
sub-challenge, organisers do not provide subject IDs, but instead
provide provide partitions for training, development (validation),
and test sets. The objective is to correctly predict between one of
the four emotions which include angry, happy, neutral, and sad.

The Self-Assessed sub-challenge uses speech recordings
from the Ulm State-of-Mind in Speech (USoMS) corpus, where
the objective was to study core affect via valence in free speech.
To the best of our knowledge, this corpus has not been pub-
lished prior to Interspeech 2018, although the baseline paper [3]
reports that self-assessed labels were collected on a 10-point
Likert-scale. Later, these values were quantised to yield a three
class classification task for this sub-challenge, with the following
range: (i) low: 0-4, (ii) medium: 5-7, (iii) high: 8-10. Finally, the
Crying sub-challenge uses vocalisation recorded by Marschik
and his team as part of their work on early detection of neurode-
velopmental disorders [6]. For further details on datasets used in
these challenges, the reader is referred to the baseline paper [3].

3. The Proposed Approach
3.1. Spectral Modelling with Fisher Vectors

We posit that a substantial amount of paralinguistic information
is contained in the speech spectra alone, and we demonstrate
that by modelling the latter effectively, we can train classifiers
to predict labels for the three sub-challenges for ComParE 2018
with reasonable accuracy. Spectral modelling has previously
been shown to be useful for a variety of paralinguistic tasks
such as those pertaining to emotion recognition [5] and screen-
ing of mental disorders [7] in addition of previous Interspeech
ComParE challenges.

Spectral modelling typically involves computing spectral
low-level descriptors (LLDs) over short segments of speech fol-
lowed by feature aggregation. Feature aggregation is an approach
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through which LLDs are summarised to create features which
provide global information about the speech recordings. While
several feature aggregation methods exist, such as functionals [8],
GMM supervectors [9], Vectors of Locally Aggregated Descrip-
tors (VLADs) [10], i-vectors [11] etc., we opt to use Fisher
Vector encoding for aggregating spectral LLDs based on our
previous experience: we found them effective for classifying
between individuals with and without depression [12], as well
as prediction of their depression severity [13].

While FV encoding was originally proposed by [14] for
building visual vocabularies, it has become popular for a variety
of applications in the field of social signal processing, such as de-
pression recognition [15, 16, 12, 13], emotion recognition [17] as
well as recent Interspeech Computational Paralinguistics (Com-
ParE) challenges [18, 19, 20].

The recent popularity of Fisher Vector encoding, especially
within the social signal processing community, is due to the
fact that it combines the advantages of both generative and dis-
criminative approaches for machine learning [21]. The process
flow for Fisher Vector encoding starts with building a generative
model (typically, using Gaussian Mixture Models, GMMs) of
LLDs, and later computing the Fisher kernel from this genera-
tive model. Essentially, FV measures the deviation of the LLDs
from the generative model. Fisher Vectors are quantified using
first and second order statistics of the gradient of the sample
log-likelihood with respect to the model parameters [14, 22].

As representations of speech spectra, we use three sets
of low level spectral representations. These include the Mel
Frequency Cepstral Coefficients (MFCCs), Perceptual Linear
Prediction (PLP) coefficients, and the ComParE 2016 spec-
tral LLDs. While MFCCs and PLPs are standard represen-
tations for spectra in speech processing, ComParE spectral
LLDs have demonstrated impressive performance in the base-
line paper for this challenge, and motivated us to use this fea-
ture set as well. MFCC, PLP and ComParE 2016 spectral
LLDs were computed the using the openSmile toolkit version
2.3.0 [23] using MFCC12 E D A.conf, PLP E D A.conf,
and ComParE 2016.conf configuration files, respectively.
For further details on these features, see [23].

The process of FV encoding for spectral modelling is sum-
marised as follows: we concatenate spectral LLDs from each
speech recording into a matrix and then build a background
model for the spectral space using a GMM [24]. Next we
compute Fisher Vectors using the Matlab API of VLFeat li-
brary [25] for both, estimating the vector means, covariance
matrix and priors of the GMM, and implementing FV encoding.
For FV encoding we compute both the vanilla Fisher Vectors as
well as Perronnin’s improved FVs [22].

