Parallel Processing
CM0323

David W. Walker
http://users.cs.cf.ac.uk/David.W.Walker/

Syllabus. Part 1

Week 1. Introduction; motivation; types of
parallelism; data decomposition; uses of parallel
computers,; classification of machines.

Week 2: SPMD programs, memory models, shared
and distributed memory; OpenMP.

Week 3. Example of summing numbers;
Interconnection networks; network metrics, Gray
code mappings.

Week 4. Classification of parallel algorithms;
Speedup and efficiency.

Week 5: Scalable algorithms; Amdahl's law;
sending and recelving messages, programming
with MPI. 2

Syllabus. Part2

Week 6. Collective communication; integration
example; regular computations and asimple
example.

Week 7: Regular two-dimensional problems and
an example.

Week 8: Dynamic communication and the
molecular dynamics example.

Week 9: Irregular computations; the WaT or
simulation. Load balancing strategies.

Week 10: Message passing libraries; introduction
to PVM.

Week 11: Review lectures.

Books

“Parallel Programming,” B. Wilkinson and M. Allen, published
by Prentice Hall, 1999. ISBN 0-13-671710-1.

“Parallel Computing: Theory and Practice,” M. Quinn,
published by McGraw-Hill, 1994.

* Solving Problems on Concurrent Processors, Volume 1,” Fox,
Johnson, Lyzenga, Otto, Salmon, and Walker, published by
Prentice-Hall, 1988.

“Using MPI,” Gropp, Lusk, and Skjellum, published by MIT
Press, 1994,

“Parallel Programming with MPI,” Peter Pacheco, published by
Morgan Kaufmann, 1996.

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-339-5

Web Sites

For the modul e
http://users.cs.cf.ac.uk/David.W .Wa ker/CM0323/.

For MPI: http://www.mcs.anl.gov/mpi/

For OpenMP
https.//computing.lInl.gov/tutorials/openM P/

For information on the World’ s fastest
supercomputers: http://www.top500.org/

http://users.cs.cf.ac.uk/David.W.Walker/CM0323/
http://www.mcs.anl.gov/mpi/
https://computing.llnl.gov/tutorials/openMP/
http://www.top500.org/

What Is Parallelism?

e Parallelismrefersto the ssmultaneous
occurrence of events on a computer.

* Anevent typically means one of the
following:

— An arithmetical operation

— A logical operation

— Accessing memory

— Performing input or output (1/O)

Types of Parallelism 1

e Paraldism can be examined at several
levels.

— Job level: several independent jobs
simultaneoudly run on the same computer
system.

— Program level: several tasks are performed
simultaneously to solve a single common
problem.

Types of Parallelism 2

— Instruction level: the processing of an instruction, such
as adding two numbers, can be divided into sub-
Instructions. If several similar instructions are to be
performed their sub-instructions may be overlapped
using atechnique called pipelining.

— Bit level: when the bits in aword are handled one after
the other thisis called a bit-serial operation. If the bits
are acted on in parallel the operation is bit-parallél.

In this parallel processing course we shall be mostly
concerned with parallelism at the program level.

Concurrent processing is the same as paralléel
processing.

Scheduling Example

Time Jobs running Utilisation
1 S, M 75%
2 L 100%
3 S, S M 100%
4 L 100%
5 L 100%
6 SM 75%
7 M 50%

e Average utilisation is 83.3%
 Timeto complete all jobsis 7 time units.

A Better Schedule

* A better schedule would allow jobs to be taken out of order
to give higher utilisation.

e Allow jobsto “float” to the front to the queue to maintain

SMLSSMLLSMM

high utilisation.
Time Jobs running Utilisation
1 SM,S 100%
2 L 100%
3 SM,S 100%
4 L 100%
5 L 100%
6 M, M 100%

10

Notes on Scheduling Example

e Inthelast example:
— Average utilisation is 100%.
— Time to complete all jobsis 6 time units.

o Actual situation is more complex asjobs
may run for differing lengths of time.

* Real job scheduler must balance high
utilisation with fairness (otherwise large
jobs may never run).

11

Parallelism Between Job Phases

Parallelism also arises when different independent jobs
running on a machine have several phases, e.g.,
computation, writing to a graphics buffer, 1/0 to disk or
tape, and system calls.

Suppose a job is executing and needs to perform 1/O before
It can progress further. 1/0 is usually expensive compared
with computation, so the job currently running is
suspended, and another is started. The original job resumes
after the 1/0O operation has compl eted.

Thisrequires specia hardware: 1/0O channels or special 1/0
[Processor.

The operating system controls how different jobs are

scheduled and share resources.
12

Program Level Parallelism

Thisis parallelism between different parts of the
same job.

Example

A robot has been programmed to look for electrical
sockets when it runs low on power. When it finds
one it goes over to it and plugs itsalf in to recharge.
Three subsystems are involved in this - the vision,
manipulation, and motion subsystems. Each
subsystem is controlled by a different processor,
andthey act in parallel as the robot does different
things.

13

Robot Example

Task Vision | Manipulation Motion
1. Looking for X X
electrical socket

2. Going to X X
electrical socket

3. Plugging into X X

electrical socket

14

Notes on Robot Example

* The subsystems are fairly independent, with
the vision subsystem guiding the others.

 There may also be acentral “bran’
PrOCESSOY'.

e Thisisan example of task parallelismin
which different tasks are performed
concurrently to achieve acommon goal.

15

Domain Decomposition

A common form of program-level parallelism arises
from the division of the datato be programmed
INto subsets.

e Thisdivision is called domain decomposition.

e Parallelism that arises through domain
decomposition is called data parallelism.

* The data subsets are assigned to different
computational processes. Thisis called data
distribution.

» Processes may be assigned to hardware processors
by the program or by the runtime system. There
may be more than one process on each processor.

16

Data Parallelism

e Consider an image

digitised as a square array

of pixels which we want
to process by replacing

each pixel value by the

average of its neighbours.

e Thedomain of the

17

problem is the two-
dimensional pixel array.

Domain Decomposition

B
S
e 9
8 9
S £
(€))
2 5
A8
QO
o
i

pgfl Zg8g25es
twma&mm%max
e [l . =
S08 290 5038
2050 e DAS = .
=52 EE-ERBSET
Q0 ac BEE SBE=03F
.dm. OB € 05w

am S DO E mm_mu
EC2xE X8 95 SEBE
T YT 902D 0ETBED
22ES cPLELXERY

Why Use Parallelism?

» Better utilisation of resources. Want to keep
hardware busy.

e Want to run programs faster by spreading work
over several processors.

* Ways to measure speed.
— Floating point operations per second. 1 Mflop/sisone
million floating point operations per second.
» High performance workstation ~ 10-20 Gflop/s
o Current best supercomputer ~ 1 Pflop/s
— Transactions per second. 1 Tpsis one transaction per
second.
— Instructions per second. 1 Mipsisone million
Instructions per second.

19

Parallelism and Memory

« Want more memory to solve bigger or more complex
problems.

« Typical workstations have 1 Gbytes of RAM,
expandable to 32 Ghytes. Can fit an 65,536 x 65,536
array into 32 Gbytes of memory.

 TheIBM “Roadrunner” parallel computer at Lawrence
Livermore National Lab has 122,400 cores with atotal

of 98 Thytes of RAM. Can fit a 3,670,000 x 3,670,000
array into memory. See

http://www.top500.0rg/system/9485.

20

http://www.top500.org/system/9485

i"-\. TSP SIS

]

Performance Development

100F Flops
11700.00 TR #1
10 PFlops - .__.-‘ o #500
o
w5 1026 00 TAe- Sum
1 FFlops - g
.-y o
i oooo
m =3
100 TFlops g o
3 ._..l-" ooooo
B ;
Rl L m-mN B o™
£ {;_.-— =] J=m-=-y go®
£ 1 TFlops B % pEEw = T
E ""n.{} .j O -
o' m-B-B-B- o O =
100 GFlops #57 e
O
g0
10 GFlops g O
2
fj} L= -
1 GFlops 4.2 o
4o
'||:II:I|"."|F||:||::|3|||||||||||||||||||||||||||||
(L] = L] [~ o (B = — (| (L] = (] L] [~ o
(] (] (] (] (n]] (] (] = = = = = = = = =
(B (a7 (a7 (B (n] (] (n] = = = = = = = = =
— — = — = — — (| (| (| (| (| (| (| (| (|
13/06/ 2005 http:/'www top500.0mg/

Parallelism and Supercomputing

o Parallelism isexploited on avariety of high
nerformance computers, in particular massively
parallel computers (MPPs) and clusters.

 MPPs, clusters, and high-performance vector
computers are termed supercomputers.

o Currently supercomputers have peak performance
In the range of 100-1000 Tflop/s, and memory of
10 to 100 Thytes. They cost about 20-50 million

pounds.
e Supercomputers are leading to a new methodology

IN science called computational science joining
theoretical and experimental approaches.

22

Uses of Parallel Supercomputers

Weather forecasting. Currently forecasts are usually accurate up to
about 5 days. This should be extended to 8 to 10 days over the next
few years. Researchers would like to better model local nonlinear
phenomena such as thunderstorms and tornadoes.

Climate modelling. Studies of long-range behaviour of global climate.
Thisisrelevant to investigating global warming.

Engineering. Simulation of car crashesto aid in design of cars. Design
of aircraft in “numerical wind tunnels."”

Material science. Understanding high temperature superconductors.
Simulation of semiconductor devices. Design of lightweight, strong
materials for construction.

Drug design. Prediction of effectiveness of drug by ssimulation. Need
to know configuration and properties of large molecules.

23

More Uses of Parallelism

Plasma physics. Investigation of plasmafusion
devices such as tokamaks as future source of
cheap energy.

Economics. Economic projections used to guide
decision-making. Prediction of stock market
behaviour.

Defense. Tracking of multiple missiles. Event-
driven battlefield ssmulations. Code cracking.

Astrophysics. Modeling internal structure of stars.
Simulating supernova. Modeling the structure of
the universe.

24

Classification of Parallél
Machines

e To classify paralel machines we must first
develop a model of computation. The approach we
follow Is dueto Flynn (1966).

e Any computer, whether sequential or paralld,
operates by executing instructions on data.

— astream of instructions (the algorithm) tells the
computer what to do.

— astream of data (the input) is affected by these

| Nstructions.
25

Classification of Parallél
Machines

* Depending on whether there is one or several of
these streams we have 4 classes of computers.
— Single Instruction Stream, Single Data Stream: SISD
— Multiple Instruction Stream, Single Data Stream: M1SD
— Single Instruction Stream, Multiple Data Stream: SIMD
— Multiple Instruction Stream, Multiple Data Stream: MIMD

26

SISD Computers
Thisisthe standard sequential computer.

A single processing unit receives a single stream of
Instructions that operate on a single stream of data

| Instruction R . Daa
Contro stream | Processor stream | Memory

Example:

To compute the sum of N numbers a,,&,,...,8, the processor needsto
gain access to memory N consecutive times. Also N-1 additions are
executed in sequence. Therefore the computation takes O(N)

operations

Algorithms for SISD computers do not contain any process parallelism
since there is only one processor. -

MISD Computers

N processors, each with its own control unit,
share a common memory.

Data |nstruction
stream streams

—* Processor 1 «—— Control 1

Memory > Processor 2 +—— Control 2

v v
—* Processor N [«——— Control N

28

MI1SD Computers (continued)

 Thereare N streams of Instructions
(algorithms/programs) and one stream of data.
Parallelism Is achieved by letting the processors

do different things at the same time to the same
data.

o MISD machines are useful in computations where

the same input is to be subjected to several
different operations.

29

MISD Example

e Checking whether anumber Z isprime. A simple
solution isto try all possible divisions of Z.
Assume the number of processorsis N=Z-2. All
processors take Z as input and each tries to divide
It by Its associated divisor. So it Is possible in one
step to check If Z isprime. Morerealistically, if
N<Z-2 then a subset of divisorsis assigned to each
PrOCESSOY.

e For most applications MISD computers are very
awkward to use and no commercial machines exist
with this design.

30

SIMD Computers

« All N identical processors operate under the

control of asingle instruction stream issued by a
central control unit.

* There are N data streams, one per processor, so
different data can be used in each processor.

Shared memory or interconnection network

Data 1
streams

\ 4

Processor 1

!

2 N
\ 4 A 4
Processor 2 Processor N

A

Instruction stream T

Control

31

Notes on SIMD Computers

* The processors operate synchronously and a global
clock is used to ensure lockstep operation, i.e., at
each step (global clock tick) all processors execute
the same instruction, each on a different datum.

» Array processors such asthe ICL DAP,
Connection Machine CM-200, and MasPar are
SIMD computers.

o SIMD machines are particularly useful at
exploiting data parallelism to solve problems
having aregular structure in which the same
Instructions are applied to subsets of data.

32

SIMD Example

Problem: add two 2x2 matrices on 4 processors.

. {bn blj ~ rll ClZ}

by, b, Cx Cox
The same instruction isissued to all 4 processors
(add two numbers), and all processors execute the

Instructions ssimultaneoudly. It takes one step to add

the matrices, compared with 4 steps on a SISD
machine.

A1 Ao

oy G

33

Notes on SIMD Example

* |nthisexamplethe instruction issimple, but in
general it could be more complex such as merging
two lists of numbers.

e The datamay be ssimple (one number) or complex
(several numbers).

o Sometimes it may be necessary to have only a
subset of the processors execute an instruction, 1.e.,
only some data needs to be operated on for that
Instruction. Thisinformation can be encoded in the
Instruction itself indicating whether

— the processor Is active (execute the instruction)
— the processor isinactive (wait for the next instruction) "

MIMD Computers

Thisisthe most general and most powerful of our
classification. We have N processors, N streams of
Instructions, and N streams of data.

Shared memory or interconnection network

Data
streams

1

\ 4

Processor 1

2

\ 4

|nstruction Tl

streams

Processor 2

Control 1

2

Control 2

N

\ 4

Processor N

In

Control N

35

Notes on MIMD Computers

* The processors can operate asynchronously,
1.e., they can do different things on different
data at the same time.

o Aswith SIMD computers, communication
of data or results between processors can be
via shared memory or an interconnection
network.

36

Noteson SIMD and MIMD

In most problems to be solved on SIMD and MIMD
computersit is useful for the processorsto be able to
communicate with each other to exchange data or results.
This can be done in two ways

— by using a shared memory and shared variables, or

— using an interconnection network and message passing
(distributed memory)

MIMD computers with shared memory are known as
multiprocessors. An example is the Onyx 300 produced by
Silicon Graphics Inc.

MIMD computers with an interconnection network are
known as multicomputers. An example is the E6500
produced by Sun Microsystems.

Clusters are multicomputers composed of off-the-shelf

components -

Potential of the 4 Classes

T > A+B - > A+B

A B | SISD A B MISD > A*B

R ——> A+B ; > A+B

ABISMD| ,.n A'g|MIMD| , oo
CD

38

Single Program Multiple Data

An MIMD computer is said to be running in SPMD mode if
the same program Is executing on each process.

SPMD is not a hardware paradigm, so it isnot included in our
4 classifications.

It is a software paradigm for MIMD machines.

Each processor executes an SPM D program on different data
S0 it is possible that different branches are taken, leading to
asynchronous parallelism. The processors no longer do the
same thing (or nothing) in lockstep asthey do onan SIMD
machine. They execute different instructions within the same
program.

39

SPMD Example

e Suppose X 1s0 on processor 1, and 1 on processor
2. Consider

IFX=0
THEN S1
ELSE S2

e Then processor 1 executes S1 at the same time that
processor 2 executes S2.

« Thiscould not happen on an SIMD machine.

