
Preserving Privacy in Collaborative Filtering through
Distributed Aggregation of Offline Profiles

Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-Pierre Hubaux
Laboratory for Computer Communications and Applications, EPFL, Switzerland

firstname.lastname@epfl.ch

ABSTRACT

In recommender systems, usually, a central server needs to
have access to users’ profiles in order to generate useful rec-
ommendations. Having this access, however, undermines
the users’ privacy. The more information is revealed to the
server on the user-item relations, the lower the users’ privacy
is. Yet, hiding part of the profiles to increase the privacy
comes at the cost of recommendation accuracy or difficulty
of implementing the method. In this paper, we propose a
distributed mechanism for users to augment their profiles in
a way that obfuscates the user-item connection to an un-
trusted server, with minimum loss on the accuracy of the
recommender system. We rely on the central server to gen-
erate the recommendations. However, each user stores his
profile offline, modifies it by partly merging it with the pro-
file of similar users through direct contact with them, and
only then periodically uploads his profile to the server. We
propose a metric to measure privacy at the system level, us-
ing graph matching concepts. Applying our method to the
Netflix prize dataset, we show the effectiveness of the algo-
rithm in solving the tradeoff between privacy and accuracy
in recommender systems in an applicable way.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: [Information
Filtering]; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy

General Terms

Algorithms, Design, Security

Keywords

Recommender Systems, Privacy-Accuracy Tradeoff

1. INTRODUCTION
Recommendation systems are widely used to help users,

overwhelmed by the huge number of options available to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’09, October 23–25, 2009, New York, New York, USA.
Copyright 2009 ACM 978-1-60558-435-5/09/10 ...$10.00.

them, to find items that they might like. The items can be of
any type: books, movies, web pages, restaurants, sightseeing
places, online news, and even lifestyles. By collecting infor-
mation about users’ preferences for different items, a recom-
mender system creates users’ profiles. The preferences of a
user in the past can help the recommender system to predict
other items that might also be of interest to the user in the
future. Collaborative filtering (CF), as one of the main cat-
egories of recommender systems, relies on the similarities of
users’ tastes: if two users have similar preferences for certain
items, each user probably enjoys the items of interest to the
other. Thus, the more each user gives information about his
interests, the more meaningful the recommendations will be.
This is the basis of CF systems.

In order to run the process of recommending items to
users, recommender servers need to have access to users’
profiles. Therefore, the profiles are usually stored on repos-
itories to which collaborative filtering algorithms can have
access. In such systems, the users do not have technical
measures to limit the amount of information on their pro-
files to the server, that might not be necessary for generating
recommendations. In other words, users have to put their
profiles online (i.e., on the server) and trust the server (and
the service providers) to keep the users’ profiles private. The
information available to the server hurts the privacy of the
users on two levels.

First, if a user’s real identity is available to the server,
the server can associate the user’s profile, which contains
his private information, to his real identity (e.g., Amazon
knows the real identities and postal addresses of those who
have purchased products and can link them with the profile
of those users). This is an obvious privacy breach, consid-
ering that a user does not want the link between his real
identity and his profile to be revealed, yet he wants to use
the service. This threat becomes more obvious when users
share their opinion about the locations they regularly visit,
e.g., restaurants, libraries, coffee shops, or sport centers [2].

Second, even if the real identity of a user is not known
to the server, it can try to de-anonymize the user’s identity
by correlating the information contained in the user’s profile
and some information obtained from other databases [13].

Obviously, hiding information from the server helps to
thwart these threats. Nevertheless, users want to receive ac-
curate recommendations. Hence, the tradeoff between pri-
vacy and accuracy appears. The more accurate information
the server has about users’ profiles, the more meaningful
the server’s recommendations are, but the lower the users’
privacy will be.

Moving from centralized approaches to distributed col-
laborative filtering algorithms solves the privacy issues to a
great extent [4, 11]. Yet, distributed CF algorithms are not
as accurate as their centralized versions that have complete
information about users’ profiles. Moreover, they are not as
practical as the centralized CF systems. The users’ cooper-
ation is needed not only to protect their privacy but also to
make the system run properly. Making use of sophisticated
cryptographic tools [6] might be another approach to solv-
ing the problem. However, these approaches are usually not
practical and therefore remain unused. The security of these
systems depends on that of their key establishment and key
management. Considering that the perfect implementation
of these schemes is hard to achieve in practice, they are not
well received. Therefore, finding a more practical solution
that does not trade much system accuracy in order to gain
privacy for the users is an unsolved problem and yet crucial
for users of CF systems.

In this paper, we propose a method that provides a com-
promise for the tradeoff between privacy on the one hand
and accuracy and practicality on the other hand. In other
words, our method increases the privacy in a practical way
with a negligible effect on the recommendation accuracy.
To this end, we still rely on the central server to generate
recommendations. Additionally, we employ a distributed
communication between users in order to improve their pri-
vacy. In our model, each user has two versions of his profile:
the online (on the server) and the offline (located on the
user’s side), where the online profile is frequently synchro-
nized with the offline version. Basically, the actual profile
of a user is a subset of his offline profile. Users’ offline pro-
files are aggregated in order to obfuscate the actual items
rated by each user. As we will show, the hybrid nature of
our approach helps users to gain privacy from distributed
aggregation and to reach a level of accuracy comparable to
the one achieved with a centralized CF.

