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Abstract—An important motivation for research in location privacy has been to protect against user profiling, i.e., inferring a user’s
political affiliation, wealth level, sexual preferences, religious beliefs and other sensitive attributes. Existing approaches focus on
distorting or suppressing individual locations, but we argue that, for directly protecting against profiling, it is more appropriate to focus
on the frequency with which various locations are visited – in other words, the histogram of a user’s locations.
We introduce and explore a new privacy notion, namely, on-the-fly privacy for location histograms, in which a mobile user repeatedly
submits obfuscated locations to a Location-Based Service aiming for the resulting histogram to resemble a target profile or differ from
it. For example, she may want to avoid looking wealthy or to resemble a health conscious person. We describe how to design concrete
privacy mechanisms that operate under different assumptions on, e.g., the user’s mobility, including provably optimal mechanisms. We
use a mobility dataset with 1083 users to illustrate how these mechanisms achieve privacy while minimizing the quality loss caused by
the location obfuscation, in the context of two types of Location-Based Services: nearest-PoI, and geofence.
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1 INTRODUCTION

A range of mobile devices, including smartphones, tablets,
but also vehicles, can compute the location of the device
and submit it to a Location-Based Service (LBS) at the user’s
request. Such services can be simple and standalone, such
as queries for a nearby point of interest (“Find nearest
restaurant”), or integrated into a larger service, such as
a social network (“Which of my friends are nearby?” or
checking into a particular cafeteria, restaurant, cinema) or
a recommendation system (Facebook Places, Foursquare,
Yelp, or [1]). Alternatively, mobile crowdsensing systems
[2] engage users to submit their location together with a
variable of interest, e.g., temperature or air quality at their
location, thus helping to create a map with useful location-
linked information. Finally, even web pages can request the
user’s location to provide appropriate customization, e.g.,
of search results.

However, the location information that LBSes need is
transmitted out of the device, thus leaving the user’s con-
trol. This loss of control entails a privacy risk, because
location information is sensitive [3]. In certain cases, even
a single visit can be detrimental to a person’s privacy –
consider a female teenager going to an abortion clinic. Even
if an individual location visit is not sensitive, a sequence
of locations visited in quick succession can be. Consider
a construction company representative going to a bank,
and then immediately visiting a city planning official. If
considered separately, these events do not raise suspicion
but jointly they are sensitive.
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To address these concerns while not degrading applica-
tion utility too much, researchers have proposed Location
Privacy Preserving Mechanisms (LPPMs) for protecting ei-
ther individual locations or trajectories [4], [5], [6], [7], [8],
[9], [10], [11]. Individual Location Protection (ILP) mecha-
nisms typically either define certain locations as sensitive
and do not release them at all to the LBS, or they submit
a fake location to the LBS instead of the true sensitive
one. The aim is to prevent the LBS from inferring the true
location. Trajectory protection mechanisms have the same
aim, but the locations they aim to protect are visited by
the user in quick succession and are therefore correlated.
The task of the trajectory mechanisms cannot be reduced to
just repeatedly applying an ILP mechanism. Because of the
correlation, e.g., people don’t usually move many hundred
meters every few seconds, each fake location produced by
the trajectory mechanism must be aware of and consistent
with the previous ones, otherwise the attacker can detect
and filter out the fake locations.

Our focus is on location histograms gradually formed
by the user submitting locations to the LBS over time. In
this context, we protect privacy in the following sense: the
user modifies on the fly the locations she submits aiming
for them to gradually form a histogram that resembles (or
avoids) a certain target. For example, a user may want to
avoid forming a location histogram like that of a wealthy
tourist, because wealthy tourists may be shown advertise-
ments for expensive products and services. Similarly, a user
may want to resemble the histogram of a health conscious
person, because that will reduce his health insurance pre-
mium or will increase his chances in a dating website.
We argue that, for user profiling by advertisers, insurance
companies and, generally, by data brokerage companies,
histograms of locations matter very much in order to, for
example, cluster users into various groups.

For on-the-fly privacy, the frequency of disclosure mat-
ters. We address users with sporadic location disclosure, not
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continuous disclosure. So, users submit locations only once
in a while and thus the correlation problem in trajectory
protection does not apply in our case. ILP mechanisms are
more relevant, but in contrast to them we are interested
in protecting the frequencies of visits to locations, which
constitute a separate privacy risk (Figure 1) that is not the
focus of ILP mechanisms and thus it is not appropriately
addressed by them. The fundamental reason is that ILP can
only reduce the frequency of a location, never increase it.
Also, they can typically only reduce it to 0, not to any
other value. Finally, they cannot make targeted additions to
certain locations, which may be needed to achieve the new
privacy notions that we define in this paper. We provide
further high-level examples in Section 2, and we make a
more concrete comparison to our algorithms in Section 6.6.

Fig. 1. Illustration of the location frequency profiling privacy threat. A
user who frequently visits Mosques will be classified as Muslim; similarly
for other frequently visited locations.

We summarize our contributions as follows:

• We introduce a new privacy notion: on-the-fly pri-
vacy for location histograms, in which a mobile
user repeatedly submits obfuscated locations to a
Location-Based Service aiming for the resulting his-
togram to resemble a target profile or differ from it.
By “on-the-fly” we mean that the protection mech-
anism needs to intervene and obfuscate the location
immediately when the user visits that location, in-
stead of waiting to collect all visited locations and
then obfuscating them all at once.

• We design a framework for constructing LPPMs that
achieves the privacy objectives while minimizing
LBS quality loss. The framework is statistical and
it is based on likelihood-ratio tests. We show how
optimal LPPMs can be constructed.

• We quantify how knowledge of the user’s expected
mobility helps achieve better privacy with the same
or smaller quality degradation. We measure quality
of loss incurred by users in a real dataset. Our data
show that the quality of loss was low in our dataset.
For example, for perfect privacy, the median user
submits locations that are about 430m away from her
true locations. For slightly less than perfect privacy,
this number drops to 150m, which is a reduction of
65%.

2 WHY FOCUS ON HISTOGRAMS INSTEAD OF INDI-
VIDUAL LOCATIONS?

As histograms are composed of visits to individual loca-
tions, one may think that an existing ILP approach that dis-
torts/suppresses sensitive locations and thus removes them
from the eventually formed histogram would be enough to
protect histogram privacy as well. In this section, we give
examples in which distortion/suppression of individual
locations either simply is not powerful/flexible enough to
achieve the privacy objective, or it protects privacy but
introduces more noise than necessary. In Section 6.6, we
make a more direct comparison between ILP and our own
algorithms.

