
The Design and Evaluation of MPI-Style WebServi
esIan Cooper and Yan HuangS
hool of Computer S
ien
e, Cardi� University, United Kingdom{i.m.
ooper, yan.huang}�
s.
ardiff.a
.ukAbstra
t. This paper des
ribes how Message Passing Web Servi
es(MPWS) 
an be used as a message passing tool to enable parallelpro
essing between WS-based pro
esses in a web servi
es oriented
omputing environment. We des
ribe the evaluation tests performedto assess the point-to-point 
ommuni
ations performan
e of MPWS
ompared to mpiJava wrapping MPICH. Following these evaluationswe 
on
lude that: using web servi
es to enable parallel pro
essing isa pra
ti
al solution in 
oarse grained parallel appli
ations; and thatdue to inter message pipelining, the MPWS system 
an, under 
ertain
onditions, improve on the 
ommuni
ation times of mpiJava.1 Introdu
tionA work�ow is a series of pro
essing tasks, ea
h of whi
h operates on a parti
ulardata set and is mapped to a parti
ular pro
essor for exe
ution. In a loosely-
oupled web servi
e environment, a work�ow 
an itself be presented as a webservi
e, and invoked by other work�ows. Web servi
e standards and te
hnologiesprovide an easy and �exible way for building work�ow-based appli
ations,en
ouraging the re-use of existing appli
ations, and 
reating large and 
omplexappli
ations from 
omposite work�ows. BPEL4WS is 
ommonly used for webservi
e based s
ienti�
 work�ow 
ompositions [1℄, but users are limited toappli
ations with non-interdependent pro
esses. Furthermore, issues relatingto the unsatisfa
tory performan
e of SOAP messaging have tended to inhibitthe wide adoption of web servi
e te
hnologies for high performan
e distributeds
ienti�
 
omputing. In spite of the performan
e 
on
erns, the use of web servi
ear
hite
tures to build distributed 
omputing systems for s
ienti�
 appli
ationshas be
ome an area of mu
h a
tive resear
h. Re
ently developed work�owlanguages have started addressing the problem of inter
ommuni
ating pro
esses,Grid Servi
es Flow Language (GSFL) [2℄ is one example; it provides thefun
tionality for one 
urrently exe
uting Grid servi
e to 
ommuni
ate dire
tlywith another 
on
urrently exe
uting Grid servi
e. Another example is MessagePassing Flow Language (MPFL) [3℄, this spe
i�es an XML based language thatenables web servi
e based work�ows using MPI-style send and re
eive 
ommands,to be des
ribed. Neither of the examples mentioned above have presented awork�ow engine and 
urrently there is no work�ow engine that supports MPI



style dire
t message passing; the GSFL paper des
ribes an implementation usingOGSA noti�
ation ports in a subs
riber produ
er methodology, but the MPFLremains a draft language with no implementation details.In this paper, we investigate the potential and suitability of using a webservi
es infrastru
ture to support parallel appli
ations that require MPI-likemessage passing. We look at various methods and tools that 
an be used toimplement these message ex
hange patterns (MEPs) and assess the suitabilityof previous work, within the web servi
e framework, for this emerging work�owuse. We then propose an implementation for Message Passing Web Servi
es(MPWS) and present performan
e results 
omparing MPWS against mpiJava[4℄; a leading hp
 Java implementation [5℄. We have used mpiJava as it is a toolfor distributed 
omputing rather than for use within a 
luster environment;MPWS 
ombines distributed, loosely 
oupled servi
es to form a temporary,tightly 
oupled appli
ation with a similar goal. There has also been mu
hresear
h to 
ompare mpiJava to other HPC systems [6℄.2 Ba
kground and Related Resear
hIn the 
ontext of parallel 
omputing and MPI, message passing is referred to asthe a
t of 
ooperatively passing data between two or more separate workers orpro
esses [7℄. Thus, message passing is used in parallel s
ienti�
 appli
ations toshare data between 
ooperating pro
esses. It enables appli
ations to be split into
on
urrently running subtasks that have data interdependen
ies. In a servi
e-oriented s
enario, this 
an be translated to the a
t of sending data from oneexe
uting servi
e to another, 
on
urrently exe
uting, servi
e. The problem hereis that a servi
e 
an be 
on
urrently invoked many times; on
e a servi
e isinvoked, there must be a way of determining whi
h instan
e of the servi
e needsto re
eive the message.SOAP based web servi
es 
ommuni
ate via SOAP messages, and thesemessages are ex
hanged in a variety of patterns. Within the WS frameworkthere is normally a simple Message Ex
hange Pattern (MEP) that involves eithera request only, or a request and response message. The normal invo
ation of aservi
e during the exe
ution of a work�ow is for the work�ow manager to requesta servi
e and then, when the servi
e has 
ompleted, a response is returned to thework�ow manager. It 
an be seen that this requires mediation by the work�owmanager at every step of the work�ow pro
ess.Kut and Birant [8℄ have suggested that web servi
es 
ould be
ome a tool forparallel pro
essing and present a model, using threads to 
all web servi
es inparallel, to allow web servi
es to perform parallel pro
essing tasks. This modeland 
an be extended (as shown in Fig. 1) to allow these servi
es to ex
hangedata dire
tly, this removes the need for the work�ow manager to intervene everytime a pro
ess transfers data [2℄.Currently there is no standard for dire
tly passing data from one servi
e toanother running servi
e. Alternative MEPs are in various stages of resear
h; in-only patterns are in 
ommon usage in most web servi
e platforms, and resear
h