The remainder of this paper is organized as follows. In
Section 2, we define our notations and basic elements of a
CF and state the problem, i.e., privacy preserving in the
presence of an untrusted server. In Section 3, we provide an
overview of the solution and elaborate our approach. In Sec-
tion 4, we define evaluation metrics for privacy and recom-
mendation accuracy. In Section 5, we validate the efficiency
of our method by applying it to the real data set from the
Netflix prize competition. Finally, in Sections 6 and 7, we
review the related work and conclude the paper.

2. PROBLEM STATEMENT

2.1 Definitions and Notations
Formally, a collaborative filtering (CF) algorithm deals

with a set of users and a set of items. In this paper, the
non-empty set of users in the system is denoted by U , where
|U| = N . We also represent the non-empty set of items by
I, where |I| = M . Let ru,i(t) be the rating of user u to
item i at time t, where ru,i(t) ∈ {1, 2, · · · rmax} and rmax is
the maximum valid rating. The set of items rated by user
u up to time t is denoted by Iu(t) ⊆ I. The profile of user
u at time t is defined as {(i, ru,i(t)) s.t. i ∈ Iu(t)} which is
the set of items coupled with their ratings rated by the user
until t. We denote by fi(t) the rating frequency of item i at
time t which is the fraction of users that have rated item i
up to time t (i.e., fi(t) = |{u ∈ U s.t. i ∈ Iu(t)}|/N). To

simplify the presentation, we sometimes omit the time index
if it is clear from the context.

Collaborative filtering algorithms attempt to make predic-
tions on the ratings of a particular user by collecting taste
information from other users. CF algorithms fall into two
general classes: model-based and memory-based methods [5].
Model-based algorithms learn a probabilistic model from the
underlying data using statistical techniques, then they use
the model to make predictions. Memory-based methods find
similar users or items in the dataset in order to predict the
items that a user might like and recommend them to him.
This approach is based on the assumption that similar users
prefer similar items, or that the preferred items of a user are
similar. Memory-based CF methods can be further divided
into two groups: user-based and item-based [16]. User-based
methods, which are the focus of this paper, are heuristics to
predict a rating of a user to an item by combining the rat-
ings of users who are most similar to the target user (so
called, the user’s neighbors). The Pearson’s correlation co-
efficient, as a popular measure [8], estimates the similarity
wu,v between two users u and v, as follows.

wu,v =

∑
i∈(Iu∩Iv)(ru,i − ru)(rv,i − rv)

√∑
i∈(Iu∩Iv)(ru,i − ru)2 ·

∑
i∈(Iu∩Iv)(rv,i − rv)2

(1)
where, ru is the mean of ratings assigned by user u.

In order to predict the rating of user u to item i, first, the
similarity of u to all other users is computed and then the
nearest neighbors of u, denoted by set Nu, are determined.
The set Nu contains |Nu| users who are, based on (1), the
most similar users to u. Next, the prediction of ru,i, denoted
by r̂u,i, is done by combining the ratings of neighbors of u
to item i [8, 15], as follows.

r̂u,i = ru +

∑
v∈Nu

wu,v(rv,i − rv)
∑

v∈Nu
wu,v

(2)

Finally, the items that have a high potential of interest
to the user (i.e., are predicted to have high and positive
ratings) are recommended to him.

2.2 Problem Definition
We consider the scenario where a collaborative filtering al-

gorithm (described in Section 2.1) is implemented on a server
and users give information about their profiles to the server
in order to receive recommendations. We define the problem
as finding a mechanism by which the users can adapt their
profiles (available to the server) to the privacy level they
expect from the system. The solution must have minimum
effect on the system’s accuracy. We assume the server to be
untrusted, and we evaluate the level of privacy in the system
with respect to that. Yet, the information revealed among
users themselves, if there is any need for communication,
must be under the users’ control (i.e., what information is
given and to whom). Intuitively, the system privacy is high
if the server is not able to construct the users’ profiles based
on the information available to it.

3. PROPOSED METHOD
In this section, we first give an overview of our solution

in Section 3.1, and we define a few new concepts that we
need to describe our scheme. Next, in Sections 3.2 and 3.3
we formally model the problem and our proposed solution.

3.1 Sketch of the Solution
We assume there is a central recommender system where

users’ profiles are stored and from which the users receive
recommendations. We call a user’s profile stored on the
server his online profile. We assume that a user can have
a local repository where he stores his own profile; we call
these locally stored profiles the offline profiles. The server
does not have access to the users’ offline profiles and the
recommendations are produced based on the online profiles
available to the server. Each user independently synchro-
nizes his online profile with his offline profile. Therefore,
from time to time, the changes that have been made to the
offline profile, since the last synchronization, will be applied
to the online version, all at once. Obviously, the recently
rated items are among these changes. In addition to these
actual ratings, users add other items to their profiles, which
are not originally rated by them; instead, they are received
from other users with whom they communicate.

