The Design and Evaluation of MPI-Style Web
Services

Tan Cooper and Yan Huang

School of Computer Science, Cardiff University, United Kingdom
{i.m.cooper, yan.huang}@cs.cardiff.ac.uk

Abstract. This paper describes how Message Passing Web Services
(MPWS) can be used as a message passing tool to enable parallel
processing between WS-based processes in a web services oriented
computing environment. We describe the evaluation tests performed
to assess the point-to-point communications performance of MPWS
compared to mpiJava wrapping MPICH. Following these evaluations
we conclude that: using web services to enable parallel processing is
a practical solution in coarse grained parallel applications; and that
due to inter message pipelining, the MPWS system can, under certain
conditions, improve on the communication times of mpiJava.

1 Introduction

A workflow is a series of processing tasks, each of which operates on a particular
data set and is mapped to a particular processor for execution. In a loosely-
coupled web service environment, a workflow can itself be presented as a web
service, and invoked by other workflows. Web service standards and technologies
provide an easy and flexible way for building workflow-based applications,
encouraging the re-use of existing applications, and creating large and complex
applications from composite workflows. BPEL4AWS is commonly used for web
service based scientific workflow compositions [1], but users are limited to
applications with non-interdependent processes. Furthermore, issues relating
to the unsatisfactory performance of SOAP messaging have tended to inhibit
the wide adoption of web service technologies for high performance distributed
scientific computing. In spite of the performance concerns, the use of web service
architectures to build distributed computing systems for scientific applications
has become an area of much active research. Recently developed workflow
languages have started addressing the problem of intercommunicating processes,
Grid Services Flow Language (GSFL) [2] is one example; it provides the
functionality for one currently executing Grid service to communicate directly
with another concurrently executing Grid service. Another example is Message
Passing Flow Language (MPFL) [3], this specifies an XML based language that
enables web service based workflows using MPI-style send and receive commands,
to be described. Neither of the examples mentioned above have presented a
workflow engine and currently there is no workflow engine that supports MPI

style direct message passing; the GSFL paper describes an implementation using
OGSA notification ports in a subscriber producer methodology, but the MPFL
remains a draft language with no implementation details.

In this paper, we investigate the potential and suitability of using a web
services infrastructure to support parallel applications that require MPI-like
message passing. We look at various methods and tools that can be used to
implement these message exchange patterns (MEPs) and assess the suitability
of previous work, within the web service framework, for this emerging workflow
use. We then propose an implementation for Message Passing Web Services
(MPWS) and present performance results comparing MPWS against mpiJava
[4]; a leading hpc Java implementation [5]. We have used mpiJava as it is a tool
for distributed computing rather than for use within a cluster environment;
MPWS combines distributed, loosely coupled services to form a temporary,
tightly coupled application with a similar goal. There has also been much
research to compare mpiJava to other HPC systems [6].

2 Background and Related Research

In the context of parallel computing and MPI, message passing is referred to as
the act of cooperatively passing data between two or more separate workers or
processes [7]. Thus, message passing is used in parallel scientific applications to
share data between cooperating processes. It enables applications to be split into
concurrently running subtasks that have data interdependencies. In a service-
oriented scenario, this can be translated to the act of sending data from one
executing service to another, concurrently executing, service. The problem here
is that a service can be concurrently invoked many times; once a service is
invoked, there must be a way of determining which instance of the service needs
to receive the message.

SOAP based web services communicate via SOAP messages, and these
messages are exchanged in a variety of patterns. Within the WS framework
there is normally a simple Message Exchange Pattern (MEP) that involves either
a request only, or a request and response message. The normal invocation of a
service during the execution of a workflow is for the workflow manager to request
a service and then, when the service has completed, a response is returned to the
workflow manager. It can be seen that this requires mediation by the workflow
manager at every step of the workflow process.

Kut and Birant [8] have suggested that web services could become a tool for
parallel processing and present a model, using threads to call web services in
parallel, to allow web services to perform parallel processing tasks. This model
and can be extended (as shown in Fig. 1) to allow these services to exchange
data directly, this removes the need for the workflow manager to intervene every
time a process transfers data [2].

Currently there is no standard for directly passing data from one service to
another running service. Alternative MEPs are in various stages of research; in-
only patterns are in common usage in most web service platforms, and research

Service 2
Service

uest

Service n

Fig. 1. Extending the use of parallel executing services to perform message passing.

has been undertaken into a single request multiple response (SRMR) MEP [9].
In this framework for SRMR an agent is used to relay the service call, and a
centralized web service collects the responses.

