
The Design and Evaluation of MPI-Style WebServiesIan Cooper and Yan HuangShool of Computer Siene, Cardi� University, United Kingdom{i.m.ooper, yan.huang}�s.ardiff.a.ukAbstrat. This paper desribes how Message Passing Web Servies(MPWS) an be used as a message passing tool to enable parallelproessing between WS-based proesses in a web servies orientedomputing environment. We desribe the evaluation tests performedto assess the point-to-point ommuniations performane of MPWSompared to mpiJava wrapping MPICH. Following these evaluationswe onlude that: using web servies to enable parallel proessing isa pratial solution in oarse grained parallel appliations; and thatdue to inter message pipelining, the MPWS system an, under ertainonditions, improve on the ommuniation times of mpiJava.1 IntrodutionA work�ow is a series of proessing tasks, eah of whih operates on a partiulardata set and is mapped to a partiular proessor for exeution. In a loosely-oupled web servie environment, a work�ow an itself be presented as a webservie, and invoked by other work�ows. Web servie standards and tehnologiesprovide an easy and �exible way for building work�ow-based appliations,enouraging the re-use of existing appliations, and reating large and omplexappliations from omposite work�ows. BPEL4WS is ommonly used for webservie based sienti� work�ow ompositions [1℄, but users are limited toappliations with non-interdependent proesses. Furthermore, issues relatingto the unsatisfatory performane of SOAP messaging have tended to inhibitthe wide adoption of web servie tehnologies for high performane distributedsienti� omputing. In spite of the performane onerns, the use of web serviearhitetures to build distributed omputing systems for sienti� appliationshas beome an area of muh ative researh. Reently developed work�owlanguages have started addressing the problem of interommuniating proesses,Grid Servies Flow Language (GSFL) [2℄ is one example; it provides thefuntionality for one urrently exeuting Grid servie to ommuniate diretlywith another onurrently exeuting Grid servie. Another example is MessagePassing Flow Language (MPFL) [3℄, this spei�es an XML based language thatenables web servie based work�ows using MPI-style send and reeive ommands,to be desribed. Neither of the examples mentioned above have presented awork�ow engine and urrently there is no work�ow engine that supports MPI



style diret message passing; the GSFL paper desribes an implementation usingOGSA noti�ation ports in a subsriber produer methodology, but the MPFLremains a draft language with no implementation details.In this paper, we investigate the potential and suitability of using a webservies infrastruture to support parallel appliations that require MPI-likemessage passing. We look at various methods and tools that an be used toimplement these message exhange patterns (MEPs) and assess the suitabilityof previous work, within the web servie framework, for this emerging work�owuse. We then propose an implementation for Message Passing Web Servies(MPWS) and present performane results omparing MPWS against mpiJava[4℄; a leading hp Java implementation [5℄. We have used mpiJava as it is a toolfor distributed omputing rather than for use within a luster environment;MPWS ombines distributed, loosely oupled servies to form a temporary,tightly oupled appliation with a similar goal. There has also been muhresearh to ompare mpiJava to other HPC systems [6℄.2 Bakground and Related ResearhIn the ontext of parallel omputing and MPI, message passing is referred to asthe at of ooperatively passing data between two or more separate workers orproesses [7℄. Thus, message passing is used in parallel sienti� appliations toshare data between ooperating proesses. It enables appliations to be split intoonurrently running subtasks that have data interdependenies. In a servie-oriented senario, this an be translated to the at of sending data from oneexeuting servie to another, onurrently exeuting, servie. The problem hereis that a servie an be onurrently invoked many times; one a servie isinvoked, there must be a way of determining whih instane of the servie needsto reeive the message.SOAP based web servies ommuniate via SOAP messages, and thesemessages are exhanged in a variety of patterns. Within the WS frameworkthere is normally a simple Message Exhange Pattern (MEP) that involves eithera request only, or a request and response message. The normal invoation of aservie during the exeution of a work�ow is for the work�ow manager to requesta servie and then, when the servie has ompleted, a response is returned to thework�ow manager. It an be seen that this requires mediation by the work�owmanager at every step of the work�ow proess.Kut and Birant [8℄ have suggested that web servies ould beome a tool forparallel proessing and present a model, using threads to all web servies inparallel, to allow web servies to perform parallel proessing tasks. This modeland an be extended (as shown in Fig. 1) to allow these servies to exhangedata diretly, this removes the need for the work�ow manager to intervene everytime a proess transfers data [2℄.Currently there is no standard for diretly passing data from one servie toanother running servie. Alternative MEPs are in various stages of researh; in-only patterns are in ommon usage in most web servie platforms, and researh