Users communicate with each other through different me-
dia such as face-to-face communication in a meeting, com-
municating over cellular networks, instant messaging through
the Internet, communicating via a social network, or ex-
changing emails. We refer to any such communication as
contact between two users. A user arbitrarily selects his
peers and certain information about the users’ offline pro-
files is exchanged between them at each contact. Based on
this information, they add a subset of the other user’s items
to their own profiles. The exchanged information between
users, the number of items that are added to their profile and
the items (plus their associated ratings) that are selected for
the aggregation depend on the aggregation function they use.

From the server’s point of view, each user adds a batch
of new items (plus the ratings) to his online profile at each
synchronization. It is not known to the server which of these
items have been actually rated by the user. In other words,
the user’s actual profile is hidden from the server; hence,
there is privacy for the user. This, of course, comes at a cost:
a drop in the recommendation accuracy. In the next sec-
tions, we answer the following questions, in order to find the
appropriate aggregation functions: How many items should
be aggregated in each contact? What items are better can-
didates for aggregation? What is the effect of contact rate
on the privacy and accuracy?

3.2 The Model
We model users’ profiles by a bipartite graph, where nodes

denote the users and items, and weighted edges correspond
to the ratings of the users to the items.

Let Gt(U, V, E) be a bipartite weighted graph, where the
vertex set U = U corresponds to the users, the vertex set
V = I corresponds to the items, and the edge set E(t)
corresponds to the users’ rating for the items until time t.
Thus, an edge (u, i) ∈ E(t) exists when user u ∈ U has
rated item i ∈ V at some time before t. Each edge (u, i) has
an associated weight ru,i(t) denoting the rating of user u
assigned to item i. In such a setting, a user’s profile or
Iu(t) will be the set of nodes adjacent to node u. We call
Gt the actual graph, because it represents the actual users’
ratings of the items, i.e., in the case that there is no privacy
preserving method in use.

Using our method, there will be two other graphs in the
system. One should represent the users’ online profiles and
the other should model the users’ offline profiles.

contacti1 i2 i3 i4 i5 i6 i7 i1 i2 i3 i4 i5 i6 i7u uv v
Figure 1: Aggregation of users’ offline profiles af-
ter a contact. A contact occurs between users
u and v at time t, with Ioff

u (t) = {i1, i2, i4, i6} and
Ioff

v (t) = {i3, i4, i5, i7}. User u gives {i2, i4, i6}, which
is a subset of his profile, to v. User v also gives
{i3, i5} to u. Additional edges (dashed lines) ap-
pear after the aggregation, and the offline graph is
evolved through aggregating the new added edges.
After the aggregation, Ioff

u (t+) = {i1, i2, i3, i4, i5, i6}
and Ioff

u (t+) = {i2, i3, i4, i5, i6, i7}.

Let us denote the offline graph by Goff
t (U, V, Eoff). This

conceptual graph, which is stored in a distributed manner, is
formed by the aggregation of edges through users’ contacts
and by rating new items over time until t. The edges that
are added to the offline graph can appear either as a result of
actual ratings by the users, or through aggregation by con-
tacting other users. Hence, the actual graph Gt is embedded
and hidden in Goff

t . We also denote Ioff
u (t) to be the user’s

offline profile at t. By definition, for every user u at any
time t we have Iu(t) ⊆ Ioff

u (t). Note that Ioff
u (t) \ Iu(t) is

the set of items (plus their ratings) that are added through
aggregation to a user’s offline profile.

In our model, the online graph is denoted by Gon
t (U,V, Eon)

and Ion
u (t) represents the online profile of user u. The on-

line graph gets updated over time when users synchronize
their online profiles with their offline versions. As a re-
sult, at any time, there might be some edges in graph Goff

t

that have not yet been added to the graph Gon
t . Therefore,

Ion
u (t) ⊆ Ioff

u (t), for every user u at any time t.
Figure 1 illustrates the effects of aggregation on the of-

fline profiles of two users after their contact. Assume two
users u and v contact each other at time t, with offline pro-
files Ioff

u (t) and Ioff
v (t) before the contact. We also denote

Ioff
u (t+) and Ioff

v (t+) to be their offline profiles after contact.
As it is shown, each user (e.g., u) gives a subset of his own
profile to his peer (e.g., v) to be aggregated to the peer’s
previous profile. The way they select the mentioned subset
is explained in the next section. Note that the added edges
preserve their weights (ratings). In the case the receiver is
given an item that is already in his offline profile, he updates
its rating, if it is not an actual rating.

We assume each user, on average, contacts n users per
time unit and the contact peers are selected arbitrarily from
U . The process of contacting other users and updating the
offline profiles continues for all users over time, in paral-
lel with the process of actually rating new items. Thus,
graph Goff

t will be accumulated. More formally, for t1 < t2,
Ioff

u (t1) ⊆ Ioff
u (t2), i.e., the resulting bipartite graph Goff

t2

has the same vertex sets as Goff
t1 , and Eoff(t1) ⊆ Eoff(t2).