Fig. 1. Extending the use of parallel exe
uting servi
es to perform message passing.has been undertaken into a single request multiple response (SRMR) MEP [9℄.In this framework for SRMR an agent is used to relay the servi
e 
all, and a
entralized web servi
e 
olle
ts the responses.Resear
h into the use of web servi
es in parallel 
omputations is presented byPuppin et al [10℄, who developed an approa
h for wrapping MPI nodes withinweb servi
es. Their paper shows that the performan
e of wrapped MPI nodes
an be 
omparable with MPI running in a 
luster environment, although, manymore 
omputers are required for the wrapped MPI version.In our resear
h, we fo
us on developing and evaluating web servi
es thatare 
apable of MPI�like 
ommuni
ation with other servi
es; the performan
e ofSOAP messaging is a key issue in determining if MPWS 
an be made 
omparablein performan
e with other distributed message-passing systems.There is a problem when it 
omes to sending the data within a SOAPmessage. SOAP uses XML and if true XML formatting is to be used, i.e. listingea
h entity of the data within a tagged element, the spa
e overhead for themessage is potentially very large. The most e�
ient method of en
oding datais to serialize it into a binary representation. In the Java language there is anin-built fun
tion to transform obje
ts to their binary en
oded representation;this is the me
hanism that mpiJava uses to en
ode its obje
ts before sendingthem to a so
ket. The problem is that we 
annot translate a binary �le dire
tlyto string format, as there are not enough 
hara
ters available. There are foursolutions available to this problem; binary-to-
hara
ter en
oding [11℄, pa
kaging,binary XML en
oding [12℄, and linking [11℄.Pa
kaging, su
h as SOAP with Atta
hments (SwA) [13℄, or Message Trans-mission Optimization Me
hanism (MTOM) [14℄ allows data to be transmittedexternally to the SOAP envelope. A 
omparison of transmission speeds usingSOAP with Atta
hments and true XML formatting is given in [15℄. MTOM alsostores the data within the obje
t model.MTOM has been 
hosen as the transmission proto
ol for these messages as itis SOAP based; yet it in
reases the speed of the data by allowing atta
hments,while keeping the data a

essible in the obje
t model. MTOM does not have the




oding overheads of either the binary to 
hara
ter or the binary XML en
oding,and it stays within the SOAP 
ommuni
ation proto
ols, unlike linking.3 The Design of a Message-Passing Web Servi
eThe 
hallenge is to design a tool whi
h will 
ombine the tightly 
oupledprogramming 
on
ept like MPI and the distributed, loosely 
oupled ar
hite
tureof SOAP web servi
es; to do this we need to adhere to WS and SOAP messagingstandards whilst providing an e�
ient form of 
ommuni
ation between servi
es.MPWS is designed to address three areas; the 
reation of a set of servi
es,the initialisation of those servi
es so they are aware of ea
h other, and the
ommuni
ation between the servi
es.The 
reation of a set of servi
es is a
hieved by the work�ow manager, its roleis to a