Fig. 1. Extending the use of parallel exeuting servies to perform message passing.has been undertaken into a single request multiple response (SRMR) MEP [9℄.In this framework for SRMR an agent is used to relay the servie all, and aentralized web servie ollets the responses.Researh into the use of web servies in parallel omputations is presented byPuppin et al [10℄, who developed an approah for wrapping MPI nodes withinweb servies. Their paper shows that the performane of wrapped MPI nodesan be omparable with MPI running in a luster environment, although, manymore omputers are required for the wrapped MPI version.In our researh, we fous on developing and evaluating web servies thatare apable of MPI�like ommuniation with other servies; the performane ofSOAP messaging is a key issue in determining if MPWS an be made omparablein performane with other distributed message-passing systems.There is a problem when it omes to sending the data within a SOAPmessage. SOAP uses XML and if true XML formatting is to be used, i.e. listingeah entity of the data within a tagged element, the spae overhead for themessage is potentially very large. The most e�ient method of enoding datais to serialize it into a binary representation. In the Java language there is anin-built funtion to transform objets to their binary enoded representation;this is the mehanism that mpiJava uses to enode its objets before sendingthem to a soket. The problem is that we annot translate a binary �le diretlyto string format, as there are not enough haraters available. There are foursolutions available to this problem; binary-to-harater enoding [11℄, pakaging,binary XML enoding [12℄, and linking [11℄.Pakaging, suh as SOAP with Attahments (SwA) [13℄, or Message Trans-mission Optimization Mehanism (MTOM) [14℄ allows data to be transmittedexternally to the SOAP envelope. A omparison of transmission speeds usingSOAP with Attahments and true XML formatting is given in [15℄. MTOM alsostores the data within the objet model.MTOM has been hosen as the transmission protool for these messages as itis SOAP based; yet it inreases the speed of the data by allowing attahments,while keeping the data aessible in the objet model. MTOM does not have the



oding overheads of either the binary to harater or the binary XML enoding,and it stays within the SOAP ommuniation protools, unlike linking.3 The Design of a Message-Passing Web ServieThe hallenge is to design a tool whih will ombine the tightly oupledprogramming onept like MPI and the distributed, loosely oupled arhitetureof SOAP web servies; to do this we need to adhere to WS and SOAP messagingstandards whilst providing an e�ient form of ommuniation between servies.MPWS is designed to address three areas; the reation of a set of servies,the initialisation of those servies so they are aware of eah other, and theommuniation between the servies.The reation of a set of servies is ahieved by the work�ow manager, its roleis to aept jobs, normally spei�ed using an XML-based work�ow language suhas MPFL, then �nd a olletion of suitable servies for those jobs and invokethem all within a unique ommuniation domain. A ommuniation domainis a olletion of servie instanes whih are involved in the same ompositeappliation, and an ommuniate diretly with eah other; this means thateah servie instane must be aware of all other servie instanes in the domain.Based on the job de�nition, the work�owmanager will disover and selet a groupof suitable Message Passing (MP) web servies using standard WS tehniques,then generate a ommuniation domain ID for the work�ow appliation. Thework�ow manager an then speify the rank number and invoke a run methodfor eah MP servie involved.The initialisation of the servie is performed in the invoation of the runmethod; the input data for the appliation as well as the binding informationfor the servies to work together, is passed to eah individual servie that isinvolved in the same work�ow appliation. The binding information inludes:ommuniation domain ID; the rank number for the servie; and a list of servieendpoint referenes, eah assoiated with a partiular rank ID. Knowing therank number as well as the servie endpoint referenes, will allow the servieto perform point-to-point message passing with all other servies in the sameommuniation domain.An MP web servie an partiipate in multiple appliations onurrently,so in order to solve the problem of identifying whih servie invoation isto be addressed, there is one ommuniation domain established for eahappliation instane; this is assoiated with a unique identifying number -the Communiation Domain ID. Eah MP web servie instane belongs to aommuniation domain, and eah servie instane has an assoiated resoure;this resoure is identi�ed by the Communiation Domain ID, is initiated forthe partiular ommuniation domain, and stores the binding information andmessages sent to that servie instane. WS-Resoures are de�ned in the WSRFspei�ations [16℄, they allow for the onept of state within web servies. Aresoure is uniquely identi�able and aessible via the web servie [17℄. The useof resoures provides message bu�ers for an MP web servie. Instead of sending



