
MUSIC ANALYSIS AS A SMALLEST GRAMMAR PROBLEM

Kirill Sidorov Andrew Jones David Marshall
Cardiff University, UK

{K.Sidorov, Andrew.C.Jones, Dave.Marshall}@cs.cardiff.ac.uk

ABSTRACT

In this paper we present a novel approach to music analysis,
in which a grammar is automatically generated explain-
ing a musical work’s structure. The proposed method is
predicated on the hypothesis that the shortest possible gram-
mar provides a model of the musical structure which is a
good representation of the composer’s intent. The effec-
tiveness of our approach is demonstrated by comparison of
the results with previously-published expert analysis; our
automated approach produces results comparable to human
annotation. We also illustrate the power of our approach
by showing that it is able to locate errors in scores, such as
introduced by OMR or human transcription. Further, our ap-
proach provides a novel mechanism for intuitive high-level
editing and creative transformation of music. A wide range
of other possible applications exists, including automatic
summarization and simplification; estimation of musical
complexity and similarity, and plagiarism detection.

1. INTRODUCTION

In his Norton Lectures [1], Bernstein argues that music can
be analysed in linguistic terms, and even that there might be
“a worldwide, inborn musical grammar”. Less specifically,
the prevalence of musical form analyses, both large-scale
(e.g. sonata form) and at the level of individual phrases,
demonstrates that patterns, motifs, etc., are an important
facet of a musical composition, and a grammar is certainly
one way of capturing these artefacts.

In this paper we present a method for automatically
deriving a compact grammar from a musical work and
demonstrate its effectiveness as a tool for analysing musical
structure. A key novelty of this method is that it operates au-
tomatically, yet generates insightful results. We concentrate
in this paper on substantiating our claim that generating
parsimonious grammars is a useful analysis tool, but also
suggest a wide range of scenarios to which this approach
could be applied.

Previous research into grammar-based approaches to
modelling music has led to promising results. Treating har-
monic phenomena as being induced by a generative gram-
mar has been proposed in [9, 24, 27], and the explanatory

© Kirill Sidorov, Andrew Jones, David Marshall.
Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Kirill Sidorov, Andrew Jones, David Marshall.
“Music Analysis as a Smallest Grammar Problem”, 15th International
Society for Music Information Retrieval Conference, 2014.

power of such grammars has been demonstrated. The use of
musical grammar based of the Generative Theory of Tonal
Music [19] has been proposed in [11–13], for the analysis
of music. Similarly, there is a number of grammar-based ap-
proaches to automatic composition, including some which
automatically learn stochastic grammars or derive gram-
mars in an evolutionary manner, although some researchers
continue to craft grammars for this purpose by hand [7].

However, in these works the derivation of grammar rules
themselves is performed manually [27] or semi-automati-
cally [11–13] from heuristic musicological considerations.
In some cases generative grammars (including stochastic
ones) are derived or learned automatically, but they describe
general patterns in a corpus of music, e.g. for synthesis [16,
22], rather than being precise analyses of individual works.
In a paper describing research carried out with a different,
more precise aim of visualising semantic structure of an
individual work, the authors remark that they resorted to
manual retrieval of musical structure data from descriptive
essays “since presently there is no existing algorithm to
parse the high-level structural information automatically
from MIDI files or raw sound data” [5].

In this paper we present a method which addresses the
above concern expressed by Chan et al. in [5], but which
at the same time takes a principled, information-theoretical
approach. We argue that the best model explaining a given
piece of music is the most compact one. This is known as
Minimum Description Length principle [23] which, in turn,
is a formal manifestation of the Occam’s razor principle:
the best explanation for data is the most compressive one.
Hence, given a piece of music, we seek to find the short-
est possible context free grammar that generates this piece
(and only this piece). The validity of our compressive mod-
elling approach in this particular domain is corroborated by
evidence from earlier research in predictive modelling of
music [6] and from perception psychology [14,25]: humans
appear to find strongly compressible music (which therefore
has a compact grammar) appealing.

