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Abstract A location histogram is comprised of the number of times a user has vis-
ited locations as they move in an area of interest, and it is often obtained from the
user in the context of applications such as recommendation and advertising. How-
ever, a location histogram that leaves a user’s computer or device may threaten
privacy when it contains visits to locations that the user does not want to dis-
close (sensitive locations), or when it can be used to profile the user in a way that
leads to price discrimination and unsolicited advertising (e.g. as “wealthy” or “mi-
nority member”). Our work introduces two privacy notions to protect a location
histogram from these threats: sensitive location hiding, which aims at concealing
all visits to sensitive locations, and target avoidance/resemblance, which aims at
concealing the similarity/dissimilarity of the user’s histogram to a target histogram

that corresponds to an undesired/desired profile. We formulate an optimization
problem around each notion: Sensitive Location Hiding (SLH), which seeks to
construct a histogram that is as similar as possible to the user’s histogram but as-
sociates all visits with nonsensitive locations, and Target Avoidance/Resemblance
(TA/TR), which seeks to construct a histogram that is as dissimilar/similar as
possible to a given target histogram but remains useful for getting a good re-
sponse from the application that analyzes the histogram. We develop an optimal
algorithm for each notion, which operates on a notion-specific search space graph
and finds a shortest or longest path in the graph that corresponds to a solution his-
togram. In addition, we develop a greedy heuristic for the TA/TR problem, which
operates directly on a user’s histogram. Our experiments demonstrate that all al-
gorithms are effective at preserving the distribution of locations in a histogram and
the quality of location recommendation. They also demonstrate that the heuristic
produces near-optimal solutions while being orders of magnitude faster than the
optimal algorithm for TA/TR.
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1 Introduction

A location histogram is a statistical summary of a user’s whereabouts, comprised
of the number of times a user has visited each location in an area of interest.
Location histograms are often obtained from users, in the context of applications
including recommendation [37, 38, 81], advertising [16, 25], and location pattern
discovery [80]. For example, a recommender application typically employs a set
of location histograms each corresponding to a different user (i.e., a user-location
matrix) as a training set, and it aims at recommending locations that a user may
be interested in visiting based on the user’s histogram [81]. Location histograms
are also often visualized or analyzed directly [85].

However, a location histogram that leaves a user’s computer or device may pose
a threat to the user’s privacy. This happens when the histogram contains visits
to sensitive locations that the user does not want to disclose, because they are as-
sociated with confidential information (e.g. a temple is associated with a religion,
and the headquarters of a political organization with certain political beliefs), or
when the histogram can be used to profile the user (e.g. as “wealthy” or “minority
member”) leading to price discrimination [47, 48] and unsolicited advertising [6].
For example, if the histogram reveals that a user frequently visits expensive restau-
rants, a targeted-advertisement application may display to the user advertisements
about products and services that are priced higher than normal [47,48].

In this work, we introduce two novel notions of histogram privacy, sensitive
location hiding and target avoidance/resemblance, for protecting against the dis-
closure of sensitive locations and user profiling, respectively. Sensitive location
hiding aims at concealing all visits to user-specified sensitive locations, by produc-
ing a sanitized histogram, in which the frequencies associated with the sensitive
locations are equal to zero. This protects a user from an adversary who receives
the sanitized histogram, knows the set of locations considered to be sensitive, and
tries to infer which of these sensitive locations were visited by the user. By en-
forcing the notion of sensitive location hiding, users are able to disseminate their
location histogram in order to benefit from location-based services, such as loca-
tion recommendation, while being protected from the inference of their sensitive
locations and the aforementioned consequences such inference may have.

Target avoidance aims at concealing the fact that the user’s histogram is sim-
ilar to an undesirable histogram that, if disseminated, would lead to undesired
user profiling. For example, a user may wish to make their histogram dissimilar
to a target histogram of a typical wealthy person, containing frequent visits to
expensive restaurants, to avoid price discrimination [47]. As another example, a
user’s location histogram may allow the inference of the user’s political affiliation,
religious beliefs, and sexual orientation, which may lead to emotional distress, ha-
rassment or even persecution. Thus, a user would wish to avoid disseminating a
histogram that is similar to histograms that can lead to such undesirable infer-
ences. This protects from adversaries who use the sanitized histogram and the
target histogram of a person with an undesirable profile, to infer that the user’s
histogram resembles the latter histogram.

Target resemblance is a variant of target avoidance, in which the user expressly
wishes to make their histogram similar to the target histogram representing a
desirable profile. For example, the desirable target histogram for a tourist could be
that of a local resident in order to avoid discriminatory practices towards tourists
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(e.g., price discrimination). As another example, consider a company that engages
in secret discriminatory hiring practices by preferentially hiring members of a
particular demographic group. There are cases where companies have been shown
to discriminate based on sexual orientation when hiring [71]. In these cases, a
person who wishes to be hired will want to make their histogram resemble that
of an heterosexual person, so as to avoid discriminatory treatment. The target
histogram may be specified by the users themselves, or selected with the help
of domain experts (see Section 3.3). Enforcing target resemblance protects from
adversaries who use the sanitized histogram and the target histogram of a person
with a desirable profile, to infer that the user’s histogram does not resemble the
latter histogram.

Comparing target avoidance and target resemblance, we see that in both cases
the adversary aims to infer whether or not the sanitized histogram resembles a
given target histogram. The difference is that, in target avoidance, the user wants
the adversary to conclude that there is no resemblance, whereas in target resem-
blance the user wants the opposite.

Our privacy notions can be achieved by histogram sanitization, i.e., by chang-
ing the frequencies of location visits in the histogram. However, sanitization incurs
a quality (utility) loss, which must be controlled to ensure that the user obtains
a good response from the application which uses their sanitized histogram. To
achieve this balance between privacy and quality, we define an optimization prob-
lem around each privacy notion: the Sensitive Location Hiding (SLH) problem,
which seeks to construct a sanitized histogram with minimum quality loss, and the
Target Avoidance/Resemblance (TA/TR) problem, which seeks to avoid/resemble
the target to a level at least equal to a user-provided privacy parameter, while en-
suring that the quality loss does not exceed a user-provided quality parameter. If
it is impossible to satisfy both the privacy and the quality requirements, then the
problem has no solution.

Neither notion can be achieved by existing methods for histogram sanitization.
The aim of existing methods is to either (I) prevent the inference of the exact
frequencies of the histogram (i.e., the number of visits to one or more locations)
[2, 18, 31, 34, 57, 77, 85], or (II) make a user’s histogram indistinguishable from a
set of histograms belonging to other users [20,24,76]. Their aim is neither to hide
sensitive locations, nor to avoid/resemble a target histogram. The privacy notions
we introduce in the paper are important to achieve in real applications, as we
discuss in Examples 2.1 and 2.2 in Section 2.

Therefore, we develop new methods for achieving the SLH and the TA/TR
notions: (I) An optimal algorithm for SLH, called LHO (Location Hiding Opti-
mal). (II) An optimal algorithm for TR, called RO (Resemblance Optimal). (III)
A greedy heuristic for TR, called RH (Resemblance Heuristic). Because TA and
TR are similar, we focus on TR and discuss TA briefly.

Our methods are both effective and efficient, as demonstrated by experiments
using two real datasets derived from the Foursquare location-based social net-
work [78], which together contain approximately 3400 histograms. In terms of
effectiveness, all algorithms achieve the corresponding notions, or announce that
it is impossible to achieve them, and they are additionally able to preserve: (I) the
distribution of locations in a histogram, which is useful in applications such as ag-
gregate query answering and classification [41,85], and (II) the quality of location
recommendation based on Collaborative Filtering [45]. In addition, the heuristic
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produces near-optimal solutions (up to 1.5% worse than the optimal), with respect
to preserving distribution similarity. In terms of efficiency, all algorithms scale well
with the histogram parameters, requiring from less than 1 second (the LHO al-
gorithm) to 5 minutes (the RO algorithm). In addition, the RH heuristic is more
efficient than the optimal algorithm by at least two orders of magnitude.

We note that our notions are framed in the context of location histograms but
can be applied to any histogram. For example, they could be applied to a histogram
comprised of webpage visits. The resultant sanitized histogram would then conceal
visits to webpages that a user does not want to disclose, or it would resemble/avoid
a target histogram for protecting the user from targeted advertising based on their
webpage visits.
Organization We provide an overview of and motivation for our approach in
Section 2; we introduce formal notation, and we formalize the privacy notions,
the adversary models, and the optimization problems we solve in Section 3; we
describe our algorithms and our heuristics in Section 4; we evaluate our approach in
Section 5; we discuss related work in Section 6; we conclude the paper in Section 7.

2 Overview and motivation of our approach

This section provides examples to motivate the need for sensitive location hiding
and target resemblance and also provides a high-level overview of the optimization
problems and methods for solving them.

2.1 Sensitive Location Hiding

Given a set of sensitive locations, a histogram satisfies the notion of sensitive
location hiding when the frequency of each of its sensitive locations is zero. Clearly,
one simple strategy to achieve this notion is by setting the frequency of each
sensitive location of a given histogram to zero. However, this strategy may have
a substantial negative impact on the quality (utility) of the histogram in location
histogram applications. This is because it reduces the size (sum of frequencies)
of the histogram. A size reduction should be avoided because some important
statistics depend on the size of the histogram. An example of such statistics is the
fraction of all users’ visits to a particular location in a city (i.e., the ratio between
the sum of the frequency of the location over all users’ histograms and the sum of
the sizes of these histograms), which is a simple indicator of the popularity of the
location. Another example is the average number of visits to a location (i.e., the
ratio between the size of the user’s histogram and the number of locations in the
histogram), which is used in location recommendation [8, 45].

A different strategy that achieves the sensitive location hiding notion, while
preserving the size of the histogram is to redistribute the frequency counts of the
sensitive locations to non-sensitive ones. However, the redistribution needs to be
performed in a way that preserves the quality (utility) of the histogram in location
histogram applications. The impact of each possible redistribution on quality must
be quantified, and the selected redistribution strategy must be the one with the
lower impact. We quantify the impact of a redistribution strategy with a quality
distance function, similarly to most works on histogram sanitization [2, 34, 77,
85]. This function offers generality, because different functions can be chosen for
different applications.

The above discussion motivates the formulation of the Sensitive Location Hiding

(SLH) optimization problem: Given a histogram H, a set of sensitive locations,
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and a quality distance function, produce a sanitized histogram H ′ such that the
frequency of each sensitive location in H ′ is 0, H ′ is as similar as possible to H,
and H ′ has the same size as H. Similarity is measured with the quality distance
function.

In Section 3.2 we give a formal definition of the SLH optimization problem,
discuss the adversary model it provides protection against, and show that the
problem is weakly NP-hard [53]. In addition, we discuss a variation of the problem
which relaxes the size requirement and can be easily dealt with by our algorithms.

To illustrate the SLH notion and the SLH problem, we now provide Exam-
ple 2.1, which is inspired from approaches on privacy-preserving recommenda-
tion [60,72]. However, the SLH notion and problem are not tied to recommenda-
tion and cannot be handled with existing approaches.

0

5

10

15

20

a b c d e f g h

locations

fr
e
q
u
e
n
c
y
 (

c
o
u
n
t)

(a) H

0

5

10

15

20

a b c d e f

locations
(b) H′ by LHO

0

5

10

15

20

a b c d e f g h

locations
(c) H′′ in TR

0

5

10

15

20

a b c d e f g h

locations
(d) H′RO by RO

0

5

10

15

20

a b c d e f g h

locations
(e) H′RH by RH

Fig. 1: (a) Location histogram. (b) Sanitized histogram produced by the LHO
algorithm when g and h are sensitive locations and the quality distance function
is Jensen-Shannon divergence [39] (only positive counts are illustrated). (c) Target
histogram used in the TR problem. (d) Sanitized histogram produced by the RO
algorithm when applied with the target histogram in Figure 1c. (e) Sanitized
histogram produced by the RH heuristic when applied with the target histogram
in Figure 1c

Example 2.1 (Illustration of the SLH notion and SLH problem) An application pro-
vides location recommendations to users by analyzing their location profiles. To
obtain a recommended location, a user must send 50 location visits to the applica-
tion in the form of a location histogram. To compute the recommended location,
the application uses common mining tasks, such as discovering frequent location
patterns in the user’s histogram and finding similar histograms to it [84]. The lo-
cation histogram H of a user Alice is shown in Figure 1a. The histogram contains
the number of times Alice visited each of the locations a to h. Alice is not willing
to provide H to the application, because the last two locations in H, g and h, are
sensitive, but she still wishes to receive a “good” recommended location by the
application. Therefore, Alice solves the SLH problem and obtains the sanitized
histogram H ′ shown in Figure 1b. The sanitized histogram preserves privacy, be-
cause it does not contain the sensitive locations. It can be sent to the application
to receive a fairly accurate recommendation, because it contains 50 visits to non-
sensitive locations (the visits to sensitive locations are zero and not shown) and is
as “similar” as possible to H, to the extent permitted by the privacy requirement.

To optimally solve the SLH problem, the LHO algorithm finds the exact num-
ber of sensitive location visits that need to be redistributed into each nonsensitive

bin (bin corresponding to a nonsensitive location), so that all sensitive location
visits are redistributed and quality is optimally preserved, with respect to the



6 G. Loukides and G. Theodorakopoulos

s

(2,0)

...

