
1

Parallel Processing
CM0323

David W. Walker
http://users.cs.cf.ac.uk/David.W.Walker/

2

Syllabus: Part 1
• Week 1: Introduction; motivation; types of

parallelism; data decomposition; uses of parallel
computers; classification of machines.

• Week 2: SPMD programs; memory models; shared
and distributed memory; OpenMP.

• Week 3: Example of summing numbers;
interconnection networks; network metrics; Gray
code mappings.

• Week 4: Classification of parallel algorithms;
Speedup and efficiency.

• Week 5: Scalable algorithms; Amdahl's law;
sending and receiving messages; programming
with MPI.

3

Syllabus: Part2
• Week 6: Collective communication; integration

example; regular computations and a simple
example.

• Week 7: Regular two-dimensional problems and
an example.

• Week 8: Dynamic communication and the
molecular dynamics example.

• Week 9: Irregular computations; the WaTor
simulation. Load balancing strategies.

• Week 10: Message passing libraries; introduction
to PVM.

• Week 11: Review lectures.

4

Books
• “Parallel Programming,” B. Wilkinson and M. Allen, published

by Prentice Hall, 1999. ISBN 0-13-671710-1.
• “Parallel Computing: Theory and Practice,” M. Quinn,

published by McGraw-Hill, 1994.
• “Solving Problems on Concurrent Processors, Volume 1,” Fox,

Johnson, Lyzenga, Otto, Salmon, and Walker, published by
Prentice-Hall, 1988.

• “Using MPI,” Gropp, Lusk, and Skjellum, published by MIT
Press, 1994.

• “Parallel Programming with MPI,” Peter Pacheco, published by
Morgan Kaufmann, 1996.

http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-339-5

5

Web Sites

• For the module:
http://users.cs.cf.ac.uk/David.W.Walker/CM0323/.

• For MPI: http://www.mcs.anl.gov/mpi/
• For OpenMP:

https://computing.llnl.gov/tutorials/openMP/
• For information on the World’s fastest

supercomputers: http://www.top500.org/

http://users.cs.cf.ac.uk/David.W.Walker/CM0323/
http://www.mcs.anl.gov/mpi/
https://computing.llnl.gov/tutorials/openMP/
http://www.top500.org/

6

What is Parallelism?

• Parallelism refers to the simultaneous
occurrence of events on a computer.

• An event typically means one of the
following:
– An arithmetical operation
– A logical operation
– Accessing memory
– Performing input or output (I/O)

7

Types of Parallelism 1

• Parallelism can be examined at several
levels.
– Job level: several independent jobs

simultaneously run on the same computer
system.

– Program level: several tasks are performed
simultaneously to solve a single common
problem.

8

Types of Parallelism 2
– Instruction level: the processing of an instruction, such

as adding two numbers, can be divided into sub-
instructions. If several similar instructions are to be
performed their sub-instructions may be overlapped
using a technique called pipelining.

– Bit level: when the bits in a word are handled one after
the other this is called a bit-serial operation. If the bits
are acted on in parallel the operation is bit-parallel.

In this parallel processing course we shall be mostly
concerned with parallelism at the program level.
Concurrent processing is the same as parallel
processing.

9

Scheduling Example

• Average utilisation is 83.3%
• Time to complete all jobs is 7 time units.

Time Jobs running Utilisation
1 S, M 75%
2 L 100%
3 S, S, M 100%
4 L 100%
5 L 100%
6 S, M 75%
7 M 50%

10

A Better Schedule
• A better schedule would allow jobs to be taken out of order

to give higher utilisation.
S M L S S M L L S M M

• Allow jobs to “float” to the front to the queue to maintain
high utilisation.

Time Jobs running Utilisation
1 S, M, S 100%
2 L 100%
3 S, M, S 100%
4 L 100%
5 L 100%
6 M, M 100%

11

Notes on Scheduling Example

• In the last example:
– Average utilisation is 100%.
– Time to complete all jobs is 6 time units.

• Actual situation is more complex as jobs
may run for differing lengths of time.

• Real job scheduler must balance high
utilisation with fairness (otherwise large
jobs may never run).

12

Parallelism Between Job Phases
• Parallelism also arises when different independent jobs

running on a machine have several phases, e.g.,
computation, writing to a graphics buffer, I/O to disk or
tape, and system calls.

• Suppose a job is executing and needs to perform I/O before
it can progress further. I/O is usually expensive compared
with computation, so the job currently running is
suspended, and another is started. The original job resumes
after the I/O operation has completed.

• This requires special hardware: I/O channels or special I/O
processor.

• The operating system controls how different jobs are
scheduled and share resources.

13

Program Level Parallelism

This is parallelism between different parts of the
same job.
Example
A robot has been programmed to look for electrical
sockets when it runs low on power. When it finds
one it goes over to it and plugs itself in to recharge.
Three subsystems are involved in this - the vision,
manipulation, and motion subsystems. Each
subsystem is controlled by a different processor,
andthey act in parallel as the robot does different
things.