3.2. Ensembles of Weighted Extreme Learning Machines

An Extreme Learning Machine (ELM) is essentially a single
layer feed-forward neural network where the hidden layer is
assigned randomly generated weights which are not updated
during the training process. For classification, the output from
the hidden layer can be mapped to the training labels using a
least squares regression [26]. The idea is that even with random
weights, the hidden layer can learn useful representation of input
data which can be exploited by designing a suitable output layer.
An outstanding advantage of ELMs is their very fast training
time, which eases the process of tuning the hyper-parameters
and experimentation.

We note that while ELMs were popularised by Huang et al.
in 2004 [26], the fundamental concepts of ELMs have existed for

much longer. Ping et al. proposed using least squares regression
to compute weights of a neural network in [27]. The “random
weights” concept of ELMs is analogous to the concept of random
projections for feature mapping. If the number of neurons in
the hidden layers is smaller than dimensionality of the input
data, the ELM essentially implements dimensionality reduction.
Conversely, when the the number of neurons are larger than
the input dimensions than the ELM performs dimensionality
expansion.

The techinque of dimensionality reduction using random
projections is supported by the 1984 Johnson-Lindenstrauss
Lemma [28], according to which “points in a vector space of
sufficiently high dimension, may be projected into a suitable
lower-dimensional space in a way which approximately pre-
serves the distances between the points”. Meanwhile, dimension-
ality expansion is supported by Cover’s theorem [29], according
to which “a complex pattern-classification problem, cast in a
high-dimensional space non-linearly, is more likely to be lin-
early separable than in a low-dimensional space, provided that
the space is not densely populated”.

In our work, we use ELMs as a method for dimensionality
reduction followed by least squares regression towards class
label prediction. As such, we do not use a non-linear activation
function. Moreover, since the process of FV encoding expands
the dimensionality to a factor of 2KD, where K is the number of
Gaussians in the GMM, and D is the dimensionality of the input
vector, we use principal component analysis (PCA) to reduce the
dimensionality such that 95% of variance is preserved, before
using ELMs.

It is important to note that ELMs have previously been
reported to provide good performance for tasks pertaining to
emotion recognition [17], Interspeech ComParE [18, 19], and
depression recognition [30]. Furthermore, to deal with class
imbalance in datasets (which also exits in ComParE 2018), Zong
et al. proposed Weighted Extreme Learning Machines (WELMs)
in [31]. WELMs assign weights to each class according to the
number of training examples available for that class. A typical
WELM classifier has two hyper-parameters: (1) the number of
neurons L in the hidden layer and (2) the regularisation param-
eter c required for the generalised Moore-Penrose inverse [31],
which can be tuned. In our work, we fix C = 1, and use four val-
ues for L i.e. L ∈ {2, 5, 10, 50}. It is also worth mentioning that
both us [12] and Kaya et al. [20] concurrently proposed, albeit
at different conferences, the use of weighted extreme learning
machines for tasks pertaining to social signal processing.

It is quite obvious that not all random projections will yield
acceptable results in terms of UAR (which is used to measure
accuracy for ComParE 2018) for the classification tasks at hand.
Some random projection vectors may actually reduce the separa-
bility between classes, while others may increase the separability.
Rather than manually sift for useful random projection vectors,
in this work, we propose Greedy Ensembles of Weighted Extreme
Learning Machines (GEWELMs).

The fundamental idea behind GEWELMs is to train a suf-
ficiently large number of WELMs and then select those which
have UAR above a certain threshold for the development parti-
tion. We arbitrarily fix the threshold as the value corresponding
to 80th percentile of the UAR of all WELMs in the ensemble.
We do appreciate the fact that GEWELMs can have a tendency
to over-fit to the development partition, hence we train two sets
of GEWELMs. The first regime is called T2D-GEWELMs,
where is the conventional training on the training partition and
testing on the development partition, and the second is called
D2T-GEWELMs, where we train of the development partition
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Table 1: Performance (UAR, %) of an ensemble of 2000 WELMs
on the Atypical Affect sub-challenge with various features vec-
tors, as a function of number of Gaussians and neurons. Results
are shown for the two regimes: training on the training set and
testing on the development one (T )D), and vice versa (D )V);
Avg. is the average of the two regimes.

