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ABSTRACT

A plethora of applications benefit from location context, but
a person’s whereabouts can be linked to her personal sensi-
tive information. Hence, protection mechanisms have been
proposed that add systematic noise to a user’s location be-
fore sending it out of the user’s device. We describe the
same-origin attack, to which a group of such mechanisms
are vulnerable, we evaluate it against two mechanisms (spa-
tial cloaking and geo-indistinguishability), and we propose
our own mechanism, inspired by the maximum entropy prin-
ciple. We find that spatial cloaking is much worse than the
other two, and the maximum-entropy mechanism performs
slightly better than geo-indistinguishability. Designing an
optimal mechanism remains an open problem.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; G.3 [Mathematics of Comput-
ing]: Probability and Statistics; K.4.1 [Computers and
Society]: Public Policy Issues—Privacy

General Terms

Security

Keywords

Location Privacy; Mobile Networks; Maximum Likelihood
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1. INTRODUCTION
Location information can provide context to applications,

thus enabling location-based smartphone apps (e.g. of the
type “find the nearest Point-of-Interest”) and participatory
sensing platforms (e.g. for collecting traffic data). Undeni-
ably useful, location information is also very sensitive, as a
person’s whereabouts can reveal her identity and other per-
sonal information such as religion and political affiliation.
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Of the mechanisms that have been proposed to protect
privacy, obfuscation is a straightforward and intuitively ap-
pealing one: Obfuscation merely adds some form of noise
before transmitting the user’s location out of the device.
Hence, it is easy for a user to comprehend, and it does not
require any changes to the infrastructure (e.g. there is no
need for a trusted-third party, nor for the server that pro-
vides the location-based service to implement its part of a
privacy-preserving protocol).

There are two approaches to obfuscation in the literature:
with-prior and without-prior. The former assumes that the
adversary (e.g. the server) has some prior information in the
form of a probability distribution about the user’s location.
This assumption is then used to generate a protection mech-
anism that is customised for that prior probability distribu-
tion. Shokri et al. have quantified privacy as the adversary’s
error in estimating the user’s location [7], and they have pro-
posed optimal with-prior mechanisms [8]. The without-prior
mechanisms make no such assumption, and they are thus in-
dependent of any prior knowledge that the adversary may or
may not have. A generic mechanism in this group is spatial
cloaking, the main idea of which is to obfuscate a location
into a larger area that contains it. Geo-indistinguishability
[1] is a principled representative of the without-prior group,
extending differential privacy [5] into domains with distance
metrics (such as the Euclidean distance for locations) [2].

In this paper, we focus on the without-prior group of pri-
vacy mechanisms and, in particular, we scrutinize the fact
that the added noise depends on the user’s true location,
forming in effect a signature for that location. So, when the
user sends repeated queries from the same location, the at-
tacker can match the observed noise pattern to a location
that most likely produced it. Our first contribution is a max-
imum likelihood estimation technique that characterizes the
speed with which the attacker can recover the true location.
We then apply it to three protection mechanisms: The afore-
mentioned spatial k-cloaking and geo-indistinguishability,
and a new one that we design based on the maximum-
entropy principle. For each, we find how many queries a
user can send from the same location before the attacker
can localize her with some particular accuracy (measured by
distance to the true location or by the probability of find-
ing the true location). Comparing the three mechanisms
for similar amounts of added noise, spatial cloaking is by
far the worst, whereas the other two perform approximately
the same, with a slight advantage for the maximum-entropy
one. The question of designing an optimal mechanism is an
open problem.
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2. THE SAME-ORIGIN ATTACK
We consider a user sending queries that contain her loca-

tion to a Location-Based Server (LBS). A protection mecha-
nism obfuscates the location in each query and sends it along
to the LBS. The attacker (possibly the LBS itself) intercepts
the queries and tries to infer the user’s true location.
The basic premise of the same-origin attack is that the

attacker has external reasons to believe that the user sends
all the obfuscated queries from the same location. For ex-
ample, these locations could all be sent at 9pm each day, so
the user is probably at her home, or the user is currently
known to be sending her queries from a secret meeting, but
the location of the meeting is unknown.
The protection mechanism generically works as follows:

When the user sends a location query from location i, it
produces a location j with probability pi(j), for each i, j in
a region of interest R, assumed to be discretized as a grid.
Every time the user sends another query, the mechanism
draws another obfuscated location from the appropriate pi(),
independently of all previously reported locations.
The attacker knows all the probability mass functions

(pmfs) pi(·) that the mechanism employs and he collects
a sequence of reported locations x1:t = x1, x2, . . . , xt, all of
which are assumed to come from the same (unknown) loca-
tion. His objective is to find the true location of the user.
To do this he computes the probability of generating the
sequence x1:t from location i, i.e. with pmf pi(·), and se-
lects the location that is most likely to have produced the
observed sequence.
Sequential Hypothesis Testing. Having observed t

locations, the attacker computes the likelihood of the hy-
pothesis that the user’s true location is i ∈ R:

L(i|x1:t) = pi(x1:t) =
t
∏

s=1

pi(xs), (1)

where the second equality holds because the protection mech-
anism draws locations independently with each query. The
attacker then decides in favor of the location with the high-
est likelihood. Ties are broken randomly.
Note that the attack only requires that the noise added at

each location i depend only on i and not, e.g., on the time t
or on previously reported locations. In a sense, pi(·) is used
as the signature of location i, and the attack tries to match
the observed sequence with one of the signatures.