Research into the use of web services in parallel computations is presented by
Puppin et al [10], who developed an approach for wrapping MPI nodes within
web services. Their paper shows that the performance of wrapped MPI nodes
can be comparable with MPI running in a cluster environment, although, many
more computers are required for the wrapped MPI version.

In our research, we focus on developing and evaluating web services that
are capable of MPI-like communication with other services; the performance of
SOAP messaging is a key issue in determining if MPWS can be made comparable
in performance with other distributed message-passing systems.

There is a problem when it comes to sending the data within a SOAP
message. SOAP uses XML and if true XML formatting is to be used, i.e. listing
each entity of the data within a tagged element, the space overhead for the
message is potentially very large. The most efficient method of encoding data
is to serialize it into a binary representation. In the Java language there is an
in-built function to transform objects to their binary encoded representation;
this is the mechanism that mpiJava uses to encode its objects before sending
them to a socket. The problem is that we cannot translate a binary file directly
to string format, as there are not enough characters available. There are four
solutions available to this problem; binary-to-character encoding [11], packaging,
binary XML encoding [12], and linking [11].

Packaging, such as SOAP with Attachments (SwA) [13], or Message Trans-
mission Optimization Mechanism (MTOM) [14] allows data to be transmitted
externally to the SOAP envelope. A comparison of transmission speeds using
SOAP with Attachments and true XML formatting is given in [15]. MTOM also
stores the data within the object model.

MTOM has been chosen as the transmission protocol for these messages as it
is SOAP based; yet it increases the speed of the data by allowing attachments,
while keeping the data accessible in the object model. MTOM does not have the

coding overheads of either the binary to character or the binary XML encoding,
and it stays within the SOAP communication protocols, unlike linking.

3 The Design of a Message-Passing Web Service

The challenge is to design a tool which will combine the tightly coupled
programming concept like MPI and the distributed, loosely coupled architecture
of SOAP web services; to do this we need to adhere to WS and SOAP messaging
standards whilst providing an efficient form of communication between services.
MPWS is designed to address three areas; the creation of a set of services,
the initialisation of those services so they are aware of each other, and the
communication between the services.

The creation of a set of services is achieved by the workflow manager, its role
is to accept jobs, normally specified using an XML-based workflow language such
as MPFL, then find a collection of suitable services for those jobs and invoke
them all within a unique communication domain. A communication domain
is a collection of service instances which are involved in the same composite
application, and can communicate directly with each other; this means that
each service instance must be aware of all other service instances in the domain.
Based on the job definition, the workflow manager will discover and select a group
of suitable Message Passing (MP) web services using standard WS techniques,
then generate a communication domain ID for the workflow application. The
workflow manager can then specify the rank number and invoke a run method
for each MP service involved.

The initialisation of the service is performed in the invocation of the run
method; the input data for the application as well as the binding information
for the services to work together, is passed to each individual service that is
involved in the same workflow application. The binding information includes:
communication domain ID; the rank number for the service; and a list of service
endpoint references, each associated with a particular rank ID. Knowing the
rank number as well as the service endpoint references, will allow the service
to perform point-to-point message passing with all other services in the same
communication domain.

An MP web service can participate in multiple applications concurrently,
so in order to solve the problem of identifying which service invocation is
to be addressed, there is one communication domain established for each
application instance; this is associated with a unique identifying number -
the Communication Domain ID. Each MP web service instance belongs to a
communication domain, and each service instance has an associated resource;
this resource is identified by the Communication Domain ID, is initiated for
the particular communication domain, and stores the binding information and
messages sent to that service instance. WS-Resources are defined in the WSRF
specifications [16], they allow for the concept of state within web services. A
resource is uniquely identifiable and accessible via the web service [17]. The use
of resources provides message buffers for an MP web service. Instead of sending

and receiving the messages synchronously, the message is sent to the resource
associated with the receiving web service instance, then the receiving web service
can retrieve a particular message from the corresponding resource. A message is
associated with a communication domain ID and a message tag; this will ensure
that the message can be identified within a communication domain.

MPWS has been designed to conform to WS Standards and to SOAP
messaging standards, to allow the use of loosely coupled services in a traditionally
tightly coupled MPI coding style. To this end we have designed MPWS to
support multi-layer interfaces; the upper layer as a WS layer, and the lower
layer as a message-passing (MP) layer. With the web service layer, an MP web
service supports WSDL standards, providing loosely coupled services which can
be easily published, discovered and reused. There are two main methods exposed
via the web services interface:

— Run method - this mainly consists of a sequence of instructions so that it
performs one or more particular tasks. Since an MP web service normally
involves cooperation with other MP web services for a particular application,
setting up communication domains is the first task when the run method is
invoked

— Store method - this receives messages sent from other MP web services and
stores them to the resource associated with the MP web service instance.

