The allocation of resources to challenge city centre violent crime traditionally relies on historical data to identify hot-spots. The usefulness of such data-driven approaches is limited when historical data is scarce or unavailable (e.g. planning of a new city) or insufficiently representative (e.g. does not account for novel events, such as Olympic Games). In some cities, crime data is not systematically accumulated at all. We present a graph-constrained agent based simulation model of alcohol-related violent crime that is capable of predicting areas of likely violent crime without requiring any historical data. The only inputs to our simulation are publicly available geographical data, which makes our method immediately applicable to a wide range of tasks, such as optimal city planning, police patrol optimisation, devising alcohol licensing policies. In experiments, we evaluate our model and demonstrate agreement of our model’s predictions on where and when violence will occur with real-world violent crime data. Analyses indicate that our agent based model may be able to make a significant contribution to attempts to prevent violence through deterrence or by design.