The fundamental inflexibility of ILP approaches is
twofold: First, ILP only suppresses/distorts locations, there-
fore it can only lower the visit frequency to a location,
never increase it. However, an increase may be necessary to
achieve the privacy objective. In this case, an ILP would be
completely helpless in achieving the objective. Second, ILP
behaves identically every time the user visits the same lo-
cation, so, in conjunction with the previous observation, we
conclude that ILP’s only effect is to reduce a location’s visit
frequency to zero. However, the privacy objective may just
need a low frequency value, not necessarily zero, therefore
reducing the frequency to zero would unnecessarily affect
quality.

Example #1: In a very conservative state that monitors
the whereabouts of all its citizens, all are expected to have
at least a minimum frequency of visits to religious establish-
ments or places of worship. Similarly, a Health Insurance
Company announces that it will raise the premium for all
clients whose total visits to gyms, sports centers, and other
health-related locations are below a certain minimum fre-
quency. The latter is more than just an example: Unhealthy
users can be denied health insurance, as they constitute a
larger risk for the insurance company [12].

In both these cases, the user needs to increase her visits
to certain types of locations. ILP cannot help, because it can
only decrease visits.

Example #2: The Health Insurance Company announces
a premium increase for clients whose visits to junk-food
restaurants, night-clubs and other locations related to un-
healthy lifestyle (poor eating, drinking, not sleeping ade-
quately) are above a certain level.

In this case, an ILP will reduce the frequencies of such
visits to zero, but this is unnecessary for privacy and there-
fore unnecessarily detrimental for quality. Just reducing
them to below the acceptable level would suffice.

Note also that, in both Examples #1 and #2, the privacy
objective is about increasing or decreasing visit frequencies
to more than one location. In other words, the relevant objec-
tive is a histogram, so the privacy mechanism needs to be
aware of both the target histogram to resemble/avoid and
of the user’s evolving true histogram at the moments where
the mechanism needs to make a decision. Neither of these
histograms is taken into account by an ILP.

More complicated privacy objectives are also plausible:
For example, the Health Insurance Company may increase
the premium for users whose visits to junk-food restaurants
exceed their visits to gyms. In that case, an ILP can help
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privacy by reducing the junk-food restaurants visits to zero,
but again this may be unnecessary if the user is already
visiting gyms more often.

Note that none of the above are defects of ILP mecha-
nisms. They are not designed to achieve histogram privacy,
so it is natural that they do not do very well.

3 RELATED WORK

Research on location privacy is conducted both in the secu-
rity and privacy community and in the database and data
mining community. The latter community is concerned with
bulk release of data [13]. This is very different from our on-
the-fly setting in this paper, which is more common in the
security and privacy community: protecting users that move
around and send their location repeatedly to an untrusted
system. The seminal paper in this line of research is by
Beresford and Stajano [14], which introduced the general
problem and proposed the concept of mix zones to protect
user anonymity. Gruteser and Grunwald [15] were the first
to recommended using obfuscation to distort locations be-
fore sending them out of the device. Later, Gruteser with
Hoh et al. addressed location privacy for paths [16] as
opposed to individual locations. Krumm [17] provides an
excellent survey of research up until 2008.

Shokri et al. proposed a rigorous quantification of lo-
cation privacy based on Bayesian estimation [18] and then
described a way to protect privacy optimally for sporadic
queries [9] and for continuous queries [8]. Andres et al.
proposed geo-indistinguishability, an alternative characteri-
zation inspired by differential privacy [4] while Eltarjaman
et al. introduced the (f, ε)-geo-indistinguishable principle
[19]. Bringing together location privacy and differential
privacy, Fawaz et al. proposed an online private location
release mechanism that achieves differential privacy guar-
antees in indoor environments [20]. Most recently, privacy
has been studied in the context of mobile edge computing
and energy-aware security in cyber physical systems by
Sangaiah et al. [21], [22].

Bindschaedler and Shokri proposed and evaluated the
first formal and systematic methodology to generate fake
yet semantically real privacy-preserving location traces [23].
They computed the semantic similarity metric between lo-
cations. Using this, they found the optimal way to map the
visited locations in a pair of traces such that the mapping
maximizes the statistical similarity between their mobility
models.

None of the above papers aim to directly protect the accu-
mulated histogram of locations: they are focused on either indi-
vidual locations (sporadic disclosure) or trajectories (contin-
uous disclosure). Research on protecting histograms exists
only in the setting of interest to the database community. In
that research, however, the whole histogram is known to the
protection algorithm and it is processed/obfuscated in one
go, not on the fly as in our approach. We refer the interested
reader to Fanaeepour and Rubinstein [24] for a very recent
effort on protecting a histogram in one go.

4 SYSTEM AND ATTACKER MODEL

We consider a user who moves within a set of discrete
locations R. Each location in R is represented with a se-

mantic label and a pair of geographic coordinates (latitude,
longitude), e.g., 〈Seafood Restaurant, (40.781558,
-73.975792)〉. At discrete time instants t = 1, . . . , T , the
user wishes to submit her location to an LBS to receive
a useful service. The user’s location at time instant t is
denoted rt ∈ R. We assume that successive time instants
are far enough from each other for the locations to have no
significant correlations. This is known as sporadic location
disclosure in the literature, and it is compatible with LBSes
like nearest-Point-Of-Interest or checking into locations, in
which the user only discloses her location, e.g., about once
a day.

The user wants to protect her privacy in the following
sense: She wants her histogram of locations submitted up to
each time t to resemble a target histogram H

target
t . Alterna-

tively, she may choose to avoid it. A histogram H is a vector
whose entries correspond to locations r ∈ R, and the entry
for r, denoted H(r), is equal to the number of visits of the
user to r. When constructing a location histogram, only the
semantic part of the location is taken into account, e.g., all
mosques are grouped together.

To protect her privacy, the user employs a privacy mech-
anism LPPM that can distort locations before submitting
them to the LBS. In particular, instead of submitting rt, the
LPPM picks and submits a location r′t ∈ R at each time t
so as to keep the user’s histogram of submitted locations
H ′t similar to the target histogram H

target
t that she wishes to

resemble, or to keep H ′t different from H
target
t , if she wishes

to avoid the target.
We emphasize that the LPPM distorts locations on the fly.

As soon as the user visits a location and tries to submit it to
the LBS, the LPPM intervenes immediately and distorts it; it
cannot wait until the user has visited all locations.

We use dp(H ′t, H
target
t ), or equivalently dp(t), to denote

the distance betweenH ′t andH target
t . This function quantifies

privacy. We elaborate on how dp(t) is defined and computed
in Section 4.1. To keep the presentation simple, in the rest
of the paper we only focus on Target Resemblance. The
mathematics for both Resemblance and Avoidance are very
similar – we can derive equivalent algorithms by changing
all ≤ to ≥ below.