Each user occasionally synchronizes his offline and online
profiles at arbitrary time instants. Thus, the online graph
on the server changes dynamically over time. Figure 2 shows
this evolution.

… …… …… …… …

… …
… …
… …… …

t1t2t3t4
u Online GraphOffline Graph

Figure 2: Evolution of the offline (left column) and
online (right column) graphs over time (t1 < t2 <
t3 < t4). Circles represent the items and the users
are shown by the squares. We focus on the profiles of
user u, distinguished by the black square. In the left
column, the solid lines are the actual ratings of the
users, and the dashed lines are the additional ratings
aggregated to the users’ offline profiles. Profiles Ioff

u

and Ion
u are synchronized at time t1. Graph Gon

t stays
unchanged, regarding user u, until the next synchro-
nization time t4. Graph Goff

t is accumulated through
addition of both actual rating edges (solid lines) and
also the aggregated edges (dashed lines). User u
rates a new item at t2 and aggregates some other
items at t3. The solid lines in the right column (i.e.,
the online graph) indicate that the server is unable
to distinguish between the actual and dummy (i.e.,
those added through aggregation) ratings. The grey
lines belong to other users’ profile that are evolving
independently of each other.

We emphasize that each time a user synchronizes his on-
line profile with the offline version, the server is incapable
of distinguishing between the new edges that belong to the
user’s actual profile and the edges added through aggrega-
tion. Moreover, users who contact each other have access
only to information derived from the offline profiles of their
peers and cannot pinpoint the actual items of each others’
offline profiles. Hence, a user’s privacy is protected not only
against the server but also against the other users.

In order to prevent a user being confused about his own
rated items, the process of aggregation and also the aggre-
gated items (i.e., his offline profile minus his actual profile)
can be made transparent to the user. Hence, a user can add,
remove, or modify his actual ratings without any confusion,
although he is able to find out what the extra items are in
his profile. Looking from the server’s side, the server is not
aware of the items that are actually rated by the user, and
generates recommendations based on their online profiles.
Therefore, the server passes the top items that might be of
interest to a user without filtering out the items already ex-
isting in his profile. Instead, the process of filtering is done
at the user’s side, in a transparent way, i.e., the server recom-

mends a set of highly recommended items to the user and it
is the user application that avoids recommending the items
that are previously rated by the user himself. This prevents
a user from missing a recommendable item because it is in
his profile but not actually rated by the user.

3.3 Profile Aggregation
As described in the previous section, the process of up-

dating graph Goff
t is accomplished through an aggregation

process where users contact each other and update their of-
fline profiles by adding a subset of their peer’s rated items
to their own profile. Consider a contact between users u
and v at time t. We denote Iagg

v (t) (named the aggregated
items from v) as the subset of items (plus their ratings) in
the offline profile of user v, which are added to the offline
profile of user u. Considering Ioff

u (t+) as the offline profile
of u after the aggregation, the following equation holds:

Ioff
u (t+) = Ioff

u (t) ∪ Iagg
v (t). (3)

The same argument holds for the inverse case (updated
profile of v). Note that the added edges keep the same rating
value after being added to a user’s profile, i.e., assuming
item i is added to the offline profile of user u after his contact
with user v, we have:

roff
u,i(t

+) = roff
v,i(t), i ∈ Iagg

v (t), i /∈ Iu(t). (4)

But, if the candidate item already exists in u’s actual profile,
i.e., i ∈ Iagg

v (t) ∩ Iu(t), the rate stays unchanged.
In order to choose the candidate items for aggregation, we

should consider two issues: 1) The number of items to be
aggregated (|Iagg

v (t)|), and 2) which subset of Ioff
v (t) (with

cardinality |Iagg
v (t)|) to choose. We provide answers to these

questions by introducing different types of aggregation.
In this work, we introduce two kinds of possible aggrega-

tion processes, focusing on our key idea: aggregation based
on the similarity of the users who contact each other. We
believe that this approach yields the best performance of the
system for preserving both privacy and accuracy.

3.3.1 Similarity-Based Aggregation

In this case, at each contact, the similarity of the two users
is calculated using (1). Each user then gives a proportion
- equal to the similarity value - of his items in his offline
profile to the other user for aggregation, i.e., if we assume a
contact between users u and v at time t, using (3) we have,

|Ioff
u (t+)| 6 |Ioff

u (t)| + ⌊simu,v · |Ioff
v (t)|⌋, (5)

where |Ioff
u (t+)| denotes the size of u’s offline profile after

aggregation, and |Ioff
u (t)| and |Ioff

v (t)| denote the size of u
and v’s profiles before aggregation, respectively. Note that
|Iagg

v (t)| = ⌊simu,v · |Ioff
v (t)|⌋, and the equality holds when

Ioff
u (t) ∩ Ioff

v (t) = φ. We denote simu,v as the similarity
between users u and v (value between 0 and 1) is computed
as follows:

simu,v =

{
wu,v if wu,v > 0
0 otherwise

(6)

In other words, the two users only accept the aggregated
items when there is a positive similarity between them, oth-
erwise no aggregation occurs.