...

...

...

...

...

t

...

nonsensitive locations
                     L1       L2       L3       ...        Lm-1    Lm

(0,0)

t

target 

node
t

start node

start 

node e1
e2

em-1

em

shortest 

  path 

0    

K

1

 
K-1

c

o

u

n

t

s

 

(1,1) (2,1)

(m,K)

(m-1,K-1)

Fig. 2: Graph constructed by the Location Hiding Optimal (LHO) algorithm. The
shortest path from s to t corresponds to the optimal solution of the SLH problem.
Each node (i, j), i ∈ [1,m], j ∈ [0,K], in the path denotes the redistribution of j
sensitive location visits into the nonsensitive bins 1, . . . , i. The path corresponds
to the optimal way of redistributing all K sensitive location visits into all m non-
sensitive bins. The weight of the edge ((i, j), (i + 1, j + k)) denotes the impact on
quality caused by redistributing k sensitive location visits into the nonsensitive
bin i+ 1, and the sum of the edge weights of this path e1 + · · ·+ em quantifies the
quality distance between the optimal solution and H

quality distance function. That is, the algorithm determines the frequency of each
nonsensitive location of the sanitized histogram H ′, so that H ′ has the same size
with the given histogram H and is as similar as possible to it, with respect to the
quality distance function. However, it is computationally prohibitive to directly
compute the quality of each possible redistribution of the sensitive location visits
into the nonsensitive bins and then select the optimal solution. This follows from

the fact that there are O
(

(K+m−1
m−1 )

)
ways to redistribute K sensitive location vis-

its into m nonsensitive bins (each way corresponds to a weak composition of K [7]).
Therefore, LHO solves the problem by modeling it as a shortest path problem
between two specific nodes, s and t, of a directed acyclic graph (DAG) (see Fig-
ure 2). The node s is labeled (0, 0), and each other node is labeled (i, j), where
i ∈ [1,m] corresponds to a nonsensitive location Li and j ∈ [0,K] corresponds to
the number of sensitive location visits that will be redistributed into the nonsen-
sitive bins 1, . . . , i of the sanitized histogram H ′. For example, the label (m,K)
of the node t denotes the redistribution of all K sensitive location visits to all m
nonsensitive bins of H ′. We may refer to a node using its label. The graph contains
an edge from each node (i, j) to each node (i+ 1, j + k) with k ∈ [0,K − j], where
k denotes the number of sensitive location visits that are redistributed into the
nonsensitive bin i+ 1. For example, the edge ((i, j), (i+ 1, j + k)) = ((1, 1), (2, 1))
denotes that k = 0 visits are redistributed into the nonsensitive bin i+1 = 2. Each
edge ((i, j), (i+1, j+k)) has a weight that quantifies the impact on quality caused
by the redistribution of k sensitive location visits into the nonsensitive bin i + 1.
Every path from s to t corresponds to a feasible solution of the SLH problem. This
is because the nodes in the path uniquely determine how all K sensitive location
visits will be redistributed into all m nonsensitive bins of H ′ (see property (I) in
Section 4.1). In addition, the length (sum of edge weights) of the path is equal to
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the quality distance between the corresponding solution H ′ and H (see property
(II) in Section 4.1). Thus, the shortest path from s to t corresponds to a histogram
H ′ that is as similar as possible to H and therefore it is the optimal solution of
the SLH optimization problem. For example, applying the LHO algorithm to the
histogram of Figure 1a, when the locations g and h are sensitive and the quality
distance function is Jensen-Shannon divergence (see Section 3.1.1), produces the
sanitized histogram in Figure 1b. Note that the visits to g and h are redistributed
into all nonsensitive bins, so that the sanitized histogram is as similar as possible
to the histogram of Figure 1a. A formal description of the LHO algorithm, as well
as the analysis of the algorithm is provided in Section 4.1.

2.2 Target Resemblance

Given a target histogram, a histogram satisfies the notion of target resemblance
when it is similar enough to the target. A privacy distance function quantifies sim-
ilarity, and a privacy parameter quantifies the threshold for determining whether
the two histograms are similar enough.

Clearly, any histogram can be easily modified to be arbitrarily similar to a
given target histogram, by simply redistributing all its frequency counts so that
they are exactly equal to the counts in the target histogram. However, as in the
case of SLH, a simplistic redistribution can deteriorate quality unacceptably. The
modification to the histogram must balance between resemblance to the target
histogram and similarity to the original histogram. A quality distance function
quantifies the quality loss caused by the modification, and a quality parameter
quantifies the threshold for determining whether the loss is acceptable or not.

The above discussion motivates the formulation of the Target Resemblance (TR)
optimization problem: Given a histogram H, a target histogram H ′′, a quality dis-
tance function and a quality parameter ε, a privacy distance function and a privacy
parameter c, produce a sanitized histogram H ′ such that its quality distance from
H is at most ε, its privacy distance from H ′′ is minimized, and its size is the same
as H. If the resulting privacy distance of H ′ from H ′′ is larger than c, then there
is no solution.

In Section 3.3 we give a formal definition of the TR problem, discuss the adver-
sary model it provides protection against, and we show that it is weakly NP-hard.
In addition, we discuss a variation that relaxes the size requirement and can be
easily dealt with by our algorithms. To illustrate the TR privacy notion and opti-
mization problem, we provide Example 2.2.

Example 2.2 (Illustration of the TR notion and problem, continuing from Example 2.1)

Figure 1a shows the location histogram H of a user, Bob, who wants to use the
location recommendation application. Bob is not willing to provide H to the appli-
cation, because he is concerned about price discrimination, as a result of frequent
visits to locations f (“airport”) and g (“5-star hotel”). To achieve his purpose, Bob
can solve the Target Resemblance (TR) problem to generate a histogram that re-
sembles the target histogram H ′′ in Figure 1c. H ′′ reflects a budget-conscious
person, because in H ′′ the frequencies of locations a (“train station”), b (“2-star
hotel”), and c (“3-star hotel”) are relatively high, whereas the frequencies of f
and g are relatively low. Hence, H ′′ is likely to attract lower-priced recommenda-
tions than H would, and it is definitely more likely to prevent price discrimina-
tion [47,48]. The resemblance to H ′′ is satisfied by generating a sanitized histogram
H ′RO (RO for “Resemblance Optimal”) that minimizes a privacy distance function
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between the sanitized histogram and H ′′. In parallel, Bob still wishes to receive
a “good” recommended location by the application. This quality requirement is
satisfied by limiting the dissimilarity between H and the sanitized histogram H ′RO
to a maximum of ε = 0.05, as measured by a quality distance function, so that
the sanitization preserves the similarity between H and other users’ histograms,
which helps compute a “good” recommended location [45]. After solving the TR
problem, Bob obtains the sanitized histogram H ′RO in Figure 1d, which is almost
identical to the target H ′′.

To optimally solve the TR problem, the Resemblance Optimal (RO) algorithm
finds the exact number of location visits that need to be added into, or removed
from, each bin of a histogram H, so that the resultant sanitized histogram H ′ is
as similar as possible to the target histogram H ′′, and no more dissimilar from
H than what is allowed by the quality threshold ε. Again, the large number of

potential solutions, given by O
(

(N+n−1
n−1 )

)
, where N is the size of H and n is

its length, prohibits directly computing the quality of each possible solution and
selecting the optimal solution. Therefore, RO solves the problem by modeling
it as a constrained shortest path problem in a DAG (see Figure 3). The graph
contains a path (u00, u

N1
1 , . . . , uNnn ) for each allocation of N = Nn counts to the n

bins of the histogram (i.e., each allocation corresponds to a possible solution to
the Target Resemblance problem, ignoring the quality constraint), where a node
uNii corresponds to allocating Ni counts to bins 1 up to and including i. The
length of a path is equal to the dissimilarity of the corresponding allocation to
the target histogram H ′′, whereas the cost of the path is equal to the quality
loss as compared to the user’s histogram H. The algorithm finds the shortest
path among those whose cost does not exceed the quality threshold ε. As the
graph is a DAG, to find the optimal solution it suffices to explore it in Breadth-
First Search order. First, we compute constrained shortest paths to all nodes that
correspond to bin 1: uN1

1 , N1 = 0, . . . , N ; then, we extend these paths to all nodes

that correspond to bin 2: uN2
2 , N2 = 0, . . . , N and we prune them if they violate the

quality constraint; we continue all the way to u
Nn−1

n−1 , Nn−1 = 0, . . . , N and finally

to the node uNnn , Nn = N . The shortest path to that final node corresponds to the
optimal valid allocation of N counts to bins 1, . . . , n.

When solution optimality is not necessary, the TR problem can be solved more
efficiently by the RH heuristic. RH differs from the RO algorithm in that it restricts
the set of bins in the histogram H whose number of location visits can increase or
decrease. Specifically, it works in a greedy fashion, iteratively “moving” frequency
counts from source bins to destination bins. The source bins have higher frequency
in H than in the target histogram H ′′, whereas the destination bins have lower
frequency in H than in H ′′. Thus, moving counts from source to destination bins
makes the sanitized histogram more and more similar to the target histogram, but
it incurs a quality loss due to changes in frequency counts. Therefore, to control
the loss of quality, moves are performed for as long as the quality distance of
the resultant sanitized histogram from H does not exceed the quality threshold.
Example 2.3 below illustrates the RO algorithm and the RH heuristic.

Example 2.3 (Illustration of the RO algorithm and RH heuristic, continuing from Ex-

ample 2.2) Bob applies RO to his histogram H in Figure 1a, using the target his-
togram H ′′ in Figure 1c, the quality threshold ε = 0.05, and the Jensen-Shannon
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Fig. 3: Graph constructed by the Resemblance Optimal (RO) algorithm. The short-
est path from u00 to uNn with cost at most ε corresponds to the optimal solution of
the TR problem. The nodes of this path correspond to the optimal way of allocat-
ing counts to all bins. The edge weights of this path are (privacy, quality loss) pairs

(p1, q1), . . . , (pn, qn). The two weights of an edge u
Ni
i to u

Ni+k
i+1 are the privacy and

quality effects of allocating exactly k counts to bin i+ 1 of the solution histogram.
The sum

∑
i∈[1,n] pi quantifies the dissimilarity between the optimal solution and

the target histogram (smaller is better) and the sum
∑
i∈[1,n] qi quantifies the total

quality loss, which should be at most ε

divergence to measure dissimilarity from H ′′ and from H. The algorithm produces
the sanitized histogram H ′RO in Figure 1d, which is as similar to H ′′ as allowed
by the specified threshold. Similarly, Bob applies RH and obtains the sanitized
histogram H ′RH in Figure 1e. Comparing H ′RO and H ′RH to H ′′, we observe that
H ′RO is very similar to H ′′, while H ′RH is slightly less similar (e.g. the frequen-
cies of f and g are equal in H ′′ and H ′RO, while they are not equal in H ′′ and
H ′RH). However, H ′RH is still useful for getting a good recommendation from the
application, because the quality loss (dissimilarity to H) does not exceed ε.

3 Background, problem definitions, and adversary models

In this section, we define some preliminary concepts and then we formally define
the SLH, TA, and TR optimization problems. A summary of the most important
notation we introduce is in Table 1.

3.1 Preliminaries

We consider an area of interest, modeled as a finite set of semantic locations
L = {L1, . . . , L|L|} of cardinality |L|, where a location Li, i ∈ [1, |L|], is e.g. “Italian
Restaurant,” “Cinema,” or “Museum.”

We also consider a user who moves in this area. The user’s histogram is a vector
of integer frequencies H = (f(L1), . . . , f(Ln)), where n ≤ |L| is the length of the
histogram. Each location Li, i ∈ [1, n], has a frequency f(Li) > 0, when Li was
visited by the user, or f(Li) = 0 otherwise. We may refer to frequencies as counts.

We use H[i] to refer to the i-th element, or bin, of H, and N , or size, to refer
to the L1-norm |H|1 =

∑
i∈[1,n]H[i] of H. We use Hn,N to denote the set of all

histograms of length n and size N .
Having compiled H, the user wishes to submit it to a location-based applica-

tion. Before submitting it, the user transforms it into a sanitized histogram H ′ (in
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Table 1: Acronyms and Notation

Acronym Meaning
SLH Sensitive Location Hiding (input: H,L′, dq(), output: H′)
LHO Location Hiding Optimal (optimal algorithm for SLH)
TR Target Resemblance (input: H,H′′, dp(), dq(), ε, output: H′)
RO Resemblance Optimal (optimal algorithm for TR)
RH Resemblance Heuristic (heuristic for TR)
TA Target Avoidance (input: H,H′′, dp(), dq(), ε, output: H′)
JS Jensen-Shannon divergence

(distance function used in the evaluation)
Notation Meaning

L = {L1, . . . , L|L|} Set of semantic locations that a user can visit
L′ ⊆ L Set of sensitive locations (for SLH)
Hn,N Set of all histograms of length n, n ≤ |L|, and size N

H = (f(L1), . . . , f(Ln)) Histogram of nonnegative frequencies (counts)
of visits to locations L1, . . . , Ln ∈ L, n ≤ |L|

H′ Sanitized histogram
H′′ Target histogram (for TA and TR)
ε Maximum quality loss threshold (for TA and TR)

dp(H′, H′′) Privacy distance function (for TA and TR)
dq(H,H′) Quality distance function (measures quality loss)

a way to be made concrete in Problems 3.1 and 3.2 below) and then submits H ′

to the application. Next, the application returns a response to the user. Depend-
ing on the sanitization required, H ′ may contain zero frequency counts for some
locations, or it may contain nonzero frequency counts for locations that the user
never visited. If the user wishes, we can easily guarantee that H ′ will not contain
nonzero frequency counts for locations that the user never visited, by assigning an
infinite cost dq(H[i], H ′[i]) for each such location Li.