and reeiving the messages synhronously, the message is sent to the resoureassoiated with the reeiving web servie instane, then the reeiving web serviean retrieve a partiular message from the orresponding resoure. A message isassoiated with a ommuniation domain ID and a message tag; this will ensurethat the message an be identi�ed within a ommuniation domain.MPWS has been designed to onform to WS Standards and to SOAPmessaging standards, to allow the use of loosely oupled servies in a traditionallytightly oupled MPI oding style. To this end we have designed MPWS tosupport multi-layer interfaes; the upper layer as a WS layer, and the lowerlayer as a message-passing (MP) layer. With the web servie layer, an MP webservie supports WSDL standards, providing loosely oupled servies whih anbe easily published, disovered and reused. There are two main methods exposedvia the web servies interfae:� Run method - this mainly onsists of a sequene of instrutions so that itperforms one or more partiular tasks. Sine an MP web servie normallyinvolves ooperation with other MP web servies for a partiular appliation,setting up ommuniation domains is the �rst task when the run method isinvoked� Store method - this reeives messages sent from other MP web servies andstores them to the resoure assoiated with the MP web servie instane.With the message passing layer, an MP web servie is able to ondutmessage-passing ommuniation with other MP web servies by supportingmessage-passing interfaes, inluding send, reeive, broadast, and sendReeive.The message-passing interfaes are not exposed via WSDL, but are low-levelinterfaes that an only be invoked via the WSDL-level methods. For example,inside a run method body, there may be instrutions suh as sending data to apartiular MP web servie or reeiving data from a partiular MP web servie,and these an be arried out by diretly invoking the methods provided withinthe message-passing programming pakage, MTOM is used as the transmissionprotool in this layer.Fig. 2(a) gives an example whih shows a send operation senario betweentwo MP web servies, A and B. A ommuniation domain was initiated withthe ommuniation domain ID equal to 3303. Servie A sends a message toservie B within the ommuniation domain. The send method from the MPservie is alled to send the message to servie B. This is done by invokingthe store method provided by servie B. When the store method is alled, itstores the message it reeived into the resoure assoiated with the domain ID3303. Although servie B has reeived the message and stored it within one ofits assoiated resoures, the message annot be used unless a reeive method isalled. The reeive method retrieves this message from the resoure (ID = 3303)assoiated with the servie instane, the tag name assoiated with the message isused to identify the partiular message within the ommuniation domain (Fig.2(b)).The use of the resoure to provide a bu�ering servie for message passingenourages the adoption of the asynhronous �re-and-forget style [18℄ of message



Fig. 2. An example of sending a message from Servie A to Servie B.sending whih is supported in AXIS 2.1.1. The �re-and-forget send methodreturns immediately after the existene of the reeiving host is on�rmedproviding inreased performane over the sendReieve or sendRobust style .4 The Evaluation4.1 TestingMany benhmark suites have been devised and put forward as the de�nitiveparallel omputing benhmark tests ([19℄,[20℄), many of these are designed totest the underlying hardware or the olletive ommuniations features of themessage passing tools. The purposes of the tests that are to be performed onMPWS and mpiJava are to �nd the speed of the ommuniation implementationsand not the apabilities of the network.The ping pong test is used in most of the benh mark suites as a simplebandwidth and lateny test. Getov et. al. [21℄ used a number of variations of theping pong test to ompare the performane of MPI and java-MPI, also Fosterand Karonis [22℄ use the ping pong test to evaluate MPICH-G, a grid enabledMPI. It has been deided to use two variations of the ping pong tests. The�rst, PingPong, transfers data from one proess to another and then bak again.In this test, there are an even number of proessors within the ommuniationdomain that are paired up to onurrently pass data to and from eah other,see Fig. 3(a). In this �gure the messages are represented by the solid arrows, thetime taken for the message to be sent from one servie to a seond servie andthen bak again is measured as the round trip time.The seond test is the Ping*Pong test [21℄, this test involves sending multiplemessages from one servie to a seond servie before the seond servie returnsa message, this is also seen in Fig. 3(b). This test will di�erentiate between: theintra message pipeline e�et, where the message is broken into smaller parts bythe system and proessed through a pipeline to speed up the ommuniation;and the inter message pipeline e�et, where the system does not have to waitfor one message to omplete its transfer before starting proessing the nextmessage [21℄. The ping*pong test may show more a realisti view of the systemsperformane, as it emulates many real appliations of message passing (suh asa matrix multipliation).