3. EVALUATION AGAINST PROTECTION

MECHANISMS
We now test the above attack against three protection

mechanisms, to be described below: spatial k-cloaking, geo-
indistinguishability, and a maximum-entropy method that
we design in this paper. To be fair among the three, we
assume that each adds the same average distance (noise) to
the user’s true location. For simplicity, we assume that the
true location is the origin (0, 0) of the grid that the region
of interest is discretized into.
The attack’s success is quantified in two ways: First, as

the probability of identifying the correct location after t ob-
servations (success probability). Knowing this curve, the
user can decide how many queries to send before the attacker
can localize her with a probability that the user deems dan-
gerous. Conversely, note that the attacker can also compute
his probability of success after t observations. So, if that

probability is too low, he can postpone taking a decision
and hope that he will observe more locations.

The second quantification of the attack’s success is via
the average distance between the true location and the loca-
tion that the attacker chooses after t observations (distance
error). The motivation of the second quantification is that,
even though the attacker might not identify the correct loca-
tion with certainty, he will in general be able to come closer
and closer with more observations, so the user can see how
close he can come after t observations.

Note that the success probability is a scalar number, so the
simulation-based estimates shown below are point estimates
with a 95% confidence interval (as error bar). In contrast,
the distance error is a random variable, so the figures below
show its mean and standard deviation (as error bar). For
each scenario tested, 200 simulations were done.

Spatial k-cloaking. Let K(i) be the set of locations in a
(2k+1)×(2k+1) square centered on location i, e.g. K(0, 0) is
the square with endpoints (−k,−k), (k,−k), (−k, k), (k, k).
For a query from location i, spatial k-cloaking selects a ran-
dom location in K(i) with equal probability:

pK-Cloak

i (j) =

{

1
(2k+1)2

if j ∈ K(i)

0 if j /∈ K(i)
(2)

The average magnitude of the noise that K-Cloak intro-
duces for queries coming from (0, 0) is

r̄K-Cloak =
∑k

m=−k

∑k

n=−k
1

(2k+1)2

√
m2 + n2.

The likelihood L(i|x1) = pi(x1) of location i for a sin-
gle observation x1 is equal to 1

(2k+1)2
if x1 is in K(i), and

zero otherwise. Similarly, for a sequence x1:t, the likelihood
L(i|x1:t) = pi(x1:t) is 1

(2k+1)2t
if all observations x1:t are in

K(i), and zero if even one observation is outside K(i).
The implication for the attacker is that a location i is still a

candidate to be the true location after t observations if and
only if all t observations could have been produced from
i. Equivalently, the surviving candidates are those in the
intersection of all the K(xs), s = 1, . . . , t. As the likelihood
of i does not depend explicitly on i nor on the observations
x1:t (it is either 1

(2k+1)2t
or zero), all surviving candidates

are equally likely, so the attacker picks one at random.
Figures 1 and 2 show the success probabilities (resp. dis-

tance errors) of the same-origin attack against the K-Cloak

mechanism for k = 2, 5, 10. We see that, even though the
mechanism promises 1

(2k+1)2
probability of correct localiza-

tion, this probability quickly increases for more observations,
increasing by about a factor of 10 after 4 observations. Sim-
ilarly, the distance error drops by about a factor of 2 after
3 observations.

Geo-indistinguishability. Geo-indistinguishability is an
extension of differential privacy to location privacy [1]. Its
main idea is to add noise in such a way as to bound the like-
lihood ratio of nearby locations given any particular obser-
vation. A mechanism that satisfies geo-indistinguishability
is the planar Laplacian centered at i:

pGeo-Ind

i (j) =
ǫ2

2π
e−ǫd(i,j), (3)

where d(i, j) is the Euclidean distance between locations i
and j. To prevent the discretization from interfering with
the geo-indistinguishability guarantees, we first select con-
tinuous (x, y) coordinates, and then map them to the nearest
grid point as the inventors of the mechanism suggest [1].
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Figure 1: Success probabilities with 95% confi-
dence intervals after t observations for the spatial
k-cloaking mechanism, k = 2, 5, 10.
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Figure 2: Distance errors after t observations for the
spatial k-cloaking mechanism, k = 2, 5, 10. Error bars
indicate ± one standard deviation from the mean.