ept jobs, normally spe
i�ed using an XML-based work�ow language su
has MPFL, then �nd a 
olle
tion of suitable servi
es for those jobs and invokethem all within a unique 
ommuni
ation domain. A 
ommuni
ation domainis a 
olle
tion of servi
e instan
es whi
h are involved in the same 
ompositeappli
ation, and 
an 
ommuni
ate dire
tly with ea
h other; this means thatea
h servi
e instan
e must be aware of all other servi
e instan
es in the domain.Based on the job de�nition, the work�owmanager will dis
over and sele
t a groupof suitable Message Passing (MP) web servi
es using standard WS te
hniques,then generate a 
ommuni
ation domain ID for the work�ow appli
ation. Thework�ow manager 
an then spe
ify the rank number and invoke a run methodfor ea
h MP servi
e involved.The initialisation of the servi
e is performed in the invo
ation of the runmethod; the input data for the appli
ation as well as the binding informationfor the servi
es to work together, is passed to ea
h individual servi
e that isinvolved in the same work�ow appli
ation. The binding information in
ludes:
ommuni
ation domain ID; the rank number for the servi
e; and a list of servi
eendpoint referen
es, ea
h asso
iated with a parti
ular rank ID. Knowing therank number as well as the servi
e endpoint referen
es, will allow the servi
eto perform point-to-point message passing with all other servi
es in the same
ommuni
ation domain.An MP web servi
e 
an parti
ipate in multiple appli
ations 
on
urrently,so in order to solve the problem of identifying whi
h servi
e invo
ation isto be addressed, there is one 
ommuni
ation domain established for ea
happli
ation instan
e; this is asso
iated with a unique identifying number -the Communi
ation Domain ID. Ea
h MP web servi
e instan
e belongs to a
ommuni
ation domain, and ea
h servi
e instan
e has an asso
iated resour
e;this resour
e is identi�ed by the Communi
ation Domain ID, is initiated forthe parti
ular 
ommuni
ation domain, and stores the binding information andmessages sent to that servi
e instan
e. WS-Resour
es are de�ned in the WSRFspe
i�
ations [16℄, they allow for the 
on
ept of state within web servi
es. Aresour
e is uniquely identi�able and a

essible via the web servi
e [17℄. The useof resour
es provides message bu�ers for an MP web servi
e. Instead of sending



and re
eiving the messages syn
hronously, the message is sent to the resour
easso
iated with the re
eiving web servi
e instan
e, then the re
eiving web servi
e
an retrieve a parti
ular message from the 
orresponding resour
e. A message isasso
iated with a 
ommuni
ation domain ID and a message tag; this will ensurethat the message 
an be identi�ed within a 
ommuni
ation domain.MPWS has been designed to 
onform to WS Standards and to SOAPmessaging standards, to allow the use of loosely 
oupled servi
es in a traditionallytightly 
oupled MPI 
oding style. To this end we have designed MPWS tosupport multi-layer interfa
es; the upper layer as a WS layer, and the lowerlayer as a message-passing (MP) layer. With the web servi
e layer, an MP webservi
e supports WSDL standards, providing loosely 
oupled servi
es whi
h 
anbe easily published, dis
overed and reused. There are two main methods exposedvia the web servi
es interfa
e:� Run method - this mainly 
onsists of a sequen
e of instru
tions so that itperforms one or more parti
ular tasks. Sin
e an MP web servi
e normallyinvolves 
ooperation with other MP web servi
es for a parti
ular appli
ation,setting up 
ommuni
ation domains is the �rst task when the run method isinvoked� Store method - this re
eives messages sent from other MP web servi
es andstores them to the resour
e asso
iated with the MP web servi
e instan
e.With the message passing layer, an MP web servi
e is able to 
ondu
tmessage-passing 
ommuni
ation with other MP web servi
es by supportingmessage-passing interfa
es, in
luding send, re
eive, broad
ast, and sendRe
eive.The message-passing interfa
es are not exposed via WSDL, but are low-levelinterfa
es that 
an only be invoked via the WSDL-level methods. For example,inside a run method body, there may be instru
tions su
h as sending data to aparti
ular MP web servi
e or re
eiving data from a parti
ular MP web servi
e,and these 
an be 
arried out by dire
tly invoking the methods provided withinthe message-passing programming pa
kage, MTOM is used as the transmissionproto
ol in this layer.Fig. 2(a) gives an example whi
h shows a send operation s
enario betweentwo MP web servi
es, A and B. A 
ommuni
ation domain was initiated withthe 
ommuni
ation domain ID equal to 3303. Servi
e A sends a message toservi
e B within the 
ommuni
ation domain. The send method from the MPservi
e is 
alled to send the message to servi
e B. This is done by invokingthe store method provided by servi
e B. When the store method is 
alled, itstores the message it re
eived into the resour
e asso
iated with the domain ID3303. Although servi
e B has re
eived the message and stored it within one ofits asso
iated resour
es, the message 
annot be used unless a re
eive method is
alled. The re
eive method retrieves this message from the resour
e (ID = 3303)asso
iated with the servi
e instan
e, the tag name asso
iated with the message isused to identify the parti
ular message within the 
ommuni
ation domain (Fig.2(b)).The use of the resour
e to provide a bu�ering servi
e for message passingen
ourages the adoption of the asyn
hronous �re-and-forget style [18℄ of message