Fig. 3. Communiation Diagram for PingPong, Ping*Pong and matrix multipliationtests.As a further test that has a more real life appliation to it, a one dimensionallybloked parallel matrix multipliation appliation is used. This appliation isbased on a simple parallelisation of the matrix multipliation problem. Theommuniations for the matrix multipliation appliation are shown in Fig. 3(),eah arrow represents a portion of the matrix being sent from rank(i) to anotherproessor. It is important to note that while the order of the sends for eah rankare �xed, a rank an start sending its data as soon as it has reeived data fromthe preeding rank.For the matrix multipliation appliation, the atual multipliation al-ulations are extremely time onsuming and dilute the performane of theommuniations with varianes in proessor utilisation at the time of testing.We have, therefore omitted the alulation part of the appliation and onlypresented the ommuniation part.4.2 Evaluation Results and DisussionVersions of eah test have been written and evaluated as both a web servie,running on Tomat 5.5.20 using AXIS 2.1.2, and in Java using the mpiJava API(V1.2 wrapping MPICH 1.2.6); all ode was written in Java 1.6.0. The MPWSevaluation tests are undertaken on a publi network of university mahines, allof whih are prone to unforeseen ativity. The tests were done during low usagehours to redue inonsistenies and all graphs show minimum timings to reduethe impat of the network on the results; the error bars show maximum timingsover the set of tests. The Linux mahines used for the testing have twin Intelpentium 4, 2.8GHz proessors; in order to eliminate the disrepany's betweenthe di�erent handling of threads with the MPWS and mpiJava systems, bothsystems were restrained to using only one proessor on eah mahine.The graphs in Fig. 4 and Fig. 5 show the timings of MPWS and mpiJavarunning the ping pong tests. The results show the expeted ommuniationsoverhead of the SOAP message, that degrades the performane for smallermessages, but they also show that over a message data size threshold ofapproximately 200Kbytes (or n = 160) the extra ommuniation overhead hasbeen absorbed by the total MPWS ommuniation time to make the MPWSand MPI systems run at a relatively similar speed.The graph in Fig. 5 onentrates on the timings for smaller message sizes,allowing the reader to easily ompare the two systems. The ping pong test shows



that for large message sizes the MP web servies are an aeptable alternative tompiJava, but below the data sizes of around 125Kbytes, the systems overheadsare very notieable. This is not really unexpeted, as the there are the overheadsof the SOAP headers and the HTTP protool to onsider.

Fig. 4. Times of Ping Pong test MPWSand mpiJava. Fig. 5. Times of Ping Pong test MPWSand mpiJava; small message sizes.The results for the ping*pong test are shown in Fig. 6, it is notied that thethreshold (n=130) for MPWS absorbing the overhead of the SOAP messages isslightly lower than with the PingPong test. More signi�ant, is the tenany forMPWS to outperform the version using mpiJava's standard send; we put thisdown to the inter message pipeline e�et and the bu�er handling of the twodi�erent systems.The parallel matrix multipliation ommuniation results are shown in Fig.7, they onsistently show that the MPWS performs the ommuniations fasterthan mpiJava at matrix sizes above the overhead threshold. We again put theresults of the matrix test down to the appliation of the system bu�ers in theMPWS and mpiJava implementations, and the inter message pipeline e�et. Inthe ping*pong test, both the inter message pipeline of the send and reeive werebeing tested, but in the matrix multipliation test, eah of the onseutive sendsfrom every proessor are being reeived by a di�erent proessor. In MPWS, themain message bu�ering ours in the reeiving proessor. This distributes themessage bu�ering proess at the time of high utilisation.5 Conlusion and Further WorkFrom the tests we have disovered that despite using MTOM, The overheadof SOAP messaging is still a problem whih a�ets the performane of MPWSwhen message sizes are small. However, when the message sizes reah a threshold,MPWS and mpiJava systems run at a relatively similar speed. We also found thatthe inter message pipe e�et, is a notieable feature in MPWS appliations thatuse onseutive sends; it is even more so in those appliations who's onseutivesends are reeived by a distributed seletion of proessors.