2. COMPUTING THE SMALLEST GRAMMAR

Given a piece of music, we treat it as a sequence(s) of
symbols (see Section 2.1) and we seek to find the shortest
possible context-free grammar that generates this (and only
this) piece. Following [21], we define the size of a gram-
mar G to be the total length of the right hand sides of all
the production rules Ri plus one for each rule (length of a
separator or cost of introducing a new rule):

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

301

|G| =
∑

i

(|Ri| + 1) . (1)

Searching for such a grammar is known as the smallest
grammar problem. It has recently received much attention
due its importance in compression and analysis of DNA
sequences, see e.g. [4]. For an overview of the smallest
grammar problem the reader is referred to [3].

Computing the smallest grammar is provably NP-hard
(see [18] Theorem 3.1), therefore in practice we are seeking
an approximation to the smallest grammar.

Various heuristics have been proposed in order to tackle
the smallest grammar problem in tractable time by greedy
algorithms [4, 21]. A fast on-line (linear time) algorithm
called SEQUITUR has been proposed in [20]. While the fo-
cus of [20] was fast grammar inference for large sequences,
rather than strong compression, [20] contains an early men-
tion that such techniques may be applied to parsing of mu-
sic. (In Section 3 we compare grammars produced by SE-
QUITUR with our approach.)

In [4, 21], a class of algorithms involving iterative re-
placement of a repeated substring is considered (termed
there iterative repeat replacement (IRR)). We employ a
similar procedure here, summarised in Alg. 1. First, the
grammar G is initialised with top level rule(s), whose right-
hand sides initially are simply the input string(s). Then, in
the original IRR scheme, a candidate substring c is selected
according to some scoring function F. All non-overlapping
occurrences of this substring in the grammar are replaced
with a new symbol Rn+1, and a new rule is added to the gram-
mar: Rn+1 → c. Replacement of a substring of length m in a
string of length n can be done using the Knuth-Morris-Pratt
algorithm [17] in O(m+n) time. The replacement procedure
repeats until no further improvement is possible.

In [4, 21] the various heuristics according to which such
candidate substitutions can be selected are examined; the
conclusion is that the “locally most compressive” heuristic
results in the shortest final grammars. Suppose a substring
of length L occurring N times is considered for replacement
with a new rule. The resulting saving is, therefore [21]:

F = ∆|G| = (LN) − (L + 1 + N). (2)

Hence, we use Eq. (2) (the locally most compressive heuris-
tic) as our scoring function when selecting candidate sub-
strings (in line 2 of Alg. 1). We found that the greedy
iterative replacement scheme of [21] does not always pro-
duce optimal grammars. We note that a small decrease
in grammar size may amount to a substantial change in
the grammar’s structure, therefore we seek to improve the
compression performance.

To do so, instead of greedily making a choice at each
iteration, we recursively evaluate (line 9) multiple (w) candi-
date substitutions (line 2) with backtracking, up to a certain
depth dmax (lines 9–15). Once the budgeted search depth
has been exhausted, the remaining substitutions are done
greedily (lines 4–7) as in [21]. This allows us to control
the greediness of the algorithm from completely greedy
(dmax = 0) to exhaustive search (dmax = ∞). We observed
that using more than 2–3 levels of backtracking usually does
not yield any further reduction in the size of the grammar.

Algorithm 1 CompGram (Compress grammar)
Require: Grammar G; search depth d.

(Tuning constants: max depth dmax; width w)
1: loop
2: Find w best candidate substitutions C = {ci} in G.
3: if C = ∅ then return G; end if
4: if recursion depth d > dmax then
5: Greedily choose best cbest

6: G′ := replace(G, cbest, new symbol)
7: return CompGram(G′, d + 1)
8: else
9: Evaluate candidates:

10: for ci ∈ C do
11: G′ := replace(G, ci, new symbol)
12: G′′i := CompGram(G′, d + 1)
13: end for
14: b := arg mini |G

′′
i |

15: return G′′b
16: end if
17: end loop

Selecting a candidate according to Eq. (2) in line 2 in-
volves maximising the number of non-overlapping occur-
rences of a substring, which is known as the string statistics
problem, the solutions to which are not cheap [2]. There-
fore, as in [4] we approximate the maximal number of
non-overlapping occurrences with the number of maximal
repeats [10]. All z maximal repeats in a string (or a set of
strings) of total length n can be found very fast (in O(n + z)
time) using suffix arrays [10]. In principle, it is possible
to construct an example in which this number will be dras-
tically different from the true number of non-overlapping
occurrences (e.g. a long string consisting of a repeated
symbol). However, this approximation was shown to work
well in [4] and we have confirmed this in our experiments.
Further, this concern is alleviated by the backtracking pro-
cedure we employ.