Fig. 2. An example of sending a message from Servi
e A to Servi
e B.sending whi
h is supported in AXIS 2.1.1. The �re-and-forget send methodreturns immediately after the existen
e of the re
eiving host is 
on�rmedproviding in
reased performan
e over the sendRe
ieve or sendRobust style .4 The Evaluation4.1 TestingMany ben
hmark suites have been devised and put forward as the de�nitiveparallel 
omputing ben
hmark tests ([19℄,[20℄), many of these are designed totest the underlying hardware or the 
olle
tive 
ommuni
ations features of themessage passing tools. The purposes of the tests that are to be performed onMPWS and mpiJava are to �nd the speed of the 
ommuni
ation implementationsand not the 
apabilities of the network.The ping pong test is used in most of the ben
h mark suites as a simplebandwidth and laten
y test. Getov et. al. [21℄ used a number of variations of theping pong test to 
ompare the performan
e of MPI and java-MPI, also Fosterand Karonis [22℄ use the ping pong test to evaluate MPICH-G, a grid enabledMPI. It has been de
ided to use two variations of the ping pong tests. The�rst, PingPong, transfers data from one pro
ess to another and then ba
k again.In this test, there are an even number of pro
essors within the 
ommuni
ationdomain that are paired up to 
on
urrently pass data to and from ea
h other,see Fig. 3(a). In this �gure the messages are represented by the solid arrows, thetime taken for the message to be sent from one servi
e to a se
ond servi
e andthen ba
k again is measured as the round trip time.The se
ond test is the Ping*Pong test [21℄, this test involves sending multiplemessages from one servi
e to a se
ond servi
e before the se
ond servi
e returnsa message, this is also seen in Fig. 3(b). This test will di�erentiate between: theintra message pipeline e�e
t, where the message is broken into smaller parts bythe system and pro
essed through a pipeline to speed up the 
ommuni
ation;and the inter message pipeline e�e
t, where the system does not have to waitfor one message to 
omplete its transfer before starting pro
essing the nextmessage [21℄. The ping*pong test may show more a realisti
 view of the systemsperforman
e, as it emulates many real appli
ations of message passing (su
h asa matrix multipli
ation).



Fig. 3. Communi
ation Diagram for PingPong, Ping*Pong and matrix multipli
ationtests.As a further test that has a more real life appli
ation to it, a one dimensionallyblo
ked parallel matrix multipli
ation appli
ation is used. This appli
ation isbased on a simple parallelisation of the matrix multipli
ation problem. The
ommuni
ations for the matrix multipli
ation appli
ation are shown in Fig. 3(
),ea
h arrow represents a portion of the matrix being sent from rank(i) to anotherpro
essor. It is important to note that while the order of the sends for ea
h rankare �xed, a rank 
an start sending its data as soon as it has re
eived data fromthe pre
eding rank.For the matrix multipli
ation appli
ation, the a
tual multipli
ation 
al-
ulations are extremely time 
onsuming and dilute the performan
e of the
ommuni
ations with varian
es in pro
essor utilisation at the time of testing.We have, therefore omitted the 
al
ulation part of the appli
ation and onlypresented the 
ommuni
ation part.4.2 Evaluation Results and Dis
ussionVersions of ea
h test have been written and evaluated as both a web servi
e,running on Tom
at 5.5.20 using AXIS 2.1.2, and in Java using the mpiJava API(V1.2 wrapping MPICH 1.2.6); all 
ode was written in Java 1.6.0. The MPWSevaluation tests are undertaken on a publi
 network of university ma
hines, allof whi
h are prone to unforeseen a
tivity. The tests were done during low usagehours to redu
e in
onsisten
ies and all graphs show minimum timings to redu
ethe impa
t of the network on the results; the error bars show maximum timingsover the set of tests. The Linux ma
hines used for the testing have twin Intelpentium 4, 2.8GHz pro
essors; in order to eliminate the dis
repan
y's betweenthe di�erent handling of threads with the MPWS and mpiJava systems, bothsystems were restrained to using only one pro
essor on ea
h ma
hine.The graphs in Fig. 4 and Fig. 5 show the timings of MPWS and mpiJavarunning the ping pong tests. The results show the expe
ted 
ommuni
ationsoverhead of the SOAP message, that degrades the performan
e for smallermessages, but they also show that over a message data size threshold ofapproximately 200Kbytes (or n = 160) the extra 
ommuni
ation overhead hasbeen absorbed by the total MPWS 
ommuni
ation time to make the MPWSand MPI systems run at a relatively similar speed.The graph in Fig. 5 
on
entrates on the timings for smaller message sizes,allowing the reader to easily 
ompare the two systems. The ping pong test shows