With the message passing layer, an MP web service is able to conduct
message-passing communication with other MP web services by supporting
message-passing interfaces, including send, receive, broadcast, and sendReceive.
The message-passing interfaces are not exposed via WSDL, but are low-level
interfaces that can only be invoked via the WSDL-level methods. For example,
inside a run method body, there may be instructions such as sending data to a
particular MP web service or receiving data from a particular MP web service,
and these can be carried out by directly invoking the methods provided within
the message-passing programming package, MTOM is used as the transmission
protocol in this layer.

Fig. 2(a) gives an example which shows a send operation scenario between
two MP web services, A and B. A communication domain was initiated with
the communication domain ID equal to 3303. Service A sends a message to
service B within the communication domain. The send method from the MP
service is called to send the message to service B. This is done by invoking
the store method provided by service B. When the store method is called, it
stores the message it received into the resource associated with the domain ID
3303. Although service B has received the message and stored it within one of
its associated resources, the message cannot be used unless a receive method is
called. The receive method retrieves this message from the resource (ID = 3303)
associated with the service instance, the tag name associated with the message is
used to identify the particular message within the communication domain (Fig.
2(b)).

The use of the resource to provide a buffering service for message passing
encourages the adoption of the asynchronous fire-and-forget style [18] of message

(a) Send operation (b) Recieve operation
Message (3303,any)

Run Store Run Store m
Receive
Service A | Send Service B
Message (3303,any) Message (3303,any

)
ource (ID=3303

Res

Resource 1D=3303

Fig. 2. An example of sending a message from Service A to Service B.

sending which is supported in AXIS 2.1.1. The fire-and-forget send method
returns immediately after the existence of the receiving host is confirmed
providing increased performance over the sendRecieve or sendRobust style .

4 The Evaluation

4.1 Testing

Many benchmark suites have been devised and put forward as the definitive
parallel computing benchmark tests (]19],[20]), many of these are designed to
test the underlying hardware or the collective communications features of the
message passing tools. The purposes of the tests that are to be performed on
MPWS and mpiJava are to find the speed of the communication implementations
and not the capabilities of the network.

The ping pong test is used in most of the bench mark suites as a simple
bandwidth and latency test. Getov et. al. [21] used a number of variations of the
ping pong test to compare the performance of MPI and java-MPI, also Foster
and Karonis [22] use the ping pong test to evaluate MPICH-G, a grid enabled
MPI. It has been decided to use two variations of the ping pong tests. The
first, PingPong, transfers data from one process to another and then back again.
In this test, there are an even number of processors within the communication
domain that are paired up to concurrently pass data to and from each other,
see Fig. 3(a). In this figure the messages are represented by the solid arrows, the
time taken for the message to be sent from one service to a second service and
then back again is measured as the round trip time.

The second test is the Ping*Pong test [21], this test involves sending multiple
messages from one service to a second service before the second service returns
a message, this is also seen in Fig. 3(b). This test will differentiate between: the
intra message pipeline effect, where the message is broken into smaller parts by
the system and processed through a pipeline to speed up the communication;
and the inter message pipeline effect, where the system does not have to wait
for one message to complete its transfer before starting processing the next
message [21]. The ping*pong test may show more a realistic view of the systems
performance, as it emulates many real applications of message passing (such as
a matrix multiplication).

Rank k-1|[Rank k | |Rank k-1] | Rank k | [Ranko] [Rank 1] |Rank2| ‘RankB‘
Round - - SN—
triptimi ™ le—] >
(a) (b)

Fig. 3. Communication Diagram for PingPong, Ping*Pong and matrix multiplication
tests.

As a further test that has a more real life application to it, a one dimensionally
blocked parallel matrix multiplication application is used. This application is
based on a simple parallelisation of the matrix multiplication problem. The
communications for the matrix multiplication application are shown in Fig. 3(c),
each arrow represents a portion of the matrix being sent from rank(i) to another
processor. It is important to note that while the order of the sends for each rank
are fixed, a rank can start sending its data as soon as it has received data from
the preceding rank.

