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ABSTRACT
This paper addresses the AVEC 2017 – Depression Sub-Challenge,
where the objective is to propose methods which can aid automated
prediction of depression severity. In this paper, we specifically focus
on biomarkers of psychomotor retardation, which are a key trait of
depressive episodes, to propose three sets of methods.

We propose a novel set of temporal features (which we called
“turbulence features”) and show their effectiveness. We offer a novel
methodology to target specific craniofacial movements indicative
of psychomotor retardation and hence of depression. Further, we
present a novel method for quantifying abnormalities of speech
spectra of individuals with depression using Fisher vector encoding
of spectral low level descriptors (LLDs).

So far, in the AVEC challenge on prediction of patient health
questionnaire (PHQ) scores on the Test set, we achieve a root mean
square error (RMSE) score of 6.34 and a mean absolute error (MAE)
score of 5.30, both of which are better than the best results on
the AVEC test set as given in the baseline paper i.e. 6.97 and 5.66,
respectively. This suggests that our method is a viable proof of con-
cept andmay lead to fully automated objective depression screening
protocols.
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1 INTRODUCTION
Depression is a serious mental illness, which according to theWorld
Health Organisation (WHO) affects more than 300 million individu-
als worldwide and is the leading cause of disability [38]. At its worst,
depression can trigger thoughts of suicide and is directly blamed
for around 800,000 deaths every year. Individuals who suffer from
depression often face unemployment due to their inability to work
and are susceptible to alchohol abuse [18]. Furthermore, long-term
depression also increases the risk of dementia and Alzheimer’s
disease [16, 23].

Psychologists have convincingly shown that depressed individ-
uals differ from non-depressed control groups with regard to ob-
jectively quantified gross motor activity, body movements, speech,
and motor reaction time [33].

According to the “The Diagnostic and Statistical Manual of Men-
tal Disorders, Fifth Edition (DSM-5)" [3], psychomotor symptoms
form core features of depression. Psychomotor retardation is one
such symptom which can impair social functioning of individuals
who suffer from this illness [39]. Psychomotor retardation affects
not only the emotional behaviour of individuals along with re-
lated motor processes but also causes musclular contractions which
slows down physical movement [26, 32]. Therefore, most work on
automated recognition of depression [15], implicitly or explicitly is
based on recognising psychomotor retardation.

This paper addresses theDepression Sub-Challenge (DSC), which
is part of the Audio-Visual Emotion recognition Challenge 2017
(AVEC 2017) [30]. In the AVEC 2017 – DSC, participants are required
to assess the depression severity of the interviewed subject, where
the target depression severity is based on the 8 point patient health
questionnaire (PHQ-8) scores recorded prior to interview sessions.

The broader goal of the AVEC 2017 workshop is to compare the
relative merits of the approaches for audio-visual emotion recogni-
tion and severity of depression estimation. Therefore in line with
goals of the workshop, our paper contributes to the workshop by
honing in on the symptoms of psychomotor retardation to craft
features which can be used to predict depression severity scores.

The contribution of this paper towards automated screening of
depression are as follows:

(1) We propose a novel approach which measures turbulence
in speech feature trajectories, which we call “turbulence
features”, and show that they are effective in predicting de-
pression severity.

(2) We detail a novel methodology to measure specific craniofa-
cial movements over multiple temporal resolutions which
are targetted to measure retardation of facial muscles during
a depressive episode. This is a departure from a tradition of
naively modelling facial movements.
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(3) Further, we present a novel method for quantifying abnor-
malities of speech spectra of individuals with depression
using Fisher vector encoding of spectral low level descrip-
tors (LLDs).

(4) Finally, by proposing a set of pipelines which are targeted to
capture symptoms of psychomotor retardation rather than
naively learn models from a dataset through black-box ma-
chine learning, we believe that our inherently intuitive ap-
proach will aid the larger research community working in
the field of depression recognition in seeking to build more
objective measures for depression rather than existing self-
assessment forms.

The rest of the paper is organised as follows. In Section 2, we
briefly discuss the dataset. This is followed by a discussion of chal-
lenges faced when developing methods for automated depression
screening. We detail the methodology in section 4. Results of our
experimentation are discussed in Section 5, followed by conclusions
in subsequent section.