2.1 Representation of Music

In this paper, we focus on music that can be represented
as several monophonic voices (such as voices in a fugue,
or orchestral parts), that is, on the horizontal aspects of the
music. We treat each voice, or orchestral part, as a string.
We use (diatonic) intervals between adjacent notes, ignoring
rests, as symbols in our strings. For ease of explanation of
our algorithm we concentrate on the melodic information
only, ignoring rhythm (note durations). Rhythmic invari-
ance may be advantageous when melodic analysis is the
prime concern. However, it is trivial to include note dura-
tions, and potentially even chord symbols and other musical
elements, as symbols in additional (top level) strings.

Note that even though we take no special measures to
model the relationship between the individual voices, this
is happening automatically: indeed, all voices are encom-
passed in the same grammar and are considered for the
iterative replacement procedure on equal rights as the gram-
mar is updated.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

302

Rule R9 R8 R5 R18 R10 R11 R4 R19 R7 R20

Freq. 2 2 4 2 5 5 2 2 3 3
Len. 16 12 6 7 5 5 4 6 5 4
E. len. 99 94 24 47 11 11 37 34 17 16

Comp. 96 91 67 44 38 38 34 31 30 28

Table 1. Grammar statistics for Fugue№10. The ten most
compressing rules are shown. For each rule Ri: Freq. is
the number of times a rule occurs in the grammar, Len. is
its right hand side length, E. len. is the length of the rule’s
expansion, and Comp. is the total saving due to this rule.

3. RESULTS AND APPLICATIONS

3.1 Automatic Structural Analysis

We have applied our method to automatically detect the
structure of a selection of Bach’s fugues. (Eventually we
intend to analyse all of them in this way.) Figure 1 shows
one example of such analysis. We show the voices of the
fugue in piano roll representation, with the hierarchy of
the grammar on top: rules are represented by brackets la-
belled by rule number. For completeness, we give the entire
grammar (of size |G| = 217) obtained for Fugue№10 later,
in Fig. 7. Figure 2 zooms in onto a fragment of the score
with the rules overlaid. For comparison, we show manual
analysis by a musicologist [26] in Fig. 3. Observe that all
the main structural elements of the fugue have been cor-
rectly identified by our method (e.g. exp. and 1st dev. in
rule R8, re-exp. and 4th dev. in rule R9, variant of re-exp.
and 2nd dev in R18 and R19) and our automatic analysis is
comparable to that by a human expert.

It is possible to use structures other than individual notes
or intervals as symbols when constructing grammars. Fig-
ure 4 shows the simplified grammar for Fugue №10 gen-
erated using entire bars as symbols. In this experiment we
first measured pairwise similarity between all bars (using
Levenshtein distance [8]) and denoted each bar by a sym-
bol, with identical or almost identical bars being denoted
by the same symbol. The resulting grammar (Fig. 4) can be
viewed as a coarse-grained analysis. Observe again that it
closely matches human annotation (Fig. 3).

Our approach can also be used to detect prominent high-
level features in music. We can compute the usage fre-
quency for each rule and the corresponding savings in
grammar size (as shown in Table 1 for Fugue№10). Most
compressing rules, we argue, correspond to structurally im-
portant melodic elements. The present example illustrates
our claim: rule R8 corresponds to the fugue’s exposition,
R9 to re-exposition, and R5 to the characteristic chromatic
figure in the opening (cf. Figs. 1 to 3 and the score).

In addition to high-level analysis, our approach can be
used to detect the smallest constituent building blocks of a
piece. For example, Fig. 5 shows the lowest level rules (that
use only terminals) produced in analysis of Fugue №10,
and the frequency of each rule. These are the elementary
“bricks” from which Bach has constructed this fugue.