3.1.1 Quality loss

Since the user submits H ′, which is in general different from H, there will be a
negative impact on the quality of the application response. The resulting loss in
quality is measured by a quality distance function dq(H,H

′). For every pair H,H ′,
we require that dq(H,H

′) ≥ 0, and that H = H ′ implies dq(H,H
′) = 0. In addition,

we require dq to decompose as a sum over bins, i.e. there must be a function q

such that dq(H,H
′) =

∑
i∈[1,n] q(H[i], H ′[i]). Most distances used in data mining

applications in which distances between histograms/vectors must be preserved
(e.g., Jensen-Shannon divergence (JS-divergence) [39], Jeffrey’s divergence [57],
L2-distance (Euclidean distance) and Squared Euclidean distance [82], Variational
distance [39], Pearson χ2 distance [39], and Neyman χ2 distance [39]) decompose
as a sum over bins.

We use JS-divergence as the objective function dq in our experiments (see
Section 5). JS-divergence is a standard measure for quantifying distances between
probability distributions, which is often used in histogram/vector classification [46]
and clustering [52]. Given two histograms H1, H2, the JS-divergence between them
is defined as

JS(H1, H2) = 1
2·N ·

∑
i∈[1,n]

(
H1[i] · log2

(
2 ·H1[i]

H1[i] +H2[i]

)
+H2[i] · log2

(
2 ·H2[i]

H1[i] +H2[i]

))
.

with the convention 0 · log2(0) = 0. JS-divergence is bounded in [0, 1] [39], and
JS(H1, H2) = 0 implies no quality loss. As explained in [36], JS-divergence can
also be easily extended to capture semantic similarity requirements (e.g. An Italian
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Restaurant is more similar to a French Restaurant than to an American Cinema),
when this is needed in applications. The extended measure, called smoothed JS-
divergence, requires preprocessing the histogram by kernel smoothing and then
applying JS-divergence to the preprocessed histogram. Incorporating smoothed
JS-divergence in our methods is straightforward and left for future work.

3.2 The Sensitive Location Hiding problem: adversary model and formal
definition

As discussed in the Introduction and in Section 2, the Sensitive Location Hiding
(SLH) privacy notion aims to conceal all visits to sensitive locations. We formulate
the adversary model and the desired privacy property for the SLH notion as
follows.

The adversary knows: (I) the sanitized histogram H ′ that the user submits,
(II) the set of all possible sensitive locations L′, and (III) the fact that, if H ′ is
fake, then it must have been produced by the LHO algorithm in our paper. The
adversary has no other background knowledge. The adversary succeeds if, based
on their knowledge, they manage to determine whether or not the user visited one
or more of the sensitive locations in L′.

The desired privacy property is the negation of the adversary’s success crite-
rion. That is, the adversary must not be able to infer, from the sanitized histogram,
that the user has visited any of the sensitive locations.

We formally define the corresponding optimization problem as follows:

Problem 3.1 (Sensitive Location Hiding (SLH)) Given a histogram H ∈ Hn,N ,
a subset L′ ⊆ L of sensitive locations, and a quality distance function dq(), con-
struct a sanitized histogram H ′ ∈ Hn,N that

minimizes
H′∈Hn,N

dq(H,H
′)

subject to H ′[i] = 0 for each location Li ∈ L′.

Intuitively, the SLH problem requires constructing a sanitized histogram by
redistributing the counts of the sensitive locations of H into bins that correspond
to nonsensitive locations, in the best possible way according to dq. The sensitive
locations are specified by the user based on their preferences.

In the SLH problem formulation, we follow the user-centric (or personalized)
approach to privacy that is employed in [1, 3, 15, 62]. This approach requires the
users to specify their own privacy preferences, so that these preferences are best
reflected in the produced solutions. However, not all users may possess knowledge
allowing them to identify certain locations in their histograms as sensitive. Yet,
such users often know that a class of locations are sensitive, or they do not want
to be associated with a class of locations [40, 73]. For instance, several users may
not want to be associated with visits to any type of clinic or adult entertainment
location. In this case, users may employ a taxonomy1 to identify classes of sen-
sitive locations, which requires less detailed knowledge. This method is inspired

1 A taxonomy (also known as hierarchy) is a tree structure, in which the root corresponds
to the most general location “any”, there is a leaf node for each sensitive location, and the
internal nodes of the taxonomy correspond to aggregate/coarse sensitive locations.
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by [40, 73] and simply requires a user to select one or more nodes in the taxon-
omy. If a node u that is not a leaf is selected, then all locations corresponding to
leaves in the subtree rooted at u will be considered as sensitive. If the selected
node u is a leaf, then its corresponding location will be considered as sensitive.
Such taxonomies already exist for location-based data, and they can also be auto-
matically constructed based on machine learning techniques [68]. For example, in
the Foursquare taxonomy (see Section 5), there is an aggregate category (internal
node) “Medical center” which contains more specific categories (leaves) “Hospi-
tal,” “Rehab center,” etc.

Theorem 3.1. The SLH problem is weakly NP-hard.

Proof. See Appendix (Section A.1).

Clearly, the SLH problem seeks to produce a sanitized histogram H ′ with the
same size as H. As discussed in the Introduction, this allows preserving statis-
tics that depend on the size of the histogram, which are important in location
based applications, such as location recommendation. However, it is also possi-
ble to require the sanitized histogram H ′ to have a given size instead (e.g., when
an application requires a histogram to have a certain number of location counts,
or in pathological cases where redistribution leads to undesirable/implausible his-
tograms). This leads to a variation of the SLH problem, referred to as SLHr, which
requires redistributing r ≥ 0 counts of sensitive locations into the bins correspond-
ing to nonsensitive locations. Note the following choices for r in SLHr: (I) For
r = 0, the SLHr problem requires constructing a sanitized histogram where each
sensitive location has count 0 and each nonsensitive location has a count equal to
that of its count in H. Such a histogram is trivial to produce, by simply replacing
the count of each sensitive location with 0. (II) For r =

∑
Li∈L′ f(Li) (i.e., equal

to the total count of sensitive locations), SLHr becomes equivalent to the SLH

problem. (III) For r >
∑
Li∈L′ f(Li), the SLHr problem requires constructing a

sanitized histogram with larger size than H. As we will explain in Section 4.1, it
is straightforward to optimally solve SLHr based on our LHO algorithm.

3.2.1 Solutions to the SLH optimization problem satisfy the desired privacy property

The adversary cannot distinguish between a user A who has only visited nonsen-
sitive locations and thus submits a non-sanitized histogram HA, and a user B who
has visited some sensitive locations and the algorithm has produced a sanitized
histogram H ′B that is identical to HA. This is because every possible sanitized
histogram that the LHO algorithm can output is a valid histogram that could
have legitimately been produced by a user. Note that, if there are histograms that
cannot be produced by a legitimate user, LHO can be trivially adapted to never
output such histograms. This adaptation is easy because all histograms are en-
coded as paths in a graph, so illegitimate histograms are also paths in the graph,
referred to as illegitimate paths, and these histograms can be avoided by simply
changing the shortest-path finding algorithm to an algorithm that finds a shortest
path which is not contained in a given subset of illegitimate paths [56].

3.3 The Target Resemblance problem: adversary model and formal definition

As discussed in the Introduction and in Section 2, for the Target Resemblance (TR)
privacy notion the user specifies a target histogram H ′′ to resemble, a quality
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parameter ε and a privacy parameter c. The objective of the TR optimization
problem is to create a sanitized histogram H ′ that is as similar as possible to H ′′,
subject to the quality constraint dq(H,H

′) ≤ ε. The privacy distance function that
quantifies the notion of similarity is denoted dp(H

′, H ′′). If dp(H
′, H ′′) > c, then

H ′ is not acceptable, because it is not similar enough to the target.
The function dp(H

′, H ′′) is nonnegative and it must decompose as a sum over
bins, i.e. there must be a function p such that dp(H

′, H ′′) =
∑
i∈[1,n] p(H

′[i], H ′′[i]),
using zeros to fill in missing location counts. In TR, privacy is maximum when
H ′ = H ′′ (dp(H

′, H ′′) = 0), because there is no better resemblance than being
identical. Any function with these properties would be suitable as dp (e.g., JS-
divergence, or L2-distance). We use JS-divergence as dp in our experiments (see
Section 5).

We can formulate the adversary model and the desired privacy property for
this problem as follows: The adversary knows (I) the histogram H ′ that the user
submits, (II) a target histogram H ′′, (III) a privacy distance function dp(), and
(IV) a privacy parameter c.

Upon receiving H ′, the adversary compares it to the target H ′′ in order to
profile the user. For example, if an adversary wants to determine whether the user
is a member of a particular ethnic/religious/social group, the target histogram is
the histogram of a typical member of that group. Formally, the adversary makes
this determination by comparing dp(H

′, H ′′) to c, i.e., by comparing the privacy
distance between the user’s submitted histogram H ′ and H ′′ to the privacy param-
eter c. If dp(H

′, H ′′) ≤ c, the adversary concludes that the user is a member of the
group, otherwise they conclude that the user is not a member of the group. The
adversary has no other background knowledge. In particular, the adversary does
not know whether the user submitted their true histogram or the user submitted
a modified histogram aiming to resemble a particular target histogram. The ad-
versary succeeds if they conclude that the user is not a member of the group, i.e.
dp(H

′, H ′′) > c.
The desired privacy property is the negation of the adversary’s success crite-

rion. In TR, the desired privacy property is dp(H
′, H ′′) ≤ c.

We formally define the corresponding optimization problem as follows:

Problem 3.2 (Target Resemblance (TR)) Given two histograms H,H ′′ ∈ Hn,N ,
a privacy distance function dp(), a privacy parameter c, a quality distance function
dq(), and maximum quality loss threshold ε ≥ 0, construct a sanitized histogram
H ′ ∈ Hn,N that

minimizes
H′∈Hn,N

dp(H
′, H ′′)

subject to dq(H,H
′) ≤ ε.

If the resulting H ′ is such that dp(H
′, H ′′) > c, then it is impossible to achieve

both the desired privacy property and the desired quality constraint.

Intuitively, the TR problem requires constructing a sanitized histogram H ′ of
the same length and size with H and H ′′ that offers the best possible privacy by
being as similar as possible to the target histogram H ′′ according to dp, while
incurring a quality loss at most ε according to dq.

The function dq is selected by the location-based application provider (recipient
of the sanitized histogram) and is provided to the user together with an intuitive
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explanation of what different values of dq() mean for quality. For example, dq() ≥
0.8 means “very low quality”, 0.6 ≤ dq() ≤ 0.8 means “low quality” etc., where
“quality” refers to the quality of the application response (e.g. recommendation)
that the user receives. Then, in the spirit of user-centric (or personalized) privacy
[22, 63], the user uses the above explanation by the provider to choose a value of
ε that corresponds to his/her tolerance for quality loss.

The problem requires the user to specify the target histogram H ′′. However,
some users may not possess sufficient knowledge to perform this task, even though
they want to resemble a person with certain characteristics (e.g., a wealthy per-
son). In these cases, H ′′ can be constructed as follows. The user chooses a tar-
get probability distribution h′′ from a repository of probability distributions that
are constructed by domain experts and labeled accordingly (e.g., a distribution
corresponding to a “wealthy” profile, a “tourist” profile, a “healthy person” pro-
file [28, 69]), in the same way that experts compile e.g., adblock filters (lists of
URLs to block) or lists of virus signatures for antivirus software. To choose one of
these profiles, the user looks for a label that they want to resemble. This setup is
very similar to other papers in the literature [1, 15].

Note that the distribution h′′ may be defined on a different set of locations from
the user’s histogram H, in which case both are expanded to cover all locations in
either h′′ or H, with zero values for the new locations. Then, each entry h′′[i] is
multiplied by the size N of the user’s histogram H to create the target histogram
H ′′[i] (see Section 4.2). So, in effect, H ′′ is the expected histogram by a hypothetical
user that picks N locations from the distribution h′′. By the above construction,
H ′′ and H are of the same length n and size N , but note that H ′′ may not have
integer counts, because H ′′[i] = N · h′′[i] is not necessarily an integer. Strictly
speaking, this violates the requirement of histograms to have integer counts, but
that is not a problem for our methods, because the privacy distance functions do
not need integer arguments. However, we do require the histogram H ′ that the
algorithms output to have integer counts.

Theorem 3.2. The TR problem is weakly NP-hard.

Proof. See Appendix (Section A.2).