Submitting a fake location r′t instead of the true rt im-
proves privacy but causes some loss in the quality of service
that the user receives from the LBS. So, the LPPM has a dual
objective: protect privacy, but also not degrade quality. Note
that the location that the LPPM submits will not always
differ from the user’s true location, but for simplicity we still
refer to the submitted locations as “fake.” We use dq(rt, r′t)
to denote the quality loss when submitting r′t instead of rt,
and we elaborate further on how it is defined and computed
in Section 4.3. All notation and acronyms introduced in this
section and in the rest of the paper are listed in Table 1.

4.1 Attacker model - Privacy Objective

We consider the attacker to be the LBS that compiles the fake
histogramH ′t from the fake locations that the LPPM submits
over time. The attacker’s objective is to determine whether
H ′t can have plausibly come from the same distribution as
the target histogram H

target
t or not. Note this is a continuous

objective: with each new received location, the attacker
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TABLE 1
Notation and Acronyms

R Set of locations within which the user moves

T Length of time over which the user moves:
1, . . . , T

rt User’s true location at time t = 1, . . . , T

r′t User’s submitted location at time t = 1, . . . , T

dq(rt, r′t) Quality loss when submitting r′t instead of rt

H′
t Histogram of locations submitted by the user at

times 1, . . . , t− 1

H
target
t Target histogram to resemble (Target Resemblance

problem) or to avoid (Target Avoidance problem)

dp(t) User privacy at time t

dp(H′
t, H

target
t ) Alternative notation for dp(t) to emphasize that

user privacy is the distance between H′
t and

H
target
t

c privacy parameter; bound for dp(t)

χ2 Pearson’s Chi-Square statistic

LBS Location-Based Service

LPPM Location Privacy Preserving Mechanism

ILP Individual Location Protection

tries again to determine resemblance using all locations
submitted up to that time.

The attacker has the target histogramH
target
t in mind, but

he does not know that the user is trying to resemble that
particular histogram. Actually, he does not even know that
the user is trying to resemble any histogram. The attacker
only knows the locations that the user is sharing and he
aims to detect whether the histogram of these locations is
similar to H target

t .
This attacker model is in line with the examples in

Section 2, e.g., Example #1 where a government (attacker) is
monitoring the locations of all their citizens and they want
to detect whether the histogram of locations of each citizen
is similar to the “legal” or “orthodox” profile. In such a case,
the attacker does not know that a particular citizen is trying
to resemble a particular histogram. Also, he does not care
about reconstructing the exact histogram of each citizen; he
only cares whether it resembles the “legal” profile or not.
If the attacker knows that a citizen is modifying the shared
histogram to try to resemble the “legal” profile, then the
citizen will just be arrested.

To quantify resemblance, the attacker considers that H ′t
has been created by sampling t locations independently
from an unknown distribution, and H

target
t is the expected

histogram formed by sampling t locations from a target
probability distribution htarget. Note that htarget does not
change with time, whereas H

target
t does, so it is simpler

to think that htarget is what the user chooses to resem-
ble/avoid, and then H

target
t is created at each time t as

H
target
t (r) = t · htarget(r).

At each time t the attacker chooses between two compet-
ing hypotheses, RESEMBLE and DIFFER:

RESEMBLE H ′t has been drawn from htarget.

DIFFER H ′t has been drawn from some arbitrary
distribution on locations.

Intuitively, if the attacker chooses the RESEMBLE hy-
pothesis, this means he believes that the submitted locations
H ′t resemble the target histogram. If the attacker chooses the
DIFFER option, this means he believes the opposite: the sub-
mitted locations H ′t do not resemble the target histogram.
Because this is the Target Resemblance problem, the user
aims to make the attacker choose RESEMBLE.

The attacker’s task is a hypothesis test and to conduct such
tests it is standard to use likelihood ratios1. The alterna-
tives, such as Bayesian inference, would be applicable if the
attacker had some prior probability about each hypothesis
[25].

The attacker conducts the likelihood ratio test as follows:
First, compute the probability of the observed data H ′t
under the RESEMBLE hypothesis, Pr[H ′t;h

target]. This is the
likelihood of the RESEMBLE hypothesis. Then, compute the
highest probability of H ′t under any distribution on loca-
tions, which gives the likelihood of the DIFFER hypothesis.
The ratio of these two likelihoods is called likelihood ratio
statistic, and it is equal to

lrs(t) =
∑
r

H ′t(r) log
H ′t(r)

H
target
t (r)

, (1)

where r ranges over all locations in H
target
t , and H ′t(r) and

H
target
t (r) are the frequencies of visits to location r in the

respective histograms. In the literature this is called simple
goodness-of-fit test [25, Sec. 4.2.3].

Another popular statistic is Pearson’s chi-squared statis-
tic:

χ2(t) =
∑
r

(
H ′t(r)−H

target
t (r)

)2
H

target
t (r)

. (2)

Either statistic would produce similar results. To keep the
description general, we use the term privacy distance to refer
to the preferred statistic, and we denote it by dp(t). At cer-
tain points where it aids presentation, we use dp(H ′t, H

target
t )

as an equivalent form for dp(t). In the evaluation we set
dp(t) to χ2(t).

The fundamental observation is that, if the RESEMBLE
hypothesis is true, then H ′t(r) and H

target
t (r) will be close

to each other for all locations r, and so dp(t) will take a
small value. In contrast, if the DIFFER hypothesis is true,
then dp(t) will be large. Therefore, the attacker will choose
RESEMBLE if dp(t) is small and DIFFER if dp(t) is large.

The user selects a privacy parameter c and wishes to
keep dp(t) below c, because in Target Resemblance the user
aims to make the attacker accept RESEMBLE. The intuitive
meaning of c is the following: If dp(t) = c, then the user’s
submitted histogram is ec times more likely to have come
from an arbitrary distribution than from htarget. This is
similar to the meaning of ε in differential privacy, in which
the two hypotheses relate to two datasets that differ by one
element.

The LPPM may aim to enforce the bound dp(t) ≤ c at all
times

max
t=1,...,T

dp(t) ≤ c, (3)

1. For example, differential privacy is defined with the help of a
likelihood ratio.
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which means that the user wishes to make the attacker
accept RESEMBLE at all times.

Alternatively, the user may care about resembling the
target not at all times but only at a subset of times, for
example just at the final time t = T ,

dp(T ) ≤ c, (4)

which essentially means that the user only cares about
resembling the target when she has submitted all her lo-
cations, but not before.

We refer to this bound as the privacy constraint. In the
evaluation we explore both variants of the privacy con-
straint: strictly enforce at all times, and enforce at the end.

4.2 Mobility Knowledge
When choosing a fake location to submit, we expect it would
help if the LPPM knew how the user moves within the set
of locations R, but of course this knowledge may or may
not be available. We distinguish two variants, both of which
we explore in the evaluation:

4.2.1 No knowledge
The LPPM does not know how the user moves within R. In
this case, when taking a decision at time t, the LPPM only
knows the submitted histogram H ′t and the true histogram
Ht.