#Neur. ) 2 5 10 50

#Gauss. ↓T )D D )T Avg T )D D )T Avg T )D D )T Avg T )D D )T Avg

ComParE Spectral Features

8 48.5 44.4 46.5 49.2 47.4 48.3 49.0 43.5 46.3 41.7 37.2 39.5
16 44.4 43.0 43.7 47.2 45.8 46.5 45.4 44.8 45.1 40.0 36.6 38.3
32 43.9 42.0 43.0 50.0 45.3 47.7 45.8 42.5 44.2 42.7 36.3 39.5
64 43.6 40.8 42.2 46.0 40.8 43.4 47.0 41.9 44.5 38.3 36.4 37.4

PLPs

8 50.5 51.3 50.9 49.2 50.2 49.7 48.4 48.2 48.3 44.6 39.9 42.2
16 50.4 51.8 51.1 50.9 50.1 50.5 52.5 50.3 51.4 47.3 43.9 45.6
32 49.5 49.0 49.2 52.4 52.9 52.6 50.3 50.3 50.3 44.3 41.8 43.1
64 48.5 46.8 47.6 52.4 47.4 49.9 50.6 45.6 48.1 47.2 37.0 42.1

MFCCs

8 51.6 51.9 51.8 52.9 53.2 53.0 49.2 49.8 49.5 44.1 40.5 42.3
16 48.7 51.6 50.1 50.8 50.2 50.5 49.7 49.6 49.7 42.9 40.6 41.7
32 49.5 50.1 49.8 50.8 49.0 49.9 50.6 51.2 50.9 44.3 40.7 42.5
64 49.2 49.4 49.3 54.3 51.6 53.0 52.0 49.7 50.9 46.2 40.0 43.1

Table 2: Summary of performance (UAR, %) of an ensemble of
2000 WELMs on the Self-Assessed sub-challenge with various
features vectors, as a function of number of Gaussians and
neurons, and a linear SVM classifier as a baseline

Features GEWELMs SVM
UAR #Gauss #Neu UAR #Gauss Cost

Vanilla Fisher Vectors

MFCCs 70.8 32 5 49.2 4 10−4

PLPs 71.4 16 5 51.4 8 10−1

ComParE Spec. 74.3 96 5 53.4 4 10−1

eGeMAPS+ 70.4 8 5 57.3 8 10−3

Improved Fisher Vectors

MFCCs 69.6 8 10 52.0 4 10−1

PLPs 67.8 4 2 52.0 32 10−2

ComParE Spec. 72.8 4 10 58.2 4 10−1

eGeMAPS+ 72.4 8 10 56.8 16 10−2

and test on the training partition. This serves to regularise the
selection of WELMs in the ensemble by mandating that the set of
random projections used for a particular WELM have acceptable
performance for both T2D-GEWELMs and D2T-GEWELMs.

3.3. CNN-GRU model

Deep convolutional neural networks (CNNs) have recently
demonstrated excellent performance on diverse tasks ranging
from image classification, to speech recognition, to natural lan-
guage processing [32, 33]. We have investigated the application
of CNNs for the task at hand.

Structure The deep learning architecture proposed for this
paper consists of a four-layer Convolutional Neural Network
(CNN) followed by a Gated Recurrent Unit (GRU) [34]. The
former acts as feature extractor, whereas the latter performs
modelling of temporal features. More specifically, the four con-
volutional layers are each constituted by (3× 3) convolutional
filters and are interleaved with (2× 3) pooling operations and
ReLu activation functions. The first three layers contain 8, 16
and 16 filters respectively. In an attempt to avoid overfitting

and to reduce the predictions variance, an ensemble of mod-
els approach has been implemented. To that end, the number
of filters in the final convolutional layer was arbitrarily set to
values ranging from 8 to 12 depending on the run. This last
value is a key model hyper-parameter since it corresponds to the
dimensionality of the features fed to the recurring unit.