40

| nterprocessor Communication

o Usually aparallel program needs to have some
means of sharing data and results processed by
different processors. There are two main ways of

doing this
1. Shared Memory
2. Message passing

o Shared memory consists of aglobal address
space. All processors can read from and write
Into this global address space.

41

Global Shared Memory

PROCESSOR

PROCESSOR

PROCESSOR
PROCESSOR

PROCESSOR

PROCESSOR

42

Shared Memory Conflicts

The shared memory approach is ssmple but can lead
to problems when processors simultaneously access
the same location in memory.

Example:

Suppose the shared memory initially holds a variable
X with value 0. Processor 1 adds 1 to x and processor
2 adds 2 to x. What isthe final value of x?

You should have met this problem before when
studying locks and critical sectionsin the operating
systems module. 43

Shared Memory Conflicts 2

Thisis an example
of non-determinism
or non-determinancy

The following outcomes are possible

1. If P1 executes and completes x=x+1 before P2 reads the value of x
from memory then x is 3. Similarly, if P2 executes and completes
x=x+2 before P1 reads the value of x from memory then x is 3.

2. If P1or P2readsx from memory before the other has written back its
result, then the final value of x depends on which finishes last.

— if P1finisheslast thevaueof xis1

— If P2finisheslast thevalue of x is2

Non-Determinancy

Non-determinancy Is caused by race conditions.

A race condition occurs when two statementsin
concurrent tasks access the same memory location,
at least one of which isawrite, and thereis no
guaranteed execution ordering between accesses.

The problem of non-determinancy can be solved
by synchronising the use of shared data. That isif
x=x+1 and x=x+2 were mutually exclusive then
the final value of x would always be 3.

Portions of a parallel program that require
synchronisation to avoid non-determinancy are
called critical sections.

45

L_ocks and Mutual Exclusion

In shared memory programs locks can be used
to give mutually exclusive access.

Processor 1.
LOCK (X)
X=X+1
UNLOCK (X)

Processor 2:
LOCK (X)
X=X+2
UNLOCK (X)

46

Classifying Shared Memory
Computers

Shared memory computers can be classified as follows
depending on whether two or more processors can gain access
to the same memory simultaneoudly.

1. Exclusive Read, Exclusive Write (EREW)

e Accessto memory locationsis exclusive, i.e., N0 2 processors are
allowed to simultaneously read from or write into the same location.

2. Concurrent Read, Exclusive Write (CREW)

e Multiple processors are allowed to read from the same location, but
writeis still exclusive, i.e., no 2 processors are allowed to write into
the same location simultaneousdly.

3. Exclusive Read, Concurrent Write (ERCW)

e Multiple processors are allowed to write into the same location, but
read access remains exclusive.

4. Concurrent Read, Concurrent Write (CRCW)
e Both multiple read and write privileges are allowed. 47

Notes on Shared Memory 1

Allowing concurrent read access to the same
address should pose no problems in the sense
that such an operation is well-defined.
Conceptually each processor makes a copy of the
contents of the memory location and storesit in
ItS own register.

Problems arise with concurrent write access,
because if several processors write
simultaneoudly to the same address, which
should “ succeed?”

48

Notes on Shared Memory 2

* There are several ways of deterministically
specifying the contents of a memory location after
a concurrent write

1. Assign priorities to processors and store value from
processor with highest priority.

2. All the processors are allowed to write, provided all the
values they are attempting to store are the same.

3. The max, min, sum, or average of the valuesis stored
(for numeric data).

49

Notes on Shared Memory 3

o SIMD machines usually have 1000's of very
simple processors. Shared memory SIMD
machines are unrealistic because of the cost and
difficulty in arranging for efficient accessto
shared memory for so many processors. There are
no commercial shared memory SIMD machines.

 MIMD machines use more powerful processors
and shared memory machines exist for small
numbers of processors (up to about 100).

50

Examples of Shared Memory

To show how the 4 subclasses of shared
memory machines behave, consider the
following example.

Problem:

We have N processorsto search alist S={L,,
L,, ...,L} for theindex of agiven element x.

Assume X may appear several times, and any
Index will do. 1< N<m.

51

The Algorithm

procedure SM_search (S, X, k)
STEP 1: fori=1toN doin parallel
read x
end for
STEP 2: for i=1to N do in parallel

S =1 L((i-l)m/N+1)7 ""L(im/N)}

perform sequential search on sublist S
(return K,=-1if not in list, otherwise index)

end for
STEP 3: fori=1to N do in parall€l
If K, >0then k=K, end if
end for
end procedure

52

Time Complexity for EREW

I the sequential search step takes O(m/N) time, what
IS the time complexity for each of the 4 subclasses of
shared memory computer?

EREW
Step 1 takes O(N) (N reads, one at atime).
Step 2 takes O(m/N) time.
Step 3 takes O(N) time.
Total timeis O(N)+O(m/N).

53

Time Complexity for ERCW

« ERCW
Step 1 takes O(N) time.
Step 2 takes O(M/N) time.

Step 3 takes constant time.
Total timeis O(N)+O(m/N).

54

Time Complexity for CREW

 CREW
Step 1 takes constant time.
Step 2 takes O(M/N) time.
Step 3 takes O(N) time
Total timeis O(N)+O(m/N).

55

Time Complexity for CRCW

« CRCW
Step 1 takes constant time.
Step 2 takes O(M/N) time.
Step 3 takes constant time.
Total timeis O(m/N).

56

Limits on Shared Memory

« Shared memory computers are often implemented by
Incorporating afast bus to connect processors to memory.

Shared Memory

Bus

Processor Processor Processor

 However, because the bus has afinite bandwidth, i.e., it can
carry only a certain maximum amount of data at any one
time, then as the number of processors increase the
contention for the bus becomes a problem. So it isfeasible to
build shared memory machines with up to only about 100
ProCcessors. 57

Quick Overview of OpenMP

OpenM P can be used to represent task and data
parallelism.

In case of data parallelism, OpenMP is used to
split loop iterations over multiple threads.

Threads can execute different code but share the
same address space.

OpenMP is most often used on machines with
support for a global address space.

58

P—

master

thread

OpenM P Fork/Join Model

N

{ parallel region } { parallel region }

e—

2 H O 4

59

OpenM P and Loops

#include <omp.h>
#define CHUNK SIZE 100
#define N 1000
main () {
int I, chunk;
float a[N], b[N], c[N];
[* Some initializations */
for (i=0; i <N; i++) a[i] =Db[i] =1 * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (1=0; i < N; i++) c[i] = a[i] + bJ[i];
}

/* end of parallel section */}

60

Number of Threads

#include <omp.h>
#define CHUNK SIZE 100
#define N 1000
main () {
int I, chunk;
float a[N], b[N], c[N];
[* Some initializations */
for (i=0; i <N; i++) a[i] =Db[i] =1 * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i) num_threads(4)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (1=0; i < N; i++) c[i] = a[i] + bJ[i];
}

/* end of parallel section */}

61

Reduction Operations

#include <omp.h>
main () {

int i, n, chunk;

float a[100], b[100], result;
[* Someinitializations */

n = 100;

chunk = 10;

result = 0.0;

for (I=0; 1 <n;i++) {
ali] =i * 1.0;
b[i] =i * 2.0;

}

#pragma omp parallel for default(shared) private(i) schedule(static,chunk) reduction(+:result)
for (i=0; i < n; i++)

result = result + (a[i] * b[i]);
printf(" Final result= %f\n" ,result);

62

| nterconnection Networks and
Message Passing

In this case each processor has its own private (local)
memory and there is no global, shared memory. The
processors need to be connected in some way to allow
them to communicate data.

Processor
+ memory

Processor
+ memory

Processor
+ memory

Processor
+ memory

Message Passing

 |f aprocessor requires data contained on a
different processor then it must be explicitly
passed by using communication
Instructions, e.g., send and recelve.

P1 P2
receive (x, P2) send (x, P1l)
 Thevauex isexplicitly passed from P2 to P1.
Thisis known as message passing.

64

Hybrid Computers

e |n addition to the cases of
shared memory and

distributed memory there Bus
are possibilities for hybrid
designs that incorporate | nterconnection
features of both. network
o Clusters of processors are
connected viaa high speed

bus for communication
within a cluster, and
communicate between
clustersviaan

| nterconnection network.
65

Comparison of Shared and
Distributed Memory

Distributed memory

Shared memory

L arge number of processors
(100'sto 1000's)

Moderate number of
processor (10'sto 100)

High peak performance

Modest peak performance

Unlimited expansion

Limited expansion

Difficult to fully utilise

Relatively easy to fully utilise

Revolutionary paralle
computing

Evolutionary paralle
computing

66

Memory Hierarchy 1

PO P1
Registers
Cache(s)

Faster More
access memory

Data sharing between processes

* Ingeneral, certain memory locations have a greater affinity for
certain processes.

« Parallel programming language may make distinction between
“near” and “far” memory, but will not fully represent the

memory hierarchy.
6/

Typical Quad-Core Chip

Shared Memory

L2 cache

L1 cache

Instruction cache

CPU

L2 cache

L1 cache

C

PU

68

Summing m Numbers

Example: summing m number's

On a sequential computer we have,
sum = g[0];
for (I=1;i<m;i++) {
sum = sum + g[i];

}

Would expect the running time be be roughly
proportional to m. We say that the running time is ®(m).

69

Summing m Numbersin Parallel

 What if we have N processors, with each
calculating the m/N numbers assigned to it?

e \We must add these partial sums together to
get the total sum.

70

Summing Using Shared Memory

The m numbers, and the global sum, are held in global shared
memory.

global sum = 0;
for (each processor){
local sum = 0;
calculate local sum of m/N numbers
LOCK
global sum = global sum + local sum;
UNLOCK

Notes on Shared Memory
Algorithm

Since global sum is a shared variable each
processor must have mutually exclusive access to
It — otherwise the final answer may be incorrect.

The running time (or algorithm time complexity) Is
A(M/N)+ ® (N)
where

— m/N comes from finding the local sumsin parallel
— N comes from adding N numbers in sequence

12

Summing Using Distributed
Memory

Suppose we have a square mesh of N processors.

@ The algorithm is as follows:
1. Each processor finds the local
sum of its m/N numbers

@ 2. Each processor passesitslocal

sum to another Processor 1n a

coordinated way
@ 3. Theglobal sumisfinaly in

processor P;.

73

Distributed Memory Algorithm

The algorithm proceeds as follows:
1. Each processor finds its local sum.

2. Sum along rows:
a) If the processor isin the rightmost column it sends itslocal sum to the left.

b) If the processor is not in the rightmost or leftmost column it receives the
number form the processor on itsright, adds it to itslocal, and send the
result to the processor to the |eft.

c) If the processor isin the leftmost column it receives the number from the
processor on itsright and adds it to it local sum to give the row sum.
3. Leftmost column only — sum up the leftmost column:
a) If the processor isin the last row send the row sum to the processor above

b) If the processor isnot in the last or first row receive the number from the
processor below, add it to the row sum, and send result to processor above

c) If the processor isin the first row receive the number from the processor

below. Thisisthe global sum.
74

Summing Example
There are v N-1 additions and v/ N-1 communications
In each direction, so the total time complexity is
A(MIN) + 0 (vN) + C

where C is the time spent communicating.

10| 12| 7 10| 19 29 29 99
6| 9|17 6| 26 32 70
911118 9129 38

Initially Shift left Shift left Shift up Shift up
and sum and sum and sum and sum

75

| nterconnection Networks

Parallel computers with many processors do not
use shared memory hardware.

Instead each processor has its own local memory
and data communication takes place via message
passing over an interconnection network.

The characteristics of the interconnection network
are important in determining the performance of a
multicomputer.

If network istoo slow for an application,
processors may have to wait for datato arrive.

76

Examples of Networks

|mportant networks include:
 fully connected or all-to-all
* mesh

* ring

e hypercube
 shuffle-exchange
 butterfly
 cube-connected cycles

77

Network Metrics

A number of metrics can be used to evaluate
and compare interconnection networks.

e Network connectivity isthe minimum number of
nodes or links that must fail to partition the network
Into two or more digoint networks.

« Network connectivity measures the resiliency of a
network, and its ability to continue operation
despite disabled components. When components
faill we would like the network to continue
operation with reduced capacity.

78

Network Metrics 2

e Bisection width isthe minimum number of links
that must be cut to partition the network into two
equal halves (to within one). The bisection
bandwidth is the bisection width multiplied by the
data transfer rate of each link.

 Network diameter isthe maximum internode
distance, i.e., the maximum number of links that
must be traversed to send a message to any node
along the shortest path. The lower the network
diameter the shorter the time to send messages to
distant nodes.

79

Network Metrics 3

Networ k narrowness measures congestion in
a network.

e Partition the network into two
groups A and B, containing
NA and NB nodes,
respectively, with NB < NA.

| connections

e Let | bethe number on « |f the narrownessis high
connections between nodes in (NB>I) then if the group B
A and nodesin B. The nodes want to communicate
narrowness of the network is with the group A nodes
the maximum value of NB/I congestion in the network
for all partitionings of the will be high.

network.
80

Network Metrics 4

 Network Expansion I ncrement isthe minimum
number of nodes by which the network can be
expanded.

— A network should be expandable to create larger and
more powerful parallel systems by simply adding more
nodes to the network.

— For reasons of cost it is better to have the option of
small increments since this allows you to upgrade your
machine to the required size.

 Number of edges per node. If thisisindependent
of the size of the network then it iseasier to
expand the system.

81

Fully Connected Network

 Inthefully connected, or all-to-all, network each
node is connected directly to all other nodes.

* Thisisthe most general and powerful
Interconnection network, but it can be
Implemented for only a small number of nodes.

82

Fully Connected Network 2

For n even:

e Network connectivity = n-1
 Network diameter = 1
 Network narrowness = 2/n

e Bisection width = n#/4

e Expansion Increment =1
 Edgespernode = n-1

83

Mesh Networks

* |n amesh network nodes are arranged as a g-
dimensional lattice, and communication is allowed
only between neighboring nodes.

 |naperiodic mesh, nodes on the edge of the mesh
have wrap-around connections to nodes on the other
side. Thisis sometimes called atoroidal mesh.

O—C

()
(AN

A A N \)

A AN

C‘\ Y D) F)
AN NN/
O—-CO-0O-0-0

(‘\ C) D))
) [
C)

O

84

Mesh Metrics

For a g-dimensional non-periodic lattice with
k9 nodes:

* Network connectivity = g OO
» Network diameter = g(k-1) T T T
O—O—C0O—0—0
* Network narrowness = k/2 PN
] .] (J NN \)
e Bisection width = ka1 NI NI N
(J NN \)
« Expansion Increment = ka1 O—O—0O—0O—0O

» Edges per node = 2q

Ring Networks

A simple ring network isjust a 1D periodic mesh.
e Network connectivity = 2

e Network diameter = n/2

* Network narrowness = n/4

e Bisectionwidth= 2

o Expansion Increment = 1

e Edgesper node= 2

The problem for asimple ring isits large diameter.

Chordal Ring Networks

A chordal ring uses extra chordal linksto reduce
the diameter.

e For aring with extra diametric links we have (for
n even)

— Network connectivity = 3

— Network diameter = celling(n/4)
— Network narrowness = n/(n+4)
— Bisection width = 2+n/2

— Expansion Increment = 2

— Edges per node = 3

87

Examples of Ring Networks

« Hereareasimplering and a chordal ring
with diametric links, each of size 6 nodes.

88

Hypercube Networks

A hypercube network consists of n=2% nodes
arranged as a k-dimensional hypercube.
Sometimes called a binary n-cube.