Clearly, the TR problem requires constructing a sanitized histogram H ′ with
the same size as H and H ′′. That is, it assumes that the desirable target histogram
H ′′ has the same counts as H, but these counts are distributed differently from
H. However, it is also possible to relax this assumption. This leads to a variation
of the TR problem, referred to as TR|H′′|1 , which instead requires the sanitized

histogram H ′ to only have the same size as H ′′, while it can be different from the
size of H. It is straightforward to optimally (resp., heuristically) solve TR|H′′|1
based on our RO algorithm (resp., based on our RH heuristic) (see Section 4.2).

3.3.1 Solutions to the TR optimization problem satisfy the desired privacy property

The TR problem tries to minimize dp(H
′, H ′′), while satisfying the quality

constraint dq(H,H
′) ≤ ε. Of course, a particular choice of ε affects privacy. If ε is

low, an algorithm for the TR problem may output an H ′ that is the same or very
similar to H, because all histograms that satisfy the specified quality constraint
are close to H. Then, the user has to decide whether this H ′ is safe to release.

Given the privacy parameter c, it is not safe to release H ′ when dp(H
′, H ′′) >

c. If dp(H
′, H ′′) > c, the user will decide not to release any histogram at all.
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Alternatively, the user may want to re-run the algorithm with a larger ε, i.e. to
sacrifice more quality in order to achieve the privacy requirement.

The user’s decision may depend on the intuitive meaning of the function used
for dp. For example, if dp is Pearson χ2 and the target H ′′ models a “wealthy” user,
then dp(H

′, H ′′) quantifies how much more likely it is that H ′ has been produced
by a user who follows the “wealthy” profile compared to any other profile2. Thus,
if this likelihood ratio exceeds c, then the user may not want to release that H ′.

It is also trivial to exclude solutions with dp(H
′, H ′′) > c by modifying our

methods to disregard such solutions and terminate if no solution exists. In con-
clusion, the user either submits a histogram that satisfies the privacy property, or
nothing at all.

3.4 The Target Avoidance problem

As mentioned above, Target Avoidance (TA) is a variant of the Target Resem-
blance (TR) problem, which we briefly discuss below. The algorithms for the TA
problem are very similar to those for TR and are omitted; for details see [42].

Problem 3.3 (Target Avoidance (TA)) Given two histograms H,H ′′ ∈ Hn,N , a
privacy distance function dp(), a privacy parameter c, a quality distance function
dq(), and maximum quality loss threshold ε ≥ 0, construct a sanitized histogram
H ′ ∈ Hn,N that

maximizes
H′∈Hn,N

dp(H
′, H ′′)

subject to dq(H,H
′) ≤ ε.

If the resulting H ′ is such that dp(H
′, H ′′) < c, then it is impossible to achieve

both the desired privacy property and the desired quality constraint.

Intuitively, the TA problem requires constructing a sanitized histogram H ′ of
the same length and size with H and H ′′. The sanitized histogram must offer the
best possible privacy by being as dissimilar as possible to the target histogram
H ′′ according to dp, while incurring a quality loss at most ε according to dq. The
threshold ε and target histogram H ′′ are specified by the user based on their
preferences. For example, the user can set H ′′ to H, in order to avoid H itself, or
to a part of H that contains the locations that characterize an undesirable profile
(e.g., frequent visits to airports) or are frequented by a certain ethnic minority
(which may help infer that an individual belongs to the minority). The user could
also choose H ′′ with the help of domain experts, as in the TR problem.

In terms of an adversary model, the adversary has the same knowledge as in
TR and they succeed if dp(H

′, H ′′) < c. If the algorithm does not produce an H ′′

such that dp(H
′, H ′′) ≥ c, then the user can either not submit any histogram at all,

or the user may want to re-run the algorithm with a larger ε. The proof that the
TA problem leads to a solution satisfying the desired privacy property is similar
to that for TR (omitted).

Theorem 3.3. The TA problem is weakly NP-hard.

Proof. Omitted (see [42]).

2 We refer the interested reader to statistics textbooks for more details [33]
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The TA problem is very similar to the TR problem. This is established through
a reduction from TA to TR that is given in Appendix (Section A.3). There is also
a variation of TA, referred to as TA|H′′|1 , which requires the sanitized histogram

H ′ to have the same size as H ′′, but not necessarily as H. Again, our methods can
easily deal with this variation.

4 Algorithms

Since the SLH, TR and TA problems are weakly NP-hard, it is possible to design
pseudopolynomial algorithms to optimally solve them. Such algorithms run in
polynomial time in the numerical value of the input [53]. We present optimal
algorithms based on shortest path problems for the SLH and TR problems. In
addition, we present a heuristic algorithm for the TR problem, which is more
efficient than the optimal algorithm by two orders of magnitude and finds solutions
of comparable quality. Furthermore, we explain how our methods can deal with
the variations SLHr and TR|H′′|1 of the SLH and TR problem, respectively.

4.1 LHO: An optimal algorithm for SLH

This section presents Location Hiding Optimal (LHO), which optimally solves
the SLH problem. Before presenting LHO, as motivation, we consider a simple
algorithm which distributes the counts of the sensitive location(s) to the non-
sensitive bin(s) proportionally to the counts of the non-sensitive bins. Thus, it
aims to construct an H ′ by initializing it to H and then increasing the count

of each non-sensitive bin H ′[i] by x[i] = H[i] ·
∑
i∈L′ H[i]∑
i∈L\L′ H[i] = H[i] · K

N−K , while

assigning 0 to each sensitive bin. While intuitive, this algorithm fails to construct
an H ′, for a given histogram H and distance function dq, when x[i] is not an integer,
and also it may lead to solutions with large dq(H,H

′) (i.e., low data utility), as it
does not take into account the input distance function dq.

We now discuss the LHO algorithm. Without loss of generality, we assume
that the nonsensitive locations correspond to the first n− |L′| bins of the original
histogram H = (f(L1), . . . , f(Ln)), while the remaining |L′| bins correspond to the
sensitive locations. The total count of sensitive locations in H is K =

∑
Li∈L′ f(Li).

LHO must move (redistribute) these counts into the nonsensitive bins, while min-
imizing the quality error dq().

The LHO algorithm is founded on the following observation: The optimal way
of redistributing counts to each nonsensitive bin of H ′ corresponds to a shortest
path between two specific nodes of a search space graph GLHO(V,E), where V and
E is the set of nodes and set of edges of GLHO, respectively. In the following, we
discuss the construction of GLHO and the correspondence between this shortest
path and the solution to the SLH problem. Then, we discuss the LHO algorithm.

GLHO is a multipartite directed acyclic graph (DAG) (see Figure 4) such that:

– It contains n−|L′|+1 layers of nodes. Layer 0 comprises a single node, and layers
1, ..., n − |L′| comprise K + 1 nodes each. Each layer 1, ..., n − |L′| corresponds
to a nonsensitive bin.

– The single node in layer 0 is labeled (0, 0), and each node in layer i ∈ [1, n−|L′|]
is labeled (i, j), where j denotes the redistribution (i.e., addition) of j counts
to bins 1 up to and including i of the sanitized histogram. We may refer to
nodes of GLHO using their labels.
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(0,0)

(1,0)

(1,1)

(1,K)

(2,0)

(2,1)

...

(2,K)

...

...

...

...

(n-|L'|,0)

...

(n-|L'|,1)

(n-|L'|,K)

(2,0)

E1,0

E1,1

E1,j

E1,K

E2,0

E2,1

...

E2,0

E2,0

En-|L'|,0

En-|L'|,0

En-|L'|,1

Layer 0          Layer 1       Layer 2                 Layer n-|L'| 

Fig. 4: Search space graph GLHO for the Sensitive Location Hiding problem. Layer
0 contains the node (0, 0) and each of the layers 1 to n− |L′| contains K + 1 nodes.
Each edge connects nodes of consecutive layers and has a weight equal to the error
Ei+1,k, where i + 1 is the layer of the end node of the edge and k is the count of
sensitive locations. Ei+1,k represents the impact of redistributing (i.e., adding) k
counts into the i+ 1 bin of the sanitized histogram H′, which is initialized to the
original histogram H. That is, Ei+1,k = q(H[i+ 1], H′[i+ 1] + k). The missing nodes
and edges are denoted with “. . .”

– There is an edge ((i, j), (i+ 1, j + k)) from node (i, j) to node (i+ 1, j + k), for
each i ∈ [0, n − |L′| − 1], where k ≥ 0, j + k ≤ K. That is, each node labeled
(i, j) is connected to every node in the following layer i + 1 that corresponds
to a count of at least j.

– Each edge ((i, j), (i + 1, j + k)) is associated with a weight equal to the error
Ei+1,k = q(H[i + 1], H[i + 1] + k). The error Ei+1,k quantifies the impact on
quality that is incurred by redistributing (i.e., adding) k counts into bin i+ 1.

Let P be a path comprised of nodes (0, 0), (1, k1), . . ., (n − |L′|, kn−|L′|) of
GLHO. The properties below easily follow from the construction of GLHO:

(I) The path P corresponds to an addition of ki − ki−1 counts to the i-th bin of
the histogram, for each i ∈ [1, n− |L′|], where k0 = 0.

(II) The length of P is equal to the total weight E1,k1 + . . . , En−|L′|,kn−|L′| of the

edges in P . This total weight is the total quality loss incurred by the allocation
corresponding to P .

Thus, the path P corresponds to a sanitized histogram H ′ whose first n − |L′|
bins have counts H[i] + (ki − ki−1), i = 1, . . . , n − |L′|, and dq(H,H

′) is equal

to
∑n−|L′|
i=1 q(H[i], H[i] + ki − ki−1). For example, the path comprised of nodes

(0, 0), (1,K), . . . , (n− |L′|,K) in Figure 4 corresponds to a sanitized histogram H ′

in which all K sensitive counts have been moved to the first bin. The quality loss
in this case is just dq(H,H

′) = q(H[1], H[1] +K), as all other bins have the same
counts in both H and H ′.

Conversely, each possible allocation of the K sensitive counts into nonsensitive
bins corresponds to a path between the nodes (0, 0) and (n − |L′|,K) of GLHO,
which represents a feasible solution to the SLH problem. Therefore, the shortest
path between the nodes (0, 0) and (n− |L′|,K)) of GLHO (i.e., the path with the
minimum length E1,k1 + . . . , En−|L′|,K ; ties are broken arbitrarily) represents a

sanitized histogram H ′ = (H[1]+(k1−k0), . . . , H[n−|L′|]+(K−kn−|L′|−1), 0, ..., 0),
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which is the optimal solution to SLH. This is because H ′ has minimum dq(H,H
′),

the same size with H, and a zero count for each sensitive location.
We now present the pseudocode of the LHO algorithm. In step 1, the algorithm

constructs the search space graph GLHO. In step 2, the algorithm finds a shortest
path between the nodes (0, 0) and (n− |L′|,K) of GLHO. In step 3, the sanitized
histogram H ′ corresponding to the shortest path (i.e., the optimal solution to the
SLH problem) is created and, last, in step 4, H ′ is returned.

Algorithm: LHO (Location Hiding Optimal)
Input: Histogram H, set of sensitive locations L′, quality distance function dq
Output: Sanitized histogram H′

1 Construct the search space graph GLHO
2 ((0, 0), (1, k1), . . . , (n− |L′|,K))← the shortest path from node (0, 0) to node

(n− |L′|,K) in GLHO
3 H′ ← (H[1] + k1, H[2] + (k2 − k1), . . . , H[n− |L′|] + (K − kn−|L′|−1), 0, . . . , 0)

4 return H′
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...
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...

...

...

...

(6,0)

...
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E2,1
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E2,0

E2,0

E6,0

E6,0

E6,1
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Search space graph GLHO:n=8, K=11, |L'|=2

 

(0,0) (1,2) (2,3) (3,4) (4,5) (5,8) (6,11)

Shortest path and edge weights (errors)

Edge weights (errors)
for the shortest path

E1,2 E2,1 E3,1 E4,1 E5,3 E6,3

Fig. 5: Search space graph GLHO for Example 4.1 (the missing nodes and edges
are denoted with “. . .”), and shortest path along with its corresponding weights

Example 4.1 LHO is applied to the histogram H = (7, 2, 3, 2, 13, 12, 8, 3) in Figure
1a. The set of sensitive locations L′ contains the locations g and h with counts 8
and 3, respectively, and the quality distance function dq is JS-divergence. In step
1, the algorithm constructs the search space graph in Figure 5. The graph has
n − |L′| + 1 = 7 layers of nodes, where n = 8 is the length of H and |L′| = 2 is
the number of sensitive locations. Layer 0 contains the node (0, 0) and each other
layer contains K + 1 = 12 nodes, where K = 11 is the total count of sensitive
locations in H. Each node in layers 1, . . . , 6 is labeled (i, j); i denotes the layer
of the node and j denotes the counts of sensitive locations that are redistributed
into bins 1, . . . , i. For example, the node (6, 11) denotes that all 11 counts of the
sensitive locations are added into bins 1, . . . , 6. In addition, there is an edge with
weight Ei+1,k between each node (i, j) and every node (i + 1, j + k), for each
k ∈ [0,K − j]. The weight Ei+1,k quantifies the increase to JS-divergence incurred
by redistributing (i.e., adding) k counts of sensitive locations into bin i + 1. For
example, the node (0, 0) is connected to the nodes (1, 0), . . . , (1, 11), and the edge
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((0, 0), (1, 2)) has weight E1,2 ≈ 1.8 · 10−3, because adding 2 counts into the first
bin increases JS-divergence by approximately 1.8 · 10−3. In step 2, LHO finds the
shortest path from the node (0, 0) to the node (6, 11), shown in Figure 5, and in
step 3 it constructs the sanitized histogram H ′ = (9, 3, 4, 3, 16, 15, 0, 0) (see Figure
1b) that corresponds to the shortest path. Note that j in the label (i, j) of each
node in the shortest path corresponds to the counts of sensitive locations that are
added into bins 1, . . . , i in H ′. Last, in step 4, H ′ is returned.