For its part, the recurrent layer consists of a standard single-
celled GRU. The specific number of units composing the cell is
also considered a free parameter for the model ensembling proce-
dure; it ranges from 12 to 16. Eventually, the respective predic-
tion of each model is obtained by feeding the resulting recurring
features to a unique fully-connected (dense) layer. Overall, the
network architecture was intentionally kept small (< 7000 pa-
rameters) and simple in order to prevent overfitting. Taking
this precautionary measure seemed necessary due to the limited
amount of data available for certain classes.

Input data This multistep pipeline has been directly ap-
plied on centered and normalized Mel-spectrograms of the raw
audio extracts. These were generated using short-time Fourier
transform (STFT) with 1024 points, frame sizes 0.02s, frame
strides 0.006s and 81 frequency bins. The resulting length of the
spectrograms is quite diverse ranging from less than 100 to more
than 3000 temporal bins. However, this is not an issue since the
recurrent unit can dynamically handle variable length inputs.

Data augmentation In addition, data augmentation has
been implemented to extend the available data. This technique
has shown its importance over the years in training deep learning
models including audio classification models [35]. The benefits
of an artificial increase in dataset size is even more noticeable
for small datasets such as the ones provided for the challenge. In
consequence several data augmentation techniques have been im-
plemented for our submission: pitch shifting, time stretching and
white noising. These transformations were not only applied for
training, but also at inference time; the predictions are obtained
by averaging the prediction of each individual augmentation fold.
Overall, including such transformations has proven to lead to
more stable training, less variability in the prediction and better
out-of-sample performances.

Training regime In terms of training, a standard mini-batch
cross-entropy minimizing procedure using Adam optimizer [36]
was chosen. In order to overcome the great imbalance in the num-
ber of samples per class (see Section 2), stratified sampling was
used to produce more balanced training batches. Additionally,
a multi-task [37] learning approach was implemented to over-
come the dataset size: the network was simultaneously trained to
solve the task at hand as well as a voice recognition task. More
precisely, a small subsample of the Librispeech corpus [38] was
added to the training dataset; the voice extracts of four different
people reading books were selected. Thus, the prediction space
was increased by four new labels resulting in a more challenging
task, but benefiting from a larger amount of data. This addition
proved to be very useful in order to reduce overfitting.

In summary, we combine simple architecture, model ensem-
bling, data augmentation and multi-task learning to overcome
the challenge induced by the small size of the datasets.

4. Experimental Results
In order to evaluate the performance of the proposed approaches,
we have conducted a series of experiments using the Interspeech
2018 ComParE challenge data (on three of the sub-challenges).
The results are summarised in Table 3.

The best competition baseline results [3] were achieved us-
ing a fusion of multiple diverse classifiers. Since in this paper
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Table 3: Summary of the results. Unweighted average recall
(UAR, %) is shown for the different methods and their aggrega-
tion on the three sub-challenges.

Method Atypical Self-Ass. Crying

Dev. Test Dev. Test LOSO Test

GEWELM 56.2 36.3 69.0 49.5 72.7 –
CNN-GRU 38.3 40.4 – – 77.4 70.7
Baseline (COMPARE) 40.5 43.1 56.5 63.2 76.9 73.2
Baseline (CNN+LSTM) 41.8 28.0 49.7 46.6 – 63.5
Baseline (AUDEEP) 40.4 35.6 49.9 57.3 74.4 71.1
Baseline (Fusion) – 43.4 – 66.0 – 74.6

we are interested in investigating the performance of individ-
ual methods, we omit the discussion of the comparison against
fusion results (which are listed in Table 3 for completeness).
Importantly, the best baseline results in Table 3 were not nec-
essarily achieved in the same experiment, hence the variability
between the dev. and test results is not completely reflected (see
the complete breakdown in [3].

GEWELMS The performances of an ensemble of 2000
WELMs over a wide range of hyper-parameter setting are pre-
sented in Table 1. To that end, runs have been performed with
a variable number of GMM Gaussians (ranging from 4 to 128)
and a varying number of neurons (2,5,10 or 50) constituting the
WELMs. Additionally, these experiments have not only been
conducted using the train and the dev. set for training and testing
purposes respectively, but the reverse has also been implemented.
The average performance of the two different regimes is also
displayed. We note that for the Atypical-Affect sub-challenge,
MFCC based spectral features achieve an average T2D/D2T
UAR = 53.0. This is better than the highest achieved UAR with
ComParE spectral features, although PLP features achieve com-
parable performance with MFCCs. Furthermore, we note that
performance generally decreases as the number of neurons are
increased beyond #Neur. = 5, however, we believe the grid
search is not large enough to provide a definitive conclusion for
this observation.