 Nodesare numbered 0, 1,...,n-1, and two nodes
are connected if their node numbers differ in
exactly one hit.
— Network connectivity = k
— Network diameter = k
— Network narrowness =1
— Bisection width = 2k-1
— Expansion increment = 2k
— Edges per node = k

89

Examples of Hypercubes

O—0O 1D mZD @ 3D
0

< < .
)

L

Mapping Grids to Hypercubes

 |nthe example in which we summed a set of numbers
over asguare mesh of processors each processor needs

to know where it 1s1n the mesh.

* We need to be able to map node numbers to locations

In the process mesn

— Given node number k what isitslocation (i,)) inthe
processor mesh?

— Given alocation (i,)) in the processor mesn what is the node
number, Kk, of the processor at that |ocation?

— We want to choose a mapping such that neighbouring
processes in the mesh are also neighbours in the hypercube.
This ensures that when neighbouring processes in the mesh
communicate, this entails communication between

nelghbouring processes in the hypercube. o1

Binary Gray Codes

e Consider just one dimension —aperiodic
orocessor mesh in thiscaseisjust aring.
e Let G(I) bethe node number of the processor at

position 1 inthering, where0 < i <n. The
mapping G must satisfy the following,

— It must beunique, i.e., G(1) =G() =1 =].

— G(1) and G(i-1) must differ in exactly one bit for all i, O
<1<n-1.

— G(n-1) and G(0) must differ in exactly one bit.

92

Binary Gray Codes 2

A class of mappings known as binary Gray
codes satisfy these requirements. There are
several n-bit Gray codes. Binary Gray codes

can be defined recursively asfo
Given ad-bit Gray code, a (d+1)-

lows:
nit Gray code

can be constructed by listing the d-bit Gray
code with the prefix O, followed by the d-bit
Gray code in reverse order with prefix 1.

93

Example of a Gray Code

o Start with the Gray code G(0)=0, G(1)=1.

* Then the 2-bit Gray codeisgivenin Table 1,
and the 3-bit Gray codeisgivenin Table 2.

[G()], G(I)

I

0 00 0
1 01 1
2 11 3
3 10 2

Table 1: A 2-bit Gray code

94

Example of a Gray Code 2
(G0, ()

I

0 000 0
1 001 1
2 011 3
3 010 2
4 110 6
5 111 7
6 101 S
7 100 4

Table 2. A 3-bit Gray code

Example of a Gray Code 3

A ring can be embedded in a hypercube as

follows:
5 7

Multi-Dimensional Gray Codes

e To map amultidimensional mesh of
processors to a hypercube we require that
the number of processors in each direction
of the mesh be a power of 2. So

20r-1 % 20r-2 x . x 240

IS an r-dimensional mesh and if d isthe
hypercube dimension then:
dy+d,+... +d_,=d

97

Multi-Dimensional Gray Codes 2

« \We partition the bits of hode number and
assign them to each dimension of the mesh.
Thefirst d, go to dimension O, the next d,
bits go to dimension 1, and so on. Then we

apply separate inverse Gray code mappings
to each group of bits.

98

Mapping a 2x4 Mesh to a

Hypercube
K [Kdo[Kalo | [GH(KD]L[GHK)I, (1))
0 0O, 00 0O, 00 (0,0)
1 0, 01 0, 01 (0,1)
2 0, 10 0, 11 (0,3)
3 0,11 0, 10 (0,2)
4 1,00 1, 00 (1,0)
5 1,01 1,01 (1,1)
6 1, 10 1,11 (1,3)
7 1,11 1,10 (1,2)

99

Mapping a 2x4 Mesh to a
Hypercube 2
e A 2x4meshisembeddedintoa3D

hypercube as follows:

©

@

O——~3B—~2
&—~0—©

100

Shuffle-Exchange Networks

A shuffle-exchange network consists of
n=2% nodes, and two kinds of connections.

— Exchange connections links nodes whose
numbers differ in their lowest bit.

— Perfect shuffle connections link node 1 with
node 21 mod(n-1), except for node n-1 which is
connected to Itself.

101

8-Node Shuffle-Exchange
Network

* Below Is an 8-node shuffle-exchange
network, in which shuffle links are shown
with solid lines, and exchange links with

dashed lines.

8' 1 @ 9’@ ~(5) (6 -%

Shuffle-Exchange Networks

 What isthe origin of the name “shuffle-
exchange”?

e Consider adeck of 8 cardsnumbered 0, 1, 2,...,7.
The deck isdivided into two halves and shuffled
perfectly, giving the order:

0,4,1,52,6,3,7
 Thefinal position of acardi can be found by

following the shuffle link of nodei in a shuffle-
exchange network.

103

Shuffle-Exchange Networks

Leta ,, a., a g betheaddressof anodeina
snuffle-exchange network in binary.

A datum at this node will be at node number
A1y A Gg G g
after a shuffle operation.

This corresponds to a cyclic leftward shift in the
binary address.

After k shuffle operations we get back to the node
we started with, and nodes through which we pass
are called a necklace.

104

Butterfly Network

A butterfly network consists of (k+1)2% nodes

divided into k+1 rows, or ranks.

Let node (1,)) refer to the jth node in the ith rank.
Thenfor i1 >0node(i,]) isconnected to 2 nodes in
rank 1-1, node (i-1,)) and node (i-1,m), wherem is
the integer found by inverting the ith most
significant bit of j.

Note that if node (i,]) is connected to node (i-1,m),
then node (i,m) Is connected to node (i-1,)). This
forms a butterfly pattern.

— Network diameter = 2k

— Bisectionwidth = 2K
105

Example of a Butterfly Network

Here is a butterfly network for k = 3.

Rank 0 ()\
<

Rank 2 ()
(2,0) -
Rank 3

Rank 1
(1,0)

i =1,j=2=(010),, j = (110),= 6
i =2,j =2=(010),, j’ = (000), = 0
i =3,j =2=(010),, j = (011), = 3

106

Cube-Connected Cycles Network

A cube-connected cycles network is a k-
dimensiona hypercube whose 2 vertices are
actually cycles of k nodes.

The advantage compared with the hypercube is
that the number of edges per node is a constant, 3.

Disadvantages are that network diameter is twice
that of a hypercube, and the bisection width is
lower.

For a cube-connected cycle network of size k2k,
— Network diameter = 2k

— Bisection width = 2k1

— Edgespernode = 3

107

Example of a Cube-Connected
Cycles Network

A cube-connected cycles network with k = 3
looks like this:

108

Complete Binary Tree Network

* Tree-based networks use switches to
connect processors. An example isthe
binary tree network.

N

/

¢ o¢

T~

N

o ¢

o ¢

e

*This has abisection width of 1, and a
connectivity of 1. The low bisection width
can result in congestion in the upper levels of

the network.

109

Fat Tree Network

* Thefat tree network seeks to reduce the
congestion in the upper levels of the network by

adding extralinks.

/

S
o o

¢ o¢

\

o &

N\

e

*The connectivity is still 1, but if there are 2d
processing nodes the bisection width is 241,

*Thistype of network was used in the CM-5.

110

Classifying Parallel Algorithms

e Parallel algorithms for MIMD machines can
be divided into 3 categories

— Pipelined algorithms
— Data parallel, or partitioned, algorithms
— Asynchronous, or relaxed, algorithms

111

Pipelined Algorithms

A pipelined algorithm involves an ordered set of
processes in which the output from one processis
the input for the next.

The input for the first process is the input for the
algorithm.

The output from the last process is the output of
the algorithm.

Data flows through the pipeline, being operated on
by each process in turn.

112

Pipelines Algorithms 2

 Example Suppose it takes 3 steps, A, B, and C, to
assemble awidget, and each step takes one unit of

time.

 |nthe sequential case it takes 3 time unitsto

assembl e each widget.

e Thusit takes 3n time units to produce n widgets.

A BC

W2

W1

113

Example of Pipelined Algorithm

 |nthe pipelined case the following happens
— Time step 1: A operateson W1
— Time step 2: A operates on W2, B operates on W1

— Time step 3: A operates on W3, B operateson W2, C
completes W1

— Time step 4: A operates on W4, B operateson W3, C
completes W2

o After 3 time units, a new widget is produced every
time step.

114

Pipelined Algorithm

 |f the pipelineisn processes long, anew widget is
produced every time step from the nth time step
onwards. We then say the pipelineis full.

e The pipeline start-up timeisn-1.

e Thissort of parallelism is sometimes called
algorithmic parallelism.

C WW4AW3IW2W1

115

Performance of Pipelining

|f
* N isthe number of stepsto be performed

o T isthetime for each step
M isthe number of items (widgets)

then
Sequential time=NTM
Pipelinedtime = (N+M-1)T

116

Pipeline Performance Example

If T=1,N=100, and M = 10°, then
e Seguential time = 10°
» Pipelined time = 1000099

The speed-up T /T~ 100.

pipe

117

Data Parallelism

Often there is a natural way of decomposing the
data into smaller parts, which are then allocated to
different processors.

Thisway of exploiting parallelism is called data
parallelism or geometric parallelism.

In general the processors can do different thingsto
their data, but often they do the same thing.

Processors combine the solutions to their sub-
problems to form the complete solution. This may
INnvolve communication between processors.

118

Data Parallelism Example

Data parallelism can be exploited in the
widget example. For 3-way data parallelism

we have:

A BC

W4

W1

A BC

W5

W2

A BC

W6

W3

119

Relaxed Parallelism

* Relaxed parallelism arises when thereisno
explicit dependency between processes.

* Relaxed algorithms never wait for input —
they use the most recently available data.

120

Relaxed Parallelism Example

Suppose we have 2 processors, A and B.

* A produces a sequence of numbers, a,
1=1,2,....

* B inputsa and performs some calculation
on it to produce F..

e Say B runs much faster than A.

121

Synchronous Operation

» A produces a,, passesit to B, which
calculates F,

» A produces a,, passesit to B, which
calculatesF,

e and soon.....

122

Asynchronous Operation

1. A produces a,, passesit to B, which calculates F,

2. AIsinthe process of computing a,, but B does
not wait — It uses g, to calculate F,, i.e., F=F..

« Asynchronous algorithms keep processors busy.
Drawbacks of asynchronous algorithms are

— they are difficult to analyse

— an algorithm that is known to converge in
synchronous mode

— may not converge in asynchronous mode.

123

Example of Asynchronous
Algorithm

* The Newton-Raphson method is an iterative

algorithm for solving non-linear equations
f(x)=0.

X1 = Xp” f(Xn) /1 I(Xn)

e generates a sequence of approximations to
the root, starting with some initial value X.

Example of Asynchronous
Algorithm 2

Suppose we have 3 processors

* PI1: givenx, P1 calculatesf(x) int,, and sendsit to P3.

« P2:giveny, P2 calculatesf '(y) int,, and sendsit to P3.
« P3:givena, b, and c, P3caculatesd =a- b/c.

If |d - a > e then dissent to P1 and P2; otherwiseit is
output.

l Pl P3
Xn X, - p L
N f /(Xn) IE— f (Xn)

P2 125

Serial Mode Time Complexity

Serial mode

* P1 computesf(x,), then P2 computesft ’(x,),
then P3 computes x. . ;.

o Seria timeist+ t,+t; per iteration.

e |f k Iterations are needed, total timeis
k(t,+ t,+t5)

126

Synchronous Parallel Mode

* P1and P2 computef(x,) andf ’(x.)
simultaneously, and when both have
finished the values of f(x.) and f '(x,) are
used by P3 to find X, ;.

* Time per iteration is max(t,,t,) + t..

o k iterations are necessary so the total time
IS, k(max(t,,t,) + ty).

127

Asynchronous Parallel Mode

 P1 and P2 begin computing as soon as they
recelve anew input value from P3.

e P3 computes anew value as soon as it
receives a new input value from either P1
or P2.

128

Asynchronous Parallel Mode

Example

e For example, if
t,=2, t,=3 and
t,=1.

 Ci indicates
Processor Is
using X; In Its
calculation.

e Cannot predict

number of
Iterations.

Time Pl P2 P3

1 CO CO —

2 f(Xo) CO —

3 — f/(Xo)

4 — — X;= Xg~ F(Xo)/ F/(Xo)
5 Cl Cl —

6 f(x,) Cl —

7 — /(X)) | X=X F(X)/ F/(Xp)
8 C2 C2 X5= X~ F(X)/ F'(X,)
9 f(x,) C2 —

10 C3 f'(X,) | X,= X5 FOx,) F(Xy)
11 f(X5) C4 Xe= X4~ T(X,)/ (X,)
12 C5 C4 Xg= Xe- T(X3)/ F/(X,)

129

Speed-up and Efficiency

 \We now define some metrics which measure how
effectively an algorithm exploits parallelism.

o Speed-up istheratio of the time taken to run the
nest sequential algorithm on one processor of the
parallel machine divided by the timeto run on N
processors of the parallel machine.

S(N) = T/ Tpar(N)
o Efficiency isthe speed-up per processor.
€(N) = S(N)/N=(L/N)(T e/ Tpr(N))
 Overhead isdefined as
f(N)=1/¢(N)-1

130

Example

Suppose the best known sequential
algorithm takes 8 seconds, and a parallel
algorithm takes 2 seconds on 5 processors.
Then

Speed-up=8/2=4
Efficiency =4/5=0.8
Overhead = 1/0.8 -1 =0.25

131

Self Speed-up and Linear Speed-up

o Salf speed-up Is defined using the paralle
algorithm running on one processor.

o If the speed-up using N processorsis N then
the algorithm is said to exhibit linear speed-
up.

132

Factors That Limit Speed-up
1. Software Overhead

Even when the sequential and parallel
algorithms perform the same computations,
software overhead may be present in the
parallel algorithm. Thisincludes additional
Index calculations necessitated by how the
data were decomposed and assigned to
processors, and other sorts of “bookkeeping”
required by the parallel algorithm but not the
sequential algorithm.

133

Factors That Limit Speed-up
2. Load Imbalance

Each processor should be assigned the same
amount of work to do between
synchronisation points. Otherwise some
processors may be idle while waiting for
othersto catch up. Thisis known as load
Imbalance. The speedup islimited by the
slowest processor.

134

Factors That Limit Speed-up
3. Communication Overhead

Assuming that communication and calculation
cannot be overlapped, then any time spent

communicating data between processors
reduces the speed-up.

135

Gran Size

The grain size or granularity is the amount of
work done between communication phases of
an algorithm. We want the grain size to be

large so the relative impact of communication
IS |ess.

136

Definition of Load Imbalance

e Suppose the work done by processor | between two
successive synchronisation pointsis W,

 |If the number of processorsis N, then the average
workload Is:

L 1 N-1
W=|—[YW
o
e The amount of load imbalance is then given by:

W -W

where the maximum is taken over all processors.

137

Analysis of Summing Example

Recall the example of summing m numbers on a square
mesh of N processors.

The algorithm proceeds as follows

@ 1. Each processor findsthe local

sum of its m/N numbers

@ 2. Each processor passesitslocal
sum to another processor in a

coordinated way

@ 3. Theglobal sumisfinaly in

processor P;.

138

Analysis of Summing Example 2

o Timefor best sequential algorithm is
Tseq - (m'l)tcalc
wheret .
operation.
 Timefor each phase of parallel algorithm

— Formlocal sumsT; = (m/N-1) { .

IS time to perform one floating-point

— Sum along processor rows T, = (VN - 1)(t.qc + Teomm)

— where t,,m 1S time to communi cate one floating-point
number between neighbouring processors.

— Sum up first column of processors T; = (VN - 1)(t.qc + teomm)
139

Analysis of Summing Example 3

o Total timefor the parallel algorithm is;
Tog = (M/N + 2 VN -3)t 5.+ 2(VN - 1) tegy
« S0 the speed-up for the summing exampleis:
_ (m'l)tcalc
S(N) B (m/N + 2 \/N) B)tcalc+ 2(\/N) 1) tcomm
N(1-1/m)
1+ (N/m)(2 VN - 3)+ 2(N/m)(vN - 1) 7

140

where v =t/ teac

Analysis of Summing Example 4

 |nthisalgorithm agood measure of the grain size,
g, Is the number of elements per processor, m/N.
We can write S as.