The time complexity of LHO is O
(
(n− |L′|) ·K2 + S

)
, where (n− |L′|) ·K2 is

the cost of constructing GLHO (step 1) and S is the cost of finding the shortest path
(step 2). Constructing GLHO takes O

(
(n− |L′|) ·K2

)
time, because GLHO con-

tains O
(
(n− |L′|) ·K

)
nodes and O

(
K + 1 + (n− |L′| − 1) · (K2 )

)
= O

(
(n− |L|) ·K2

)
edges, and the computation of each edge weight Ei+1,k takes O(1) time, because
it is computed by accessing a single pair of bins from H and H ′. The cost S is deter-
mined by the shortest path algorithm (e.g., it is O

(
(n− |L|) ·K2 · log((n− |L′|) ·K2)

)
for Dijkstra’s algorithm with binary heap [59]).

Note, the variation SLHr in Section 3.2 can be optimally solved by applying
LHO with K = r.

4.2 Optimal algorithm for Target Resemblance

In this section, we model and solve the TR problem as a constrained shortest path
problem on a specially constructed search space graph GTR. It follows immediately
that the TA problem can be seen as a longest path problem on the same graph.
Because the graph is a DAG, computing longest and shortest paths has the same
complexity [59]: By visiting the graph nodes in Breadth-First Search order, we
can simply keep track of the shortest (or longest) path to each node. We can even
solve the two problems in one pass. We focus on the TR problem, which we solve
optimally with the Resemblance Optimal (RO) algorithm.

In the following, we discuss the construction of GTR and then provide the
pseudocode of RO.

From the histogram H and the distance functions dp and dq, we construct a
multipartite DAG GTR = (V,E), as follows (see also Figure 6):

– There are n · (N + 1) + 1 nodes in V , where n and N are the length and the
size of the histogram H, respectively.

– The nodes are arranged in layers 0, 1, ..., n, with layer 0 having a single node
and layers 1, ..., n having N + 1 nodes each. Layer i ∈ [1, n] corresponds to
bin i (location Li) in the histogram. Node j ∈ [0, N ] in layer i corresponds to
the allocation of a total of j frequency counts to histogram bins 1 up to and
including i.

– The single node in layer 0 is labeled (0, 0), and each node j in every other layer
i is labeled (i, j). We may refer to nodes of GTR using their labels.

– The edges in E go from each node (i, j) to each node (i+1, j+k), k ≥ 0, j+k ≤ N ,
i.e. to each node in the following layer that has a frequency count at least equal
to j.

– The weight of an edge from (i, j) to (i+ 1, j + k) is the pair (perr, qerr)
i+1,k of

the privacy and quality errors of allocating exactly k counts to bin i+ 1 of the
sanitized histogram: perr = p(k,H ′′[i + 1]), qerr = q(H[i + 1], k). The p-length
of a path is the sum of its perr weights. We will refer to the path with the
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minimum p-length as the p-shortest path. Similarly, the q-length of a path is
the sum of its qerr weights.
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Fig. 6: Search space graph GTR for the Target Resemblance problem. Layer 0
is an auxiliary layer that just contains the node (0, 0). Layer i = 1, . . . , n corre-
sponds to bin i of the sanitized histogram, and node (i, j) corresponds to allocat-
ing j = 1, . . . , N counts to bins 1 up to and including i. A path from (0, 0) to (n,N)
completely defines an allocation of N counts to n bins. The weight of the edge
from (i, j) to (i + 1, j + k) is the privacy and quality error of allocating exactly k
counts to bin i + 1. As these errors are additive, the admissible paths are those
whose total q-length is less than the threshold ε. Among them, the p-shortest path
from (0, 0) to (n,N) corresponds to the optimal solution to TR, because it also has
q-length at most ε

At this point, note two important differences between the edge weights of GTR and
GLHO (Section 4.1): First, and most obvious, the edge weights in GTR are pairs
of (privacy error, quality error), whereas in SLH the weights are quality errors.
Second, in GTR the weight of edge from (i, j) to (i+1, j+k) corresponds to setting
H ′[i+ 1] exactly equal to k, whereas in GLHO that edge weight would correspond
to setting H ′[i+ 1] equal to H[i+ 1] + k.

From the construction of GTR, it follows that there is a 1− 1 correspondence
between a sanitized histogram H ′ ∈ Hn,N and a path from (0, 0) to (n,N) in GTR.
Therefore, to solve the TR problem, we need to find the path from (0, 0) to (n,N)
with minimum p-length among the paths whose q-length is at most ε. Then, it is
straightforward to construct the histogram from the path.

We now provide the pseudocode of the RO algorithm. We assume that the pre-
processing needed to construct H ′′ from h′′ is done before the actual algorithm
runs, and also H and H ′′ have been expanded to be defined on the same set of
locations, if needed (see Section 3.3 for details on h′′). Also, for the moment, we
assume that dq takes nonnegative integer values.

In step 1, RO constructs the graph GTR. In steps 2 to 6, the algorithm iterates
over each node v of the graph and associates with it a vector Vv, indexed by all
possible values of dq. The elements of Vv are initialized to 0 for node (0, 0), and
to ∞ for any other node of GTR. Next, in steps 7 to 9, RO iterates over the nodes
of GTR in increasing lexicographic order, starting from node (1, 0), and for each
node v it updates all the elements of Vv. Each element Vv[k] is updated using the
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Algorithm: RO (Resemblance Optimal)
Input: Histogram H, target histogram H′′, privacy distance function dp, quality

distance function dq , maximum quality loss threshold ε
Output: Sanitized histogram H′

1 Construct the graph GTR
2 foreach node v in GTR do
3 if the label of v is (0, 0) then
4 Associate the node v with a vector Vv s.t. Vv [k] = 0, for each integer k ∈ [0, ε]

5 else
6 Associate the node v with a vector Vv s. t. Vv [k] =∞, for each integer

k ∈ [0, ε]
7 foreach node v in GTR in increasing lexicographic order starting from node (1, 0) do
8 foreach element k of Vv do
9 Vv [k] = min(u,v)∈E,qerr(u,v)≤k{Vu[k − qerr(u, v)] + perr(u, v)}

10 ((0, 0), (1, j1), . . . , (n,N))← the shortest path from node (0, 0) to node (n,N) in
GTR. Its p-length is equal to the minimum element of Vv
for node v = (n,N).

11 H′ ← (j1, j2 − j1, . . . , N − jN−1)
12 return H′

following dynamic programming equation:

Vv[k] = min
(u,v)∈E,qerr(u,v)≤k

{Vu[k − qerr(u, v)] + perr(u, v)}. (4.1)

The element Vv[k] is equal to the p-length of the p-shortest path from (0, 0) to
node v with q-length exactly equal to k. Thus, as explained above, this path is
a feasible solution to the TR problem, and so the optimal solution to TR is the
p-shortest path from (0, 0) to (n,N) (i.e., the path corresponding to the minimum
element of the vector V(n,N)). The nodes of this path are found in step 10 and its
corresponding histogram H ′ is constructed in step 11.

We now consider the general case in which the values of q-length of a path
from (0, 0) to (n,N) are not necessarily integer. We first show that the q-length
of this path is polynomial in N , in Theorem 4.1 below. Then, we show that the
number of values of q-length for all paths is polynomial in N , which implies that
these values are not too many to store in the vectors Vu.

Theorem 4.1. The q-length of a path from (0, 0) to (n,N) can only take a polynomial

(in N) number of values.

Proof. The number of possible allocations of N elements to n bins, where some
of the bins may be left empty, is equal to the number of n-tuples of non-negative
integers f1, ..., fN that sum to N . Such tuples are called weak compositions of N
into n parts (weak, because zeros are allowed), and their total number is(

N + n− 1

n− 1

)
=

(N + 1)...(N + n− 1)

(n− 1)!
, (4.2)

which is a polynomial in N [7].

Eq. 4.2 gives all possible q-lengths for a path from (0, 0) to (n,N). We also need
to keep intermediate q-length values in the vectors Vv, i.e. q-lengths for paths from
(0, 0) to nodes in any layer 1, ..., n. But each intermediate allocation has at most as
many q-length values as the final one, because an intermediate allocation allocates
at most N elements to at most n bins. As there are n stages of intermediate
allocations, we have in total at most n · (N+n−1

n−1 ) values, i.e. a polynomial in N .
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Example 4.2 RO is applied to the histogram H = (7, 2, 3, 2, 13, 12, 8, 3) in Figure 1a,
using the target histogram H ′′ = (10, 8, 6, 2, 13, 4, 4, 3) in Figure 1c, JS-divergence
as the quality distance function dq and the privacy distance function dp, and
ε = 0.05. In step 1, the algorithm constructs the search space graph in Figure 7.
The graph has n + 1 = 9 layers of nodes, where n = 8 is the length of H. Layer
0 contains the node (0, 0) and each other layer contains N + 1 = 51 nodes, where
N = 50 is the size of H. Each node in layers 1, . . . , 8 is labeled (i, j); i ∈ [1, 8]
denotes the layer of the node and corresponds to bin i, while j ∈ [0, 50] denotes
the counts allocated to bins 1, . . . , i. For example, the node (8, 50) denotes that all
50 counts of H are allocated to bins 1, . . . , 8. In addition, there is an edge from
each node (i, j) to every node (i+1, j+k), for each k ∈ [0, 50− j]. The edge weight
is a pair (perr, qerr), where the privacy error perr (respectively, quality error qerr)
quantifies the error with respect to JS-divergence that is incurred by allocating k
counts to bin i+1 of the sanitized histogram (see Figure 7). For example, the node
(0, 0) is connected to the nodes (1, 0), . . . , (1, 50), and the edge ((0, 0), (1, 10)) has
(perr, qerr)

1,10 = (0, 3.8 ·10−3), incurred by allocating 10 counts to the first bin. In
steps 2 to 9, RO computes the vector Vu for each node u. In step 10, the algorithm
finds the shortest path from node (0, 0) to node (8, 50) with qerr ≤ ε (see Figure
7), and in step 11 it constructs the sanitized histogram H ′ = (10, 6, 5, 2, 14, 5, 5, 3)
that corresponds to the shortest path (see Figure 1d). Note that j in the label (i, j)
of each node in the shortest path corresponds to the counts of sensitive locations
that are allocated to bins 1, . . . , i in H ′. Last, in step 12, H ′ is returned.
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Fig. 7: Search space graph GTR for Example 4.2 (the missing nodes and edges are
denoted with “. . .”), and shortest path along with its corresponding edge weights

The time complexity of the RO algorithm is O((n · N)2 · (N+n−1
n−1 )). The total

cost is the sum of the cost of constructing GTR and of finding the constrained
shortest path from (0, 0) to (n,N).

The construction of GTR takes O(n ·N2) time. This is because the algorithm
constructs O(n · (N + 1) + 1) = O(n ·N) nodes, each of which has O(N) outgoing
edges, for a total of O(n · N2) edges. Note also that the computation of each
edge weight takes O(1) time. The cost of computing the shortest path is O((n ·
N)2 · (N+n−1

n−1 )). This is because it requires (I) constructing a vector Vv with O(n ·
(N+n−1
n−1 )) entries, for each node v of the O(n · N) nodes of GTR, which takes

O(n2 · N · (N+n−1
n−1 )) time, and (II) updating each entry of Vv once, which takes
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O(N) time per node since there are O(N) incoming edges to each node (see Eq.
4.1), for a total of O((n ·N)2 · (N+n−1

n−1 )) across all nodes.

Note, the variation TR|H′′|1 in Section 3.3 can be optimally solved by using

RO to allocate |H ′′|1 counts instead.

4.3 Heuristic for Target Resemblance

Our heuristic RH for the Target Resemblance problem works in a greedy fashion
to avoid the cost of constructing and searching the search space graph.

Algorithm: RH (Resemblance Heuristic)
Input: Histogram H, target histogram H′′, privacy distance function dp, quality

distance funct. dq , quality thr. ε
Output: Sanitized histogram H′

1 SrcBins← {i such that H[i] > H′′[i]}
2 DstBins← {i such that H[i] < H′′[i]}
3 H′ ← H
4 εrem ← ε // Remaining quality budget
5 while SrcBins 6= ∅ do

// Perform the best move on H′

6 (H′, Opt∆dq)← BestMove(H′, H′′, SrcBins,DstBins, εrem)
// Exit if the remaining budget is exhausted

7 if Opt∆dq = −1 then
8 break

// Update the remaining budget
9 εrem ← εrem −Opt∆dq

// Update the set of source and dest. bins
10 SrcBins← {i such that H′[i] > H′′[i]}
11 DstBins← {i such that H′[i] < H′′[i]}
12 return H′

The main idea in RH is to try to greedily reduce the differences in the counts
of corresponding bins between H and H ′′. As can be seen in the pseudocode (steps
1 and 2), RH identifies source bins, i.e. bins in H with more counts in H than
in H ′′, and destination bins, bins with fewer counts in H than in H ′′. Bins with
equal counts in H and H ′′ are ignored. Then, in steps 3 and 4, H ′ is initialized
to the original histogram H and the remaining quality budget εrem to the quality
threshold ε. In steps 5 and 6, RH moves some counts from a source bin to a
destination bin using a function BestMove.