The average magnitude of the noise that the Geo-Ind

mechanism introduces is r̄Geo-Ind = 2
ǫ
.

The likelihood L(i|x1) = pi(x1) of location i for a single
observation x1 is equal to pGeo-Ind

i (x1). After a sequence of
t observations x1:t, the likelihood of location i is

L(i|x1:t) =
t
∏

s=1

pGeo-Ind

i (xs) =

(

ǫ2

2π

)t

e−ǫ
∑t

s=1 d(i,xs). (4)

The likelihood-maximizing location, which the attacker
picks, is the location that minimizes the sum of distances to
the t observations, also known as the geometric median of
the t observations. The geometric median of 2-dimensional
points is unique in general. An exception is when t = 2,
in which case all points in the linear segment x1 − x2 have
an equal sum of distances to x1 and x2. In that case, the
attacker selects a point at random.
Figures 3 and 4 display the success probabilities and the

distance errors of the Geo-Ind mechanism for ǫ = 0.2, 0.5, 1.
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Figure 3: Success probabilities with 95% confidence
intervals after t observations for the Geo-Ind mech-
anism ǫ = 0.2, 0.5, 1.
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Figure 4: Distance errors after t observations for
the Geo-Ind mechanism, ǫ = 0.2, 0.5, 1. Error bars
indicate ± one standard deviation from the mean.

Although there is again a significant deterioration of privacy
with more observations, it takes the full 20 observations for
the success probability to increase 10-fold, when only 4 ob-
servations were sufficient for K-Cloak. This holds across
all three ǫ values. The distance error seems to be dropping
slightly less rapidly than K-Cloak, by about a factor of 2
after 4-5 observations.

Maximum entropy. The two previous mechanisms are
plausible ways to add noise. In search of a more princi-
pled mechanism, we turn to the maximum-entropy principle,
which we motivate as follows: The amount of noise that a
mechanism adds must be constrained in some way, otherwise
privacy would be perfectly preserved, but application utility
would suffer. However, other than satisfying this constraint,
we would like the noise to be, intuitively, as “random” as
possible. The maximum-entropy principle provides a way
to make this “maximum randomness” intuition concrete, by



selecting a mechanism that has maximum entropy among all
those that satisfy the constraint.

The one-dimensional Gaussian distribution, 1
√

2πσ
e
−

(x−µ)2

2σ2 ,

has the largest entropy among all distributions on the inter-
val (−∞,∞) with a given variance σ2 [4][p. 254]. The two-
dimensional analog of the variance, for two random variables
x and y, is the covariance matrix

(

E[(x− µx)
2] E[(x− µx)(y − µy)]

E[(x− µx)(y − µy)] E[(y − µy)
2]

)

,

where µx is the mean of x, E[(x − µx)
2] is the variance of

x, and similarly for y. The quantity E[(x − µx)(y − µy)]
is the covariance of x and y. Completely analogously to
the one-dimensional case it can be proven, e.g. using the
method of Lagrange multipliers, that the two-dimensional
Gaussian distribution has the largest entropy among all two-
dimensional distributions with a given covariance matrix.
Two Gaussian random variables x and y, each with a given

variance σ2
x, σ

2
y, and constrained by a“variance budget”σ2

x+
σ2
y ≤ 2σ2, produce the highest-entropy two-dimensional Gaus-

sian when their variances are equal σ2
x = σ2

y = σ2 and their
covariance matrix is diagonal, i.e. when they are indepen-
dent, or equivalently when their covariance is zero.
These considerations suggest the followingMax-Entmech-

anism that adds noise equal to the aforementioned indepen-
dent Gaussians x and y to the two coordinates of location
i:

pMax-Ent

i (j) =
1

2πσ2
e
−

1
2σ2 d2(i,j)

, (5)

where, as before, d(i, j) is the Euclidean distance between i
and j.
The average magnitude of the noise that Max-Ent intro-

duces is r̄Max-Ent = σ
√

π

2
.

As before, for a sequence x1:t, the likelihood of location i
is

L(i|x1:t) =
t
∏

s=1

pMax-Ent

i (xs) =

(

1

2πσ2

)t

e
−

1
2σ2

∑t
s=1 d2(i,xs).