N(1-1/m)

S(g:N) = 1+ (N/m)(2+/N-3)+ 2(N/m)(vN-1) 7

 Asg — oo with N constant, S — N.
* AsN — oo with g constant, S ~ gV N/(2(1+7)).
 AsSN — co with m constant, S — O.

141

Analysis of Summing Example 5

e Ifm> l1landN > 1,

- N

o) = 1+ 2 VN(1+7)/g
- 1

«(ON) = 1+ 2 /N(1+7)/g

f(g,N) = 2 VN(1+7)/g

142

Scalable Algorithms

Scalability is ameasure of how effectively an algorithm
makes use of additional processors.

An algorithm is said to be scalable if it is possible to keep
the efficiency constant by increasing the problem size as
the number of processors increases.

An algorithm is said to be perfectly scalable if the
efficiency remains constant when the problem size and the
number of processors increase by the same factor.

An algorithm is said to be highly scalable if the efficiency
depends only weakly on the number of processors when
the problem size and the number of processors increase by
the same factor.

143

Scalability of the Summing
Example

e The summing algorithm is scalable since we
can take g o< V/N.

e The summing algorithm is not perfectly
scalable, but it is highly scalable.

* “Problem size” may be ether:
— the work performed, or
— the size of the data.

144

Amdahl’s Law

 Amdahl's Law states that the maximum speedup of
an algorithm islimited by the relative number of
operations that must be performed sequentially,
1.e., by its serial fraction.

e If aistheseria fraction, nisthe number of
operations in the sequential algorithm, and N the
number of processors, then the time for the paralle
algorithm s:

Toar(N) = (an + (1-a)n/N)t + C(n,N)
where C(n,N) isthe time for overhead due to

communication, load balancing, etc., and t isthe
time for one operation.

145

Derivation of Amdahl’s Law

e The speed-up satisfies:
S(N) = Tseg/Tpar(N) = nt/[(an + (1-a)n/N)t + C(n,N)]
= U[(e + (1-a)/N) + C(n,N)/(nt)]
<1/(a + (1-a)/N)
* Notethat as N- o, then S(N)-1/a, so the
speed-up Is aways limited to a maximum of

1/ no matter how many processors are
used.

146

Examples of Amdahl’s Law

Consider the effect of Amdahl's Law on speed-up as a
function of serial fraction, a, for N=10 processors.

i S(N) < (o + (1-0)/N)
(04 04
7.87
o
6.49
S(N) © 5.26
6}
0 | T 17 17 1T T 11
0 001 003 0.06 0.1

147

Examples of Amdahl’s Law 2

Consider the effect of Amdahl's Law on speed-up as a
function of serial fraction, «, for N=1000 processors.

1000 -
S(N) < U(a + (1-a)/N)

If 1% of aparalle

SN) program involves serial
code, the maximum

speed-up is9 on a 10-

processor machine, but

90.99 only 91 on a 1000-
0. %2.29 16.41 9.91 - v
0 Q 9 processor machine.
T 17 1 T T 1 T T 1

O 001 0.03 0.06 0.1
a

148

Implications of Amdahl’s Law

 Amdahl's Law saysthat the serial fraction puts a
severe constraint on the speed-up that can be
achieved as the number of processors increases.

 Amdahl's Law suggeststhat it is not cost effective
to build systems with large numbers of processors
because sufficient speed-up will not be achieved.

e |t turns out that most important applications that
need to be parallelised contain very small serial
fractions, so large machines are justified.

149

Speed-Up for Large Problems

o Foeed-up isthe ratio between how long the best
sequential algorithm takes on a single processor
and how long it takes to run on multiple
PrOCESsors.

e To measure the speed-up the problem must be
small enough to fit into the memory of one
PrOCESSOY.

e Thislimits usto measuring the speed-up of only
small problems.

150

Speed-Up for Large Problems 2

 |nfinding the speedup we can estimate the time to
run on one processor, so much larger problems
can be considered.

* In general overhead costs increase with problem
size, but at a slower rate than the amount of
computational work (measured by the grain size).
Thus, speed-up is an increasing function of
problem size, and so this approach to speed-up
allows us to measure larger speed-ups.

151

Speed-Up and Problem Size

For a given number of processors, speed-up usually increases
with problem size, M.

|deal speed-up
Slope=1
Increasing M

S(N)

0
0 Number of processors, N

152

Semantics of Message Sends

* SUppOoSe one hode sends a message to
another node:

send (data, count, datatype, destination)
* There are two possible behaviours:
—Blocking send
—Non-blocking send

153

Semantics of Blocking Send

 The send does not return until the datato be
sent has “left” the application.

e Thisusually means that the message has
been copied by the message passing system,
or It has been delivered to the destination
Process.

e On return from the send() routine the data
buffer can be reused without corrupting the

message.

154

Semantics of Non-Blocking Send

« Upon return from the send() routine the data
buffer isvolatile.

e Thismeansthat the data to be sent Is not
guaranteed to have left the application, and if the
data buffer is changed the message may be
corrupted. The idea here isfor the send() routine
to return as quickly as possible so the sending
process can get on with other useful work.

» A subsequent call isused to check for completion
of the send.

155

Semantics of Message Receives

e SUppOoSe one nhode recelves a message from
another node:

recelve (data, count, datatype, source)

* There are two possible behaviours:
—Blocking receive
—Non-blocking receive

156

Semantics of Blocking Receive

e Therecave does not return until the datato
be recelved has “entered” the application.

* This means that the message has been
copied into the data buffer and can be used

by the application on the receiving
PrOCESSOY.

157

Semantics of Non-Blocking
Receive

Upon return from the receive() routine the status of
the data buffer is undetermined.

Thismeans that it is not guaranteed that the
message has yet been recelved into the data buffer.

We say that a recelve has been posted for the
message.

Theideahereisfor the receive() routine to return
as quickly as possible so the recelving process can

get on with other useful work. A subseguent call is
used to check for completion of the receive.

158

Message Passing Protocols

e Suppose one hode sends a message and another
receivesit:

SOURCE: send (data, count, datatype, destination)
DEST: receive (data, count, datatype, source)

e Two iImportant message passing protocols are
— Synchronous send protocol
— Assynchronous send protocol

159

Message Passing Protocols 2

« Synchronous. The send and recelve routines
overlap in time. The send does not return
until the recelve has started. Thisisalso
known as a rendezvous protocol.

» Asynchronous: The send and receive
routines do not necessarily overlap in time.
The send can return regardless of whether
the receive has been initiated.

160

MPI Polint-to-Point Communication

 MPI iIsawidely-used standard for message
passing on distributed memory concurrent
computers.

e Communication between pairs of processesis
called point-to-point communication.

e There are several Javaversions of MPI, but we
shall usempiJdava.

* INnmpidJava point-to-point communication is
provided through the methods of the Comm class.

161

mpiJava API

Theclass only has static members.

It acts as a module containing global services, such as

Initialisation, and many global constants including the
default communicator COMM WORLD.

The most important class in the package isthe
communicator class Comm.

All communication functionsinmpiJava are
members of Comm Or 1tS subclasses.

Another very important classisthe Datatype class.

TheDatatype class describes the type of elements

In the message buffers to send and receive.
162

Class hierarchy

MPI
Grou
P Cartcomm
Intracomm r_

Comm L_Graphcomm
Package mpi [| Intercomm

Datatype

Status

Request Prequest

163

Basic Datatypes

MPI Datatype |Java Datatype
MPI .BYTE byte

MPI .CHAR char

MPI .SHORT short

MPI .BOOLEAN |boolean
MPI.INT int

MPT .LONG long
MPI.FLOAT float

MPI .DOUBLE double
MPI.OBJECT object

164

mpidJdava send()/recv()
e Send and receive members of Comm:

void Send (Object buf, int offset, int
count, Datatype type, int dst, int
tag) ;

Status Recv (Object buf, int offset,
int count, Datatype type, int src, int
tag) ;

e buf must be an array.
e offset Isthe element where message starts.
e Datatype class describestype of elements. 165

Communicators

e A communicator defines which processes may be
Involved In the communication. In most

elementary applications the MPI-supplied
communicator MPI . COMM WORLD IS used.

e Two processes can communicate only if they use
the same communicator.

o User-defined datatypes can be used, but mostly the

standard M PI-supplied datatypes are used, such as
MPI.INT and MPI.FLOAT.

166

Process ranks

 When an MPI program is started the number of
processes ,N, Is supplied to the program from the
Invoking environment. The number of processesin

use can be determined from within the MPI
program with the size () method.

int Comm.Size ()

o Each of the N processesis identified by aunique
Integer inthe range O to N-1. Thisis called the

process rank. A processcan determine its rank with
the Rank () method.

int Comm.Rank ()

167

Message Tags

e The message tag can be used to distinguish
between different types of message. The tag

specified by the recalver must match that of the
sender.

 InaRecv () routine the message source and tag

arguments can have the values
MPI.ANY SOURCE and MPI.ANY TAG. These

are called wildcards and indicate that the
requirement for an exact match does not apply.

168

Return Status Objects

* |f the message source and/or tag are/is
wildcarded, then the actual source and tag can
be found from the publicly accessible
source and tag fields of the status object
returned by recv ().

e The number of items recelved can be found
using:
int Status.Get count (Datatype datatype)

169

Communication Completion

e A communication operation islocally complete on
a process if the process has completed its part in
the operation.

e A communication operation is globally complete if
all processes involved have completed their part in
the operation.

e A communication operation is globally complete
If and only if it islocally complete for all
DrOCESSES.

170

Summary of Point-to-Point

Communication

Message selectivity on the receiver is by rank and
message tag.

Rank and tag are interpreted relative to the scope
of the communication.

The scope is specified by the communicator.

Source rank and tag may be wildcarded on the
receiver.

Communicators must match on sender and
receiver.

171

Minimal mpiJava Program

import mpi.*

class Hello {
static public void main(String[] args) {
MPI.Init (args) ;
int myrank = MPI.COMM WORLD.Rank() ;
if (myrank == 0) {

}

char[] data = new char [20];

MPI.COMM WORLD.Recv(data, 0, 20, MPI.CHAR, 1, 99);
System.out.println(“received:” + new String(data) + “:”);
else if (myrank==1) {

char[] data = “Hello, there”.toCharArray():;

MPI.COMM WORLD.Send(data, 0, data.length, MPI.CHAR, 0, 99);

MPI.Finalize() ;

172

Another MPI Example

import mpi.*

class HelloAll {
static public void main(String[] args) {
MPI.Init (args) ;
int myrank = MPI.COMM WORLD.Rank() ;
int nprocs = MPI.COMM WORLD.Size() ;
int[] irecv = new int[1l];
if (myrank == 0) {
for (int i=1;i<nprocs;i++) {
MPI.COMM WORLD.Recv(irecv, 0, irecv.length, MPI.INT,
MPI.ANY SOURCE, 99);
System.out.println(“Hello from process:” + irecv][0]);
}
} else {
irecv[0] = myrank;
MPI.COMM WORLD.Send(irecv, 0, 1, MPI.INT, O, 99);

}

MPI.Finalize() ;

Notes on Example

e All MPI calls must come between the calls
to MPL.Init() and MPI.Finalize().

e Theinformation from the processes is not
necessarily output in ascending order
because the program does not specify the
order in which process O receives messages.

 \We could have each process output its rank
Instead of sending it to process 0.

174

Collective Communication

* The send and receive style of communication
between pairs of processors is known as point-to-
point communication. Thisisdistinct from
collective communication in which several
processors are involved in a coordinated
communication task.

o Examplesinclude:

— Broadcasting data. One processor, known as the root,
sends the same datato all processors.

— Datareduction. Data from all processors is combined
using a reduction function to produce a single result.
The result may reside on a single processor or on all
[PrOCessors.

175

Broadcast

« A common form of broadcast algorithm is
based upon a broadcast tree.

» Suppose node O isthe root of the broadcast.
Consider the following tree.

(0;
ORORO
3 ® ®
@

176

Broadcast Algorithm 1

« Send on all links ssimultaneoudly
1) NodeO sendstonodesl, 2, and 4
2) Node 1 sends to nodes 3 and 5; node 2 sends to node 6
3) Node 3 sendsto node 7

(0;
ORORO
8 ® ®
@

On a hypercube this broadcast
algorithm uses only physical
links in the interconnect that
directly connect nodes.

177

Broadcast Algorithm 2

e Sendononelink at atime:

1) Node 0 sendsto node 1.

2) Node 0 sends to node 2, and node 1 sends to node 3.

3) Node 0 sends to node 4, node 1 sends to node 5, node 2 sends to
node 6, and node 3 sends to node 7

(0;
ORORO
8 ® ®
@

On a hypercube this broadcast
algorithm uses only physical
links in the interconnect that
directly connect nodes.

178

Reduction

e Reduction can also be represented by atree
algorithm. For example, if we want to sum
numbers on all nodes to one node;

179

Reduction To All Nodes

 If wewant to perform the sum so that all

nodes end up with the result:

180

Collective Routines

Other forms of reduction include finding the maximum
or minimum of a set of numbers over all processes.

These reduction and broadcast algorithms are
logarithmic in number of nodes, i.e., number of steps
IS approximately proportional to log,(n).

On hypercubes the logarithmic algorithms involve
communication between only neighbouring processes.

Other algorithms may be better for other network
topologies.
MPI provides routines for broadcasting and reduction.

181

MPI Integration Example

Want to find:
J sin(x) dx
o |nitialisation
— Initialise MPI
— communicate problem parameters
 Compute

— each process computes its contribution
— reduction operation sums process contributions
e Qutput
— Process with rank O outputs the result
o Tidy Up
— All processes call MPI.Finalize() 182

MPI Integration Code: Outline

import mpi.*;

class Integrate {
static public void main(String[] args) {
int npts;
MPI.Init (args) ;
int myrank = MPI.COMM WORLD.Rank() ;
int nprocs = MPI.COMM WORLD.Size() ;
int[] irecv = new int[1];
if (myrank == 0) {
npts = 100; irecv[0] = npts;

}
MPI.COMM WORLD.Bcast(irecv, 0, 1, MPI.INT, O0);
npts = irecv[0]; _
! < See next dlide for what
3 goes here
MPI.Finalize();

183

MPI Integration Code;
Computation

npts = irecv[0];
int nlocal = (npts-1)/nprocs + 1;
int nbeg = myrank*nlocal +1;
int nend = Math.min (nbeg+nlocal-1,npts);
double delta = Math.PI/npts;
double psum = 0.0;
for (int i=nbeg;i<=nend;i++){
psum += (Math.sin((i-0.5)*delta)) *delta;
}

double [] dval = new double[2];
dval[0] = psum;
MPI.COMM WORLD.Reduce(dval,0,dval,1l,1,MPI.DOUBLE,MPI.SUM,O0) ;
if (myrank==0) {
System.out.println(“The integral = ” + dvall[l]);
}

184

Application Topologies

* |n many applications, processes are arranged with
a particular topology, e.g., aregular grid.

 MPI supports general application topologies by a
graph in which communicating processes are
connected by an arc.

 MPI also provides explicit support for Cartesian
grid topologies. Mostly this involves mapping
between a process rank and a position in the
topology.

185

Cartesian Application Topologies

Cartcomm Intracomm.Create _cart (int [] dims,
noolean [] period, boolean reorder)

« Periodicity in each grid direction may be specified.
 |nquiry routines transform between rank in group
and location in topology

» For Cartesian topologies, row-major ordering is
used for processes, i.e., (i,])) meansrow I, column .