that for large message sizes the MP web servi
es are an a

eptable alternative tompiJava, but below the data sizes of around 125Kbytes, the systems overheadsare very noti
eable. This is not really unexpe
ted, as the there are the overheadsof the SOAP headers and the HTTP proto
ol to 
onsider.

Fig. 4. Times of Ping Pong test MPWSand mpiJava. Fig. 5. Times of Ping Pong test MPWSand mpiJava; small message sizes.The results for the ping*pong test are shown in Fig. 6, it is noti
ed that thethreshold (n=130) for MPWS absorbing the overhead of the SOAP messages isslightly lower than with the PingPong test. More signi�
ant, is the tenan
y forMPWS to outperform the version using mpiJava's standard send; we put thisdown to the inter message pipeline e�e
t and the bu�er handling of the twodi�erent systems.The parallel matrix multipli
ation 
ommuni
ation results are shown in Fig.7, they 
onsistently show that the MPWS performs the 
ommuni
ations fasterthan mpiJava at matrix sizes above the overhead threshold. We again put theresults of the matrix test down to the appli
ation of the system bu�ers in theMPWS and mpiJava implementations, and the inter message pipeline e�e
t. Inthe ping*pong test, both the inter message pipeline of the send and re
eive werebeing tested, but in the matrix multipli
ation test, ea
h of the 
onse
utive sendsfrom every pro
essor are being re
eived by a di�erent pro
essor. In MPWS, themain message bu�ering o

urs in the re
eiving pro
essor. This distributes themessage bu�ering pro
ess at the time of high utilisation.5 Con
lusion and Further WorkFrom the tests we have dis
overed that despite using MTOM, The overheadof SOAP messaging is still a problem whi
h a�e
ts the performan
e of MPWSwhen message sizes are small. However, when the message sizes rea
h a threshold,MPWS and mpiJava systems run at a relatively similar speed. We also found thatthe inter message pipe e�e
t, is a noti
eable feature in MPWS appli
ations thatuse 
onse
utive sends; it is even more so in those appli
ations who's 
onse
utivesends are re
eived by a distributed sele
tion of pro
essors.



Fig. 6. Times for the Ping*Pong testMPWS and mpiJava. Fig. 7. Times for the Matrix Multipli-
ation test MPWS and mpiJava.From the above observations, we 
on
lude that MPWS is an e�e
tive toolfor 
oarse grained parallel appli
ations , su
h as a parallel matrix multipli
ation,implemented in a servi
e oriented environment.The next steps will be to 
onsider the design of other send styles, su
has ssend (syn
hronous send), and evaluate MPI style 
olle
tive 
ommuni
ationfun
tionality su
h as: broad
ast; gather and s
atter; and all redu
e.Referen
es1. Akram, A., Meredith, D., Allan, R.: Evaluation of bpel to s
ienti�
 work�ows. In:CCGRID '06: Pro
eedings of the Sixth IEEE International Symposium on ClusterComputing and the Grid (CCGRID'06), Washington, DC, USA, IEEE ComputerSo
iety (2006) 269�2742. Krishnan, S., Wagstrom, P., von Laszewski, G.: Gs�: A work�ow framework forgrid servi
es (2002) In Preprint ANL/MCS-P980-08023. Huang, Y., Huang, Q.: Ws-based work�ow des
ription language for messagepassing. In: 5th IEEE International Symposium on Cluster Computing and GridComputing, Cardi�, Wales, U. K (2005)4. B. Carpenter, G. Fox, S. Ko, and S.Lim.: mpiJava 1.2: API Spe
i�
a-tion. http://www.npa
.syr.edu/proje
ts/p
r
/mpiJava/mpiJava.html (O
to-ber 1999).5. Baker, M., Carpenter, B., Sha�, A. In: An Approa
h to Bu�er Management inJava HPC Messaging. Volume Volume 3992/2006 of Le
ture Notes in ComputerS
ien
e. Springer Berlin / Heidelberg (May 2006) 953�9606. Lee, H.K., Carpenter, B., Fox, G., Lim, S.B.: Ben
hmarking hpjava: Prospe
ts forperforman
e. In: 6th Workshop on Languages, Compilers and Run-time Systemsfor S
alable Computers. (Mar
h 2002)7. Gropp, W.: Tutorial on MPI: The Message-Passing Interfa
e8. Kut, A., Birant, D.: An approa
h for parallel exe
ution of web servi
es. In:Pro
eedings - IEEE International Conferen
e on Web Servi
es, IEEE ComputerSo
iety (June 2004) 812�8139. Ruth, M., Lin, F., Tu, S.: Adapting single-request/multiple-response messaging toweb servi
es. In: Computer Software and Appli
ations Conferen
e, 29th AnnualInternational. Volume 2. (2005) 287 � 292