2 DATASET
In this work, we use the dataset provided for AVEC 2017 – DSC is
part of the larger Distress Analysis Interview Corpus - Wizard of
Oz (DAIC-WOZ) [17], which is a collection of dyadic interviews
of individuals conducted by a virtual agent, called “Ellie". Partici-
pants of the interview process were asked fill in the 8-point Patient
Health Questionnaire (PHQ), which is a self-assessment report form
for depression screening [24]. The objective of the challenge is to
propose methods which can predict the mental state of individuals
based on continuous PHQ scores. For further details of the dataset,
the reader is referred to [30].

3 CHALLENGES
Automated detection of depression is an active area of research,
which faces a number of challenges.

The primary challenge is the lack of publically available datasets,
which has traditionally restricted research in this field. AVEC chal-
lenges [30, 35, 36] on depression recognition have recently brought
two sets of datasets in the form of AVEC 2013/2014 and AVEC
2016/2017 to the public sphere, and one can find a number of publi-
cations based on these datasets. Nevertheless, we posit that there
are enough samples in these datasets to holistically represent a
complex cognitive impairment such as depression.

The second challenge arises from the field of psychology itself.
In most cases, labels for depression severity scores are based on self
assessment forms, which essentially rely on individuals to honestly
report on the questionnaires. This may not always be true. In fact,
for the AVEC 2017 dataset, we note that certain participants have
a PHQ score of zero – which may show that they have excellent
mental health – but in the transcripts these participants go on
to discuss their battles with depression and post traumatic stress
disorder in the past. Indeed, Gorwood et al [16] argue that past
episodes of depression may still cause psychomotor retardation
(see also references in [16]). In fact, the duration and frequency
of depressive episodes may increase the severity of psychomotor
retardation. Therefore, individuals who no longer have depression

and report such on the self-report forms may still have impaired
social signals which they may not realise themselves.

To hone in on the point of potentially noisy labels in the dataset,
consider the case of participant with ID 464, who has a PHQ score
of 0. From the interview transcript, one finds this individual saying,
“I know how it’s like to be depressed . . . how does depression feel like
. . . like a bird in a cage . . . a fish who can’t swim in water . . . a bird
without wings . . . like you’re limited”. When pressed by Ellie (the
virtual avatar) the participant finally concedes, “I could say today,
you know, earlier when I was just by myself I felt a little depressed”,
even though the PHQ score for this individual is 0.

Nevertheless, we believe that research towards automated screen-
ing of depression from the social signal processing (SSP) community
can prove to be very useful if methods to screen for depression
are interpretable or carry meaningful intuition such that it can
be provided as a feedback to research community working in the
field of psychology. Any new development from the psychology
community can then feedback to the SSP community and so on. We
are especially motivated by the works of [5, 6], where the authors
emphatically argue in favour of interpretability of features as well
as datasets and the machine learning algorithms used in SSP.

4 METHODOLOGY
4.1 Pre-processing for Speech Features
The audio files provided as part of the dataset contain dyadic com-
munication between Ellie and the participants. As a first step we
segment portions of the speech recording which consist of speech
only from the participants. To this end, we use “start” and “stop”
time stamps available as part of the dataset. We note, however,
that these time stamps are not accurate and in some cases, there
exists alignment errors of up to 4 seconds. Nevertheless, we con-
tinue to use the time stamps provided with the transcript under
the assumption that there exist only a few such errors. The next
step is to combine segments of speech file into a single speech file,
following which we use the COVAREP toolbox [8] to compute a set
of 73 features which include prosodic, voice quality, and spectral
features. Reader is referred to [30] for further details.

4.2 Turbulence in Speech Patterns
Given that psychomotor retardation leads to uniqueness in an indi-
vidual’s speech pattern, therefore it must manifest itself as turbu-
lence or lack-there-of in speech feature trajectories. Fundamentally,
we hypothesise the LLDs of speech of individuals with and without
depression are different, and if quantified may provide an insight
into depression severity. We call these features as “turbulence fea-
tures”.

However, given that the nature of the dataset is such that it
includes only non-scripted i.e. free speech, the task of recognising
turbulent patterns in speech is complicated. Inspired by the Geneva
Minimalistic Acoustic Parameter Set (GeMAPS) [13], we devise the
following methodology to capture the hypothesised turbulence,
and later demonstrate its effectiveness for the task of depression
screening.