186

Topological Inquiries

e Can get information about a Cartesian topology:
CartParms Cartcomm.Get()

This returns an object containing information about a
Cartesian topology:
public class CartParms{
Int [] dims; // number of processes in each dimension
boolean [] period; // periodicity of each dimension
Int [] coords, // coordinates of calling process

}

187

Mapping Between Rank and
Position
 Therank of aprocess at agiven location:
Int Cartcomm.Rank(int [] coords)

e Thelocation of aprocess of agiven rank:
Int [] Cartcomm.Coords(int rank)

188

Uses of Topologies

Knowledge of application topology can be used to
efficiently assign processes to processors.

Cartesian grids can be divided into hyperplanes by
removing specified dimensions.

MPI provides support for shifting dataaong a
specified dimension of a Cartesian grid.

MPI provides support for performing collective
communication operations along a specified grid
direction.

189

Topologies and Data Shifts

Consider the following two types of shift for a
group of N processes:

e Circular shift by J. Datain process K Is sent
to process mod((J+K),N)

 End-off shift by J. Datain processK is sent
to process J+K if thisis between 0 and N-1.
Otherwise, no data are sent.

190

Topologies and Data Shifts 2

* Topological shifts are performed using
Status Comm.Sendrecv(...)

* Theranks of the processes that a process must send
to and receive from when performing a shift on a
topological group are returned by:

ShiftParms Cartcomm.Shift(int direction, int disp)
where the ShiftParms classis:
public ShiftParms{
public int rankSource;
public int rankDest;

191

Send/Receive Operations

n many applications, processes send to one
orocess while recelving from another.

Deadlock may arise if careis not taken.

MPI provides routines for such send/receive
operations.

For distinct send/recelve buffers:
Status Comm.Sendrecv(...)

For identical send/recaive buffers:
Status Comm.Sendrecv_replace(...)

192

Vibrating String Problem

We shall now study the vibration of waves on a string, and
design aparallel MPI program to solve the partial differential
equation that describes the problem mathematically.

Problem

A string of length L and fixed at each end isinitially given a
known displacement. What is the displacement at |ater times?

* Introduce coordinate x so that one end of the string is at x=0 and the
other end isat x=L.

» Denote the displacement of the string at position X and timet by ¥(x,t).
Wewant to know ¥(x,t).

193

The Wave Equation

 Mathematically the vibrating string problem is
described by the wave eguation.

* We shall solve this problem numerically by
approximating the solution at a number of equally-
spaced values of X.

Displacement

x=0 X = oy

Method of Solution

We find the solution at a series of time steps, t,,
t,, t,, etc.

At each time step we find the displacement at the
poINts X,, Xy,-.-, X1, Where X,=0 and X, ,=L

At t, = 0 we assume the string has a known
shape, I.e., we know ¥(x,0).

Given the solution at position x; at time;, the
value there at the next time step depends on the
current and previous values at that point, and on
current values at the neighbouring points.

195

Data Distribution

» Give each process ablock of points on the string.

» Each process should have approximately the same
number of points to ensure good load balance.

051§2§3

Displacement

x=0

Communication Reguirements

* Given the solution at position x; at timet;, the value
there at the next time step depends on the current and
previous values a that point, and on current values at
the neighbouring points.

e S0 to update a point we need to know the displacement
al nelghbouring points. This entails communication.

» Each process needs to communicate the displacement
values for itsfirst and last points before updating its
points

0 1 2 3

197

Outline of Parallel Code

Initialise data distribution

— Find position of each process to determine which block of
points it handles.

— Find out the node numbers of processesto left and right.

Initialise arrays

— Determine how many points each process handles and the
Index of the first point in each.

— Set the psi and oldpsi arrays.
Perform Update

— Communicate end points.

— Do update locally.

Output results

198

Displacement Arrays

» Each process needs to store the endpoint values
received from the neighbouring processes. These
are stored at the O and nlocal+1 positionsin the
displacement arrays.

e Thus, the displacement arrays need two “extra’
entries at each end.

nlocal =5
0/1]|2 34|56

199

Outline MPI Code

import mpi.*

class VibratingString {
static public void main(String[] args) {

MPI.Init (args) ; - i i }
< Code for initialising data distribution
goes here
< Code for initialising arrays goes here
< Code for update loop goes here
< Code for output phase goes here

MPI.Finalize() ;

}
}

200

Initialising the Data Distribution

boolean [] periods = new boolean|[1l];
boolean reorder = false;

int myrank = MPI.COMM WORLD.Rank() ;
int nprocs = MPI.COMM WORLD.Size() ;

int [] dims = new int[1l];
dims [0] = nprocs;
periods [0] = false;

Cartcomm commld = MPI.COMM WORLD.Create cart(dims, periods,
reorder) ;

int [] coords = new int[1];

coords = commld.Coords (myrank) ;

ShiftParms shiftld = commld.Shift (0, 1);

int left shiftld.rankSource;

int right shiftld.rankDest;

e commld is anew communicator with a 1D Cartesian topology.
* coords array givesthe position of a process in the topology.
e Shift() allows usto find the left and right neighbours of a process.

201

Initialising the Arrays

int npoints = 100;
double psi = new double[102];
double oldpsi = new double[102];
double newpsi = new double[102];
int nlocal = npoints/nprocs;
int nstart = coords[0] *nlocal;
double x;
for (int i=0;i<nlocal;i++){
x = 2.0*Math.PI* (double) (nstart+i)/ (double) (npoints-1);
X = Math.sin(x);
psi[i+1l] = oldpsili+l] = x;

}

* nlocal isthe number of points updated by each process.

* nstart iIsthe index of the first point in each process, I.e., it isthe
global index corresponding to local index 1.

* Weinitialise the arrays for indices 1 up to nlocal. Indices O and
nlocal+1 will be used later to store values received from
nelghbouring processes. 202

Update Loop

double tau = 0.05;
int start = 1;
if (coords[0]==0) start = 2;
int end = nlocal;
if (coords[0]==nprocs-1) end = nlocal-1;
Status s;
for (int j=0;3<500;7++) {
s = MPI.COMM WORLD.Sendrecv(psi,l,1,MPI.DOUBLE,left, 99,
psi,nlocal+l,1,MPI.DOUBLE, right,99);
s = MPI.COMM WORLD.Sendrecv(psi,nlocal,1l,MPI.DOUBLE, right, 99,
psi,0,1,MPI.DOUBLE, left,99);
for (int i=start;i<=end;i++){
newpsil[i] = 2.0*psi[i] -oldpsil[i]+
tau*tau* (psi[i-1]-2.0*psi[i]l+psi[i+1]);
}

for (int i=1;i<=nlocal;i++) {
oldpsili] = psilil;
psil[i] = newpsil[i];
}
}

203

Notes on Update Loop

The update phase has 3 main parts.

1.

Communicate endpoints between
nelghbours

Update points locally
Copy arrays ready for next update step

204

Communication Code: Left Shift

o All processes send psi[1] to the process to the
left, and receive data from the process to the
right, storing it in psi[nlocal+1].

s = MPI.COMM WORLD.Sendrecv(psi,l,1,MPI.DOUBLE, left,99,
psi,nlocal+l,1,MPI.DOUBLE, right,99);

205

Communication Code: Right Shift

o All processes send psi[nlocal] to the process to
the right, and recelve data from the process to
the left, storing it in psi[O].

s = MPI.COMM WORLD.Sendrecv(psi,nlocal,1l,MPI.DOUBLE, right, 99,
psi,0,1,MPI.DOUBLE, left,99);

206

Output Phase

* \WWe assume the results are output to afile
and/or avisualisation device.

 Wewon't look at thisasits mostly a Java
coding Issue.

e One parallel computing issue that arisesis
whether all processes have access to thefile

system. Usually they do, but thisis not
required by MPI.

207

Performance Analysis

To analyse the performance of the parallel wave
eguation code we just ook at the update phase.

To update each point requires 6 floating-point
operations in the parallel and sequential codes.

In the parallel code each process sends and
receives two floating-point numbers in each
update step.

We ignore the time to copy to the arrays old_psi
and psl.

208

Performance Analysis 2

The speed-up IS

ont . N

SN = 6Nyt + 2t = 1+ 1/(3g)

where N iIs the number of processes, nisthe
number of points, g = n/N isthe grain size, and
T=1 .t

comm’ *calc*

calc

209

Performance Analysis 3

The efficiency Is

e(N) = 1
(N) 1+ 7/(3Q)

so the overhead isf(N) = 7/(3Q).

Since the efficiency depends on g but not

Independently on N the parallel algorithm is perfectly
scalable.

210

L aplace Equation Problem

e The next problem we shall look at P(:t;ntial =0

may be used to determine the
electric field around a conducting
object held at afixed electrical
potential inside abox also at afixed
electrical potential.

e Aswith the vibrating string
problem, this problem can also be
expressed mathematically as a
partial differential equation, known
as the Laplace equation.

 Weshall design aparalel MPI
program to solve the partial Potential = 1
differential equation.

211

L aplace Equation 2

 Thisisa2-D problemwhereasthe eo0o000060
vibrating string was a 1-D ::::::::
problem. o
« We divide the problem domain 0006000606006
. . . 00000000
into aregular grid of points,and |ge 000 ® 0@
find an approximation to the 00000000

solution at each of these points.

e We start with an initial guess at the solution, and
perform a series of iterations that get progressively
closer to the solution.

212

Data Distribution

* Glve each process a 2D block of points.

» Each process should have approximately the
same number of points to ensure good load
palance.

 UseaMPI'stopology routines to map each
nlock of points to a process.

213

Data Distribution 2

Communication Reguirements

e The update formula replaces the solution at
a point by the average of the 4 neighbouring
points from the previous iteration.

* Pointslying along the boundary of a process
need data from neighbouring processes.

« Each process needs to communicate the
points lying along its boundary before
performing an update.

215

Communication Reguirements 2

e To update ared
point we need to
know the values of
the pointsin the

shaded region.

 For points on the
edge thisrequires
communication

216

Outline of Parallel Code

| nitialise data distribution

— Find position of each process to determine which
block of pointsit handles.

— Find out the node numbers of processesin the |l eft,
right, up, and down directions.

Initialise arrays

— Determine how many points each process handles.
— Set the phi and mask arrays.

Perform update

— Copy phi array to oldphi array.

— Communicate boundary points.

— Do update locally.

Output results

217

Array Declarations

o Each process needs to be able to store the
boundary values received from its neighbours.

 These are stored in rows 0 and nlocaly+1 and in
ocalx+1 of the phi array.

columns 0 and n

(0.0)

(0.1)

(0.2)

(0.3)

(0.4)

(0.5)

(1.0)

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(2.0)

(2.1)

(2.2)

(2.3)

(2,4)

(2.,5)

(3.0)

(3.1)

(3.2)

(3.3)

(3:4)

(3.9)

(4,0)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(5.0)

(5.1)

(5.2)

(5.:3)

(5.4)

(5.5

nlocalx =4
nlocaly =4

218

Array Initialisation

There are 3 arrays.

 phi : the current values of the solution

e oldphi : the values of the solution for the previous

Iteration.
 mask : equals false on boundaries and true

el sawhere.

ey Ty Fr o fo F o
e B4 EH B
e B4 OB B
oy B4 B [BB
B B [B B
ey B4 EH B B
e B4 OB B
ey Ty P o [Fy o

OO OO OCO0OO0o
OCOOOOOOO0o
OCOOOOO0OO0o
OO0 HHOOO
OO0 HHOOO
OCOOOOCO0OO0o
QOO OOO0OO0o

OCOOOOO0OO0o

219

mask

phi

Outline MPI Code

import mpi.*;

class LaplaceEquation {
static public void main(String[] args) {

MPI.Init (args) ; - i i }
< Code for initialising data distribution
goes here
< Code for initialising arrays goes here
< Code for update loop goes here
< Code for output phase goes here

MPI.Finalize() ;

}
}

220

Initialising the Data Distribution

boolean [] periods = new boolean([2];

boolean reorder = false;

int myrank = MPI.COMM WORLD.Rank() ;
int nprocs = MPI.COMM WORLD.Size() ;

int [] dims = new int[2];

MPI.COMM WORLD.Dims create(nprocs, dims);

periods[a] = periods[l] = true;

Cartcomm comm2d = MPI.COMM WORLD.Create cart(dims, periods,

int [] coords = new int([2];

coords = comm2d.Coords (myrank) ;
ShiftParms vshift = comm2d.Shift (0,
int up = vshift.rankSource;

int down = vshift.rankDest;
ShiftParms hshift = comm2d.Shift (1,
int left = hshift.rankSource;

int right = hshift.rankDest;

1) ;

1) ;

reorder) ;

221

Initialising the Data Distribution 2

o dimg0] and dimg[1] are the number of processes
In the process grid in each direction. We make the
grid as sguare as possible using Create dims().

e Thistimewe set up a2D communicator, commz2d.

e The Coords() method gives the position in the
topology of each process.

o Callsto Shift() give the ranks of the neighbouring
processes in the four directions.

222

Initialising phi and mask Arrays

Set all of phi to O, and all of mask to true.

For processes in row O of the process mesh we must set
row 1 of the mask array to false.

For processes in the last row of the process mesh we must
set row nlocaly of the mask array to false.

For processes in column O of the process mesh we must set
column 1 of the mask array to false.

For processes in the last column of the process mesh we
must set column nlocalx of the mask array to false.

For the 4 points in the centre we must set the phi and mask
entriesto 1 and false, respectively, in the processes

containing them.
223

Initialisation of Arrays

int nlocalx = 100;
int nlocaly = 100;

double [] phi = new double[102] [102];
new double[102] [102];
new boolean[102] [102];

double [] oldphi =
boolean [] mask =
double [] sendbuf
double [] recvbuf

new double[102];
new double[102];

for (int j=0;j<=nlocaly+l;j++){
for (int i=0;i<=nlocalx+l;i++){

phi[j] [1] =
mask[j] [1i] =

0.0;
true;

224

Initialisation of Arrays 2

if (coords[0]==0){
for (int i=0;i<=nlocalx+1l;i++){
mask[1l] [i] = false;
}

if (coords[0]==dims[0]-1)
for (int i=0;i<=nlocalx+1l;i++){
mask [nlocaly] [i] = false;
}

if (coords[l]==0){
for (int j=0;j<=nlocaly+1l;j++){
mask[j] [1] = false;
}

if (coords[l]==dims[1]-1){
for (int j=0;j<=nlocaly+1l;j++){
mask[j] [nlocalx] = false;
}

if

Initialisation of Arrays 3

(coords [0] ==dims [0] /2-1 && coords[l]==dims[1]/2-1){
phi[nlocaly] [nlocalx] = 1.0;
mask [nlocaly] [nlocalx] = false;

(coords [0] ==dims [0] /2-1 && coords[l]==dims[1]/2) {
phi[nlocaly] [1] = 1.0;
mask [nlocaly] [1] = false;

(coords [0] ==dims [0] /2 && coords[l]==dims[1]/2-1){
phi[1l] [nlocalx] = 1.0;
mask([1l] [nlocalx] = false;

(coords [0] ==dims [0] /2 && coords[l]==dims[1]/2){
phi[1] [1] = 1.0;
mask[1l] [1] = false;

226

Update Phase

The update phase has three main parts.
e Copy phi to oldphi array.

e Communicate boundary data.

o Update points locally.