As can be seen in the pseudocode of BestMove (steps 4 to 6), the function
searches all possible ways (“moves”) to move k counts from a source bin i to a
destination bin j. For each move, BestMove computes the privacy effect ∆dp and
the quality effect ∆dq (steps 10 and 11), and it selects the move that maximizes

the ratio
∆dp
∆dq

, subject to the constraint that ∆dq cannot exceed the remaining

quality budget εrem (steps 12 to 15)3. The rationale is to prioritize moves with a
large improvement in privacy ∆dp and a small reduction in quality ∆dq.

3 Note that ∆dq > 0, because ∆dq is the sum of two positive terms (in square brack-
ets): ∆dq = dq(H′tmp, H)− dq(H′, H) = q(H′tmp[i], H[i]) + q(H′tmp[j], H[j])− q(H′[i], H[i])−
q(H′[j], H[j]) = [q(H′[i]− k,H[i])− q(H′[i], H[i])] + [q(H′[j] + k,H[j])− q(H′[j], H[j])] . The
first term is positive: Bin i is a source bin, which means H′[i] ≤ H[i]. But H′[i] − k < H′[i],
so the distance q(H′[i] − k,H[i]) is larger than q(H′[i], H[i]). Similarly, the second term is
positive, because bin j is a destination bin.
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Function: BestMove
Input: Sanitized histogram H′, target histogram H′′, Set of source bins SrcBins,

Set of destination bins DstBins, Remaining budget εrem, Privacy distance
function dp, Quality distance function dq

Output: Sanitized histogram H′ after performing the best move, difference in dq
incurred by the best move

1 MaxRatio← 0
2 Opt∆dq ← −1
3 H′BestMove ← H′

4 foreach bin i in SrcBins do
5 foreach bin j 6= i in DstBins do
6 foreach k ∈ [1, H′[i]] do

// Try moving k counts from a source bin H′[i] to a destination
bin H′[j]

7 H′tmp ← H′

8 H′tmp[i]← H′[i]− k
9 H′tmp[j]← H′[j] + k

10 ∆dp ←
∣∣∣dp(H′tmp, H

′′)− dp(H′, H′′)
∣∣∣

11 ∆dq ← dq(H′tmp, H)− dq(H′, H)

// Store the best sanitized histogram so far, its ratio and
remaining budget

12 if
∆dp
∆dq

> MaxRatio and ∆dq < εrem then

13 H′BestMove ← H′tmp

14 MaxRatio← ∆dp
∆dq

15 Opt∆dq ← ∆dq
16 H′ ← H′BestMove
17 return (H′, Opt∆dq)

Next, in step 7, RH checks whether the remaining budget is exhausted. If it
is, no more moves are performed (step 8). Otherwise, in steps 9 to 11, RH reduces
the quality budget by Opt∆dq (i.e., by the quality effect of the best move), and
updates the sets of source and destination bins by no longer considering as source
or destination bins any bins whose count has become equal to the corresponding
bin in H ′′. Moves continue until the budget is exhausted or there are no more
source/destination bins. Since moves cannot increase the count of a source bin nor
increase the remaining quality budget, RH will always terminate.

The time complexity of RH is O(n3 · N). This is because the loop in step 5
runs O(n) times (once per source bin), and each time there is a cost of O(n2 ·N)
incurred by BestMove. The cost of BestMove is O(n2 · N), because there are
O(n2) source/destination bin pairs, and for each pair O(N) temporary moves are
performed. The time complexity analysis refers to the worst case. In practice, a
histogram can be sanitized with a smaller number of moves (i.e., executions of
BestMoves), and the heuristics scale well with respect to n. For example, in our
experiments, the heuristics scale close to linearly with respect to n.

Last, we note that the RH heuristic can also directly deal with the variation
TR|H′′|1 of the TR problem (see Section 3.3). This is because RH does not pose

any restriction on the size of H ′′, so H ′′ can have a different size than that of H.

5 Evaluation

In this section, we evaluate our algorithms and heuristics in terms of effectiveness
and efficiency. We do not compare against existing histogram sanitization methods,
because they cannot be used to solve the problems we consider (see Section 6.2).
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5.1 Setup and datasets

To calculate the loss in quality (utility) incurred by replacing the original histogram
H with the sanitized histogram H ′, we compute the distance dq(H,H

′), where dq
is the Jensen-Shannon (JS) divergence (Section 3.1.1). Our algorithms can opti-
mize other measures, leading to qualitatively similar results [42]. In addition, we
measure how well sanitization preserves the quality of location recommendation.

Location recommendation suggests to a user, referred to as active user and
denoted with α, a location that might interest them. We measure the impact of
sanitization on recommendation quality based on the recommendation error [45],
defined, for an active user α and a location Lαtest, as the difference between
fα(Lαtest), the user’s true frequency of visits to Lαtest, and rα(Lαtest), the frequency
of visits as predicted by the recommendation algorithm. We use both the abso-
lute error |fα(Lαtest) − rα(Lαtest)| and the square error (fα(Lαtest) − rα(Lαtest))

2.
We compute recommendations based on the dataset of original user histograms,
and then based on the dataset of sanitized histograms as follows: (I) each of
these datasets is randomly partitioned into a training set Dtrain with 90% of
the histograms and a test set Dtest with 10% of the histograms, (II) the ab-
solute (or square) recommendation error considering each user in Dtest as α is
computed, and (III) the errors are averaged to obtain two popular measures;
Mean Absolute Error MAE and Root Mean Square Error. For the absolute error,
MAE(Dtest) = 1

|Dtest|
∑

(α,Lαtest)
|fα(Lαtest)− rα(Lαtest)|, and Root Mean Square Er-

ror RMSE(Dtest) =
√

1
|Dtest|

∑
(α,Lαtest)

(fα(Lαtest)− rα(Lαtest))
2. For the square

error MAE and RMSE are defined similarly.
All algorithms are implemented in Python and applied to the New York City

(NYC ) and Tokyo (TKY ) datasets, which were also used in [50, 79, 80]. The
datasets were downloaded from [78] and include long-term check-in data in New
York city and Tokyo, collected from Foursquare from 12 April 2012 to 16 February
2013. Each record in the datasets contains a location that was visited by a user
at a certain time and corresponds to a leaf in the Foursquare taxonomy (available
at https://developer.foursquare.com/docs/resources/categories). There are in
total 713 locations in the taxonomy, and on average each user visits fewer than 41
locations. For each dataset, we produce the input histograms for our algorithms
by constructing one histogram H per user. The histogram H contains a count
f(Li) > 0 for every location Li visited by the user. That is, H is constructed based
on the user’s values (location visits), which is line with histogram sanitization
methods [2, 18, 31, 34, 57, 77, 85]. Table 2 shows the characteristics of NYC and
TKY, and Table 3 shows the default values used in our experiments.

Dataset # histograms mean of length n max. length n mean of size N
NYC 1,083 40.28 139 209.99
TKY 2,293 32.36 158 221.57

Table 2: Characteristics of datasets

Dataset n K |L′| ε N
NYC 25 20 5 5 · 10−3 100
TKY 35 20 5 5 · 10−3 100

Table 3: Default values for each dataset w.r.t: length n, total frequency of sensitive
locations K, number of sensitive locations |L′|, threshold ε, and histogram size N

We also construct synthetic histograms by appending zeros to a histogram of
length n = 78 and size N = 192 in NYC and to a histogram of n = 99 and N = 642
in TKY, and their length is up to 400, including the zero-frequency bins. We use

https://developer.foursquare.com/docs/resources/categories
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the synthetic histograms to test the impact of length on the runtime performance
of our methods. In total, we test the algorithms on approximately 3400 different
histograms. All experiments ran on an Intel Xeon at 2.60GHz with 256GB of RAM.

5.2 Evaluation of the LHO algorithm

We evaluate the quality and runtime of LHO as a function of (I) n, the length of
the original histogram, (II) K, the total frequency of sensitive locations, and (III)
|L′|, the number of sensitive locations. We consider JS-divergence as dq() and an
L′ comprised of 5 sensitive locations selected randomly, unless stated otherwise.

(a) NYC (b) NYC (c) TKY (d) TKY

Fig. 8: JS-divergence vs length n: (a) Median JS-divergence for histograms of
length n in NYC. (b) JS-divergence for each histogram with K = 20 in NYC. (c)
Median JS-divergence for histograms of length n in TKY. (d) JS-divergence for
each histogram with K = 20 in TKY

5.2.1 Quality preservation for the LHO algorithm

Impact of histogram length n We show that JS-divergence decreases with n, in Fig-
ure 8 (the y axis is in logarithmic scale). This is because there are more bins whose
counts may increase: The space considered by LHO is larger and the change can
be “smoothed” over more bins. Also, the JS-divergence scores are low, suggesting
that sanitization preserves the distribution of nonsensitive locations fairly well.

Impact of total frequency of sensitive locations K We show that JS-divergence in-
creases with K in Figure 9 (the y-axes are in logarithmic scale). This is because
there are more counts that must be redistributed into the bins of nonsensitive
locations, and this incurs more distortion. Note, the JS-divergence scores are low,
suggesting that the distribution of nonsensitive locations is preserved fairly well.

(a) NYC (b) NYC (c) TKY (d) TKY

Fig. 9: JS-divergence vs total frequency of sensitive locations K: (a) Median JS-
divergence for varying K in NYC. (b) JS-divergence for each histogram with n = 30
in NYC. (c) Median JS-divergence for varying K in TKY. (d) JS-divergence for
each histogram with n = 40 in TKY
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Fig. 10: Cumulative Distribution Function of JS-divergence (i.e., ratio of his-
tograms with JS-divergence at most equal to a score in x axis) vs |L′| for: (a)
NYC, and (b) TKY. Recommendation quality vs |L′| w.r.t: (c) MAE, and (d)
RMSE.

Impact of number of sensitive locations |L′| We show that JS-divergence increases
with |L′|, in Figures 10a and 10b. This is because there are (I) more counts that
need to be redistributed into the bins of the nonsensitive locations, and (II) fewer
bins to which the counts may be redistributed into, and, as demonstrated above,
both (I) and (II) incur more distortion. However, the distributions of the original
histograms are preserved well even when |L′| = 10, with 90% of them having a
JS-divergence score of at most 0.07. The remaining histograms have higher scores
because on average 70% of their locations are treated as sensitive.

Recommendation quality Figures 10c and 10d show that MAE and RMSE are
not substantially affected by sanitization, for all tested |L′| values. The change in
MAE and RMSE is on average 0.1% and 2.4%, respectively. This suggests that
recommendation quality is preserved fairly well.

5.2.2 Runtime performance for the LHO algorithm

We evaluate the runtime performance of LHO as a function of (I) n, (II) K, and
(III) |L′|. To isolate the effect of each parameter, we vary just one and keep the
other two fixed. We then examine the joint impact of all three parameters, which
is given by the time complexity formula O

(
(n− |L′|) ·K2 · log((n− |L′|) ·K2)

)
,

because we used Dijkstra’s algorithm with binary heap to find shortest paths (see
Section 4.1). For brevity, we use λ to denote (n − |L′|) · K2 · log((n − |L′|) · K2).
Thus, we expect the runtime to be linear in λ.
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Fig. 11: Runtime vs length n, for each histogram with K = 20 in: (a) NYC, and
(b) TKY. Runtime vs length n, for synthetic histograms with varying n, K = 20,
and: (a) N = 192, (b) N = 642

Impact of histogram length n We show that runtime increases with n, in Figures 11a
and 11b. This is because, when n is larger, there are more bins into which the
counts may be redistributed. More bins means that the multipartite graph GTR,
created by LHO, has more layers (and consequently more nodes and edges).
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(a) NYC (b) TKY (c) NYC (d) TKY

Fig. 13: Cumulative Distribution Function of runtime (i.e., ratio of histograms
with runtime at most equal to a score in x axis) vs |L′| for: (a) each histogram in
NYC, and (b) each histogram in TKY. Runtime vs λ = (n−|L′|)·K2 ·log((n−|L′|)·K2)
(i.e., joint impact of n, K, |L′| according to the time complexity analysis) for: (c)
each histogram in NYC, and (d) each histogram in TKY

(a) NYC (b) TKY

Fig. 12: Runtime vs K, for each his-
togram with: (a) n = 30, and (b) n = 40.

Note also that runtime increases lin-
early with n (i.e., the linear regres-
sion models in Figures 11a and 11b
are good fit), as expected by the
time complexity analysis (see Sec-
tion 4.1), and that the algorithm
took less than 3 seconds. We also
show that runtime increases linearly
with n when the algorithm is applied
to the synthetic histograms, which

are more demanding to sanitize (see Figures 11c and 11d).