Although our main focus is on the protection of the users’
privacy against the untrusted server and not against each

other, we still can employ some tools to protect users’ pri-
vacy from each other. Users, who contact each other, need
to reveal their profiles to each other in order to compute the
similarity value. The level of privacy can be improved by
using methods that compute similarity between two profiles
without revealing their content. Lathia et al. [9] propose an
interesting concordance measure to estimate the similarity
between two users in a distributed system without revealing
their profiles to each other. This method can be used when
one user contacts another user in whom he has little trust.

To answer the question of“which subset of Ioff
v (t) to choose”,

we notice that the items in Iagg
v (t) can be chosen through

different methods. We hereby suggest two ways:

• Similarity-based Minimum Rating Frequency
(SMRF) One way to choose the set Iagg

v (t) is to sort
the elements of Ioff

v (t) by their rating frequency, and
select the first ⌊simu,v · |Ioff

v (t)|⌋ elements with mini-
mum rating frequency. In other words, we choose the
subset of the user’s rated items that have been least
rated by the users in the system (i.e., in the online
graph). We assume that the server makes the current
rating frequency of items, fon

i (t), available to the users.

• Similarity-based Random Selection (SRS) In this
case, the ⌊simu,v·|I

off
v (t)|⌋ candidate items are selected

uniformly at random from the set of items in Ioff
v (t).

We evaluate the effectiveness of these aggregation func-
tions and compare them in Section 5.

3.3.2 Fixed Random-Selection Aggregation

Aside from choosing the aggregated items based on the
similarity of users, we consider another simple type of ag-
gregation: fixed random selection, where each user gives a
fixed proportion of his rated items to the other user, i.e.,

|Ioff
u (t+)| 6 |Ioff

u (t)| + ⌊k · |Ioff
v (t)|⌋, (7)

where, k is a constant value between 0 and 1. Note that
here |Iagg

v (t)| = ⌊k · |Ioff
v (t)|⌋, and the aggregated items are

chosen uniformly at random.

• Union is an example of this aggregation, where each
user gives all of his rated items to the other user, i.e.,

Ioff
u (t+) = Ioff

u (t) ∪ Ioff
v (t). (8)

4. EVALUATION METRICS
In this section, we describe our definition of privacy and

recommendation accuracy. Following the definitions, we for-
malize our metrics for evaluating the proposed method in
terms of the privacy gain and the accuracy loss.

4.1 Privacy Measurement
We define the lack of privacy as the amount of information

the server has about the actual profile of the users. In other
words, it reflects how accurately the server can guess the
actual profile of the users (modeled as Gt) using the online
graph Gon

t , and how valuable the estimated profiles are, in
terms of identifying the users and distinguishing between
them. To define the privacy, we focus more on the users-
items connection rather than on the ratings the users assign
to the items (for an adversary who tracks a user it is more

interesting to know to which places the user has been, rather
than knowing the user’s opinion about those places).

To evaluate the privacy provided by our method, based on
the above-mentioned privacy definition, we define a privacy
metric considering the graphs Gt and Gon

t . We emphasize
that privacy is preserved in our model through additional
edges that exist in the online graph, but not in the actual
graph. Thus, we compute to what extent the structures of
graphs Gt and Gon

t are similar, as a higher structural differ-
ence accounts for higher privacy. This falls into the subject
of structural graph matching, where the structures of two
graphs are compared with the goal of matching the corre-
spondent nodes based on the structures. In our problem, as
the node set of the two graphs are the same, the structural
difference can be viewed as the difference between the cor-
respondent edges. This idea has also been investigated in
the field of pattern recognition where the edge-consistency
of two graph patterns (in matching a data graph to a model
graph) is used to obtain the correspondence errors [10, 12].

Following the above discussion, we introduce the error
measure for edge-inconsistency, considering only the struc-
tures of two given graphs G1(V, E1) and G2(V, E2), where
V denotes the node set (the same for both graphs), and E1

and E2 denote different edge sets. The matching error ∆
can be generally defined as the maximum likelihood estima-
tor for edge differences over the edge sets of G1 and G2,
i.e., the number of edges that exist in one graph with their
correspondent edges not existing in the other graph:

∆ =
∑

(u,i)∈E1

1{(u,i)/∈E2} +
∑

(u,i)∈E2

1{(u,i)/∈E1}, (9)

where 1{A} denotes the indicator function on A, and (u, i)
denotes an edge between nodes u and i in either of the two
graphs.

In our setting, graphs Gt and Gon
t correspond to G1 and

G2 respectively, with their node set divided into two sets V
and U to exhibit the bipartite property of users and items.
The privacy metric is equivalent to the matching error ∆,
as ∆ counts the number of differences in the corresponding
edges of two graphs, and higher structural difference results
in higher privacy. In our case, the first summation in (9)
is zero, because Gon

t is an accumulated version of Gt. Con-
sider our own notations, where Ion

u and Iu stand for the
items associated with user u in his online and actual graphs,
respectively. Counting the edges by iterating over the user
set U , the matching error can be written as:

∆ =
∑

u

∑

i∈Ion
u

1{i/∈Iu}. (10)

However, Narayanan and Shmatikov [13] show that an
item with a high rating frequency contains less information
about those who have rated the item than an item with a
low rating frequency (e.g., it is more valuable, in identify-
ing a user, to know that a user has purchased “The Color
of Pomegranates” than the fact that he purchased a Harry
Potter DVD). Their result shows that the higher the rating
frequency of an item is, the more important this item is for
identifying users associated with that item, thus the more
valuable it is in system privacy preservation. If an adversary
(the one who wants to break users’ privacy) falsely believes
that someone has rated an item with a low rating frequency,
then the user’s privacy is much higher than the case where
the item has a high rating frequency.