227

Update Phase 2

for (int k=0;k<500;k++) {
for (int j=1;j<=nlocaly;j++){
for (int i=1l;i<=nlocalx;i++){
oldphi[j] [il1=phi[j] [i];
}
}

Shift up
Shift down
Shift right

Shift left

for (int j=1;j<=nlocaly;j++){
for (int i=1l;i<=nlocalx;i++){
if (mask[j][i]){
phi[§] [1i]1=0.25* (oldphi[j-1] [i] +oldphi [§+1] [i]+
oldphi[j] [i-1] +oldphi[j] [i+1]) ;

Communication

o Communication takes place by shifting data
In each of the four directions (left, right, up,
and down).

e Before communicating in any direction we
must explicitly buffer the data to be sent,
and unpack it when it is received.

229

Shift Up

Status s;

for (int i=1;i<=nlocalx;i++){
sendbuf [i] = phil[l] [i];

}

s

= MPI.COMM WORLD.Sendrecv (sendbuf,1l,nlocalx, MPI.DOUBLE, up, 99,
recvbuf,1,102,MPI.DOUBLE, down, 99) ;
for (int i=1;i<=nlocalx;i++){
oldphi [nlocaly+1l] [i] = recvbufli];
}

230

Shift Down

Status s;

for (int i=1;i<=nlocalx;i++){
sendbuf[i] = philnlocalyl] [i];

}

s

= MPI.COMM WORLD.Sendrecv(sendbuf,1l,nlocalx, MPI.DOUBLE, down,
99, recvbuf,1,102,MPI.DOUBLE, up, 99) ;
for (int i=1;i<=nlocalx;i++){
oldphi [0] [i] = recvbufli];
}

‘ 231

Shift Right

Status s;

for (int j=1;j<=nlocaly;j++){
sendbuf[j] = philj] [nlocalx];

}

s

= MPI.COMM WORLD.Sendrecv (sendbuf,1l,nlocaly,MPI.DOUBLE, right,
99, recvbuf,1,102,MPI.DOUBLE, left, 99) ;
for (int j=1;j<=nlocaly;j++){
oldphi[j] [0] = recvbufljl]l;
}

232

Shift Left

Status s;

for (int j=1;j<=nlocaly;j++){
sendbuf [j] = philj] [1];

}

s

= MPI.COMM WORLD.Sendrecv (sendbuf,1l,nlocaly, MPI.DOUBLE, left,
99, recvbuf,1,102,MPI.DOUBLE, right,99) ;
for (int j=1;j<=nlocaly;j++){
oldphi[j] [nlocalx+1l] = recvbufljl;
}

233

Performance Analysis

The update formularequires 4 floating-point
operations per grid point.

The number of grid points per processor shifted in
the left/right direction is n/P, where nxn isthe size

of the grid and P is the number of processorsin
one column of the processor mesh.

The number of grid points per processor shifted in
the up/down direction is n/Q, where Q isthe

number of processorsin one row of the processor
mesh.

234

Speed Up
The speed-up IS

) An?t .
S(N) = (An2IN)t . + (2NIQ) 4 e + (2N/P)ty i
N
1+ (P+Q) 7/(2n)
N
1+ (Q/n)(1+a)7/2

where M=nxn isthe size of the grid, PxQ isthe
processor mesh, P=aQ, and 7=t /t_..

235

Efficiency and Overhead

e Since N=PQ=aQ? and M=n?is the number
of points, the efficiency is given by:

1
1+ (1+a)/(2Va)(7/V9)

where g = M/N Isthe grain size.

e (N) =

 Since the efficiency depends only on g, and
not Independently on n and N, the algorithm
IS perfectly scalable.

236

Irregular Communication

* |nthewave equation and L aplace equation
problems the communication is very regular. Once
we set the number of processes and the size of the
problem the communication requirements of the
algorithm are fully determined.

* We shall now consider aparallel molecular
dynamics ssmulation. In this ssmulation we know
that data may need to be communicated between
processes at a particular point in the program, but
we do not know which data it will be. In this
example the communication is slightly irregular 3

37

Molecular Dynamics Simulations

We have n particles in a periodic square domain.

The particles interact in a known pairwise way.
Each particle exerts aforce on the other particles
so that

— If the particles are close enough they repel each other

— If the particles are far enough apart they are attracted to
each other

— If the particles are more than some distance, r,, apart
they do not influence each other.

238

Molecular Dynamics Simulations 2

e Thissort of interaction istypical of many
molecules.

e Glveninitial positions and velocities for the
particles, we follow the movement of the
particles at a series of discrete time steps.

o Usually we areinterested in the
macroscopic properties of such particle
systems, such as temperature, energy, €tc.

239

Cut-Off Distance

* We could find the force on particle i by summing
over all the other particles,

n-1
Fi =21
=0
whereT; isthe force exerted by particle] on particle .
Thisresultsin an O(n?) algorithm.

* We can improve the running time if we make use of
the fact that the force f;; Is zero for particles more than
distance r, apart.

240

Cut-Off Distance 2

* e, Lo s | Ifwedividethe

e, ***ls4 s | domain of the problem
ee o |® e el e] intocellsof sizeryxr,
:........ : L :.. [..| eaCh partICIe Only

% o 0|0, [0.°| INteractswith the
ettt ** 1 paticlesinitsown cell
%% % L. 4%, | andthe8 neighbouring
ot el | cels

241

Data Structures

The particle data structure contains a
particle’ s position , velocity, and other data
such as particle type, etc.

Particles can be stored in an array.

The cell data structure contains alist of the
particlesit contains, i.e., alist of the array
Index for each of its particles.

The cdll data can be stored as alinked list.
Thereisa 2D array of cells.

242

Cedll Data Structure

We can use alinked list to keep track of the particlesin

each cdll.

We can use Java' s LinkedList class.

0/12

314/ 5/ 6|7|8]| paticlearray

/

S

)) i)

linked list for
one cell

Each cdll hasits own list. The starts of the lists are stored
Ina2D array.

A particle can find out which cell it isin from its position,,,

Data Distribution

*The particles are
distributed to processes by
assigning arectangular
block of cellsto each
pProcess.

*\We find out the node
number, location in the
process mesh, and the node
numbers of the
nelghbouring processes as
In the Laplace equation
problem. 244

Data Dependencies

- NN Ry A LI . *Particlesin cells dong the
SRR oy por e Pt e P SR S “=1~| boundary of a process need
toknow about particlesin
other processes in order to
evaluate the force on them.

*Each process needs particle
data from 8 neighbouring
Processes

245

Communication Reguirements

» Each particle needs information about the particles
In the neighbouring cells in order to determine the
force on it. So we need to communicate particles
lying in cells along the boundary of each process

* When particles movet
of cells owned by one
process. Thisiscalled

ney may travel from the set
nrocess to those of another

particle migration and

requires communication.

246

2D array
of cells

Array Declarations

« Wemantain a2D array of linked lists— one for each cell
IN aprocess.

* When we receive particle information from cells lying
along the boundary of adjacent processes we store the data
at the end of the particle array.

e Pointersto the particles received are placed into cell lists.

localcellx = 4, localcelly = 4

(0.0)

(0.1)

(0.2)

(0.3)

(0.4)

(0.5)

(1.0)

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(2.0)

(2.1)

(2.2)

(2.3)

(2,4)

(2.,5)

(3.0)

(3.1)

(3.2)

(3.3)

(3:4)

(3.9)

(4,0)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(5.0)

(5.1)

(5.2)

(5.:3)

(5.4)

(5.5

T T T P70 0

particles recelved

particlesin this process

particle array 247

Outline of Parallel Code

| nitialise data distribution

— Find position of each process to determine which block
of cellsit handles.

— Find out the node numbers of processesin the left, right,
up, and down directions.

Initialise particlearraysand cell lists

— Generate or input initial particle positions and velocities .
— Insert particlesinto cell lists.

Perform update

— Communicate boundary cell data.

— Do update locally.

— Communicate particles that have migrated

Output results 248

Outline MPI Code

import mpi.*

class MolecularDynamics {
static public void main(String[] args) {

MPI.Init (args) ; - i i }
Code for initialising data distribution
goes here

<

Codefor initialising arrays and lists

goes here
< Code for update loop goes here
< Code for output phase goes here

MPI.Finalize () ;

}
}

249

Initialising the Data Distribution

boolean [] periods = new boolean([2];

boolean reorder = false;

int myrank = MPI.COMM WORLD.Rank() ;
int nprocs = MPI.COMM WORLD.Size() ;

int [] dims = new int[2];

MPI.COMM WORLD.Dims create(nprocs, dims);

periods[a] = periods[l] = true;

Cartcomm comm2d = MPI.COMM WORLD.Create cart(dims, periods,

int [] coords = new int([2];

coords = comm2d.Coords (myrank) ;
ShiftParms vshift = comm2d.Shift (0,
int up = vshift.rankSource;

int down = vshift.rankDest;
ShiftParms hshift = comm2d.Shift (1,
int left = hshift.rankSource;

int right = hshift.rankDest;

1) ;

1) ;

reorder) ;

250

Parallel Update Loop

for (each time step)
communicate particle data for boundary cells
for (each particle, p, in this process){
find out the location (i,j) of cell p is in
forcelpl] = 0;
for (cell (i,j) and the 8 neighbouring cells) {
for (each particle g in cell){
add force of g on p to forcelpl
}

}
}
for (each particle, p)

update velocity and position of p using forcelpl
}

migrate particles

251

Communication of Boundary
Cdl Data

e The communication issimilar to that for the
L aplace equation problem except

— We haveto look in the cell lists to see which particles
have to be sent and pack this information into a send
buffer.

— The receiving process does not know beforehand how
many particlesit isgoing to receive.

— We have to communicate between diagonally adjacent
[Processes.

252

Communicating Corner Data

We need to communicate particles in corner
cellsto diagonally adjacent processes. This

can

pe done be done in 4 shift operations.
AlalalalA BbbblB Initial state for 2x2
- a 2 b mesh of processes
a a b b

a a b b

AlalalalA Blb/b/b|B

Cicicic|C D|d|d[d|D

C C d d

C C d d

C C d d

Clc|c|c|C D|d|d|d|D

253

L eft Shift

C
C
C

bla

bla

bla

Bib|b|b|B|A

B|b|b|b|B|A

D|d|d|d|D|C

D|d|d|d|D|C

alb
alb
alb

c|d
c|d
c|d

AlalalalA|B

AlalalalA|B

Cliclc|c|CID

Clcic|c|CID

254

Right Shift

bla

bla

bla

C
C
C

A|Blb|b|b|B|A
alb
alb
alb

A|B|b|b|b|B|A

C|D|d|d|d|D|C
cld
cld
cld

C|D|d|d|d|D|C

alb
alb
alb

c|d
c|d
c|d

B/Alala|alA|B

bla

bla

bla

Bl/Alala/alAB

C
C
C

D|Cic|c|c|C|D

D|Cic|c|c|CD

255

Up Shift

bla

bla

bla

C
C
C

A|B|b|b|b|B|A
alb
alb
alb

A|B|b|b|b|B|A

CDid[d[c|D|C

C|D|d|d|d|D|C
cld
cld
cld

C|D|d|d|d|D|C
A|BIb|b[b[B[A

alb
alb
alb

c|d
c|d
c|d

B/Alala|alA|B

bla

bla

bla

Bl/Alala/alAB
D|Clc|c|c|CID

C
C
C

D|Cic|c|c|C|D

D|Ciclc|c|CID
B/AlalalalA|B

256

Down Shift

bla

bla

bla

C|D{d|d|c|D|C
A|B|b|b|b|B|A
alb
alb
alb

A|B|b|b|b|B|A

CDid[d[c|D|C

alb
alb
alb

D|Clc|c|c|C|D
B/Alala|alA|B

bla

bla

bla

Bl/Alala/alAB
D|Clc|c|c|CID

<| O] ©f o] O|O|<
MA|T|T|T|A|Mm
folhe; oo}
folhe; oo}
folhe; oo}
mM|AQo|o|T|A(m
<| O] ©f o| O|O|<
M|AQ|T|T|T|O|Mm
<|O| o] O] O|O|<«
©lo | ©
©lo | ©
©lo | ©
<|O] O] O] O|O|<C
M|AQ|T|T|T|O|Mm

257

Pseudocode for Left Shift

nsend = 0
for (i=1 to localcelly){
for (each particle, p, in cell (i,1))
pack position of p into sendbuf
nsend = nsend + 2;

}

Status s = MPI.COMM WORLD.Sendrecv (
sendbuf, 1, nsend, MPI DOUBLE, left, 99,
recvbuf, 1, recvbuf.length(), MPI DOUBLE, right, 99);
int nrecv = s.Get count (MPI DOUBLE) ;
for (i=1 to nrecv in steps of 2){
take next 2 numbers from recvbuf, store in x and y
set position of particle npart+i-1 to (x,Vy)
find out which cell (x,y) is in
add particle npart+i-1 to list for that cell

258

Pseudocode for Up Shift

nsend = 0
for (i=0 to localcellx+1)({
for (each particle, p, in cell (1,1i))
pack position of p into sendbuf
nsend = nsend + 2;

}

Status s = MPI.COMM WORLD.Sendrecv (
sendbuf, 1, nsend, MPI DOUBLE, up, 99,
recvbuf, 1, recvbuf.length(), MPI DOUBLE, down, 99);
int nrecv = s.Get count (MPI DOUBLE) ;
for (i=1 to nrecv in steps of 2){
take next 2 numbers from recvbuf, store in x and y
set position of particle npart+i-1 to (x,Vy)
find out which cell (x,y) is in
add particle npart+i-1 to list for that cell

259

Particle Migration

* \We assume that a particle staysin the same
cell or movesto one of the 8 adjacent cells.

e Thismay involve moving to acell in
another process.

 \We haveto be able to handle the case where

particles move to diagonally adjacent
PDrOCESSES.

260

Pseudocode for Particle Migration 1

for (each particle, p){
update position and velocity
determine which cell p is in
if (p has moved to new cell){
delete p from list of old cell
if (p has moved to different process){
put p into appropriate communication buffer
remove p from particle array
}
else{
add p to list of new cell
}

shift left
shift right
shift up

shift down

Pseudocode for Particle Migration 2

After recelving particle data from another process, a process
must determine if the particle belongsto it, or if it hasto be
passed on to another process. For |eft shift:

Status s = MPI.COMM WORLD.Sendrecv (
leftbuf, 1, nsendleft, MPI DOUBLE, left, 99,
recvbuf, 1, recvbuf.length(), MPI DOUBLE, right, 99);

int nrecv = s.Get count (MPI DOUBLE) ;
for (i=1 to nrecv in steps of 4){
get next 4 numbers from recvbuf, store in x, y, vx, vy
if (particle belongs in this process){
add particle to end of particle array
find out what cell particle is in
add particle to list for that cell

}
else(

put particle in appropriate communication buffer
}

Notes on Parallel Molecular
Dynamics Simulations

As in previous examples we need to exchange
“boundary” data between processes.

Need to communicate with diagonally adjacent
processes. This can be done with four shift operations.

We do not know beforehand how many particles will
be communicated between processes in the boundary
data exchange or migration steps. The receiving

orocess determines this with the Get_count() method.

n general each process holds a different number of
particles and this changes over time. However, we
don't expect load imbalance to be too bad because
particlestend to be evenly distributed Iin space. s

WaTor —aDynamical System

 We shall now look at avery dynamic simulation
called WaTor. WaTor isaperiodic 2D ocean
(hence, Watery Torus) in which predators (sharks)
and prey (fish) compete and survive.

e The parallel implementation of Walor has a
number of interesting features.
— A very inhomogeneous and dynamic load distribution.
— The need for irregular communication.
— The possibility of conflicts between updates performed
by different processes (data inconsistency).

o Other advanced parallel applications share some
of these features.

264

The Rules of WaTor

o Walor takes place on a periodic grid. Each grid
cell either contains afish, ashark, or isempty.

 Thegridisinitially populated by a specified
number of fish and sharks, placed at random.

e The populations then evolve in a series of discrete

time steps according to certain rules that govern
how the fish and sharks move, breed, eat, and die.