(6)
The likelihood-maximizing location is now the one that

minimizes the sum of squared distances to the t observations
(the center of mass of the observed locations).
Figures 5 and 6 display the success probabilities and dis-

tance errors of the Max-Ent mechanism for σ = 2, 5, 10.
The trends here are similar to Geo-Ind.
Comparison of the K-Cloak, Geo-Ind, Max-Ent

mechanisms. In Figures 7 and 8 we show results for equal
average magnitudes of noise across mechanisms, r̄K-Cloak =
r̄Geo-Ind = r̄Max-Ent = 4.2, which correspond to k = 5,
ǫ = 0.48 and σ = 3.35. The main conclusion is that K-

Cloak is much worse than the other two, and Max-Ent

is slightly better than Geo-Ind in terms of success prob-
ability. However, Geo-Ind was not specifically engineered
against the same-origin attack, and there is no proof that
Max-Ent, although intuitively appealing as a maximum-
entropy construction, optimally delays the attacker under a
constraint on the magnitude of the noise. Such a proof, or a
different optimal construction, is the subject of future work.
Note also that the figures quantify the marginal contri-

bution of each successive observation towards the attacker’s
success, in terms of an increase in the success probability
or a decrease in the distance error. A general conclusion

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MAX-ENTROPY (GAUSSIAN)

Number of observations

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 

 

σ=2.00

σ=5.00

σ=10.00

Figure 5: Success probabilities with 95% confidence
intervals after t observations for the Max-Ent mech-
anism, σ = 2, 5, 10.
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Figure 6: Distance errors after t observations for the
Max-Ent mechanism, σ = 2, 5, 10. Error bars indicate
± one standard deviation from the mean.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of observations

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 

 

K-CLOAKING, k = 5

GEO-INDISTINGUISHABILITY, ε = 0.48

MAX-ENTROPY (GAUSSIAN), σ = 3.35

Figure 7: Success probabilities after t observations
for all three mechanisms.
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Figure 8: Distance errors after t observations for all
three mechanisms.

is that early observations contribute more than later ones,
i.e. we observe a pattern of diminishing returns with each
additional observation that the attacker makes.

4. DISCUSSION OF RELATED WORK AND

OF OTHER DEFENSES
Sending many queries from the same location (or, more

generally, from nearby locations) is known in the location
privacy community to cause problems for privacy (e.g. [3,
9]). However, it is a novel contribution of this paper to
quantify precisely the effect of a given number of queries on
privacy.
Regarding proposed defenses, this paper only considers

privacy mechanisms that add independent random noise at
each query. In future work, we aim to consider more types of
defenses, and in particular the following: The privacy mech-
anism adds noise just once, thus selecting and reporting a
single obfuscated location, and then keeps sending that ob-
fuscated location in any future query that originates at the
same true location. This defense is e.g. used by Fawaz and
Shin [6], where the initial obfuscation is done with the mech-
anism proposed by Andrés et al. [1]. In this type of defense,
there is obviously no point in estimating the attacker’s suc-
cess after t > 1 observations, because all observations after
the first are identical, so no more information is disclosed.

However, the probability distribution for the original obfus-
cation must still be designed in an optimal way, in order
to minimize the attacker’s success probability and maximize
his distance error.

5. CONCLUSION
This paper presents an attack against location privacy

that applies when the user sends repeated queries from the
same location and the noise added by the obfuscation mech-
anism is a function only of the user’s true location, which is a
quite intuitive and pervasive assumption. The attack forms
the maximum likelihood estimate of the user’s location, and
we find that this estimate improves very rapidly with just a
few queries. The spatial k-cloaking mechanism does much
worse than either Geo-Ind [1] or the new maximum-entropy
mechanism Max-Ent that we propose in this paper, while
Geo-Ind andMax-Ent perform approximately equally, with
perhaps a small advantage for the latter. In future work, we
plan to design a mechanism that optimally defends against
this attack for a given noise budget. We also plan to design
optimally the “one off” defense that generates a single ob-
fuscated location and reports it in every future query that
comes from the same true location.

6. REFERENCES
[1] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and

C. Palamidessi. Geo-indistinguishability: Differential privacy
for location-based systems. In CCS 2013.

[2] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi. Broadening the scope of differential privacy
using metrics. In PETS 2013.

[3] K. Chatzikokolakis, C. Palamidessi, and M. Stronati. A
predictive differentially-private mechanism for mobility
traces. In PETS 2014.

[4] T. Cover, and J. Thomas. Elements of Information Theory.
John Wiley and Sons, 2006.

[5] C. Dwork. Differential privacy. In LNCS 4052, 2006.
[6] K. Fawaz, and K. Shin. Location privacy protection for

smartphone users. In CCS 2014.

[7] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and
J.-P. Hubaux. Quantifying location privacy. In SP 2011.

[8] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux,
and J.-Y. Le Boudec. Protecting location privacy: optimal
strategy against localization attacks. In CCS 2012.

[9] G. Theodorakopoulos, R. Shokri, C. Troncoso,

J.-P. Hubaux, and J.-Y. Le Boudec. Prolonging the

hide-and-seek game: Optimal trajectory privacy for

location-based services. In WPES 2014.