Consider the pitch of an individual’s speech (F0 feature). It has
been computed at a frequency of 100 Hz using the COVAREP tool-
box. Due to the free speech nature of the interview process there
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Figure 1: Reference for numbering of 68 point facial land-
marks.

exists no prior knowledge where this turbulence may manifest. We
therefore consider a multi-scale approach, by using a set of tempo-
ral windows of lengths {0.5, 2, 5, 10, 15} seconds, with an overlap
of {0.2, 1, 3, 5, 7} seconds, respectively. Within each window, we
compute the crest factor as the measure of turbulence. The crest
factor measures the ratio between the max value of the signal and
its root mean square (RMS) value. Therefore, if there indeed exist
any irregularities in the pitch within any window, we are likely to
capture them. Finally, the crest factor values frommultiple windows
at each scale are pooled using the following descriptive statistics:
the 10th, 25th, 50th, and 75th percentile, the mean with 5% trimming,
and the range.

In addition to the pitch, we apply the above multi-scale pro-
cedure to standard AVEC 2017 – DSC features, which are also
one-dimensional speech LLDs. These features include: normalised
amplitude quotient (NAQ), quasi open quotient (QOQ), the differ-
ence in amplitude of the first two harmonics of the differentiated
glottal source spectrum (H1H2), parabolic spectral parameter (PSP),
maxima dispersion quotient (MDQ), spectral tilt/slope of wavelet
responses (PS), and shape parameter of the Liljencrants-Fantmodel
of the glottal pulse dynamics (Rd). Reader is referred to [30] and
references therein for details of these features.

4.3 Craniofacial Movement
To quantify psychomotor retardation, our objective is to craft vi-
sual features that are capable of representing muscular tightening.
Thus we hypothesise that if an individual has depression then their
head movements as well as facial muscle movements will be im-
paired compared to those who do not have depression. In order to
track these movements, we use 68-point 3D facial landmarks of the
participant available as part the dataset.

Similar to the previous work on this subject [2, 10], we compute
velocity and acceleration contours from facial landmarks. However,
unlike [2, 10] where contours are computed for many combinations
of facial landmarks, we specifically target three types of movements:
(1) head movement, (2) mouth movement (both horizontal and
vertical) and (3) eyelid movement.

4.3.1 Head movement. For determining head movement we use
a set of landmarks in the nose region i.e. the landmarks which are
not expected to be affected due to any non-rigid movement of the

face. These landmarks include {P30, P31, P33, P34, P35}, as illustrated
in Figure 1.

In order to quantify head movement, we first compute the 3D
Euclidean distance between contiguous frames, which encodes
the change in (x ,y,z) coordinates of facial landmarks. This proce-
dure, for all frames, provides a vector representing velocity of head
movement for the individual. Similarly, applying the second order
difference operation of the velocity contour provides the acceler-
ation contour. It is important to mention here that we only use
landmarks for which the tracking was successful, in order to avoid
unintentional contamination of data.

4.3.2 Mouth openings. We also compute velocity and acceler-
ation contours for mouth movement, in particular vertical and
horizontal. These essentially measure the deformations of mouth
as an individual speaks to Ellie. We hypothesise that the nature of
these movements is indicative of depression.

For horizontal movement, we compute pairwise distances for
every frame between the points P50 and P54, P60 and P56 and P49
and P55 i.e. mouth corner regions, representing them as | |P50P54 | |,
| |P60P56 | |, and | |P49P44 | | respectively (see Figure 1). Velocity and
acceleration contours are then computed by applying 1st and 2nd
order difference operator. Finally, the average value of each contour
is taken between three pairs of landmarks as the horizontal mouth
movement velocity and acceleration for the individual.

For vertical movement, we first compute pairwise distances
| |P62P68 | |, | |P63P67 | |, and | |P64P66 | |, again mouth corner regions,
for every frame and follow similar procedure used for horizontal
mouth movement to produce vertical mouth movement velocity
and acceleration for the individual.

4.3.3 Eyelid movements. We measure eyelid movement as a
correlate of blinking rate, which according to [2, 12] can be used to
identify individuals who have depression. Similar to the approach
already used for other types of movements, we compute velocity
and acceleration contours using pairwise distance | |P38P42 | | and
| |P39P41 | | for the right eye and | |P44P48 | | and | |P45P47 | | for the left
eye.