265

Fish Rules

Moving:

 |n each time step, each fish notes which of the 4
nelghbouring sites are empty. One of these empty Sitesis
chosen at random and the fish moves there. If there are no
empty neilghbouring sites the fish stays whereit is.

Breeding:

o |If afishispast the fish breeding age, then when it moves it

breeds, leaving afish of age zero at its previous location. A
fish cannot breed if it doesn't move.

Eating
 Fish eat plankton available throughout the ocean. Fish
never starve.

266

Shark Rules

Moving

* |n each time step, each shark notes which of the 4 neighbouring sites
are occupied by fish. One of these sites is chosen at random and the
shark moves there, eating the fish. If there are no neighbouring sites
containing fish the shark notes which of the 4 neighbouring sites are
empty and moves to one of these sites at random. If all 4 neighbouring
sites are already occupied by sharks, the shark stays whereit is.

Breeding

« |f ashark is past the shark breeding age, then when it moves it breeds,
leaving a shark of age zero at its previous location. A shark cannot
breed if it doesn't move.

Eating

o Sharkseat only fish. If ashark does not eat for more than a certain
number of time steps (known as the shark starvation age) then redies.

Warlor Inputs

The Inputs to the ssmulation are:
 Thesize of thegrid.

e Theinitial number of sharks and fish (these
are placed at random).

e The shark and fish breeding ages.
e The shark starvation age.

268

warl or Data Structures

 Thetwo fundamental data structures arethe 2D
grid of cellsand alist of sharks and fish.

o Eachcedll inthe gridisan object with an
occupation status (empty, occupied by fish, or
occupied by shark), and areference to the fish or
shark object it contains (if not empty).

» Each shark/fish object contains its type, age, cell
location, and time since it last ate (if shark).

269

Update Order

The order of updating fish and sharksis not
specified in the WaTor rules.

Could update by looping over ocean cell locations.
Thisisinefficient iIf asignificant fraction of the
ocean Is empty.

Alternative approach is to process the fish/shark
list. In this case only active objects are processed.

Must ensure that newly-born fish/sharks or not
processed until the next time step.

270

Outline of Sequential Code
Initialise
 |nitialise ocean array by placing fish and sharks at
random grid locations.
o Initialise fish/shark list.

Update

 |n each time step, we process the fish and sharks
In the order in which they appear inthelist.

* \We may also update the display, or perform some
other output, in each time step.

Finalise
o Output final state, statistics, etc.

271

Data Distribution

 |nitially we shall use asimple 2D block data
distribution, just the same as in the Laplace
equation problem and the molecular dynamics
simulation.

» Each process looks after a block of the ocean and
al the fish and sharksinit.

* We need to know the process number (rank),
location in the process mesh, and the process
numbers of the neighbouring processes.

272

Data Distribution 2

F F F
S S
s| |F F|S S F
F F
S S
S
S F| |F
F
F S
F S
S|F S
F S
s| |F
S S S
s| [F| [s|F

273

Data Dependencies

Fish and sharks lying

along the boundary of a

process need to know

about the grid cells lying
F along the boundary of

other processes in order to

follow the WaTor rules

*Each process needs data
S from 4 neighbouring

Processes.

274

Array Declarations

* When we receaive fishes and sharks from ocean
cells lying along the boundary of adjacent
processes we store them in the fish/shark list and
update the local ocean cell to indicatethat isis
occupied.

localcellx = 4, localcelly = 4

(0,0)](0,2)((0,2)[(0,3)[(0,4)((0,5)

2D array | 0|32 (13 (ED) (1.5

of cells |(20)(21)[(2,2)|(2,3)|(2,4)|(2,5)

(3,01(3,1D)((3,2)[(3,3)|(3,4)] (3,5)

(4,0)](4,2)((4,2)|(4,3)|(4,4)| (4,5)

(5,0)((5,1)[(5,2)[(5,3)(5,4)[(5,5)

275

Potential for Data | nconsistency

* |nthe course of an update afish or shark may
move into a“border” grid cell. Thus, unlike in the
L aplace and molecular dynamics problems, the
border cellsin a process may change in an update.

e These changes must be communicated back to the
process that originally send that border strip, to be
re-integrated into its data structures.

* However, the process owning those grid cells may
also have updated them, and these updates may be
In conflict.

276

Example of Data Inconsistency

TimeT

TimeT+1

* Here we show
two adjacent
pProcesses at
successive time

steps.

e TWo sharkstry
to eat the same
fish!

2707

Inconsistency and Non-
Determinism

e On ashared memory parallel computer this
type of data conflict would indicate a non-
deterministic algorithm.

e On adistributed memory machine using
message passing the communication
operations determine the update order for a
memory location, so the algorithm is still
deterministic — but we would still like to
avold data conflicts.

278

Rollback

One way to resolve conflictsis called rollback,
and works as follows:

1. Return the fish or shark that crossed the process

poundary back to its original process, and place it

pack In itsoriginal position.

2. |If that position has been occupied by another fish
or shark, then that fish or shark must be rolled
back.

3. Thisrollback process continues until until every
fish and shark has a place to go.

279

Rollback 2

* Rollback requires us to remember the
orevious position of each fish and shark.

* Rollback can result in complicated
communication requirements If a sequence
of rollbacks traverses multiple processes.

e Rollback has been used in certain event-
driven ssmulations, such as battlefields
simulations.

280

|solating Boundary Updates

We could perform updates by looping over the
ocean cellsinstead of by processing the fish/shark
list.

Then we can update all the interior (i.e., non-
boundary) cells.

Next we do aleft shift of the lefthand boundary
fish/sharks, and update the righthand boundary.

Thisis repeated to update the lefthand, upper, and
lower boundaries.

281

Sub-Partitioning

A third way to avoid data inconsistenciesisto
partition the part of the ocean assigned to each
process into 4 parts.

A process has a separate fish/shark list for each of
these 4 sub-partitions.

Each of the 4 sub-partitions is updated in turn.

This avoids adjacent ocean cells being updated
concurrently.

282

Sub-Partitioning Algorithm

. Divide the ocean array of each processinto 4
smaller sub-grids, labelled 1, 2, 3, and 4.

. Exchange the parts of sub-grids 2 and 3 that have
data along their boundaries needed to update sub-
grid 1 in adjacent processes.

. Update sub-grid 1 in each process.

. Return boundary information to original owner
and update data structures.

. Repeat steps 2, 3, and 4 for each of the other sub-
gridsin turn.

283

Update Cycle for Sub-Partition 1

Step 1 Step 2 Step 3

|]
— 2 > : : “— 2| «
Update fish and sharksin

list for sub-partition 1
3 | 4 P 3 | 4

v

Right shift, down shift L eft shift, up shift

284

Communication Phases

To update sub-partition 1: shift right and down
before update, then shift left and up after update.

To update sub-partition 2: shift left and down
before update, then shift right and up after update.

To update sub-partition 3: shift right and up before
update, then shift left and down after update.

To update sub-partition 4. shift left and up before
update, then shift right and down after update.

285

Outline of Parallel Code

The update loop of the parallel version of
WaTor using sub-gridsis as follows:

for (each time step)
for (each sub-partition, i=1,2,3,4){

shift boundary data across 2 edges of sub-partition i

store data received in border of ocean and in
fish/shark list

update fish and sharks in sub-partition i

shift boundary data back across the 2 edges,
overwriting original data with updated data

286

Load Imbalance in WarTor

» |Load balanceis an important consideration in
WaTor and many other applications.

* InWaTor the workload if generally not evenly
distributed over the ocean, so distributing the data
In contiguous blocks means that some processes
have less work than others at certain times.

« Load balance in WaT or changes with time as the
fish and sharks move.

287

Example of WaTor Output

*White = empty
Light grey = fish
Dark grey = sharks

288

Dynamic Load |mbalance

In dealing with dynamic |load imbalance the
following two approaches are important:

Use of adynamic load balancer so that the
distribution of the ocean among the processes
changes as the fish and shark system evolves.
When dealing with grids some form of recursive
bisection is often used.

Use of acyclic, or scattered, data distribution. The
parts of the grid assigned to one process do not
form a contiguous block but are scattered in a
regular way over the whole domain. Theaim in
this case isto achieve statistical |oad balance.

289

Orthogonal Recursive Bisection

e Orthogonal Recursive Bisection (ORB) first
divides the domain orthogonal to the x-direction
so there are equal numbers of items in each of the
two subdomains.

* Then each of these 2 subdomains is independently
divided orthogonal to the y-direction, to give 4
subdomains each with approximately the same
number of itemsin each

e Thisprocess of bisection continues, alternating
between the x and y directions, until thereisone
subdomain for each process.

290

Example of ORB 1

e | o L ORB is not used
. when the items are
° * distributed

e *|°* ‘.o . uniformly over the
e | R I domain - inthis
_ . case the
R R R subdomains would
e e o come out about the
Y same size and

. . shape.

291

Example of ORB 2

If the items are
distributed unevenly
over the domain, ORB
cangiveriseto a
variety of different
shaped process
subdomains.

292

Notes on ORB

Using a dynamic load balance scheme such as
ORB adds to the complexity of the software,
particularly in deciding which boundary data
must be communicated with which processes.

293

Hierarchical Recursive Bisection

* HRB isavariation of ORB in which we first make
all the cutsin one direction, and then all the cutsin
the second direction, rather than alternating
directions.

 HRB alowsthe data distribution to be adjusted
over just one direction, rather than both.

 ORB and HRB can easily be extended to 3 or
more dimensions.

294

Example of HRB

... ..
MR
[N

295

Cyclic Data Distributions

* Inacyclic datadistribution the data assigned to
each process Is scattered in aregular way over the
domain of the problem.

* Thefigure on the next dide shows how agrid
might be cyclically distributed over a 4x4 mesh of
[PrOCESSES.

* Thecyclic distribution isasimple way to improve
load balance but can result in more
communication as it increases the amount of
boundary data in a process.

296

(1,0)

(0.1)

(0.2)

(1.1)

(1.2)

(0.2)

(1.2)

(0.2)

(0.3)

(1.2)

(1.3)

(2,0)

(2.1)

(2.2)

(2.2)

(2.2)

(2.3)

(3.0)

(1,0)

(3.1)

(3.2)

(3.3)

(0.1)

(0.2)

(0.3)

(1.1)

(1.2)

(1.3)

(3.1)

(3.2)

(0.1)

(0.2)

(1.1)

(1.2)

(3.2)

(3.3)

(0.2)

(0.3)

(1.2)

(1.3)

(2,0)

(2.1)

(2.2)

(2.3)

(2.1)

(2.2)

(2.2)

(2.3)

(3.0)

(1.0)

(3.1)

(3.2)

(0.1)

(0.2)

(1.1)

(1.2)

(3.2)

(0.2)

(1.2)

(3.2)

(3.3)

(0.2)

(0.3)

(1.2)

(1.3)

(2.0)

(2.1)

(2.2)

(2.2)

(2.2)

(2.3)

(3.0)

(3.1)

(3.2)

(3.2)

(3.2)

(3.3)

297

Cyclic Data Distributions

Consider aone-dimensional cyclic data
distribution of an array, such as:

0/1/2/3{0(1{2|3]|0]1]2]3]0]1]2]|3

Thisisknown as acyclic|[1] data distribution,
and can be regarded as mapping a global
Index, m, to a process location, p, and alocal
Index, I.

298

Cyclic|1] Data Mappings

* Theglobal index, m, mapsto a process
location, p, and alocal index, I.

m- (p,l)

wherep and i are given by:
P =m (mod N)
| = floor(m/N)
and N isthe number of processes. The
Inverse mapping is:
Mm=IN+p

299

Cyclic|k] Data Mappings

o|f we arrange array entries in groups of size k and
cyclically distribute these we get a cyclic[k] data
distribution.

*For example, the following shows a cyclic[2] data
distribution.

300

Cyclic|k] Data Mappings 2

Global index m is mapped to process location
p, local block index b, and local index 1 within
the block, as follows:

p=B (mod N)
b = floor(B/N)

| = m (mod k)

where B=floor(m/k) isthe global block index.
The inverse mapping Is:
m:(bN+p)k + | 301

Block Data Distributions

oFor a one-dimensional block data distribution the
mapping of global index, m, to a process location, p,
and alocal index, 1, IS

p = floor(m/T)
| =m (mod T)

where T=ceall(M/N), M is the number of items, and
N the number of processes.

010/0/0/0]1}1]1|1]1/2/2(|2]2/2|3|3|3|3|3

The inverse mapping is.

m=pT +1

302

Communication and Load
| mbal ance Tradeoff

A block cyclic data distribution can be used to
Improve load balance when datais distributed
Inhomogeneoudly across the problem domain.

However, asmaller block size results in more
boundary data and hence givesrise to increased
communication.

Thereis, therefore, atradeoff between |load
Imbal ance and communication cost.

It isimportant to choose the correct block size so
that the total overhead is minimised.

303

Example

e Assume that the amount of communication
assoclated with a block is proportional to its
perimeter.

o Suppose we have a 2-D block cyclic
distribution with block size k, by k.

 Now we reduce the block size by a factor of
2 1n each direction, so each block in the
original datadistribution is split into 4
blocks, each of sizek,/2 by k, /2.

304

Exampl e (continued)

——— B

Perimeter = 2(K,/2+K,/2) = K +k,

e The perimeter of the original block is 2(k,+k.).

o After it issplit into 4 smaller blocks the total perimeter of these
blocksis 4(k;+k.).

« S0, for a 2D problem, we expect the communication cost to
double when the block size is halved in each direction 305

Multi-Dimensional Data
Distributions

e Multi-dimensional arrays are distributed by
applying the desired data distribution separately to
each array index.

e Thus, for atwo-dimensional data distribution the
global index (m,n) is mapped so that m—(p,1) and
n—(q,)), where (p,q) islocation on a PxQ process
mesh, and (i,]) iIsthe index into the local 2D array.

o Different data distributions can be applied over
each array dimension.

306

Multi-Dimensional Data
Distributions 2

* For a2D (cyclic[1],cyclic[1]) data distribution
we would have:

m—(p,1) = (Mm(mod P), floor(m/P))
n—(q,)) = (n(mod Q), floor(n/Q))

307

(1,0)

(0.1)

(0.2)

(1.1)

(1.2)

(0.2)

(1.2)

(0.2)

(0.3)

(1.2)

(1.3)

(2,0)

(2.1)

(2.2)

(2.2)

(2.2)

(2.3)

(3.0)

(1,0)

(3.1)

(3.2)

(3.3)

(0.1)

(0.2)

(0.3)

(1.1)

(1.2)

(1.3)

(3.1)

(3.2)

(0.1)

(0.2)

(1.1)

(1.2)

(3.2)

(3.3)

(0.2)

(0.3)

(1.2)

(1.3)

(2,0)

(2.1)

(2.2)

(2.3)

(2.1)

(2.2)

(2.2)

(2.3)

(3.0)

(1.0)

(3.1)

(3.2)

(0.1)

(0.2)

(1.1)

(1.2)

(3.2)

(0.2)

(1.2)

(3.2)

(3.3)

(0.2)

(0.3)

(1.2)

(1.3)

(2.0)

(2.1)

(2.2)

(2.2)

(2.2)

(2.3)

(3.0)

(3.1)

(3.2)

(3.2)

(3.2)

(3.3)

308

L oad Balancing Issues in a Parall€f
Cellular Automata Application

e Thislooks at an application that
uses acyclic data distribution to
achieve static load balance.

« Asin WaTor, datainconsistency in
how updates are performed Is an
Issue

309

CA for Surface Reactions

o A cellular automaton is used to modd the
reaction of carbon monoxide and oxygen to
form carbon dioxide

CO+0 = CO,

* Reactions take place on surface of a crystal
which serves as a catalyst.