Hence, we use the rating frequency fi in (10) to weight
the items. We then normalize it per user by dividing it by
its maximum value for each user. This also guarantees a
value between 0 and 1 for the system privacy. Thus, pri-
vacy in the current work can be defined as the normalized
weighted edge-difference function over the node pairs of the
two graphs. Rewriting (10), this can be expressed as follows.
For the sake of simplicity, we omit the time index.

privacy =
1

N
·
∑

u

∑

i∈(Ion
u

\Iu)

(
1
fi

)

∑
i∈Ion

u

(1
fi

)

 (11)

To put is simply, looking at the bipartite graph, for each
user we compute the weighted difference of his rated items
in graphs Gt and Gon

t , with the weights being the inverse of
the item’s rating frequency. The overall system privacy is
then computed as the normalized sum of all such terms for
all users. Such a metric captures both the server’s chance
for successfully guessing the users’ actual profiles and the
importance of the profiles in identifying the users (using the
rating frequency).

Let us have a deeper look at how the privacy metric can
be interpreted. The closer is the privacy degree of a system
to 1, the harder is for the adversary to distinguish the ac-
tual profiles of the users in their online profiles. Moreover,
it becomes harder for the adversary to distinguish between
users and de-anonymize their profiles [13]. As it approaches
1, the privacy growth becomes slower by adding more items
to the profile of users, whereas its growth is faster for small
privacy values. The privacy becomes 1 if the actual graph
is infinitely small compared to the online graph and it is 0 if
they are the same. It is important to note that this metric
is not designed to compare the privacy of two systems with
different settings, rather to reflect the privacy gain inside a
system.

Note that there are some items in a user’s offline profile
whose rating changes due to 1) being rated later by the
user himself, 2) being received again from contacting users.
The first subset is not distinguishable from the second and
their ratio intuitively follows (11). Therefore, we do not
re-evaluate the effect of this factor on the users’ privacy.

4.2 Recommendation Accuracy
Modifying the users’ actual profiles in order to increase

their privacy level might impose some error on the accuracy
of the recommendation system. We measure the cost of run-
ning our method as the difference between the recommen-
dation error in our system and the system with no privacy.
In both cases we compute the recommendation error based

on RMSE. Let Îu denote the set of predicted items in the
recommender system for user u. The system error for any
graph G is computed as follows (the same for graph Gon).

RMSE(G) =

√∑
u

∑
i∈Îu

(ru,i − r̂u,i)2
∑

u |Îu|
(12)

Finally, the cost of using our method is computed as the
percentage of the accuracy loss, i.e., the additionally im-
posed error, formalized as follows.

accuracy loss =
RMSE(Gon) − RMSE(G)

RMSE(G)
(13)

5. EXPERIMENTAL RESULTS
In this section, we validate the effectiveness of our model

and the mechanisms we proposed in Section 3. First, we
describe the data set that we used for the experiments and
explain our simulation model. Next, we evaluate the effec-
tiveness of different aggregation functions used in our mech-
anism based on the metrics described in Section 4.

In each experiment, we used a subset of the Netflix data
set, released for Netflix prize [1], containing 300 randomly
chosen profiles with ratings between early 2001 and late
2006. The ratings are on a scale from 1 to 5 (integral) stars.

To evaluate the recommendation accuracy, we used 10%
of the actual ratings of each user as the testing set and the
remaining 90% as the training set. For each experiment, we
evaluated the privacy achievement and also the accuracy of
the system for different values of users’ contact rates. The
contacts between users were selected uniformly at random,
both for the contacting peers and their time of contact. We
evaluated the privacy and accuracy of an aggregation func-
tion with respect to the average users’ contact rate. We
made the evaluation at the end of each experiment (Decem-
ber 2006). The contact rate value determines the average
number of users a given user has contact with per year. Be-
sides, in all experiments the number of neighbors of each
user, needed for generating recommendations, was selected
to be 30 (i.e., |Nu| = 30 for any user u). Outcome of various
experiments are averaged to obtain the final results. In this
setting, we implemented the following aggregation functions.

• Similarity-based minimum rating frequency (SMRF)

• Similarity-based random selection (SRS)

• Union aggregation

The Union function provides the maximum privacy that
can be achieved using our method. Therefore, it acts as
a benchmark to evaluate the effectiveness of the similarity-
based aggregation functions.

Figures 3(a) and 3(b) illustrate the privacy preservation
level and accuracy loss, respectively, for different aggrega-
tion functions, calculated using Equations (11) and (13). Us-
ing these results, one can easily observe the privacy-accuracy
trade-off for different mechanisms, and select the appropri-
ate type of aggregation. The effect of contact rate on the
privacy level and accuracy loss is also shown.