4.2.2 Known mobility profile π
The LPPM knows that the user visits location r ∈ R with
probability π(r),

∑
r π(r) = 1. This helps because the true

histogram (normalized, i.e., divided by t) will eventually
converge to π, so the LPPM can anticipate this convergence
and choose fake locations in a better way.

Note that a new possibility opens up for the user: She can
choose to aim for Target Resemblance in expectation, where
the expectation is taken over the user’s mobility profile π:

Eπ[dp(t)] ≤ c. (5)

As above, the bound could be enforced at all times t =
1, . . . , T , or just at t = T .

This is a less strict privacy objective than the ones listed
above in (3) and (4), because it is possible that dp(t) will
exceed c, but we expect that the quality loss would be
smaller. In the long run, i.e., as t gets larger, the user’s
true (normalized) histogram will converge to π, so the
probability of exceeding c would be negligible.

4.3 Quality Loss
The quality loss dq(rt, r

′
t) incurred when submitting r′t

instead of rt to the LBS obviously depends on the kind
of service provided by the LBS. For example, for an LBS
that returns the nearest restaurant to the submitted location,
dq should increase proportionately with the geographic
distance between rt and r′t. The problem with sending a
fake location is that the LBS response will not be the nearest
one to the user’s true location, so the user will have to travel
a longer distance.

In contrast, for a geofence-based LBS, the quality loss
is not smooth. The only thing that matters is whether the

submitted location and the true location are on the same
side of the geofence or not, so the quality loss is binary:
either zero or a maximum value.

In both these cases, though, the quality loss function
depends on the geographic distance between rt and r′t. We
use the term geographic dq for those functions that depend
on the geographic coordinates of rt and r′t, but not directly
on their semantic labels.

Different yet are the considerations that apply for LBSes
that provide location recommendations: dq should be de-
termined not by geographic distance, but by the semantic
difference between the submitted location and the true
location. The recommendation from the LBS may change
when submitting e.g., a Bar instead of a Restaurant, but
submitting one Bar instead of another makes no difference.
We use the term semantic dq for these cases.

Our approach applies for both geographic dq and se-
mantic dq . In fact, we can accommodate any function as
dq , as long as dq(r′, r) ≥ dq(r, r) = 0,∀r′, r ∈ R. To be
usable in our approach, dq just needs to reflect that there
is no quality loss when submitting the true location, and
that submitting a fake location never achieves better quality
than submitting the true location. Even though we use the
term “distance,” note that dq does not need to satisfy all the
distance axioms; in particular, it does not need to be either
symmetric, d(x, y) = d(y, x), nor to satisfy the triangle
inequality.

The user wishes to minimize the total quality loss,

min
T∑
t=1

dq(rt, r
′
t), (6)

or, when the user’s mobility profile π is known, the user
may wish to minimize the expected total quality loss:

minEπ

[
T∑
t=1

dq(rt, r
′
t)

]
. (7)

To keep the presentation simple, in the rest of the paper
we focus on geographic distances only. In the evaluation
we use a distance-proportional dq and a geofence-based
dq , with both the total and the expected variants. We use
the Haversine geographic distance, and for the geofence-
based dq we select the geofence radius to be 200m, which
aligns with Android’s recommendation of at least 100-150
meters, although our approach can obviously be used with
any other value2.

4.4 Optimal Design of the Histogram Privacy Mecha-
nism
Having defined all the components of our approach, we can
now state the optimization problem that we solve to obtain
the optimal LPPM. Intuitively, the problem is to find a rule
for choosing fake locations r′t that minimizes the quality
loss, subject to the privacy constraint.

Problem (Optimal Privacy for Histograms). Given a target
histogram over the locations R, a dq quality distance function, a
dp privacy distance function and an associated privacy parameter

2. https://developer.android.com/training/location/geofencing.
html#choose-the-optimal-radius-for-your-geofence

https://developer.android.com/training/location/geofencing.html##choose-the-optimal-radius-for-your-geofence
https://developer.android.com/training/location/geofencing.html##choose-the-optimal-radius-for-your-geofence
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c, and possibly knowledge about the user’s mobility, produce an
algorithm that minimizes the quality loss, subject to the privacy
constraint.

We make the following observations:

• This is a general problem that encompasses several
variants, as discussed above. Solving the problem
creates a custom LPPM for each input. For instance,
different users have different mobility profiles and
privacy objectives, and different LBSes lead to differ-
ent dq . Hence, our contribution is not a single LPPM,
but rather a framework to construct LPPMs given the
above mentioned inputs (Figure 2).

• This problem, and the analysis and the evaluation
in the following sections, are about the construction
of the LPPM, which only needs to be done once. Of
course, in the case of no mobility knowledge, the
construction is a greedy algorithm anyway, so it can
be done as the user moves. As we will see, it is very
computationally efficient. In the case of known mo-
bility, the construction involves solving a constrained
non-linear optimization problem, which would be
done offline. After the LPPM is constructed, using
it is a simple table lookup as we will see, so it can be
used very fast and with trivial computational power.
Of course, the table needs to be stored on the user’s
device, but the number of entries in the table are in
the hundreds or low thousands, each of which is a
real number, so the overall storage requirements are
low.

• We have chosen to minimize quality loss subject to a
privacy constraint. We could have instead chosen to
achieve a guaranteed quality level, while minimizing
the privacy loss. Mathematically, that would require
a trivial modification to the problem statement and to
our algorithm, i.e., only swap the objective function
with the privacy constraint. Philosophically, both
approaches make sense. If a user needs a privacy
guarantee, then the approach we follow is more
appropriate. If a user needs a quality guarantee,
because without it the application could become hard
to use, then the alternative is better. We favor having
a privacy guarantee based on a privacy parameter as
is typical in security and privacy mechanisms – e.g.,
ε in differential privacy or geoindistinguishability.

• We have left the choice of the target profile htarget to
the user, because the user is best placed to know what
inference they want to protect against. However, it
may be difficult for a user to know what the location
profile is e.g., for a typical wealthy user. This is
an important question, but we do not address it in
this paper. We expect that experts on city planning,
demographics research, or location-based marketing
could easily create a typical profile with locations in
a city that wealthy users or other types of users visit.
Specifically for wealthy individuals, anyone living
long enough in a city could probably compile a list
of places where the wealth hang out. Alternatively,
a user may want to resemble a generic person’s
profile, which would be the average popularity of
each location.

5 LPPM VARIANTS

5.1 Baseline: No Protection
As a baseline to compare all other LPPMs against, we use
an algorithm that merely submits the user’s true location at
all times to the LBS. Obviously, there is no quality loss in
this case, but privacy is worse than other algorithms. For
this algorithm, we measure and report privacy as dp(T ) =
χ2(T ), i.e., the privacy distance function after the user has
submitted all her locations to the LBS at time t = T . We call
this algorithm No-Protection.