In [20], SEQUITUR is applied to two Bach chorales.
In Fig. 6 we replicate the experiment from [20] and com-

0123

∆|G| (%)

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2

Voice 1 1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2

B
a
r

n
u
m

b
e
r

Voice 2

1

8

4

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

1
0

3

1
51

5

3

1
5

1
5

1
2

1
6

1
4

1
4
1
5

3

1
51

5

3

1
51

5

1
6

1
4

1
4
1
5

3

1
51

5

3

1
51

5

6

2
12

1

6

2
12

1

1
8

3

1
51

51
5

4

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

1
0

3

1
51

5

3

1
5

1
5

1
2

1
9

1
1

3

1
51

5

3

1
51

5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

2
2

1
4

1
1

3

1
51

5

3

1
51

5

2
2

1
4

1
0

3

1
51

5

3

1
5

1
5

2
4

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

2
0 1
0

3

1
51

5

3

1
5

1
5

1
22

4

1
0

3

1
51

5

3

1
5

1
5

1
22

4

6

2
12

1

9

3

1
51

51
51

22
4

1
0

3

1
51

5

3

1
5

1
5

2
1

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

1
1

3

1
51

5

3

1
51

5

2
2

1
4

1
3

2
32

3
1
5
1
51

2
1
22

3

1
7 2

1

2

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

2
0 1
0

3

1
51

5

3

1
5

1
5

1
2

2
0 1
0

3

1
51

5

3

1
5

1
5

1
2

6

2
1
2
1

1
2

9

3

1
51

51
51

22
4

1
0

3

1
51

5

3

1
5

1
5

2
1

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

1
1

3

1
51

5

3

1
51

5

8

4

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

1
0

3

1
51

5

3

1
5

1
5

1
2

1
6

1
4

1
4
1
5

3

1
51

5

3

1
51

5

1
6

1
4

1
4
1
5

3

1
51

5

3

1
51

5

6

2
12

1

6

2
12

1

1
8

3

1
51

51
5

4

5

2
2

1
4

1
3

2
32

3

1
7 2

1
1
5

1
0

3

1
51

5

3

1
5

1
5

1
9

1
1

3

1
51

5

3

1
51

5

7

2
2

1
4

1
1

3

1
51

5

3

1
51

5

2
2

1
4

1
1

3

1
51

5

3

1
51

5
1
5

1
21

5

1
3

2
32

3
2
3

Figure 1. Automatic analysis of Bach’s Fugue№10 from
WTK book I. On top: sensitivity to point errors as measured
by the increase in grammar size ∆|G|.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

303

Figure 2. Close-up view of the first four bars: rules R4, R5,
R10, and R12 overlaid with the score (lower level rules are
not shown).

Figure 3. Manual analysis of Fugue№10 by a musicologist
(from [26] with permission).

V
o

ic
e

 1 1

4

6 6 3

5

6 3

V
o
ic

e
 2 2

5

6 3

4

6 6 3

Bar number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Figure 4. Simplified automatic analysis of Fugue №10
using whole bars as symbols.

pare the grammars of these two chorales generated by SE-
QUITUR and by our approach. The chorales are very similar
except for a few subtle differences. We note that our method
was able to produce a shorter grammar (|Gour| = 50 vs.
|GSequitur| = 59) and hence revealed more of the relevant
structure, while the grammar of the more greedy (and hence
less compressing) SEQUITUR was compromised by the
small differences between the chorales.

3.2 Error Detection and Spell-checking

We investigated the sensitivity of the grammars generated
by our method to alterations in the original music. In one
experiment, we systematically altered each note in turn
(introducing a point error) in the 1st voice of Fugue№10
and constructed a grammar for each altered score. The
change in grammar size relative to that of the unaltered
score is plotted in Fig. 1 (top) as a function of the alteration’s
position. Observe that the grammar is more sensitive to
alterations in structurally dense regions and less sensitive
elsewhere, e.g. in between episodes. Remarkably, with

R15(10) R12(9) R21(4) R23(4) R24(4) R14(3)

Figure 5. Atomic (lowest level) rules with their frequencies
in brackets.

2 3 4 5 6 7 8 9 10 11 12 13

C
h

o
ra

le
 1

2 3 4 5 6 7 8 9 10 11 12 13
Sequitur

C
h

o
ra

le
 2

1
3

10
8

13
5 5 14 5

9

11
7
14 12

4
13

5 5 14 6

3
10

8
13

5 5 14 5

9

11
7
14 12 5 6

7
14

2

8
13

5 5 14

9

11
7
14 12

4
13

5 5 14 6

10
8

13
5 5 14 5 11 12

13
5 5 14 14

2 3 4 5 6 7 8 9 10 11 12 13

C
h

o
ra

le
 1

2 3 4 5 6 7 8 9 10 11 12 13

Our method

C
h

o
ra

le
 2

1

6

3

8
3 5 3

4

5

7
3

8
3 5

6

3

8
3 5 3 5

7
3

8
3 5

2

6

3

8
3 5

4

5

7
3

8
3 5

6

3

8
3 5 3

7
3

8
3 5 5

Figure 6. The grammars for the Bach chorales (from [20])
produced by SEQUITUR (above), |GSequitur| = 59, and by
the proposed approach (below), |Gour| = 50.