As depicted in Figure 3(a), using Union aggregation the
system privacy level quickly approaches the maximum value
of 1 as the average contact rate increases. Moreover, when
this aggregation is used, the users’ profiles (offline and there-
fore online) become more flat as time goes on (i.e., users’
profiles become more similar). This leads to a considerable
decrease in system accuracy, compared to other aggregation
functions (Figure 3(b) shows a fast increase in accuracy loss
for Union function). Contrarily, Figure 3(b) shows that the
other two methods SRS and SMRF result in a slight decline
in the system accuracy, in comparison with Union aggrega-
tion, for different values of contact rate.

The efficiency of our mechanism becomes more visible
when we notice that a small number of contacts per user
substantially increases the privacy level and imposes minor
costs in terms of accuracy. For instance, notice that using
the SMRF (SRS) aggregation function, number of 6 contacts
per year per user results in a 0.64 (0.48) degree increment in
system privacy with an accuracy loss of less than 2% (1%).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Yearly Contact Rate of Users

S
y
s
te

m
 P

ri
v
a

c
y

UNION

SMRF

SRS

(a) Privacy gain for different users’ contact rate

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Average Yearly Contact Rate of Users

A
c
c
u

ra
c
y
 L

o
s
s

UNION

SMRF

SRS

(b) Accuracy loss for different users’ contact rate

Figure 3: Performance of different aggregation func-
tions with respect to the achieved privacy and drop
in system accuracy.

We observe that although the SRS method causes a smaller
accuracy loss, the major increase in system privacy for SMRF
distinguishes it as a good alternative mechanism. This is
due to the fact that sorting the aggregated candidates by
minimum rating frequency makes the users more indistin-
guishable for the server. However, SRS is the most practical
aggregation function, as it is not dependent on any system
parameter or any kind of information from the server. An-
other advantage of SRS over SMRF is the stability of its
accuracy loss for different contact rate values.

In general, experimental results validate our proposed mech-
anism in preserving privacy in a distributed way. The re-
sults show that similarity-based aggregation achieves decent
results in terms of higher system privacy with a negligible ef-
fect on accuracy loss for small average contact rates. When
users have information about the rating frequency of items,
giving the items with minimum rating frequency increases
the privacy. This is because it increases the number of users

who have rated sensitive items of a user (i.e., the items that
help identifying the user). Yet, if such information is not
available for users, the SRS aggregation can be used, which
provides a bit less privacy but imposes a lower accuracy loss.
SRS is also more stable (in terms of the accuracy loss) for dif-
ferent contact rate values. The key factor of similarity-based
aggregation functions is that they preserve the similarity be-
tween users almost unchanged, compared to the case where
there is no privacy protection mechanism in use.

6. RELATED WORK
Several techniques have been proposed to preserve the pri-

vacy of users in recommender systems. Perturbing users’
ratings, using cryptographic tools such as homomorphic cryp-
tography, and storing users’ profiles in a distributed manner
are the main categories for privacy preservation in collabo-
rative filtering systems.

Polat and Du [14] propose a randomized perturbation
technique to preserve privacy in collaborative filtering. Users’
ratings are modified by adding random noise to them in or-
der to prevent the central server from deriving the users’
actual ratings. The challenge is to find a perturbation al-
gorithm that imposes the smallest error on the recommen-
dation process. The users enjoy a high level of privacy if
the server is not able to estimate the actual ratings they as-
signed to the items. However, the items rated by the users
are revealed in the proposed technique, regardless of the
perturbation level. This is despite the fact that keeping the
connection between users and items is more crucial (in or-
der to preserve users’ privacy) than disguising the ratings
assigned to those connections. Revealing the places visited
by the users to the server enables it to track users over space
and time, whether they liked those places or not.

Using homomorphic cryptography in the public server in
order to hide the operations of the recommender system is
proposed by Canny [6, 7]. In the proposed method, users
create communities and each user searches for recommenda-
tions from the most appropriate community with the hope of
receiving more valuable recommendations, rather than ask-
ing from those who have similar profiles. Each community
of users can compute a public aggregate of their profiles,
which does not expose the individuals’ profiles. Homomor-
phic cryptography allows the users to hide the aggregation
operation from the server, although it is performed by the
server itself. Participation of users in the distributed sys-
tem to provide privacy for others was assumed to happen in
this work, which might not be the case in reality. Moreover,
the implementation of such a cryptographic scheme, espe-
cially its required key management, is difficult to achieve,
considering the status of the current usage of cryptographic
systems in the Internet. Similar ideas are proposed in [3]
where homomorphic cryptography is used to hide similarity
measurement from server’s eyes.

Storing users’ profiles on their own side and running the
recommender system in a distributed manner, without re-
lying on any server, is another option. Miller et al. [11]
propose transmitting only the similarity measures over the
network and keeping users’ profiles secret on their side to
preserve their privacy. Berkovsky et al. [4] propose a dis-
tributed P2P system to avoid storing users’ profiles on a
single server. Although these methods eliminate the main
source of threat against users’ privacy, they need high co-
operation among users to generate meaningful recommen-

dations. Every user pays the price of using this method,
regardless of his interest in protecting his privacy.