5.2 No Knowledge and Deterministic Enforcement
The next variant that we evaluate is one with no mo-
bility knowledge and in which the privacy constraint is
enforced at all times. The quality loss is the total loss, i.e.,∑T
t=1 dq(rt, r

′
t). We call this algorithm No-Knowledge.

Since No-Knowledge does not know anything about the
user’s mobility pattern, the selection at time t can only be
done in a greedy manner, using the submitted histogram up
to and including time t H ′t, the quality metric dq , and the
privacy constraint,

dp(t) = χ2(t) =
∑
r′

(
H ′t(r

′)−H target
t (r′)

)2
H

target
t (r′)

≤ c. (8)

No-Knowledge works as follows: Assume the user is at
location r at time t. Among all possibilities for r′ that do
not violate the privacy constraint, choose the one with mini-
mum dq(r, r

′). If all r′ violate the privacy constraint, choose
one with least violation. This last possibility is unavoidable
in general, but the reason is more technical than substantial.
If the privacy constraint is very strict, e.g., c = 0, then H ′t
must be very close or identical to H target

t for all t. But H target
t

may not have integer entries, as it may have been produced
as t · htarget, whereas H ′t will always have integer entries.

The problem with aiming for strict enforcement at all
times is that it can result in avoidable quality loss by
replacing r with r′ and then, at a later time, replacing r′

with r. For example, consider a target in which locations r1
and r2 must have equal frequencies htarget(r1) = htarget(r2).
Assume that, at first, the user visits r1 frequently and r2
rarely, and then later the opposite happens so the two
frequencies would eventually balance each other out. This
means the target would be eventually achieved without
any intervention from the LPPM. However, the LPPM has
no mobility knowledge, so it cannot know how the two
frequencies will evolve, and also it aims to enforce the
privacy constraint at all times. Therefore, it will at first
distort r1 to r2, and then distort r2 back to r1, each time
causing quality loss. This motivates why a quality-sensitive
user may want to aim either for final-time enforcement at
time t = T , as opposed to at all times, or for enforcement in
expectation, as opposed to deterministic enforcement.

5.3 Known Mobility π and Enforcement in Expectation
at time T
In this variant, which we call Known-Mobility, the LPPM
knows that the user visits location r ∈ R with probability
π(r),

∑
r π(r) = 1, and aims to make the final histogram H ′t
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Fig. 2. Illustration of the use of the framework for constructing and using LPPMs.

resemble the target in expectation. To achieve this, the LPPM
will report a fraction frr′ of r-visits as r′-visits. So, for each
location r′, the reported frequency will be T

∑
r π(r)frr′ in

expectation, and we want to compute frr′ values that make
these reported frequencies such that the privacy objective is
satisfied. The LPPM will then pick r′ with probability frr′ ,
independently each time the user visits r.

The expected number of times when the r → r′ distor-
tion will happen is Tπ(r)frr′ , and this will cause expected
total quality loss equal to Tπ(r)frr′dq(r, r

′). The overall
optimization problem is then to choose fr,r′ values that
minimize the expected total quality loss, subject to the
privacy constraint:

Minimize
∑
r,r′

Tπ(r)frr′dq(r, r
′) (9)

subject to
∑
r′

(
T
∑
r π(r)frr′ −H

target
T (r′)

)2
H

target
T (r′)

≤ c (10)∑
r′

frr′ = 1,∀r (11)

frr′ ≥ 0,∀r, r′. (12)

Even before solving this problem, we can prove the
intuitive fact that there should not be distortion “flows” in
both directions between two separate locations, i.e., both
r → s and s → r. Assume the opposite were true, frs > 0
and fsr > 0 and also assume without loss of generality that
π(r)frs < π(s)fsr , i.e., that the r → s flow is larger than the
s → r. Then, the following transformation would reduce
quality loss and it would still satisfy the constraints: First,
reduce frs to zero and increase frr to frr + frs. This just
means that location r will now keep to itself the flow that
it was previously sending to s, which obviously is good for
quality. Then, decrease fsr to fsr − π(r)

π(s)frs and increase fss
by the same amount. Again, this is good for quality, because
s keeps to itself some of the flow it was sending to r. So, the
overall quality is improved.

All constraints are still satisfied:

• The fractions f are still nonnegative and sum to 1 for
both r and s:

∑
r′ frr′ = 1 and also

∑
r′ fsr′ = 1.

• For r, the incoming flow
∑
ρ π(ρ)fρr was affected

in two of its terms, ρ = r and ρ = s: The first
term was π(r)frr and it became π(r)(frr + frs)

when increasing frr to frr + frs, thus it increased by
π(r)frs. The second term was π(s)fsr , and it became
π(s)(fsr − π(r)

π(s)frs), thus it decreased by π(r)frs. So,
the overall sum

∑
ρ π(ρ)fρr does not change.

• Similarly, for s, the sum
∑
ρ π(ρ)fρs does not change.

5.4 Perfect Privacy
In the setting when π is known, the case c = 0 implies
that the user wishes to perfectly resemble the target profile
in expectation. This is expected to cause a larger quality
loss compared to c > 0, but it is a useful baseline in the
opposite direction from the no-protection baseline. It shows
how large the quality loss is for perfect privacy, so any
algorithm or heuristic that causes more quality loss than
this should not be considered.

Mathematically, this is a very interesting special case,
because the privacy constraint is simplified and it becomes
a linear function of frr′ . In fact, as we now show, the quality
loss is exactly equal to the Earth Mover’s Distance (EMD)
[26] between π andH target

T and the frr′ values become equiv-
alent to the flow coefficients that arise when computing the
EMD.

Setting c = 0 in the optimization problem (9), the
inequality constraint (10) becomes equivalent to:

T
∑
r

π(r)frr′ = H
target
T (r′),∀r′ (13)

because all the squared terms in (10) must be equal to zero.
We now divide the first constraint by T and recall that

H
target
T (r′)

T = htarget(r′). We multiply the other two constraints
by π(r), and we set grr′ = π(r)frr′ . The resulting problem
is exactly the EMD between π and htarget, with the “ground
costs” being Tdq(r, r′).

Minimize T
∑
r,r′

grr′dq(r, r
′) (14)

subject to
∑
r

grr′ = htarget(r′),∀r′ (15)∑
r′

grr′ = π(r),∀r (16)

grr′ ≥ 0,∀r, r′. (17)

Note that this new problem is almost completely indepen-
dent of T , as T only appears in the function to minimize.
For any other value of t = 1, . . . , T − 1, the coefficients frr′
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would be the same as for t = T , and the optimal value
(the quality loss) would just be t

∑
r,r′ grr′dq(r, r

′). So, we
conclude that this problem computes the expected quality
loss at each time instant, and we just need to multiply it by
t to find the expected quality loss after t time instants. We
call this algorithm Perfect Resemblance.