4.4 Multi-scale Fisher Vector Encoding of
Speech Spectra

It has been reported that individuals with cognitive impairments
such as autism and schizophrenia have abnormal characteristics
to their speech spectra [5, 11, 25]. Similar observations also been
reported for individuals with depression, as detailed in [7].

We hypothesise that speech spectra of individuals with depres-
sion, represented as spectral LLDs, in the AVEC 2017 dataset is
characteristically different from those who do not have depression,
and can be quantified. The free speech nature of interview process,
however, does not permit a direct comparison of the speech spectra
of individuals, therefore, we propose the following framework to
test this hypothesis.

We start by creating a background model of the feature space of
spectral features using a Gaussian Mixture Model (GMM). Next, for
spectral features of every individual in the dataset, we compute both
the mean and covariance vectors which represent the deviation of
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Figure 2: Block diagram for FV encoding of spectral LLDs.

these features from the background model. This process is known
as Fisher Vector (FV) encoding.

FV encoding was originally proposed by [27] for use in object
recognition tasks, but has recently become popular for a variety
of applications in the field of social signal processing. The authors
of [9, 19] use FV encoding of visual features for the task of depres-
sion recognition, meanwhile, the authors of [20] use it for emotion
recognition, and [21, 22] use FV encoding for solutions to Inter-
speech Computational Paralinguistics (ComParE) challenges.

The overall layout of our framework is depicted in Figure 2: we
start by concatenating spectral LLDs from each speech recording
of the Training set into a single matrix and then build a back-
ground model for the spectral space using a Gaussian Mixture
Model (GMM) [29].

However, in order to train the GMM efficiently, we perform the
following pre-processing steps: all feature frames are z-score nor-
malised i.e. made to have zero mean and unit standard deviation.
Next, we use principal component analysis (PCA) to decorrelate the
feature space. We retain dimensions such that they match the num-
ber of clusters of the GMM. In case the feature set has dimensions
less than or equal to the number of clusters for GMM, we perform
PCA over the dimensions of feature set, i.e. dimensionality reduc-
tion does not take place. We apply a second z-score normalisation
on the output of PCA before using the resultant features to fit the
GMM. Finally, we compute Fisher Vectors in order to describe the
deviation of each participant’s spectra from the background model.

It is also important to mention here that since the GMM is built
using pre-processed features, the combination of z-norm + PCA +
z-norm needs to be applied to any new features which need to be
encoded as Fisher Vectors, for example features of individuals from
the Development and the Test set.

In this work, we use VLFeat [37], a opensource library, for both,
estimating the means, covariance matrices and priors of the GMM,
and implementing FV encoding. Initial experimentation had showed
that Perronnin’s improved FVs [28], which perform normalisation
on the Fisher Vectors actually produce worse results in terms of
RMSE compared to vanilla FV encoding, therefore, we proceeded
to using vanilla FV encoding. It is probable that the non-linear nor-
malisation squashes the dynamic range of Fisher Vectors adversely
affecting their discriminative ability.

As representations of speech spectra, we use Mel Frequency Cep-
stral Coefficients (MFCCs), which is a standard representations for
spectra in speech processing. The LLDs, along with their velocity

and acceleration contours were computed using the openSmile
toolkit version 2.3.0 [14]. Similar to the multi-scale approaches dis-
cussed so far, we use multiscale FV encoding of spectral LLDs, over
windows of {0.5, 5, 10} seconds, with overlap of {0.2, 3, 5} seconds,
respectively. The FVs computed over each of these time scales are
pooled into a single FV by applying the following descriptive sta-
tistics element-wise: mean, max, median, variance, crest factor (CF)
and range.

4.5 Multivariate Regression for Prediction of
PHQ Scores

For regression towards the PHQ scores, we use two different meth-
ods, on the basis of their qualities. The first is partial least squares
regression, which we use when we expect our features to have
collinearity and the second is support vector regression, which we
use when we expect that our features will require projection into a
hyperspace in order to achieve separability.

4.5.1 Partial Least Squares Regression. Weuse partial least squares
regression (PLSR) [31] to develop models to predict PHQ scores of
participants. The motivation for doing so is based on the under-
standing that when features (especially functionals) computed at
multiple time-scales are concatenated, it is likely that the resultant
feature vector is highly correlated or even collinear. PLSR is espe-
cially suited for such cases, as it creates new set of features aka
“components" which are linear combinations of the original features.
These components are created while considering their effect on the
output PHQ scores. The PLSR only has one tuning parameter i.e.
the number of components, which we optimise based on the RMSE
achieved on the Development set.