Impact of total frequency of sensitive locations K We show that runtime increases
with K, in Figures 12a and 12b. This is because there are more counts that are
redistributed into the bins of nonsensitive locations when K is larger. That is, the
graph GTR contains more edges and nodes. The runtime increases approximately
quadratically with K (i.e., the quadratic regression models in Figures 12a and 12b
are good fit), as expected by the time complexity analysis (see Section 4.1), and
LHO took less than 100 seconds.

Impact of number of sensitive locations |L′| We show that runtime increases with
|L′|, in Figures 13a and 13b. This is because there are (I) more counts that need to
be redistributed into the bins of the nonsensitive locations, and (II) fewer bins to
which the counts may be redistributed to, and, as demonstrated above, the impact
of more counts on runtime is larger than that of fewer bins (quadratic increase vs
linear decrease). For example, 95% of the histograms in the NYC dataset take less
than 1 second to be sanitized when |L′| = 1, but the corresponding percentage was
25% when |L′| = 10. However, the algorithm remains efficient even for |L′| = 10,
with 99% of the histograms in NYC requiring less than 5 minutes to be sanitized.

Joint impact of n, K, |L′| In Figures 13c and 13d, we report results for all his-
tograms in NYC and TKY, respectively. Note that runtime increases linearly with
λ = (n− |L′|) ·K2 · log((n− |L′|) ·K2) (i.e., the linear regression models are good
fit). This is in line with the time complexity analysis (see Section 4.1).

5.3 Target Resemblance

We evaluate the quality and runtime of RO and RH, as a function of (I) n, (II)
N , and (III) ε. We additionally examine the impact of the target histogram H ′′
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on the runtime, as well as the runtime of RO and RH when applied to histograms
with large (up to the maximum possible) length. To measure quality, we use JS-
divergence (see [42] for similar results w.r.t. L2 distance). Unless stated otherwise,
H ′′ is a “uniform” histogram that has the same size, N , and length, n, as H, and
each of its counts is approximately equal to N

n . Aiming to resemble a uniform
histogram indicates a user with strong privacy requirements, since the uniform
distribution has the maximum entropy (i.e., provides the least information about
the frequencies in H to an attacker with no knowledge except N and n). Moreover,
uniform target histograms are difficult to resemble, because the original histograms
typically follow skewed distributions.

5.3.1 Quality and Privacy for the RO algorithm and the RH heuristic

Impact of length n To illustrate the impact of n on quality and privacy, we present
results obtained for randomly selected histograms of varying n and N = 100. We
do not report the median of all histograms of certain n, because the results followed
skewed distributions.

We show that the privacy measure dp (JS-divergence) decreases with n, in
Figures 14a and 14b. This is because the larger number of bins gives more choices
to the methods to reduce dp without substantially increasing dq. Note, RO and
RH achieve very similar results, suggesting that RH is effective: the dp values for
RH were no more than 1% and 2.1% higher for NYC and TKY, respectively.
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Fig. 14: dp vs length n for histograms with N = 100 in: (a) NYC. (b) TKY. dq vs
length n for histograms with N = 100 in: (c) NYC. (d) TKY

We also show that the quality measure dq (JS-divergence) is not affected by
n and, as expected, it does not exceed the threshold ε, in Figures 14c and 14d.
RO finds solutions with larger dq than RH. This is because RH works in a greedy
fashion. That is, the initial bins are sanitized heavily, which increases dq and does
not leave much room for sanitizing the subsequent bins without exceeding ε.
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Fig. 15: (a) dp vs size N , and (b) dq vs size
N , for histograms with n = 25 in NYC

Impact of size N To illustrate the im-
pact of N on quality and privacy,
we present results obtained for ran-
domly selected histograms of varying
N with n = 25 for NYC. The results
for TKY are similar (omitted). We
do not report the median of all his-
tograms of certain N , because the re-
sults followed skewed distributions.

We show that the privacy measure dp (JS-divergence) increases with N , in
Figure 15a. This is because there are more counts that need to change (increase
or decrease) to minimize dp subject to dq ≤ ε. The results for RH are very close
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to those for RO; the dp scores for RH are no more than 1.8% larger. This suggests
that RH is an effective heuristic.

We also show that the quality measure dq (JS-divergence) is not affected by
N and that it does not exceed the threshold ε, in Figure 15b. Again, RO finds
solutions with larger dq than RH. This is because, due to its greedy nature, RH
sanitizes heavily the first bins, which increases dq and prevents the sanitization of
subsequent bins without exceeding ε.

Impact of threshold ε We show that dp (JS-divergence) decreases with ε, in Fig-
ure 16a. This is because both RO and RH consider a larger space of possible
solutions when ε is larger, and thus they are able to find a better solution with
respect to dp.
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Fig. 16: (a) dp vs threshold ε, and (b) dq vs threshold
ε, for a histogram with n = 40 and N = 100 in NYC

In addition, the re-
sults for RH and RO

are very similar; the
dp for RH is at most
2.4% (on average 0.5%)
higher than that for
RO. We also show
that the quality mea-
sure dq (JS-divergence)
for both RO and RH

is close to ε, in Fig-
ure 16b. Again, the dq scores of RO are slightly larger than those of RH, because
RH works in a greedy fashion, as explained above.

Recommendation quality Figures 17a and 17b show that MAE and RMSE are not
substantially affected by sanitization, for all tested ε values. This suggests that
recommendation quality is preserved well. In some cases, the MAE and RMSE

scores for the sanitized histograms were lower (better) than those for the original
ones. This is because the recommendation scores for these histograms approach
their corresponding true location counts after sanitization.

5.3.2 Runtime performance for the RO algorithm and the RH heuristic

Impact of length n We show that the runtime of both RO and RH increases with
n, in Figure 18a. This is because RO runs on a multipartite graph, GTR, with
more layers n, and RH needs to consider more bins n. RH is at least two orders
of magnitude more efficient than RO. Note that RH scales close to linearly with
n, which shows that the efficiency of RH is better than what is predicted by the
worst-case time complexity analysis in Section 4.3.

To further investigate the impact of length on runtime, we apply RO and RH to
each histogram with length larger than 75 in NYC and TKY (see Figure 18b and
18c). There are 17 and 7 such histograms in NYC and TKY, respectively. These
histograms are generally demanding to sanitize, because they also have large size
(up to 2061). Again, we observe that RH is more efficient than RO by at least two
orders of magnitude. In these experiments, we use ε = 10−5. For larger ε values,
the difference between the two algorithms increases, because RH scales better than
RO with respect to ε, as explained above. Repeating the same experiment using
the synthetic histograms (see Figure 18d and 19a), we find that both RO and RH

scale well with n, and RH scales close to linearly with n.
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Fig. 18: Runtime vs length n, for: (a) each histogram with N = 100 in NYC, (b)
each histogram with n > 75 in NYC, (c) each histogram with n > 75 in TKY, and
(d) synthetic histograms with varying length and N = 192
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Fig. 17: Recommendation quality for
varying ε w.r.t.: (a) MAE, and (b) RMSE

Impact of size N We show that the
runtime of both RO and RH in-
creases with N , in Figure 19b. This
is because the multipartite graph
GTR built by RO has more nodes
O(N · n) and thus more paths, and
RH needs to consider more “moves”
from source to destination bins.

Again, RH is at least two orders of magnitude more efficient than RO.
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Fig. 19: Runtime vs : (a) Length n, for synthetic histograms with varying length
and N = 642. (b) Size N , for each histogram with n = 25 in NYC. (c) Threshold
ε, for a histogram with n = 40 and N = 100 in NYC. (d) JS-divergence between
a histogram H with n = 40 and N = 100 in NYC and different target histograms
with increasing JS-divergence from H

Impact of threshold ε We show that the runtime of both RO and RH increases with
ε, in Figure 19c. This is because, when ε is larger, the multipartite graph built by
RO has more edges and thus more paths, and RH considers more “moves” from
source to destination bins. RH is at least two orders of magnitude more efficient
than RO, and it scales better with ε i.e., linearly versus quartically (proportionally
to ε4). This suggests that RH is a practical heuristic for large ε values, given that
it produces solutions similar to those of RO.

Impact of target histogram H ′′ We show that the runtime of RH increases with
the distance JS(H,H ′′), for different target histograms H ′′, in Figure 19d. This is
because RH has more choices (i.e., there are more ways to transfer the counts of
a source bin to a destination bin, when JS(H,H ′′) is larger). In this experiment,
we use ε = 0.5, because the runtimes with the default ε value are too small (few
milliseconds) to obtain a meaningful result. We do not report the result for RO,
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because its runtime is not affected by the target histograms. The reason is that
RO builds the same multipartite graph for each target histogram H ′′, since H ′′

has the same length n and size N with H.

6 Related Work

This paper is at the intersection of location privacy and histogram privacy, which
are discussed in Sections 6.1 and 6.2, respectively. We also discuss privacy-preserving
recommendation in Section 6.3, as a potential application of our methods.

6.1 Location privacy

Research on location privacy focuses on (I) location-based services (LBS), or (II)
location data publishing.

Research on LBS is mostly inspired from applications running on GPS-enabled
mobile devices like smartphones and tablets – but also cars. Consequently, it ad-
dresses privacy for users who need to send data on the fly (as they move about),
to a server that will provide them with some useful service (e.g. the location of the
nearest restaurant). Privacy mechanisms in such scenarios need to make protec-
tion decisions on the fly, without knowing the future locations that the user will
visit [9, 20, 62, 63]. For example, [62] proposes a method for preventing the infer-
ence of locations that have been or will be visited by a user, based on what the
user shares at any moment with a location-based service. Other recent research
protects sensitive spatiotemporal location sequences [1]. As another example, [20]
proposes a method that prevents an LBS server from aggregating the locations
sent by a user into a histogram and then associating this histogram with the user.
The method perturbs the user’s locations one by one, before they are sent to the
LBS server, by adding noise to them in order to enforce the privacy notion of
geo-indistinguishability [11].

Research on location data publishing is inspired from the publication of large
datasets, possibly as a database. Consequently, it addresses more static scenarios,
in which the whole dataset to be protected is given to the protection algorithm
as input [4,12–14,17,55,66,67]. There are works showing the feasibility of attacks
on pseudonymized data (i.e., data in which a user’s identifying information is rep-
resented by a random id) [4], or on completely anonymized data (i.e., a sequence
(e1, . . . , en), where the event ei = (l, t), i ∈ [1, n], represents a visit to location l

at time t and is not associated to a specific user) [67]. For example, reference [67]
shows how an attacker can use completely anonymized data to associate a user
with their event subsequence (path). There are also works [13,14,17,55,66] which
propose methods for anonymizing user-specific location data (i.e., a dataset where
each record corresponds to a different user and contains a sequence of locations
visited by the user and/or the time that these visits occurred). For example, ref-
erence [66] proposes algorithms for preventing the inference of a user’s sensitive
locations by an attacker knowing a subsequence of the user’s locations. The algo-
rithms of [66] use suppression (deletion) of locations and splitting of user sequences
into carefully selected subsequences.

Yet, no research in location privacy has aimed to protect histograms of loca-
tions. The object/fact to be protected has been either a single location (in the
LBS setting), or a (sub)sequence of locations (in the location data publishing
setting). However, protecting single locations separately provides no guarantee
about the effect on the histogram as a whole. It could happen that, e.g., each
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individual location is replaced with another location, so no single location is dis-
closed/compromised, but the histogram as a whole is very similar or even identical
with the original one. Similarly, protecting location data could again lead to the
same problem. It could happen that individual locations in a user’s sequence are
modified, but the histogram remains unprotected. Thus, works on LBS or location
data publishing cannot be used as alternatives to our approach.

6.2 Histogram privacy

Research on histogram privacy is inspired from applications where a histogram
is published as a statistical summary (approximation) of the distribution of an
attribute in a (relational) dataset. For example, consider a dataset, where each
record contains the zip-code of a different individual. The distribution of the zip-
code attribute in the dataset can be represented with a histogram, where each
bin is associated with a different zip-code value and the bin frequency (count) is
the number of individuals in the dataset who live in the zip-code. Publishing such
histograms is useful for performing count query answering and data mining tasks
(e.g., clustering), but it may lead to the disclosure of sensitive information about
individuals [2,18,31,34,57,77,85]. For instance, consider an adversary who knows
the names of all three individuals, i1, i2, and i3, in a (non-released) dataset but
the zip-codes of only i1 and i2. When the published histogram contains the count
of each zip-code in the dataset, the adversary can infer the zip-code of i3 from the
histogram. To prevent this type of disclosure, the frequencies in the histogram are
perturbed, typically by noise addition, in order to satisfy differential privacy [19].
Informally, differential privacy ensures that the inferences that can be made by an
adversary about an individual will be approximately independent of whether the
individual’s record is included in the dataset or not.

Several works have applied differential privacy to sanitize histograms [2, 18,
31, 34, 57, 77, 85]. A straightforward way to achieve this is by adding noise to the
frequency of each bin of the histogram, according to the Laplace mechanism [19].
However, this procedure results in excessive utility loss [2]. Therefore, existing
works [2,18,31,34,57,77,85] employ clustering to reduce the loss of utility, in three
steps: (I) They cluster bins with similar frequencies together. (II) They apply the
Laplace mechanism to the average (mean or median) of the frequencies in each
cluster, to obtain a “noisy center” of the cluster. (III) They publish a histogram
where each frequency bin in each cluster is replaced by the noisy center of its
corresponding cluster. While clustering incurs some utility loss, it reduces the
noise that is added by the Laplace mechanism, leading to better overall utility.
Specifically, the works of [2, 77] require each cluster to be formed of adjacent
bins, while the work of [31] requires each cluster to have the same number of
bins. Subsequent works [18, 34, 57, 85] lift these restrictions to further improve
utility. For example, reference [85] proposes a clustering framework, which can
be instantiated by optimal or heuristic algorithms that trade-off the utility loss
incurred by clustering with the utility loss incurred by the Laplace mechanism.