5.5 Run-time analysis
The time it takes to compute Known-Mobility depends
on the solver that is used. There are standard solvers for
non-linear constraint optimization problems that scale well
for the size of problem that we consider in this paper.
The number of variables frr′ to be computed is equal
to the product of two numbers: The number of different
geographic locations that a user visits, and the number of
different semantic locations needed to specify the target. In
practice, users do not visit many different locations. As we
show in the Evaluation with our analysis of the dataset, 90%
of the users visit less than 150 locations. More importantly,
we do not expect the target histogram/profile to need many
locations for its specification. For example, the “wealthy per-
son” profile could be “Spends 50% of their time in Airports,
Hotels, and Spas, equally spread, and the remaining time on
any other location.” So, in total, the problem may need up to
1000 variables, which takes a few minutes even on low-end
laptops.

The time to compute Perfect Resemblance is at most
that of solving a linear program, which is known to be
polynomial. The EMD calculation is a special case of a linear
program, a transportation problem, whose complexity is
not resolved as far as we know, but it can be solved in
O(n3 log n) time as a minimum cost network flow problem,
where n is the length of the histograms.

6 EXPERIMENTAL EVALUATION

In this section we evaluate each of the described algorithms
to establish its privacy-quality tradeoff. Note that the Perfect
Resemblance algorithm is by construction optimal, and so
is the Known-Mobility algorithm, given its constraints. So,
the evaluation we present for these two algorithms should
more appropriately be considered an illustration of the best
possible privacy (for Perfect Resemblance) and the best
possible quality for a given privacy constraint (for Known-
Mobility). There can be no other approach or heuristic that
performs better.

6.1 Experiment setup
We select a single semantic target histogram and, for a
range of privacy parameters c, we compute the quality loss
that each algorithm achieves when aiming to resemble that
target with dp ≤ c. Because we choose Target Resemblance
as the privacy notion to achieve, lower c values are better,
because they imply closer resemblance to the target.

We consider two different types of LBS: a nearest-PoI
LBS whose quality loss is equal to the geographical distance
between the true location and the submitted location, and a
geofence LBS whose quality loss is 0 if the geographical dis-
tance is less than a given threshold (200m) and 1 otherwise.
So, we compute two dq functions, one for each LBS, from the

dataset that we describe below. Finally, for the algorithms
that take as input the user’s mobility profile π, this is also
computed from the dataset.

6.2 Dataset

We use a dataset with 1083 users, each contributing a se-
quence of Foursquare check-ins in New York City [27]. Each
check-in is a quadruplet (user-id, label, latitude,
longitude) in which the label is a semantic label from
Foursquare’s categories [28], for instance (985, Office,
40.74441206, -73.98341417). We treat the successive
location visits by a user as being far enough in time from
each other to be independent of each other. In other words,
knowing where the user currently is, does not give any
information about where the user will go next. For con-
venience, we still refer to each sequence of locations as a
trajectory.

The dataset contains 227428 visits to 43207 unique loca-
tions. This is an average of 5.3 visits to each location, but
of course there is large variance across locations. Location
(40.75079479, -73.99357639), Pennsylvania Station, is visited
1147 times, making it the most visited location. These visits
may have been by the same users over and over, so to
measure location popularity we exclude repeated visits.
Excluding repeated visits, the most popular location is
the parking lot at JFK Airport Terminal 4, (40.64508935, -
73.78452301), with 274 out of 1083 distinct users visiting it
at least once.

Turning to semantic labels, there are 251 unique labels in
the dataset. The most visited one is Bar with 15978 visits,
and it is also the most popular after excluding repeated
visits: 960 out of 1083 distinct users visited a Bar at least
once. As with locations, label popularity varies a lot across
labels.

When it comes to users, we see that the trajectories of
different users vary widely both in the number of distinct
locations visited and in the total number of location visits
(length of each user’s trajectory). More than 90% of users
make up to 370 total visits each and the median trajectory
length is 147 total visits (Figure 3). The total quality loss is
a sum over all locations that a user visits, hence some users
may incur a higher quality loss just because their trajectory
is longer. We explore this issue further in Section 6.5.
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Fig. 3. Histogram of user trajectory lengths.
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6.3 Computation of algorithm inputs dq and π from
dataset
Because geographic locations are given as (latitude, lon-
gitude) pairs, we use the Haversine distance function to
compute dq . For the nearest-PoI LBS, dq is exactly equal to
this distance (in km), while for the geofence LBS dq is 0 if the
Haversine distance is less than a threshold radius of 200m
and it is 1 otherwise.

The user’s mobility profile π is simply computed as the
normalized histogram of locations that the user visits in the
dataset, i.e., π(r) is the user’s relative frequency of visiting
location r.

6.4 Privacy-quality tradeoff
We now illustrate the tradeoff between privacy and total
quality loss in each of our algorithms. We emphasize that
the actual values shown cannot be considered either good
or bad. They are just the privacy and quality that users get
if they want to resemble a certain target. For example, if
a user deems, the quality loss for a certain value of the
privacy parameter to be too high, then this just means that
it is not possible for that user to achieve the desired privacy
for an acceptable quality loss. The user must relax either the
privacy goal or accept worse quality.

The target histogram we use as an example has four
semantic labels, each with probability 0.125: Jewelry Store,
Ski Area, Stadium, Pool. This is supposed to portray a rich
athlete who spends 50% of their time spread equally across
locations with these four labels, and the remaining 50% on
any other locations. The user aims to resemble this target
to within a dp distance of c; the privacy parameters we use
are c ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, but we plot only
c ∈ {5, 25, 50} in most plots.

We first show the tradeoff for each algorithm separately,
using the nearest-PoI LBS, so quality loss is measured in km.
Then we compare all algorithms in one plot, which we also
do for the geofence LBS.

No-Protection: This algorithm just submits the user’s
true location to the LBS without any modification. The
quality loss is obviously 0 for both types of LBS. The privacy
values that we show in Figure 4 indicate how close each
user’s true histogram is to the target. The reason for the
observed variability is that the true histograms of some
users already happen to be close to the target histogram,
so even submitting their true histogram provides them a
certain degree of privacy in the sense of Target Resemblance.
Having said that, this algorithm provides the least possible
privacy across all algorithms.

Perfect Resemblance: The privacy achieved in this algo-
rithm (Figure 5) is the best possible across all algorithms,
i.e., it corresponds to the case c = 0, but the quality loss
is also the largest. In this sense, it is the polar opposite of
the No-Protection algorithm. Note that, by construction, for
Perfect Resemblance there is no tradeoff. Privacy is perfect
(dp is 0), so we report the total quality loss it produces for
each user.