4.5.2 Support Vector Regression. We use support vector regres-
sor (SVR), to build models based on Fisher vectors which can predict
PHQ scores for individuals. We train SVRs with a radial basis func-
tion (RBF) kernel. We utilise Matlab wrappers for ε-SVR available
as part of the libSVM [4] library. The cost parameter C is searched
between 2{−10:10} , Epsilon between 2{−5:5} and the width of the
RBF kernel Gamma between 2{−16:4} , with a step of 2. Amongst
these, we select the parameters which yield the largest absolute
Pearson correlation values on the Development set.

5 EXPERIMENTATION AND ANALYSIS
In this section we discuss experimentation on three different sets
of features i.e. the so-called turbulence features, facial movement
features, and finally Fisher vector features.

5.1 Turbulence Features
We compute turbulence features over five different time-scales, and
use five descriptive statistics to summarise their values. Therefore,
the resultant feature has 25 dimensions. In order to build a model for
prediction of depression severity, we use PLSR. We vary the number
of components between 4 and 8, and optimise for the objective
of achieving the smallest RMSE on the Development set. There
is, however, an interesting question which exists with the use of
these features i.e. should unvoiced frames be removed from the
features or should they be retained. On one hand it makes sense
to remove them because they will contain information not related
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Table 1: Performance of “turbulence features” while keep-
ing unvoiced frames as “0”.

Feat Train Dev Comp
MAE RMSE Corr MAE RMSE Corr

F0 4.23 5.20 0.29 4.81 5.95 0.43 4
NAQ 4.14 5.06 0.37 5.03 6.16 0.37 8
QOQ 4.24 5.23 0.27 6.2 8.29 0.04 4
H1H2 4.11 5.16 0.32 5.27 6.47 0.13 8
PSP 4.39 5.25 0.26 6.52 10.40 0.04 4
MDQ 4.04 5.05 0.37 5.21 6.43 0.21 4
PS 4.23 5.12 0.34 5.19 6.33 0.30 5
Rd 4.41 5.34 0.19 5.33 6.43 0.20 7

Table 2: Performance of “turbulence features” after remov-
ing unvoiced frames.

Feat Train Dev Comp
MAE RMSE Corr MAE RMSE Corr

F0 4.40 5.21 0.29 5.58 6.75 0.01 4
NAQ 4.31 5.34 0.19 5.33 6.40 0.27 7
QOQ 3.74 4.79 0.47 5.66 6.73 0.02 7
H1H2 4.07 5.14 0.33 5.38 6.54 0.12 5
PSP 4.00 4.88 0.44 6.22 8.22 0.10 7
MDQ 4.22 5.17 0.31 5.45 6.49 0.20 7
PS 3.93 4.79 0.48 5.55 6.95 0.10 4
Rd 4.06 4.93 0.42 5.49 6.64 0.03 4

to speech, but on the other hand, keeping unvoiced frames may
provide information about the rhythm of an individual’s speech.

We empirically test two approaches, with results summarised
in Tables 1 and 2. In Table 1, instead of removing unvoiced frames,
we simply change their value to zero, meanwhile in Table 2, we
remove those frames altogether. An inspection of these two tables
suggests that it is almost always beneficial to retain unvoiced frames
if their value is changed to zero. The biggest beneficiary are features
derived from F0, which comfortably beats the best RMSE and MAE
scores for the Development set, as given in the baseline paper.

5.2 Craniofacial Movement Features
Table 3 shows Pearson’s correlation values for best performing
visual features for each category defined in Section 4.3. While the
table shows top results from each category only, we report that
mouth movements had the highest correlation values at multiple
temporal resolutions, which is intuitive given that we directly mea-
sure mouth activity and the dataset has been designed such that
participants speak to the virtual agent. Surprisingly, head move-
ments did not yield good results. It is likely due to the fact that
participants were specifically asked to look into the camera, and
were consciously controlling their head movement.

5.3 Fisher Vector Features
In Table 4, we provide a summary of the best performing pooling
methods on the Training and Development sets in terms of RMSE

Table 3: Pearson correlation with PHQ values for various vi-
sual features.