very few exceptions (e.g. bars 10, 26) altering the piece
consistently results in the grammar size increasing. We
observed a similar effect in other Bach fugues and even in
19th century works (see below). We propose, only partially
in jest, that this indicates that Bach’s fugues are close to
structural perfection which is ruined by even the smallest
alteration.

Having observed the sensitivity of the grammar size
to point errors (at least in highly structured music), we
propose that grammar-based modelling can be used for
musical “spell-checking” to correct errors in typesetting
(much like a word processor does for text), or in optical
music recognition (OMR). This is analogous to compressive
sensing which is often used in signal and image processing
(see e.g. [15]) for denoising: noise compresses poorly. We
can regard errors in music as noise and use the grammar-
based model for locating such errors. We investigated this
possibility with the following experiment.

As above, we introduce a point error (replacing one note)
at a random location in the score to simulate a “typo” or
an OMR error. We then systematically alter every note
in the score and measure the resulting grammar size in
each case. When the error is thus undone by one of the
modifications, the corresponding grammar size should be
noticeably smaller, and hence the location of the error may
thus be revealed. We rank the candidate error positions
by grammar size and consider suspected error locations
with grammar size less than or equal to that of the ground
truth error, i.e. the number of locations that would need
to be manually examined to pin-point the error, as false
positives. We then report the number of false positives as
a fraction of the total number of notes in the piece. We
repeat the experiment for multiple randomly chosen error

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

304

S1 → R8 2↑ R18 R12 1↑ R19 5↓ 7↑ R11 1↑ R22 3↓ R10 2↓ R24 4↓ R5 R20
R24 0 R10 R12 R24 6↓ R6 2↓ 1↑ 1↓ 3↑ R9 R22 R13 R15 3↑ R15 R12 1↓
R12 R23 R17 1↓ 4↑
S2 → R5 R20 9↓ R20 9↓ 5↑ R6 R12 1↓ 2↑ R9 R8 3↑ R18 2↓ 2↓ 2↑ 3↑ R19
7↓ 9↑ R11 1↑ 3↓ 2↓ 2↓ 11↑ 1↑ R15 1↓ R12 R15 7↑ R13 R23 7↓ 4↓
R3 → R15 R15 R4 → R5 5↑ 4↑ R10
R5 → R22 R13 3↑ 1↓ R17 R15 R6 → R21 R21 1↑
R7 → 2↓ R22 5↓ 5↑ R11
R8 → R4 R12 1↑ 4↓ R16 6↓ R16 2↓ 4↓ R6 R6 1↓
R9 → R3 R15 R12 R24 4↑ R10 1↓ R21 4↓ R5 R7 1↓ R7 3↑ R11 1↑
R10 → 1↑ R3 2↑ R3 1↑
R11 → R3 1↓ 5↑ R3 1↓ R12 → 1↑ 2↓ 1↑
R13 → R23 R23 2↓ 2↑ 2↓ 2↑ 3↓ R14 → 2↑ 2↑
R15 → 1↓ 1↓
R16 → R14 2↑ 4↓ R14 2↑ R15 2↑ R3 R3 5↑
R17 → 1↑ 4↓ 2↑ 3↓ 1↓ R21 2↓
R18 → R3 R15 5↑ 6↓ 5↑ 6↓ R4
R19 → R11 1↓ R7 1↓ 2↓ R22 R20 → 5↑ 7↑ R10 R12
R21 → 1↑ 1↑ R22 → R14 3↑
R23 → 1↓ 1↑ R24 → 2↓ 5↑

Figure 7. Automatically generated shortest grammar for
Fugue№10. Here, Ri are production rules (Si are the top
level rules corresponding to entire voices), numbers with
arrows are terminal symbols (diatonic intervals with the
arrows indicating the direction).