Fig. 6. Times for the Ping*Pong testMPWS and mpiJava. Fig. 7. Times for the Matrix Multipli-ation test MPWS and mpiJava.From the above observations, we onlude that MPWS is an e�etive toolfor oarse grained parallel appliations , suh as a parallel matrix multipliation,implemented in a servie oriented environment.The next steps will be to onsider the design of other send styles, suhas ssend (synhronous send), and evaluate MPI style olletive ommuniationfuntionality suh as: broadast; gather and satter; and all redue.Referenes1. Akram, A., Meredith, D., Allan, R.: Evaluation of bpel to sienti� work�ows. In:CCGRID '06: Proeedings of the Sixth IEEE International Symposium on ClusterComputing and the Grid (CCGRID'06), Washington, DC, USA, IEEE ComputerSoiety (2006) 269�2742. Krishnan, S., Wagstrom, P., von Laszewski, G.: Gs�: A work�ow framework forgrid servies (2002) In Preprint ANL/MCS-P980-08023. Huang, Y., Huang, Q.: Ws-based work�ow desription language for messagepassing. In: 5th IEEE International Symposium on Cluster Computing and GridComputing, Cardi�, Wales, U. K (2005)4. B. Carpenter, G. Fox, S. Ko, and S.Lim.: mpiJava 1.2: API Spei�a-tion. http://www.npa.syr.edu/projets/pr/mpiJava/mpiJava.html (Oto-ber 1999).5. Baker, M., Carpenter, B., Sha�, A. In: An Approah to Bu�er Management inJava HPC Messaging. Volume Volume 3992/2006 of Leture Notes in ComputerSiene. Springer Berlin / Heidelberg (May 2006) 953�9606. Lee, H.K., Carpenter, B., Fox, G., Lim, S.B.: Benhmarking hpjava: Prospets forperformane. In: 6th Workshop on Languages, Compilers and Run-time Systemsfor Salable Computers. (Marh 2002)7. Gropp, W.: Tutorial on MPI: The Message-Passing Interfae8. Kut, A., Birant, D.: An approah for parallel exeution of web servies. In:Proeedings - IEEE International Conferene on Web Servies, IEEE ComputerSoiety (June 2004) 812�8139. Ruth, M., Lin, F., Tu, S.: Adapting single-request/multiple-response messaging toweb servies. In: Computer Software and Appliations Conferene, 29th AnnualInternational. Volume 2. (2005) 287 � 292



10. Puppin, D., Tonellotto, N., Laforenza, D.: How to run sienti� appliationsover web servies. In: Parallel Proessing. ICPP 2005 Workshops. InternationalConferene Workshops on. (2005) 29 � 3311. Harrington, B., Brazile, R., Swigger, K.: Ssrle: Substitution and segment-run lengthenoding for binary data in xml. In: Information Reuse and Integration, 2006 IEEEInternational Conferene on. (Sept. 2006) 11�1612. Bayardo, R.J., Gruhl, D., Josifovski, V., Myllymaki, J.: An evaluation of binaryxml enoding optimizations for fast stream based xml proessing. In: WWW '04:Proeedings of the 13th international onferene on World Wide Web, New York,NY, USA, ACM Press (2004) 345�35413. Barton, J.J., Thatte, S., Nielsen, H.F.: Soap messages with attahments. W3note, W3C (De. 2000)14. The Apahe Software Foundation: MTOM Guide -Sending Binary Data withSOAP. 1.0 edn. http://ws.apahe.org/axis2/1_0/mtom-guide.html (May 2005)15. Ying, Y., Huang, Y., Walker, D.W.: Using soap with attahments for e-siene.In: Proeedings of the UK e-Siene All Hands Meeting 2004. (Aug. 2004) Poster.16. Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I.,Snelling, D., Tueke, S., Vambenepe, W.: The ws-resoure framework version 1.0.Tehnial report, Globus Alliane and IBM (2004)17. Graham, S., Karmarkar, A., Mishkinsky, J., Robinson, I., Sedukhin, I.: WebServies Resoure 1.2 (WS-Resoure) Publi Review Draft 01. OASIS. (10 June2005)18. Jayasinghe, D.: Invoking web servies using apahe axis2. http://today.java.net/pub/a/today/2006/12/13/invoking-web-servies-using-apahe-axis2.html(De 2006) Aessed Aug 2007.19. Luszzek, P., Dongarra, J., Koester, D., Rabenseifner, R., Luas, B., Kepner,J., MCalpin, J., Bailey, D., Takahashi, D.: Introdution to the hp hallengebenhmark suite. Tehnial report, il.s.utk.edu (marh 2005 2005)20. Intel: Intel mpi benhmarks. Tehnial report, Intel (June 2006)21. Getov, V., Gray, P., Sunderam, V.: Mpi and java-mpi: ontrasts and omparisonsof low-level ommuniation performane. In: Superomputing '99: Proeedings ofthe 1999 ACM/IEEE onferene on Superomputing (CDROM), New York, NY,USA, ACM Press (1999) 2122. Foster, I., Karonis, N.: A grid-enabled mpi: Message passing in heterogeneousdistributed omputing systems. In: Superomputing, 1998. SC98. IEEE/ACMConferene on, IEEE Computer Soiety (1998) 46 � 46