We observe a long tail in the quality loss values, evident
also in that the average quality loss is more than 70% higher
than the median. The median quality loss is 72.2km, which
means that, over the course of a whole trajectory, the median
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Fig. 4. Histogram of privacy values achieved by No-Protection. Because
this mechanism just submits the user’s true location, the figure es-
sentially shows how far each user’s true histogram is from the target
histogram.

user will submit locations that are in total 72km away from
the true locations.
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Fig. 5. Histogram of quality loss values achieved by Perfect Resem-
blance.

No-Knowledge privacy: For this algorithm, we show
side-by-side the total quality loss for c = 5, 25, 50 in Fig-
ure 6. As in Perfect Resemblance, we observe that in each
plot there is wide variability across users: In all cases, there
are users with a quality loss four or more times higher than
the average. When comparing across the three values of
c, the median quality loss starts at 69.6km (c = 5), which
is very similar to the 72.2km in Perfect Resemblance and
indeed slightly better, even though Perfect Resemblance is a
mobility-aware algorithm and No-Knowledge is not. This is
the effect of c = 0 for Perfect Resemblance versus c = 5 for
No-Knowledge: Perfection in privacy comes at a significant
cost in quality. The relaxation in c from 0 to 5 is more than
enough to counterbalance the lack of mobility knowledge.

Known-Mobility privacy: As with No-Knowledge pri-
vacy, we plot Known-Mobility privacy for c = 5, 25, 50 in
Figure 7. This algorithm is expected to achieve the best
quality loss, and indeed this is the case. Across all values
of c, it produces values significantly lower than any of
the other algorithms (except No-Protection of course). Note
the horizontal axis range is different in each subplot (and
different from the subplot ranges in Figure 6), so the quality
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Fig. 6. Quality loss for No-Knowledge, Nearest-PoI LBS.

values of Known-Mobility are even better than what a direct
visual comparison suggests.

6.4.1 Comparative performance across algorithms
We now compare the privacy-quality tradeoff across algo-
rithms for all ten values of c from 5 to 50 and for both the
nearest-PoI LBS and the geofence LBS. For each algorithm,
we show the quartiles of the quality loss (median, 0.25 and
0.75 quantiles), in Figure 8 for the nearest-PoI LBS and in
Figure 9 for the geofence LBS with a radius of 200m.

For comparison, we also show the median privacy of
the No-Protection algorithm, and the median and 0.25-0.75
quantiles of the Perfect Resemblance algorithm.

We observe that the quality loss for the Known-Mobility
algorithm is consistently better than No-Knowledge, as ex-
pected, across both LBSes. The difference between the two
quantifies the value of knowing the user’s mobility.

In absolute terms, the Known-Mobility algorithm does
not seem to have terrible quality loss, even for low values of
c. Its median for c = 5 is significantly lower than even the
0.25 quantile of Perfect Resemblance, which again shows
how much difference a relaxation in c makes. The same
effect exists for both LBSes, and it is even more pronounced
in the geofence LBS.

It is also interesting and somewhat surprising that there
is non-negligible overlap between the quality loss values
of No-Knowledge and Known-Mobility, even though the
former is mobility-unaware. This is explained by the wide
variability across users: Some users’ true histograms are so
dissimilar from their resemblance target that even Known-
Mobility does not reduce their quality loss a lot. Conversely,
some histograms are so similar to the target that even No-
Knowledge, not knowing their mobility, does not hurt quality
very much. On the whole, however, mobility clearly helps.

6.5 Impact of trajectory length
In the previous sections, we always show the total quality
loss over the trajectory of a user. However, as we show
when analyzing the dataset (Figure 3), users have different
trajectory lengths, so users with long trajectories may have a
systematically higher quality loss than users with short tra-
jectories. We indeed observe this effect across all algorithms,
and we show it in indicative plots (Figure 10) for Perfect
Resemblance, No-Knowledge (c = 5), and Known-Mobility
(c = 5).

To account for this effect, we now plot quality loss
divided by trajectory length, i.e., we plot the quality loss
per location visit. The general observation is that all loss-
per-visit plots are less skewed than the corresponding total-
loss plots, as evidenced by the averages being much closer
to the medians.

In Perfect Resemblance we see that the median quality
loss per location visit is 0.43 km (Figure 11). Given that this
algorithm gives the best privacy and worst quality, 430m
seems acceptable.

In No-Knowledge the median quality loss drops from
420m (c = 5) to 200m (c = 25) to 70m (c = 50) – see
Figure 12. We can see how the distribution of users no-
ticeably shifts from being concentrated around 250m-500m
(c = 5) to around 0-150m (c = 50). The concentration is
more pronounced for the loss per location visit than for the
total loss, and the difference between the Average and the
Median is smaller than for the total loss.

Known-Mobility provides, as expected, the lowest qual-
ity loss per visit, with medians of 150m (c = 5), 60m
(c = 25), and 20m (c = 50) in Figure 13. Comparing c = 5
with Perfect Resemblance, which has a 430m loss, we see
that relaxing the requirement for perfect privacy can reduce
the quality loss by about 65%.

Comparing all algorithms for both types of LBSes (Fig-
ures 14 and 15) the picture is similar to the total quality loss,
except the overlap between No-Knowledge and Known-
Mobility is not that high any more. This shows more clearly
than before the benefit of knowing the user’s mobility.

6.6 Target Avoidance: Comparison to ILP mechanisms

Having described our proposed algorithms, it is now easier
to make a comparison to ILP mechanisms, all of which are
geared towards on Target Avoidance, to the best of our
knowledge.

We point out two problems that would result if one uses
an ILP to achieve the Target Avoidance objective. The cause
of these problems is that ILP algorithms essentially remove
all visits to sensitive locations.

First of all, in Target Avoidance, a target histogram to
avoid is given, but it is not obvious how to even define
the sensitive locations given that histogram. If we set the
sensitive locations to be the locations in the histogram, the
existing algorithms will submit a histogram with all zeros
in those locations. However, if the target histogram also has
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Fig. 7. Quality loss for Known-Mobility, Nearest-PoI LBS.
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Fig. 8. Nearest-PoI LBS: Tradeoff between privacy and quality loss.
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Fig. 9. Geofence LBS (radius 200m): Tradeoff between privacy and
quality loss.

all zeros in its locations, then the submitted histogram is
identical to the target, even though the user wishes to avoid
it.

Second, ILP algorithms incur unnecessary quality loss by
removing all visits. To see this, let’s assume that a user visits
a sensitive location, and the algorithm chooses to submit
the nearest location to the user instead of the sensitive
one. This is the most favorable choice for quality, and it
is exactly what our No-Knowledge privacy algorithm does
as well. However, the existing algorithm will always choose
a different location from the true location, whereas our No-
Knowledge algorithm will choose a different location only

if it is necessary for satisfying the privacy constraint. In
that sense, our No-Knowledge algorithm is always at least
as good, never worse, so we can consider the performance
plots of No-Knowledge as an upper bound for the perfor-
mance of existing algorithms.