310

The Problem Domain

e The problem domain is a periodic square
|attice representing the crystal surface.

» CO and O, are adsorbed onto the crystal
surface from the gas phase.

e Parameter y isthe fraction of CO and 1-y Is
the fraction of O..

311

| nteraction Rules

Choose alattice site at random and attempt to place a
CO or an O, there with probabilitiesy and 1-y,
respectively.

If site I1s occupied then the CO or O, bounces off, and
anew trial begins.

O, disassociates so we have to find 2 adjacent sites
for these.

The following rules determine what happens next.

312

|nteraction Rules for CO

1. CO adsorbed

2. Check 4 neighbors for O O oxygen
3. CO and O react @ CO

4. CO, desorbs

313

|nteraction Rulesfor O

1. O, adsorbed

2. O, disassociates O oxygen
3. Check 6 neighborsfor CO @ CO

4. O and CO react ® O,

5. CO, desorbs

314

Parallel Version of Code

As simulation evolves the distribution of
molecules may become very uneven.

This results in load imbalance.

Use a 2-D block cyclic data distribution for
the lattice.

Thiswill give statistical load balance, but
smaller block sizeswill result in more
communication.

315

Steady State Reaction

Fory,<y<y,weget F. *

a steady state.

y; = 0.39
Y, = 0.53

316

CO Poisoning: y >y,

Oxygen Poisoning: y <y,

318

Man |l ssues

 MPI used — user-defined datatypes were
Important in performing communication.

e Thereis atrade-off between |load imbalance
and communication.

A block-cyclic data distribution is used.
 Performance can be modelled.

319

Block-Cyclic Data Distribution

Block-cyclic data
distribution improves
load balance by scattering
processes over the lattice
In aregular way.

Block sizeisk, x kg

0,0

a1

oz

0,3

0,0

0,1

oz

0,3

0,0

Q.

1,0

1,1

1,2

1,3

10

1,1

1.2

1,3

1,0

1,1

20

2,1

2.2

2,3

20

21

2.2

2d

20

2,1

3.0

3,1

¥

3.

3.0

3,1

¥

3.

3.0

3,1

0.0

0,1

0z

0,3

0,0

0,1

a0z

03

a.a

0,1

1,0

1,1

1,2

1,3

10

1,1

1.2

1,3

1,0

1,1

20

2,1

2.2

2,3

20

2,1

2.2

2.3

20

2,1

3.0

3,1

¥

3.

3.0

3,1

¥

3.

3.0

3,1

0.0

a1

0z

03

0.0

0,1

0z

03

0.0

Q1

1,0

1,1

1,2

1,3

10

1,1

1.2

1,3

1,0

1,1

320

Parallel Implementation

* Processes need to communicate their
boundary data to neighboring processes.

o Sites within two sites from the boundary
must be communicated.

» Each process can generate random numbers
Independently.

321

A Communication Strategy

Do aleft shift: send leftmost 2 columns | eft
while recelving from the right.

Do aright shift: send rightmost 2 columns
right while receiving from the | eft.

Similarly for up shifts and down shifts.

After these 4 shifts have been done each
process can update all its lattice sites.

322

Communication Shifts

o i P B

2. Right shift.
| 323

3. Up shift.
4. Down shift.

Update Conflicts

Two adjacent processes can concurrently
update the same lattice site close to their
common boundary.

Thisis an update conflict.

Avoid conflicts by never updating adjacent
areas In processes concurrently.

Use sub-partitioning to do this.

324

Sub-partitioning

e First each process updates A,
then B, C, and D.
« Before updating a sub-partition

communication is needed to A B

ensure each process has all the

datato updateitspoints. | '
 After updating a sub-partition the N -

datais sent back to the process it
came from.

- - — - - - — - - - - - === =

325

Communication Before Update

From
above

'

From

Wiagonal

E ~

m.mL

L =
—m ————————
i |
i _ “
1 “ I
! =] I L |
" “ "
. | — 1
1 ! I
r- ! I
1 ! I
“ < A “
1 ! 1
1 " 1
1 I
1 I
L e I
T T T T T T T
1 . |
m " |
! B !
L “ "
)] |
1 ! 1
1 ! I
1 ! I
o< e |
1 ! I
L " I
- ! “
L S I

: 5

& ®

(b3

fa)

|||||||||||||||||||||

326

diagon

?

bvel crar

fc)

From

Load Imbalance

2X2 process mesh 512x512 lattice

used. 1 y=0.53

Load imbaanceis E‘

smaller for smaller § *°] _—

block sizes. E o o
k

Load imbalanceis te-

large as CO .

POI SONiNg OCCUrsS. |

o 1000 000 a0 4000 000 SO0 SO 000 w00 10000
Time s
=P S

Maximum Work Load

Maximum work
load issimilar

for different
block size, except
after step 700.

Not much work
available at this
time.

|Load imbalance
not very
Important!

Iwlazximum wouk load

0.16

014 -

0172

o
5

0.07 =

0.0

oo Ioog 000

oo 4000 00 &000
Time step

TOOO A0 so00 10000

328

Communication Time

512x512 lattice, - | | P——
Y = 0.53 1100 o ‘zi
For given problem , @07 % T

communication Is
smaller for more
processes - less
data per process.

Process mesh

&
i

Communicaton ome
B
=]
1

40,0 -)
Smaller blocks . ", .
require more T
communication. 00 . : : : : :
og 200 400 S0 200 1200 1200 1400

329

Performance M odel

« Amount of communication and computation
both depend linearly on problem size.

o Speed-up Isindependent of problem size
and is given by:

S = N
1+ AT (Ketko)/ (K ko)

330

B
']' —
As expected,)
speed-up is]
Independent of o 5-
problem size [
(except at 8!) ¢
'3 —
l n .
o = * | | | | | | |
o 1 2 3 4 5 & 7 B

Number of processes

331

Scaled Speed-Up

Fixed problemsize 77
per process =

Scaled speedup
=
I

I I I I I I I
J 1 p 3 4 5 6 7 B

MNumber of processes

L

Summary

It turns out that load imbalance is not very
Important in this problem.

Load imbalance will be important in
cellular automata with more complex
geometries.

Easy to modify code for other CA
problems.

Speed-up independent of problem size.

333

	Parallel Processing�CM0323
	Syllabus: Part 1
	Syllabus: Part2
	Books
	Web Sites
	What is Parallelism?
	Types of Parallelism 1
	Types of Parallelism 2
	Scheduling Example
	A Better Schedule
	Notes on Scheduling Example
	Parallelism Between Job Phases
	Program Level Parallelism
	Robot Example
	Notes on Robot Example
	Domain Decomposition
	Data Parallelism
	Domain Decomposition
	Why Use Parallelism?
	Parallelism and Memory
	Parallelism and Supercomputing
	Uses of Parallel Supercomputers
	More Uses of Parallelism
	Classification of Parallel Machines
	Classification of Parallel Machines
	SISD Computers
	MISD Computers
	MISD Computers (continued)
	MISD Example
	SIMD Computers
	Notes on SIMD Computers
	SIMD Example
	Notes on SIMD Example
	MIMD Computers
	Notes on MIMD Computers
	Notes on SIMD and MIMD
	Potential of the 4 Classes
	Single Program Multiple Data
	SPMD Example
	Interprocessor Communication
	Global Shared Memory
	Shared Memory Conflicts
	Shared Memory Conflicts 2
	Non-Determinancy
	Locks and Mutual Exclusion
	Classifying Shared Memory Computers
	Notes on Shared Memory 1
	Notes on Shared Memory 2
	Notes on Shared Memory 3
	Examples of Shared Memory
	The Algorithm
	Time Complexity for EREW
	Time Complexity for ERCW
	Time Complexity for CREW
	Time Complexity for CRCW
	Limits on Shared Memory
	Quick Overview of OpenMP
	OpenMP Fork/Join Model
	OpenMP and Loops
	Number of Threads
	Reduction Operations
	Interconnection Networks and Message Passing
	Message Passing
	Hybrid Computers
	Comparison of Shared and Distributed Memory
	Memory Hierarchy 1
	Typical Quad-Core Chip
	Summing m Numbers
	Summing m Numbers in Parallel
	Summing Using Shared Memory
	Notes on Shared Memory Algorithm
	Summing Using Distributed Memory
	Distributed Memory Algorithm
	Summing Example
	Interconnection Networks
	Examples of Networks
	Network Metrics
	Network Metrics 2
	Network Metrics 3
	Network Metrics 4
	Fully Connected Network
	Fully Connected Network 2
	Mesh Networks
	Mesh Metrics
	Ring Networks
	Chordal Ring Networks
	Examples of Ring Networks
	Hypercube Networks
	Examples of Hypercubes
	Mapping Grids to Hypercubes
	Binary Gray Codes
	Binary Gray Codes 2
	Example of a Gray Code
	Example of a Gray Code 2
	Example of a Gray Code 3
	Multi-Dimensional Gray Codes
	Multi-Dimensional Gray Codes 2
	Mapping a 24 Mesh to a Hypercube
	Mapping a 24 Mesh to a Hypercube 2
	Shuffle-Exchange Networks
	8-Node Shuffle-Exchange Network
	Shuffle-Exchange Networks
	Shuffle-Exchange Networks
	Butterfly Network
	Example of a Butterfly Network
	Cube-Connected Cycles Network
	Example of a Cube-Connected Cycles Network
	Complete Binary Tree Network
	Fat Tree Network
	Classifying Parallel Algorithms
	Pipelined Algorithms
	Pipelines Algorithms 2
	Example of Pipelined Algorithm
	Pipelined Algorithm
	Performance of Pipelining
	Pipeline Performance Example
	Data Parallelism
	Data Parallelism Example
	Relaxed Parallelism
	Relaxed Parallelism Example
	Synchronous Operation
	Asynchronous Operation
	Example of Asynchronous Algorithm
	Example of Asynchronous Algorithm 2
	Serial Mode Time Complexity
	Synchronous Parallel Mode
	Asynchronous Parallel Mode
	Asynchronous Parallel Mode Example
	Speed-up and Efficiency
	Example
	Self Speed-up and Linear Speed-up
	Factors That Limit Speed-up�1. Software Overhead
	Factors That Limit Speed-up�2. Load Imbalance
	Factors That Limit Speed-up�3. Communication Overhead
	Grain Size
	Definition of Load Imbalance
	Analysis of Summing Example
	Analysis of Summing Example 2
	Analysis of Summing Example 3
	Analysis of Summing Example 4
	Analysis of Summing Example 5
	Scalable Algorithms
	Scalability of the Summing Example
	Amdahl’s Law
	Derivation of Amdahl’s Law
	Examples of Amdahl’s Law
	Examples of Amdahl’s Law 2
	Implications of Amdahl’s Law
	Speed-Up for Large Problems
	Speed-Up for Large Problems 2
	Speed-Up and Problem Size
	Semantics of Message Sends
	Semantics of Blocking Send
	Semantics of Non-Blocking Send
	Semantics of Message Receives
	Semantics of Blocking Receive
	Semantics of Non-Blocking Receive
	Message Passing Protocols
	Message Passing Protocols 2
	MPI Point-to-Point Communication
	mpiJava API
	Class hierarchy
	Basic Datatypes
	mpiJava send()/recv()
	Communicators
	Process ranks
	Message Tags
	Return Status Objects
	Communication Completion
	Summary of Point-to-Point Communication
	Minimal mpiJava Program
	Another MPI Example
	Notes on Example
	Collective Communication
	Broadcast
	Broadcast Algorithm 1
	Broadcast Algorithm 2
	Reduction
	Reduction To All Nodes
	Collective Routines
	MPI Integration Example
	MPI Integration Code: Outline
	MPI Integration Code: Computation
	Application Topologies
	Cartesian Application Topologies
	Topological Inquiries
	Mapping Between Rank and Position
	Uses of Topologies
	Topologies and Data Shifts
	Topologies and Data Shifts 2
	Send/Receive Operations
	Vibrating String Problem
	The Wave Equation
	Method of Solution
	Data Distribution
	Communication Requirements
	Outline of Parallel Code
	Displacement Arrays
	Outline MPI Code
	Initialising the Data Distribution
	Initialising the Arrays
	Update Loop
	Notes on Update Loop
	Communication Code: Left Shift
	Communication Code: Right Shift
	Output Phase
	Performance Analysis
	Performance Analysis 2
	Performance Analysis 3
	Laplace Equation Problem
	Laplace Equation 2
	Data Distribution
	Data Distribution 2
	Communication Requirements
	Communication Requirements 2
	Outline of Parallel Code
	Array Declarations
	Array Initialisation
	Outline MPI Code
	Initialising the Data Distribution
	Initialising the Data Distribution 2
	Initialising phi and mask Arrays
	Initialisation of Arrays
	Initialisation of Arrays 2
	Initialisation of Arrays 3
	Update Phase
	Update Phase 2
	Communication
	Shift Up
	Shift Down
	Shift Right
	Shift Left
	Performance Analysis
	Speed Up
	Efficiency and Overhead
	Irregular Communication
	Molecular Dynamics Simulations
	Molecular Dynamics Simulations 2
	Cut-Off Distance
	Cut-Off Distance 2
	Data Structures
	Cell Data Structure
	Data Distribution
	Data Dependencies
	Communication Requirements
	Array Declarations
	Outline of Parallel Code
	Outline MPI Code
	Initialising the Data Distribution
	Parallel Update Loop
	Communication of Boundary Cell Data�
	Communicating Corner Data
	Left Shift
	Right Shift
	Up Shift
	Down Shift
	Pseudocode for Left Shift
	Pseudocode for Up Shift
	Particle Migration
	Pseudocode for Particle Migration 1
	Pseudocode for Particle Migration 2
	Notes on Parallel Molecular Dynamics Simulations
	WaTor – a Dynamical System
	The Rules of WaTor
	Fish Rules
	Shark Rules
	WaTor Inputs
	WaTor Data Structures
	Update Order
	Outline of Sequential Code
	Data Distribution
	Data Distribution 2
	Data Dependencies
	Array Declarations
	Potential for Data Inconsistency
	Example of Data Inconsistency
	Inconsistency and Non-Determinism
	Rollback
	Rollback 2
	Isolating Boundary Updates
	Sub-Partitioning
	Sub-Partitioning Algorithm
	Update Cycle for Sub-Partition 1
	Communication Phases
	Outline of Parallel Code
	Load Imbalance in WaTor
	Example of WaTor Output
	Dynamic Load Imbalance
	Orthogonal Recursive Bisection
	Example of ORB 1
	Example of ORB 2
	Notes on ORB
	Hierarchical Recursive Bisection
	Example of HRB
	Cyclic Data Distributions
	Cyclic Data Distributions
	Cyclic[1] Data Mappings
	Cyclic[k] Data Mappings
	Cyclic[k] Data Mappings 2
	Block Data Distributions
	Communication and Load Imbalance Tradeoff
	Example
	Example (continued)
	Multi-Dimensional Data Distributions
	Multi-Dimensional Data Distributions 2
	 Load Balancing Issues in a Parallel Cellular Automata Application�
	CA for Surface Reactions
	The Problem Domain
	Interaction Rules
	Interaction Rules for CO
	Interaction Rules for O
	Parallel Version of Code
	Steady State Reaction
	CO Poisoning: y > y2
	Oxygen Poisoning: y < y1
	Main Issues
	Block-Cyclic Data Distribution
	Parallel Implementation
	A Communication Strategy
	Communication Shifts
	Update Conflicts
	Sub-partitioning
	Communication Before Update
	Load Imbalance
	Maximum Work Load
	Communication Time
	Performance Model
	Self Speed-Up
	Scaled Speed-Up
	Summary