Feature(s) Corr p-value

Mouth movement Vel. (vert.) −0.323 < 0.05
Mouth movement Acc. (horiz) 0.317 < 0.05
Eyelid movement Acc. 0.297 < 0.05
Head movement Acc. −0.246 < 0.05

Table 4: Summary of results for various poolingmethods for
multi-scale FV encoding.

Pool . Train Dev Res. GMM
MAE RMSE Corr MAE RMSE Corr

Mean 3.05 3.38 0.90 5.53 6.50 0.43 3 16
Max 4.81 5.66 0.60 5.67 6.52 0.33 3 16
Med. 4.81 5.66 0.54 5.65 6.52 0.32 2 24
CF 4.81 5.66 0.71 5.66 6.52 0.34 1 32
Range 4.78 5.47 0.59 5.60 6.42 0.37 3 16
Var 4.81 5.66 0.70 5.65 6.52 0.41 2 16

and MAE as well as the absolute Pearson correlation coefficients,
whilst selecting a cut-off p-value of 0.05. We note that all pooling
methods are able to achieve virtually similar performance in terms
of MAE and RMSE, when one has options to choose any particular
temporal resolution for FV encoding along with the number of
clusters for the GMM.

There are however subtle differences. Firstly, we note that the
absolute Pearson correlation value of 0.43 on the Development set
is achieved through Mean pooling of FVs, when using Res3 i.e. a
window of 10 seconds and using a 24 cluster GMM. Mean pooling
also has the smallest MAE and RMSE on the Development set com-
pared to other pooling methods. Another important observation
is that most pooling methods perform well at Res3 i.e. a temporal
resolution of 10 seconds, while the crest factor (CF) stands out as
the only pooling method which works best at a temporal resolution
of 500ms.We believe that this is due to the nature of the crest factor,
which essentially measures turbulence, and at larger time-scale,
micro-level description is not as fruitful for the task of predicting
labels.

While the objective of the AVEC 2017 – DSC is to achieve the
smallest possible RMSE, we believe that there may be cases where
one may want to use measure depression severity using a param-
eter which may not match PHQ scores in terms of its dynamic
range (therefore have poor RMSE), but closely matches the PHQ
labels through correlation. For example, consider Table 5, where
we summarise possible trade-offs between the choice of smaller
RMSE or a higher absolute Pearson correlation.

5.4 Results on the Test Set and Work in
Progress

We train an SVR using features frommean pooling of Fisher Vectors
(see section 5.3), which provided us an RMSE of 6.50 and MAE of
5.50 on the Development set, as well as the highest correlation
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Table 5: Trade-off between minimising RMSE and maximis-
ing correlation.

Pooling Train Dev
MAE RMSE Corr MAE RMSE Corr

Max (best RMSE) 4.81 5.66 0.60 5.67 6.52 0.33
Max (best corr) 4.45 5.62 0.89 5.45 6.93 0.42
Mean (best RMSE) 3.05 3.38 0.90 5.53 6.50 0.43
Mean (best corr) 3.67 3.87 0.92 5.50 6.55 0.46

value of 0.43. On the Test set, this model achieves an RMSE of 6.42
with an MAE of 5.42. These results are better than best results for
the Test set as provided in the baseline paper i.e. RMSE of 6.97 and
MAE of 5.66.

However, we achieve slightly better results i.e. RMSE equal to
6.34 and MAE equal to 5.30 on the Test set when we use turbulence
features computed for F0 followed by PLSR (see section 5.1). On
the Development set too, this model performed better than the SVR
model.

While these results are interesting, we believe futher experi-
mentation is important, not only using datasets of larger size but
also with individuals from different cultural backgrounds. Shar-
ifa et. al. [1] discussed automated depression recognition using
three different datasets with individuals from diverse cultural back-
grounds (American, Australian and German). The authors report
poor transferability of features from one dataset to another, even
though on the same dataset the performance is quite acceptable. Our
exploration on the suitability of the proposed approaches on the
AVEC 2014 dataset [34], a dataset with participants from German
background, is currently a work in progress.

6 CONCLUSION
In summary, we proposed a novel set of temporal features (which
we called “turbulence features”) and showed their effectiveness for
depression screening. We detailed a novel methodology to target
specific craniofacial movements which are indicative of psychomo-
tor retardation and hence of depression. Further, we presented a
novel method for quantifying abnormalities of speech spectra of in-
dividuals with depression using Fisher vector encoding of spectral
low level descriptors (LLDs).
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