At a high level, our work is similar to the works in [2,18,31,34,57,77,85], in that
it aims to protect a histogram (or it can be applied to each histogram in a dataset of
histograms). However, it differs from the works in [2,18,31,34,57,77,85] along two
dimensions: (I) It considers a histogram that represents the locations associated
to a single user, instead of a histogram representing the values of many different
individuals in an attribute of an underlying dataset. (II) It sanitizes a histogram
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by redistributing counts between bins, as specified by Problems 3.1, 3.2, and 3.3,
instead of adding noise into the counts. Thus, the methods in [2,18,31,34,57,77,85]
cannot be used to deal with the problems we consider. In fact, applying any of the
methods in [2, 18, 31, 34, 57, 77, 85] to a histogram that represents the locations of
a single user would simply prevent the inference of the exact frequencies (counts)
of locations in the user’s histogram. It would not protect against the disclosure of
visits to sensitive locations (i.e., it cannot solve the SLH problem), nor against the
disclosure of the fact that the histogram is similar/dissimilar to a target histogram
(i.e., it cannot solve the TA/TR problem).

A different, less related class of works can be used to protect a histogram by
making it indistinguishable within a set of histograms that is published [24, 76].
These works differ from ours in their setting, in their privacy notion, or both.
They differ in terms of setting because they consider a set of histograms (or more
generally, vectors of frequencies [24, 76]) rather than a single histogram with the
location information of a single user. They differ in terms of privacy notion because
they aim to prevent the disclosure of the identity of individuals, from the published
set of histograms (i.e., the association of a histogram with identity information that
is known to an attacker), rather than the inference of location information from a
single histogram.

6.3 Privacy-preserving recommendation

There are several privacy-preserving recommendation methods. Most of them (e.g.,
[43, 58]) assume there is a trusted server that applies privacy protection (e.g.,
anonymization) jointly to the data of many users. Unlike these methods, we assume
a different setting, in which the user protects their histogram by themselves. Our
setting is conceptually similar to the untrusted server setting [54,60,61], in which
a user protects their data prior to disseminating them. Specifically, [60,61] propose
methods in which a user applies differential privacy, while [54] proposes a method
in which the user applies randomized perturbation. The privacy objective of these
methods is to prevent the inference of exact user values. In contrast, we do not
directly aim to prevent the inference of exact user values: our privacy notions
are formalized by the SLH and TA/TR problems. Also, we do not require that
the protected histograms will be used in the task of recommendation, although
we experimentally show that the protected histograms that are produced by our
approach allow preserving the accuracy of recommendation fairly well.

7 Conclusion

In this paper, we propose two new notions of histogram privacy, sensitive location
hiding and target avoidance/resemblance, which lead to the following optimiza-
tion problems: the Sensitive Location Hiding problem (SLH), which seeks to en-
force the notion of sensitive location hiding with optimal quality, and the Target
Avoidance/Resemblance (TA/TR) problem, which seeks to enforce target avoid-
ance/resemblance with bounded quality loss. We also propose optimal algorithms
for each problem, as well as an efficient heuristic for the TA/TR problem. Our
experiments demonstrate that our methods are effective at preserving the distri-
bution of locations in a histogram, as well as the quality of recommendations based
on these locations, while being fairly efficient.



Sensitive location hiding and target histogram avoidance/resemblance 35

A Appendix

A.1 Proof of weak NP-hardness for the SLH problem

We first reduce the weakly NP-hard Multiple Choice Knapsack (MCK) problem [32] to the
special case of SLH, where |L′| = 1. The MCK problem is defined as follows4:

min
∑

i∈[1,m]

∑
j∈Ci

cij · xij (A.1)

subject to: (I)
∑
i∈[1,m]

∑
j∈Ci wij · xij = b, (II)

∑
j∈Ci xij = 1, i = 1, . . .m, and (III)

xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ci.
In MCK, we are given a set of elements subdivided into m, mutually exclusive classes,

C1, ..., Cm, and a knapsack. Each class Ci has |Ci| elements. Each element j ∈ Ci has a cost
cij ≥ 0 and a weight wij . The goal is to minimize the total cost (Eq. A.1) by filling the knapsack
with one element from each class (constraint II), such that the weights of the elements in the
knapsack satisfy the constraint I, where b ≥ 0 is a constant. The variable xij takes a value 1,
if the element j is chosen from class Ci and 0 otherwise (constraint III).

We map a given instance IMCK to an instance ISLH of the special case of SLH in
polynomial time, as follows:

(I) Each class Ci, i ∈ [1,m], is mapped to a location Li /∈ L′ whose count f(Li) in H is
arbitrary.

(II) A sensitive location Lm+1 ∈ L′ (without loss of generality) is considered. The count of
Lm+1 in H is set to f(Lm+1) = b. Thus, H = (f(L1), . . . , f(Lm), b).

(III) Each element xij with weight wij and cost cij is mapped to an operation on H, which de-
creases f(Lm+1) by wij and increases f(Li) by wij (i.e., transfers wij visits from Lm+1 to
Li) and incurs q(H,H′[i]) = cij . If there are multiple operations such that q(H,H′[i]) = cij
(e.g., when q is the L1 distance), we select one arbitrarily. When xij = 1, its corresponding
operation is applied to H. The result of applying all operations on H is referred to as the
sanitized histogram H′.

We prove the correspondence between a solution S to IMCK and a solution H′ to ISLH ,
as follows: We first prove that, if S is a solution to IMCK , then H′ is a solution to ISLH . Since∑
i∈[1,m]

∑
j∈Ci wij ·xij = b, f(Lm+1) is decreased by b. Thus, H′[m+1] = 0 (i.e., all visits to

Lm+1 are transferred to nonsensitive locations) and
∑
i∈[1,m+1]H

′[i] =
∑
i:Li /∈L′ H

′[i] = |H|1
(i.e., H′ has the same size with H). By construction, H′ has also the same length with H. Since∑
i∈[1,m]

∑
j∈Ci cij · xij is minimum,

∑
i∈[1,m] q(H,H

′[i]) is minimum. Also, q(H,H′[m+ 1])

(i.e., the loss for transferring all visits from Lm+1 to non-sensitive locations) is constant. Thus,
dq(H,H′) =

∑
i∈[1,m+1] q(H,H

′[i]) is minimum. Therefore, H′ is a solution to ISLH .

We now prove that, if H′ is a solution to ISLH , then S is a solution to IMCK . Since∑
i s.t. Li /∈L′ H

′[i] = |H|1, it holds that H′[m+ 1] = 0. Thus, f(Lm+1) is decreased by b (all

visits to Lm+1 were transferred to nonsensitive locations) and
∑
i∈[1,m]

∑
j∈Ci wij · xij = b.

Since dq(H,H′) = (
∑
i∈[1,m] q(H,H

′[i])) + q(H,H′[m + 1]) is minimum and q(H,H′[m + 1])

is constant,
∑
i∈[1,m] q(H,H

′[i]) is minimum. This implies that
∑
i∈[1,m]

∑
j∈Ci cij · xij is

minimum. Thus, S is a solution to IMCK .
Therefore, the special case of the SLH problem with |L′| = 1 is weakly NP-hard, and,

clearly, the SLH problem with |L′| ≥ 1, is also weakly NP-hard.

A.2 Proof of weak NP-hardness for the TR problem

We reduce the weakly NP-hard Multiple Choice Knapsack (MCK≥) problem [32, 64] to the
TR problem. The MCK≥ problem is defined as follows:

min
∑

i∈[1,n]

∑
j∈Ci

cij · xij (A.2)

subject to: (I)
∑
i∈[1,n]

∑
j∈Ci wij · xij ≥ b, (II)

∑
j∈Ci xij = 1, i = 1, . . . n, and (III) xij ∈

{0, 1}, i = 1, . . . , n, j ∈ Ci. In MCK≥, we are given a set of elements subdivided into n,

4 The problem also appears with ≥ in constraint I [64]. This variation is referred to as
MCK≥ and can be transformed to MCK in polynomial time [32].
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mutually exclusive classes, C1, ..., Cn, and a knapsack. Each class Ci has |Ci| elements. Each
element j ∈ Ci has a cost cij ≥ 0 and a weight wij . The goal is to minimize the total cost
(Eq. A.2) by filling the knapsack with one element from each class (constraint II), such that
the weights of the elements in the knapsack satisfy the constraint I, where b ≥ 0 is a constant.
The variable xij takes a value 1, if the element j is chosen from class Ci and 0 otherwise
(constraint III).

We map a given instance IMCK≥ to an instance ITR of TR in polynomial time, as follows:

(I) Each class Ci, i ∈ [1, n], is mapped to a location Li, which has an arbitrary count in H
and a possibly different, arbitrary count in H′′.

(II) The constant ε is set to n− b
maxi∈[1,n],j∈Ci wij

.

(III) We choose q() and p() to be normalized in [0, 1] such that each element xij with weight wij
and cost cij is mapped to a value kij such that the following conditions hold: q(H,H[i] +

kij) = 1− wij
maxi∈[1,n],j∈Ci wij

and p(H[i] + kij , H
′′) =

cij
maxi∈[1,n],j∈Ci cij

. The normaliza-

tion of q() and p() can be done in polynomial time because q() and p() can take O(N · n)
values. If there are multiple values of kij satisfying the two conditions, one of these values
is selected arbitrarily. When xij = 1, kij is added into H[i], obtaining H′[i] = H[i] + kij .

We prove the correspondence between a solution S to IMCK≥ and a solution H′ to ITR:

We first prove that, if S is a solution to IMCK≥ , then H′ is a solution to ITR. Since∑
i∈[1,n]

∑
j∈Ci cij · xij is minimum,

∑
i∈[1,n]

(
(maxi∈[1,n],j∈Ci cij) · p(H

′[i], H′′)
)

is mini-

mum. Thus, dp(H′, H′′) =
∑
i∈[1,n] p(H

′[i], H′′) is minimum. Since
∑
i∈[1,n]

∑
j∈Ci wij ·xij ≥

b and b = maxi∈[1,n],j∈Ci wij · (n − ε), it holds that
∑
i∈[1,n](1 − q(H,H[i] + kij)) ≥ n − ε.

This implies n− dq(H,H′) ≥ n− ε and dq(H,H′) ≤ ε. Therefore, H′ is a solution to ITR. We
now prove that, if H′ is a solution to ITR, then S is a solution to IMCK≥ . Since dp(H′, H′′) =∑
i∈[1,n] p(H

′[i], H′′) is minimum,
∑
i∈[1,n]

(
(maxi∈[1,n],j∈Ci cij) · p(H

′[i], H′′[i])
)

is minimum.

This implies that
∑
i∈[1,n]

∑
j∈Ci cij ·xij is minimum. Since dq(H,H′) =

∑
i∈[1,n] q(H,H

′[i]) ≤
ε and ε = n− b

maxi∈[1,n],j∈Ci wij
, it holds that n−

∑
i∈[1,n] q(H,H

′[i]) ≥ n−ε = b
maxi∈[1,n],j∈Ci wij

.

This implies
∑
i∈[1,n](1−q(H,H[i]+kij)) ≥ b

maxi∈[1,n],j∈Ci wij
and

∑
i∈[1,n]

∑
j∈Ci wij ·xij ≥

b. Thus, S is a solution to IMCK≥ . Therefore, TR is weakly NP-hard.

A.3 Reduction from the TA to the TR problem

The TA problem can be reduced to TR in polynomial time: Given an instance ITA of TA,
we can construct an instance ITR of TR in polynomial time, by mapping H and H′′ to
histograms HTR = H and H′′TR = H′′, defining dp(H′TR, H

′′
TR) = 1+1

dp(H′,H′′)+1
∈ (0, 2] and

dq(HTR, H
′
TR) = dq(H,H′), and setting εTR = ε. Given a feasible solution H′TR of ITR, we

can map it back to a feasible solution H′ of ITA with cost dp(H′, H′′) = 1+1
dp(H

′
TR

,H′′
TR

)
−1 ≥ 0

in polynomial time. This requires constructing H′ = H′TR, which clearly is a solution to ITA.
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3. Ağır, B., Huguenin, K., Hengartner, U., Hubaux, J.P.: On the privacy implications of
location semantics. Proceedings on Privacy Enhancing Technologies 2016(4), 165–183
(2016)

4. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M.: Privacy through pseudonymity in mobile
telephony systems. In: NDSS (2014)

5. Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation
using sparse geo-social networking data. In: ACM SIGSPATIAL, pp. 199–208 (2012)

6. Bettini, C., Riboni, D.: Privacy protection in pervasive systems: State of the art and
technical challenges. Pervasive and Mobile Computing 17(Part B), 159 – 174 (2015)

https://doi.org/10.1007/s10115-017-1146-x


Sensitive location hiding and target histogram avoidance/resemblance 37
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