10. Puppin, D., Tonellotto, N., Laforenza, D.: How to run s
ienti�
 appli
ationsover web servi
es. In: Parallel Pro
essing. ICPP 2005 Workshops. InternationalConferen
e Workshops on. (2005) 29 � 3311. Harrington, B., Brazile, R., Swigger, K.: Ssrle: Substitution and segment-run lengthen
oding for binary data in xml. In: Information Reuse and Integration, 2006 IEEEInternational Conferen
e on. (Sept. 2006) 11�1612. Bayardo, R.J., Gruhl, D., Josifovski, V., Myllymaki, J.: An evaluation of binaryxml en
oding optimizations for fast stream based xml pro
essing. In: WWW '04:Pro
eedings of the 13th international 
onferen
e on World Wide Web, New York,NY, USA, ACM Press (2004) 345�35413. Barton, J.J., Thatte, S., Nielsen, H.F.: Soap messages with atta
hments. W3
note, W3C (De
. 2000)14. The Apa
he Software Foundation: MTOM Guide -Sending Binary Data withSOAP. 1.0 edn. http://ws.apa
he.org/axis2/1_0/mtom-guide.html (May 2005)15. Ying, Y., Huang, Y., Walker, D.W.: Using soap with atta
hments for e-s
ien
e.In: Pro
eedings of the UK e-S
ien
e All Hands Meeting 2004. (Aug. 2004) Poster.16. Czajkowski, K., Ferguson, D.F., Foster, I., Frey, J., Graham, S., Sedukhin, I.,Snelling, D., Tue
ke, S., Vambenepe, W.: The ws-resour
e framework version 1.0.Te
hni
al report, Globus Allian
e and IBM (2004)17. Graham, S., Karmarkar, A., Mis
hkinsky, J., Robinson, I., Sedukhin, I.: WebServi
es Resour
e 1.2 (WS-Resour
e) Publi
 Review Draft 01. OASIS. (10 June2005)18. Jayasinghe, D.: Invoking web servi
es using apa
he axis2. http://today.java.net/pub/a/today/2006/12/13/invoking-web-servi
es-using-apa
he-axis2.html(De
 2006) A

essed Aug 2007.19. Lusz
zek, P., Dongarra, J., Koester, D., Rabenseifner, R., Lu
as, B., Kepner,J., M
Calpin, J., Bailey, D., Takahashi, D.: Introdu
tion to the hp
 
hallengeben
hmark suite. Te
hni
al report, i
l.
s.utk.edu (mar
h 2005 2005)20. Intel: Intel mpi ben
hmarks. Te
hni
al report, Intel (June 2006)21. Getov, V., Gray, P., Sunderam, V.: Mpi and java-mpi: 
ontrasts and 
omparisonsof low-level 
ommuni
ation performan
e. In: Super
omputing '99: Pro
eedings ofthe 1999 ACM/IEEE 
onferen
e on Super
omputing (CDROM), New York, NY,USA, ACM Press (1999) 2122. Foster, I., Karonis, N.: A grid-enabled mpi: Message passing in heterogeneousdistributed 
omputing systems. In: Super
omputing, 1998. SC98. IEEE/ACMConferen
e on, IEEE Computer So
iety (1998) 46 � 46