Piece F/P Piece F/P

Fugue№11 6.07% Fugue№2 2.28%
Fugue№10 1.55% Fugue№9 9.07%
Bvn. 5th str. 2.28% Elgar Qrt. 14.22%
Blz. SF. str. 16.71% Mndsn. Heb. 16.28%

1Fugues are from WTC book I.

Table 2. Spell-checking performance: fraction of false
positives.

|G| = 217 |G| = 208

Figure 8. Selecting between two editions of Fugue №10
using grammar size.

locations and report median performance over 100 exper-
iments in Table 2. We have performed this experiment
on Bach fugues, romantic symphonic works (Beethoven’s
5th symphony 1st mvt., Berlioz’s “Symphonie Fantastique”
1st mvt., Mendelssohn’s “Hebrides”) and Elgar’s Quartet
3rd mvt. We observed impressive performance (Table 2)
on Bach’s fugues (error location narrowed down to just a
few percent of the score’s size), and even in supposedly
less-structured symphonic works the algorithm was able to
substantially narrow down the location of potential errors.
This suggests that our approach can be used to effectively
locate errors in music: for example a notation editor using
our method may highlight potential error locations, thus
warning the user, much like word processors do for text.

A variant of the above experiment is presented in Fig. 8.
We want to select between two editions of Fugue №10
in which bar 33 differs. We measured the total grammar
size for the two editions and concluded that the variant in

12 13 14 15 16

V
o

ic
e

 1

12 13 14 15 16

V
o

ic
e

 2

12 13 14 15 16

V
o

ic
e

 3

12 13 14 15 16

Bar number

V
o

ic
e

 4

9

6

9 9

5
10 9 9 10

6

9 9

5
10 9 9 10

7
10

5
10 9

7
10 10 9 9

8
5

10 9

8
5

10 9

7
10

5
10 9

6

9 9

5
10 9

8
5

10 9

Original:

Edited with our method:

Figure 9. High-level editing. Above: automatic analysis of
Fugue№16 (fragment); middle: original; below: rules R6

and R8 were edited with our method to obtain a new fugue.

Edition B is more logical as it results in smaller grammar
size |G| = 208 (vs. |G| = 217 for Edition A).

3.3 High-level Editing

A grammar automatically constructed for a piece of music
can be used as a means for high-level editing. For exam-
ple, one may edit the right-hand sides of individual rules
to produce a new similarly-structured piece, or, by oper-
ating on the grammar tree, alter the structure of a whole
piece. We illustrate such editing in Fig. 9. We have auto-
matically analysed Fugue№16 with our method and then
edited two of the detected rules (R6 and R8) to obtain a new
fugue (expanding the grammar back). This new fugue is
partially based on new material, yet maintains the structural
perfection of the original fugue. We believe this may be a
useful and intuitive next-generation method for creatively
transforming scores.

3.4 Further Applications

We speculate that in addition to the applications discussed
above, the power of our model may be used in other ways:
for estimation of complexity and information content in
a musical piece; as means for automatic summarisation
by analysing the most compressive rules; for improved de-
tection of similarity and plagiarism (including structural
similarity); for automatic simplification of music (by trans-
forming a piece so as to decrease its grammar size); and for
classification of music according to its structural properties.

Having observed that size of grammar is a good measure
of the “amount of structure” in a piece, we suggest that our
model can even be used to tell good music from bad music.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

305

Hypothetically, a poor composition would remain poor even
when (random) alterations are made to it and hence its
grammar size would be insensitive to such alterations, while
well-constructed works (like those of Bach in our examples)
would suffer, in terms of grammar size, from perturbation.

4. CONCLUSIONS AND FUTURE WORK

We have posed the analysis of music as a smallest grammar
problem and have demonstrated that building parsimonious
context-free grammars is an appealing tool for analysis of
music, as grammars give insights into the underlying struc-
ture of a piece. We have discussed how such grammars may
be efficiently constructed and have illustrated the power of
our model with a number of applications: automatic struc-
tural analysis, error detection and spell-checking (without
prior models), high-level editing.

Future work would include augmenting the presented
automatic grammatical analysis to allow inexact repetitions
(variations or transformations of material) to be recognised
in the grammar, and, in general, increasing the modelling
power by recognising more disguised similarities in music.

5. REFERENCES

[1] L. Bernstein. Norton lectures. http://www.

leonardbernstein.com/norton.htm.