For the matrix multiplication application, the actual multiplication cal-
culations are extremely time consuming and dilute the performance of the
communications with variances in processor utilisation at the time of testing.
We have, therefore omitted the calculation part of the application and only
presented the communication part.

4.2 Evaluation Results and Discussion

Versions of each test have been written and evaluated as both a web service,
running on Tomcat 5.5.20 using AXIS 2.1.2, and in Java using the mpiJava API
(V1.2 wrapping MPICH 1.2.6); all code was written in Java 1.6.0. The MPWS
evaluation tests are undertaken on a public network of university machines, all
of which are prone to unforeseen activity. The tests were done during low usage
hours to reduce inconsistencies and all graphs show minimum timings to reduce
the impact of the network on the results; the error bars show maximum timings
over the set of tests. The Linux machines used for the testing have twin Intel
pentium 4, 2.8 GHz processors; in order to eliminate the discrepancy’s between
the different handling of threads with the MPWS and mpiJava systems, both
systems were restrained to using only one processor on each machine.

The graphs in Fig. 4 and Fig. 5 show the timings of MPWS and mpiJava
running the ping pong tests. The results show the expected communications
overhead of the SOAP message, that degrades the performance for smaller
messages, but they also show that over a message data size threshold of
approximately 200Kbytes (or n = 160) the extra communication overhead has
been absorbed by the total MPWS communication time to make the MPWS
and MPI systems run at a relatively similar speed.

The graph in Fig. 5 concentrates on the timings for smaller message sizes,
allowing the reader to easily compare the two systems. The ping pong test shows

that for large message sizes the MP web services are an acceptable alternative to
mpiJava, but below the data sizes of around 125Kbytes, the systems overheads
are very noticeable. This is not really unexpected, as the there are the overheads
of the SOAP headers and the HTTP protocol to consider.

10000 | I
— MPI / 80 1 —— MPI
1000 1—| = MPWS —— MPWS 1}/
E / = 60 /
@ E
E s
- / E 40 +
g‘ (5
- 10 T T rr;—fw‘y . /
R 20 %f
1 B]
1 10 100 1000 10000 o a0 100 150 200
Matrix size (log n) hatrix size n
Fig. 4. Times of Ping Pong test MPWS Fig. 5. Times of Ping Pong test MPWS
and mpiJava. and mpiJava; small message sizes.

The results for the ping*pong test are shown in Fig. 6, it is noticed that the
threshold (n—130) for MPWS absorbing the overhead of the SOAP messages is
slightly lower than with the PingPong test. More significant, is the tenancy for
MPWS to outperform the version using mpiJava’s standard send; we put this
down to the inter message pipeline effect and the buffer handling of the two
different, systems.

The parallel matrix multiplication communication results are shown in Fig.
7, they consistently show that the MPWS performs the communications faster
than mpiJava at matrix sizes above the overhead threshold. We again put the
results of the matrix test down to the application of the system buffers in the
MPWS and mpiJava implementations, and the inter message pipeline effect. In
the ping*pong test, both the inter message pipeline of the send and receive were
being tested, but in the matrix multiplication test, each of the consecutive sends
from every processor are being received by a different processor. In MPWS, the
main message buffering occurs in the receiving processor. This distributes the
message buffering process at the time of high utilisation.

5 Conclusion and Further Work

From the tests we have discovered that despite using MTOM, The overhead
of SOAP messaging is still a problem which affects the performance of MPWS
when message sizes are small. However, when the message sizes reach a threshold,
MPWS and mpiJava systems run at a relatively similar speed. We also found that
the inter message pipe effect, is a noticeable feature in MPWS applications that
use consecutive sends; it is even more so in those applications who’s consecutive
sends are received by a distributed selection of processors.

R 40000 MPI P=6

— MPI T .
30000 +{—— MPWS RS J
= — , 30000 +—| — MPI P=4
S om0 s soiblglene // 1
2 20000 +—| — MPI P=2 -

= . —— MPWS P=2 /}_/I“
/ 10000 =T =
e

0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500
Matrix size n Matrbe Size N

0

]

Fig. 6. Times for the Ping*Pong test Fig. 7. Times for the Matrix Multipli-
MPWS and mpiJava. cation test MPWS and mpiJava.

From the above observations, we conclude that MPWS is an effective tool
for coarse grained parallel applications , such as a parallel matrix multiplication,
implemented in a service oriented environment.

The next steps will be to consider the design of other send styles, such
as ssend (synchronous send), and evaluate MPI style collective communication
functionality such as: broadcast; gather and scatter; and all reduce.