Even if we calibrate an ILP to only remove an appro-
priate fraction of visits to a location, instead of removing
all visits, it can still not make targeted additions to locations
whose frequency needs to increase. If we modify the ILP
to also make targeted additions, then we have more or less
re-invented No-Knowledge.

7 CONCLUSION AND FUTURE WORK

We address the problem of on-the-fly protection of loca-
tion histograms. A user submits locations dynamically to
a Location-Based Service and wishes to make on-the-fly
modifications to continuously resemble (or, alternatively,
avoid) a target histogram. We describe an optimization
framework for optimally designing a protection mechanism
that simultaneously achieves a user-chosen privacy param-
eter and minimizes quality loss.

We believe this line of research can be fruitfully extended
to other areas, e.g., histograms of web page visits, web
search queries, and watching videos, all of which can be
used to profile users. In the context of location privacy, on-
the-fly protection can be applied to protect other patterns
beyond histograms: whether or not the user has visited a
certain combination of locations, e.g., a Casino and a Bank;
a Gym visit at least 7 times within a week, or a Cinema visit
followed by a Restaurant visit within one day. Finally, we
could consider more than one users, and in that case the
time and location dimension can be combined with a social
dimension: e.g., the adversary wants to detect whether user
A visited the same location as user B more than 5 times
in the past week at the same time (implying that user A
often meets user B), or whether user A consistently visits a
location the day after user B visits it (implying that user B
might be leaving a message/package for user A to collect).
We are not aware of work that addresses these objectives in
the on-the-fly setting, although in the static setting (privacy-
preserving data mining) it is common to protect sensitive
patterns.
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Fig. 10. Quality loss as a function of trajectory length, nearest-PoI LBS.
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Fig. 11. Quality loss per location visit for Perfect Resemblance.
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Fig. 12. Quality loss per location visit for No-Knowledge, Nearest-PoI LBS.
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Fig. 13. Quality loss per location visit for Known-Mobility, Nearest-PoI LBS.

0 10 20 30 40 50 60 70
Privacy parameter c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Q
ua

lit
y

lo
ss

Quality loss per location visit

Perfect Resemblance

No Protection
(median privacy)

No Knowledge

Known Mobility

Fig. 14. Nearest-PoI LBS: Tradeoff between privacy and quality loss per
location visit.

[28] Foursquare. (2018) Venue categories. [Online]. Available: https:
//developer.foursquare.com/docs/resources/categories

0 10 20 30 40 50 60 70
c

0.0

0.2

0.4

0.6

0.8

Q
ua

lit
y

lo
ss

Quality loss per location visit

Perfect Privacy

No Protection
(median privacy)

No Knowledge

Known Mobility

Fig. 15. Geofence LBS (radius 200m): Tradeoff between privacy and
quality loss per location visit.

George Theodorakopoulos received the
Diploma degree from the National Technical
University of Athens, Greece, in 2002, and the
M.S. and Ph.D. degrees from the University
of Maryland, College Park, MD, USA, in
2004 and 2007, all in electrical and computer
engineering. He is a Senior Lecturer at the
School of Computer Science & Informatics,
Cardiff University, since 2012. From 2007 to
2011, he was a Senior Researcher at the Ecole
Polytechnique Federale de Lausanne (EPFL),

Switzerland. He is a coauthor (with John Baras) of the book Path
Problems in Networks (Morgan & Claypool, 2010).

https://developer.foursquare.com/docs/resources/categories
https://developer.foursquare.com/docs/resources/categories


IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

Emmanouil Panaousis received the Diploma
degree in Informatics and Telecommunications
from the University of Athens, Greece, in 2006,
and the M.Sc. degree in Computer science
from the Athens University of Economics and
Business, Greece, in 2008, and the Ph.D. de-
gree in Mobile Communications Security from
Kingston University London, U.K., in 2012. He
is an Associate Professor at the School of Com-
puting and Mathematical Sciences, University of
Greenwich, since 2019. Prior to this, he held

appointments at the University of Surrey, University of Brighton, Imperial
College London, Queen Mary University London and Ubitech Technolo-
gies Ltd. His most recent research roles include: Principal Investigator
(PI) of H2020 CUREX project on cyber risk management for health
data exchange; PI of H2020 SECONDO project on security economics
with use cases in AI-enabled smart environments; PI of H2020 SPEAR
project on the intrusion detection for smart grid infrastructures. His core
expertise is on designing and implementing robust defences against
adversarial behaviour.

Kaitai Liang received the Ph.D. degree from
the Department of Computer Science, City Uni-
versity of Hong Kong, in 2014. He is currently
an Assistant Professor with the Department of
Computer Science, University of Surrey, U.K.
His research interests are applied cryptography
and information security, in particular, encryp-
tion, network security, big data security, privacy
enhancing technology, blockchain, lattice-based
crypto and security in cloud computing.

George Loukas received the Ph.D. degree in
network security from Imperial College London
(2006). He is currently an Associate Professor
in Cyber Security and Head of the Internet of
Things and Security research group at the Uni-
versity of Greenwich, as well as the Project Co-
ordinator of H2020 EUNOMIA tackling disinfor-
mation online and Principal Investigator of sev-
eral other inter- national research projects re-
lated to the security of smart homes, the Internet
of Things, autonomous vehicles, and human-as-

a-sensor systems. He has authored or co-authored more than 70 jour-
nals and conference publications. His book on cyber-physical attacks
was included in ACM’s top ten list in the computing milieux category of
2015. He is on the Editorial Board of the BCS Computer Journal and
Elsevier’s Simulation Modelling Practice and Theory.


	Introduction
	Why focus on histograms instead of individual locations?
	Related Work
	System and Attacker Model
	Attacker model - Privacy Objective
	Mobility Knowledge
	No knowledge
	Known mobility profile pi

	Quality Loss
	Optimal Design of the Histogram Privacy Mechanism

	LPPM Variants
	Baseline: No Protection
	No Knowledge and Deterministic Enforcement
	Known Mobility pi and Enforcement in Expectation at time T
	Perfect Privacy
	Run-time analysis

	Experimental Evaluation
	Experiment setup
	Dataset
	Computation of algorithm inputs dq and pi from dataset
	Privacy-quality tradeoff
	Comparative performance across algorithms

	Impact of trajectory length
	Target Avoidance: Comparison to ILP mechanisms

	Conclusion and Future Work
	References
	Biographies
	George Theodorakopoulos
	Emmanouil Panaousis
	Kaitai Liang
	George Loukas