[2] G. Brodal, R. B. Lyngsø, Anna Östlin, and Christian
N. S. Pedersen. Solving the string statistics problem in
time O(n log n). In Proc. ICALP ’02, pages 728–739,
2002.

[3] R. Carrascosa, F. Coste, M. Gallé, and G. G. I. López.
The smallest grammar problem as constituents choice
and minimal grammar parsing. Algorithms, 4(4):262–
284, 2011.

[4] R. Carrascosa, F. Coste, M. Gallé, and G. G. I. López.
Searching for smallest grammars on large sequences
and application to DNA. J. Disc. Alg., 11:62–72, 2012.

[5] W.-Y. Chan, H. Qu, and W.-H. Mak. Visualizing the
semantic structure in classical music works. IEEE Trans.
Vis. and Comp. Graph., 16(1):161–173, 2010.

[6] D. Conklin and I. H. Witten. Multiple viewpoint systems
for music prediction. Journal of New Music Research,
24:51–73, 1995.

[7] J. D. Fernandez and F. J. Vico. AI methods in algo-
rithmic composition: A comprehensive survey. J. Artif.
Intell. Res. (JAIR), 48:513–582, 2013.

[8] M. Grachten, J. L. Arcos, and R. L. de Mántaras.
Melodic similarity: Looking for a good abstraction level.
In Proc. ISMIR, 2004.

[9] M. Granroth-Wilding and M. Steedman. Statistical pars-
ing for harmonic analysis of jazz chord sequences. In
Proc. ICMC, pages 478–485, 2012.

[10] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1997.

[11] M. Hamanaka, K. Hirata, and S. Tojo. Implementing a
generative theory of tonal music. Journal of New Music
Research, 35(4):249–277, 2006.

[12] M. Hamanaka, K. Hirata, and S. Tojo. FATTA: Full au-
tomatic time-span tree analyzer. In Proc. ICMC, pages
153–156, 2007.

[13] M. Hamanaka, K. Hirata, and S. Tojo. Grouping struc-
ture generator based on music theory GTTM. J. of Inf.
Proc. Soc. of Japan, 48(1):284–299, 2007.

[14] N. Hudson. Musical beauty and information compres-
sion: Complex to the ear but simple to the mind? BMC
Research Notes, 4(1):9+, 2011.

[15] J. Jin, B. Yang, K. Liang, and X. Wang. General image
denoising framework based on compressive sensing
theory. Computers & Graphics, 38(0):382–391, 2014.

[16] R. M. Keller and D. R. Morrison. A grammatical ap-
proach to automatic improvisation. In Proc. SMC ’07,
pages 330–337, 2007.

[17] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pat-
tern matching in strings. SIAM Journal of Computing,
6(2):323–350, 1977.

[18] E. Lehman and A. Shelat. Approximation algorithms
for grammar-based compression. In Proc. ACM-SIAM
SODA ’02, pages 205–212, 2002.

[19] F. Lerdahl and R. Jackendoff. A generative theory of
tonal music. The MIT Press, 1983.

[20] C. G. Nevill-Manning and I. H. Witten. Identifying hier-
archical structure in sequences: A linear-time algorithm.
J. Artif. Intell. Res. (JAIR), 7:64–82, 1997.

[21] C.G. Nevill-Manning and I.H. Witten. Online and of-
fline heuristics for inferring hierarchies of repetitions in
sequences. In Proc. IEEE, volume 88, pages 1745–1755,
2000.

[22] D. Quick and P. Hudak. Grammar-based automated
music composition in Haskell. In Proc. ACM SIGPLAN
FARM’13, pages 59–70, 2013.

[23] J. Rissanen. Modeling by shortest data description. Au-
tomatica, 14(5):465–471, 1978.

[24] M. Rohrmeier. Towards a generative syntax of tonal
harmony. J. of Math. and Music, 5(1):35–53, 2011.

[25] J. Schmidhuber. Low-complexity art. Leonardo,
30(2):97–103, 1997.

[26] Tim Smith. Fugues of the Well-Tempered Clavier.
http://bach.nau.edu/clavier/nature/

fugues/Fugue10.html, 2013.

[27] M. J. Steedman. A generative grammar for jazz chord
sequences. Music Perception: An Interdisciplinary Jour-
nal, 2(1):52–77, 1984.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

306