References

1. Akram, A., Meredith, D., Allan, R.: Evaluation of bpel to scientific workflows. In:
CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID’06), Washington, DC, USA, IEEE Computer
Society (2006) 269-274

2. Krishnan, S., Wagstrom, P.; von Laszewski, G.: Gsfl: A workflow framework for
grid services (2002) In Preprint ANL/MCS-P980-0802

3. Huang, Y., Huang, Q.: Ws-based workflow description language for message
passing. In: 5th IEEE International Symposium on Cluster Computing and Grid
Computing, Cardiff, Wales, U. K (2005)

4. B. Carpenter, G. Fox, S. Ko, and S.Lim.: mpiJava 1.2: API Specifica-
tion. http://www.npac.syr.edu/projects/pcrc/mpiJava/mpiJava.html (Octo-
ber 1999).

5. Baker, M., Carpenter, B., Shafi, A. In: An Approach to Buffer Management in
Java HPC Messaging. Volume Volume 3992/2006 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg (May 2006) 953-960

6. Lee, HK., Carpenter, B., Fox, G., Lim, S.B.: Benchmarking hpjava: Prospects for
performance. In: 6th Workshop on Languages, Compilers and Run-time Systems
for Scalable Computers. (March 2002)

7. Gropp, W.: Tutorial on MPI: The Message-Passing Interface

8. Kut, A., Birant, D.: An approach for parallel execution of web services. In:
Proceedings - IEEE International Conference on Web Services, IEEE Computer
Society (June 2004) 812-813

9. Ruth, M., Lin, F., Tu, S.: Adapting single-request/multiple-response messaging to
web services. In: Computer Software and Applications Conference, 29th Annual
International. Volume 2. (2005) 287 292

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Puppin, D., Tonellotto, N., Laforenza, D.: How to run scientific applications
over web services. In: Parallel Processing. ICPP 2005 Workshops. International
Conference Workshops on. (2005) 29 — 33

Harrington, B., Brazile, R., Swigger, K.: Ssrle: Substitution and segment-run length
encoding for binary data in xml. In: Information Reuse and Integration, 2006 IEEE
International Conference on. (Sept. 2006) 11-16

Bayardo, R.J., Gruhl, D., Josifovski, V., Myllymaki, J.: An evaluation of binary
xml encoding optimizations for fast stream based xml processing. In: WWW ’04:
Proceedings of the 13th international conference on World Wide Web, New York,
NY, USA, ACM Press (2004) 345 354

Barton, J.J., Thatte, S., Nielsen, H.F.: Soap messages with attachments. W3c
note, W3C (Dec. 2000)

The Apache Software Foundation: MTOM Guide -Sending Binary Data with
SOAP. 1.0 edn. http://ws.apache.org/axis2/1_0/mtom-guide.html (May 2005)
Ying, Y., Huang, Y., Walker, D.W.: Using soap with attachments for e-science.
In: Proceedings of the UK e-Science All Hands Meeting 2004. (Aug. 2004) Poster.
Crzajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I.
Snelling, D., Tuecke, S., Vambenepe, W.: The ws-resource framework version 1.0.
Technical report, Globus Alliance and IBM (2004)

Graham, S., Karmarkar, A., Mischkinsky, J., Robinson, I., Sedukhin, I.. Web
Services Resource 1.2 (WS-Resource) Public Review Draft 01. OASIS. (10 June
2005)

Jayasinghe, D.: Invoking web services using apache axis2. http://today. java.net
/pub/a/today/2006/12/13/invoking-web-services-using-apache-axis2.html
(Dec 2006) Accessed Aug 2007.

Luszczek, P., Dongarra, J., Koester, D.; Rabenseifner, R., Lucas, B., Kepner,
J., McCalpin, J., Bailey, D., Takahashi, D.: Introduction to the hpc challenge
benchmark suite. Technical report, icl.cs.utk.edu (march 2005 2005)

Intel: Intel mpi benchmarks. Technical report, Intel (June 2006)

Getov, V., Gray, P., Sunderam, V.: Mpi and java-mpi: contrasts and comparisons
of low-level communication performance. In: Supercomputing '99: Proceedings of
the 1999 ACM/IEEE conference on Supercomputing (CDROM), New York, NY,
USA, ACM Press (1999) 21

Foster, 1., Karonis, N.: A grid-enabled mpi: Message passing in heterogeneous
distributed computing systems. In: Supercomputing, 1998. SC98. IEEE/ACM
Conference on, IEEE Computer Society (1998) 46 — 46