Lathia et al. [9] propose a concordance measure to esti-
mate the similarity between two users in a distributed sys-
tem without revealing their actual profiles to each other. A
randomly generated temporal profile is shared between two
users, and both of them compute the number of concordant,
discordant and tied pairs of ratings between their own pro-
file and the temporal profile. Exchanging the results, they
are able to estimate the similarity between their profiles.
Hence, they keep the items they have rated as well as the
rating values private. In this method, users need to reveal
their profiles for generating recommendations. Therefore,
this method provides privacy only for measuring similarity,
not for a collaborative filtering system as a whole. Two users
who do not trust each other, in our proposed method, can
use Lathia’s method to estimate their similarity.

Finally, the concept of approximate graph matching –
from which the idea of privacy metric in our work was in-
spired – has been widely studied in literature. The sub-
ject of structural graph matching has been investigated more
specifically in pattern recognition where the goal is to match
a data graph to a model graph based on nodes and edges
attributes of the graphs. Myers et al. [12] introduce the edit
distance measure as a metric for the structural difference
of two graphs, defined as the weighted sum of the costs of
edit operations to match the graphs. Also, the use of edge-
consistency for computing correspondence errors in match-
ing two graphs has been widely used, e.g., in the recent work
of Luo and Hancock [10] in which they developed a likelihood
function for graph matching.

7. CONCLUSION AND FUTURE WORK
In this work, we proposed a novel method for privacy

preservation in collaborative filtering recommendation sys-
tems. We addressed the problem of protecting the users’
privacy in the presence of an untrusted central server, where
the server has access to users’ profiles. To avoid privacy vi-
olation, we proposed a mechanism where users store locally
an offline profile on their own side, hidden from the server,
and an online profile on the server from which the server
generates the recommendations. The online profiles of dif-
ferent users are frequently synchronized with their offline
versions in an independent and distributed way. Using a
graph theoretic approach, we developed a model where each
user arbitrarily contacts other users over time, and modifies
his own offline profile through a process known as aggrega-
tion. To evaluate the privacy of the system, we applied our
model to the Netflix prize data set to investigate the privacy-
accuracy tradeoff for different aggregation types. Through
experiments, we showed that such a mechanism can lead to
a high level of privacy through a proper choice of aggrega-
tion functions, while having a marginal negative effect on
the accuracy of the recommendation system. The results
illustrate that similarity-based aggregation functions, where
users receive items from other users proportional to the sim-
ilarity between them, yield a considerable privacy level at a
very low accuracy loss.

As future work, our mechanism can be implemented in a
realistic setting in which users contact each other based on
their friendship (e.g., in social networks) or their physical
vicinity (e.g., using wireless peer-to-peer communication).
In such a setting, various practical issues such as the ef-

fect of the privacy preserving mechanism on the overhead of
users’ profiles and their maintenance, and the acceptability
of the system in a real world scenario can be investigated.
Moreover, the robustness of the algorithm to sophisticated
adversarial attacks and its relation to the proposed metric
are worth studying.

Acknowledgments

We would like to thank Marcin Poturalski and also the
anonymous reviewers for their helpful feedback on earlier
versions of this work. Special thanks go to Antoine Parisod
who implemented the simulations.

8. REFERENCES
[1] Netflix prize, http://www.netflixprize.com.

[2] Rummble, http://www.rummble.com.

[3] W. Ahmad and A. Khokhar. An architecture for
privacy preserving collaborative filtering on web
portals. In International Symposium on Information
Assurance and Security (IAS), Aug. 2007.

[4] S. Berkovsky, Y. Eytani, T. Kuflik, and F. Ricci.
Enhancing privacy and preserving accuracy of a
distributed collaborative filtering. In Proceedings of
ACM RecSys, 2007.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. 1998.

[6] J. Canny. Collaborative filtering with privacy. In IEEE
Symposium on Security and Privacy, 2002.

[7] J. Canny. Collaborative filtering with privacy via
factor analysis. In ACM SIGIR, 2002.

[8] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In ACM SIGIR, 1999.

[9] N. Lathia, S. Hailes, and L. Capra. Private distributed
collaborative filtering using estimated concordance
measures. In Proceedings of ACM RecSys, 2007.

[10] B. Luo and E. R. Hancock. Structural graph matching
using the em algorithm and singular value
decomposition. IEEE Trans. Pattern Anal. Mach.
Intell., 23(10), 2001.

[11] B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens:
Toward a personal recommender system. ACM Trans.
Inf. Syst., 22(3), 2004.

[12] R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian
graph edit distance. IEEE Trans. Pattern Anal. Mach.
Intell., 22(6), 2000.

[13] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, 2008.

[14] H. Polat and W. Du. Privacy-preserving collaborative
filtering using randomized perturbation techniques. In
Proceedings of IEEE ICDM, 2003.

[15] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of
ACM Conference on Computer Supported Cooperative
Work, 1994.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW, 2001.