In Table 2, we provide a summary of experiments performed
for the Self-Assessed Affect sub-challenge. Here, we note that
ComParE spectral features with GEWELMS perform better than
both MFCCs and PLPs, which is opposite to what was observed
for the Atypical-Affect sub-challenge. In order to explore this
further, we computed Fisher Vectors with spectral LLDs which
are part of the extended Geneva Minimalistic Acoustic Parameter
Set (GeMAPS) feature set [8]. We extended eGeMAPS spectral
features by appending their velocity contours, and call this set of
features as eGeMAPS+.

Our experiments show that with ‘improved’ Fisher Vec-
tors [22], eGeMAPS achieved better performance than both
MFCCs and PLPs, whereas for ‘vanilla’ Fisher Vectors [14]
eGeMAPS+ features have a comparable performance to MFCCs
and a slightly worse performance than PLP features. One can
also note a trend where ‘improved’ Fisher Vector encoding [22]
requires a smaller number of GMMs to achieve high classifica-
tion accuracy with GEWELMS as compared to ‘vanilla’ Fisher
Vector encoding [14].

Furthermore, we used a Support Vector Machine (SVM)
classifier [39] with linear kernel to provide a baseline for com-
paring GEWELM classifier. The ‘cost’ parameter of linear
SVM classifier was optimised over a logarithmically spaced

grid with C = {102, 101, ...10−5}. While it is clear from Ta-
ble 2 that GEWELM classifiers perform much better that linear
SVM, we also note that both ComParE spectral features and
eGeMAPS+ features achieve better classification accuracy com-
pared to MFCCs and PLPs. We intend to explore this observation
further, beyond the ComParE 2018 sub-challenges.

In Table 3 we summarise results of our proposed approaches
for ComParE 2018 sub-challenges. For the Atypical-affect sub-
challenge, one can note that GEWELMs based classification of
spectral features achieve better performance both deep learning
based baseline approaches i.e. CNN+LSTM and AUDEEP, al-
though it does not beat the baseline set by ComParE functionals.

GEWELMs also achieve better performance than the base-
line CNN+LSTM approach for the Self-Assessed sub-challenge.
However, we note that GEWELMs do have a tendency to over-
train, in spite of the T2D/D2T training/testing regularisation (see
Section 3.2 for details).

CNN-GRU Our deep-learning based submission displays
strong results on the two datasets it was applied on. In particular,
our approach significantly outperforms all baseline deep-learning
methods on the Atypical challenge, and on the Crying challenge
outperforms all but one (AUDEEP in one of the configurations) of
the baseline results. Our CNN-GRU architecture also favourably
compares to the rest of the benchmark (non based on deep-
learning). These results are even more relevant given that they
are the results of single attempts on the test set, which is not the
case for the benchmarks.

Therefore, we suggest that a combination of model ensem-
bling, effective data augmentation, and multi-task learning is a
viable angle of attack on the problem at hand, despite the prob-
lem of acute sample deficit. We further note, that the ensemble
of CNN-GRUs served to alleviate the variability between the
performance on the dev. vs test sets, a problem from which many
of the baseline methods suffer.

5. Conclusions
In this paper, we have investigated two approaches to paralin-
guistic analysis in response to the Interspeech 2018 ComParE
challenge. First, we proposed a novel technique, which we
termed Greedy Ensemble of Weighted Extreme Learning Ma-
chines (GEWELM), that combines the well-known training effi-
ciency of Extreme Learning Machines (ELM), with good classi-
fication performance. This combination of speed and accuracy,
we speculate, will be especially important in real-time scenarios,
such as screening.

Further, we have demonstrated that despite severe deficit
of training data, a problem common to many datasets in social
signal computing and paralinguistics, an effective deep-learning
solution to the task at hand is viable. To this end, we proposed an
effective combination of techniques (multi-task learning, model
ensembling, and domain-specific data augmentation) that yielded
very good performance (in many cases exceeding state-of-the-
art).
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