14

Robot Example
Task Vision Manipulation Motion

1. Looking for
electrical socket

2. Going to
electrical socket

3. Plugging into
electrical socket

15

Notes on Robot Example

• The subsystems are fairly independent, with
the vision subsystem guiding the others.

• There may also be a central “brain”
processor.

• This is an example of task parallelism in
which different tasks are performed
concurrently to achieve a common goal.

16

Domain Decomposition
A common form of program-level parallelism arises

from the division of the data to be programmed
into subsets.

• This division is called domain decomposition.
• Parallelism that arises through domain

decomposition is called data parallelism.
• The data subsets are assigned to different

computational processes. This is called data
distribution.

• Processes may be assigned to hardware processors
by the program or by the runtime system. There
may be more than one process on each processor.

17

Data Parallelism
• Consider an image

digitised as a square array
of pixels which we want
to process by replacing
each pixel value by the
average of its neighbours.

• The domain of the
problem is the two-
dimensional pixel array.

18

Domain Decomposition
• Suppose we decompose

the problem into 16
subdomains

• We then distribute the
data by assigning each
subdomain to a process.

• The pixel array is a
regular domain because
the geometry is simple.

• This is a homogeneous
problem because each
pixel requires the same
amount of computation
(almost - which pixels
are different?).

19

Why Use Parallelism?
• Better utilisation of resources. Want to keep

hardware busy.
• Want to run programs faster by spreading work

over several processors.
• Ways to measure speed:

– Floating point operations per second. 1 Mflop/s is one
million floating point operations per second.

• High performance workstation º 10-20 Gflop/s
• Current best supercomputer º 1 Pflop/s

– Transactions per second. 1 Tps is one transaction per
second.

– Instructions per second. 1 Mips is one million
instructions per second.

20

Parallelism and Memory
• Want more memory to solve bigger or more complex

problems.
• Typical workstations have 1 Gbytes of RAM,

expandable to 32 Gbytes. Can fit an 65,536 μ 65,536
array into 32 Gbytes of memory.

• The IBM “Roadrunner” parallel computer at Lawrence
Livermore National Lab has 122,400 cores with a total
of 98 Tbytes of RAM. Can fit a 3,670,000 μ 3,670,000
array into memory. See
http://www.top500.org/system/9485.

http://www.top500.org/system/9485

21

22

Parallelism and Supercomputing
• Parallelism is exploited on a variety of high

performance computers, in particular massively
parallel computers (MPPs) and clusters.

• MPPs, clusters, and high-performance vector
computers are termed supercomputers.

• Currently supercomputers have peak performance
in the range of 100-1000 Tflop/s, and memory of
10 to 100 Tbytes. They cost about 20-50 million
pounds.

• Supercomputers are leading to a new methodology
in science called computational science joining
theoretical and experimental approaches.

23

Uses of Parallel Supercomputers
• Weather forecasting. Currently forecasts are usually accurate up to

about 5 days. This should be extended to 8 to 10 days over the next
few years. Researchers would like to better model local nonlinear
phenomena such as thunderstorms and tornadoes.

• Climate modelling. Studies of long-range behaviour of global climate.
This is relevant to investigating global warming.

• Engineering. Simulation of car crashes to aid in design of cars. Design
of aircraft in “numerical wind tunnels.‘”

• Material science. Understanding high temperature superconductors.
Simulation of semiconductor devices. Design of lightweight, strong
materials for construction.

• Drug design. Prediction of effectiveness of drug by simulation. Need
to know configuration and properties of large molecules.

24

More Uses of Parallelism
• Plasma physics. Investigation of plasma fusion

devices such as tokamaks as future source of
cheap energy.

• Economics. Economic projections used to guide
decision-making. Prediction of stock market
behaviour.

• Defense. Tracking of multiple missiles. Event-
driven battlefield simulations. Code cracking.

• Astrophysics. Modeling internal structure of stars.
Simulating supernova. Modeling the structure of
the universe.

25

Classification of Parallel
Machines

• To classify parallel machines we must first
develop a model of computation. The approach we
follow is due to Flynn (1966).

• Any computer, whether sequential or parallel,
operates by executing instructions on data.
– a stream of instructions (the algorithm) tells the

computer what to do.
– a stream of data (the input) is affected by these

instructions.

26

Classification of Parallel
Machines

• Depending on whether there is one or several of
these streams we have 4 classes of computers.
– Single Instruction Stream, Single Data Stream: SISD
– Multiple Instruction Stream, Single Data Stream: MISD
– Single Instruction Stream, Multiple Data Stream: SIMD
– Multiple Instruction Stream, Multiple Data Stream: MIMD

27

SISD Computers
This is the standard sequential computer.

A single processing unit receives a single stream of
instructions that operate on a single stream of data

Control Processor Memory
Instruction

stream stream
Data

Example:
To compute the sum of N numbers a1,a2,…,aN the processor needs to
gain access to memory N consecutive times. Also N-1 additions are
executed in sequence. Therefore the computation takes O(N)
operations

Algorithms for SISD computers do not contain any process parallelism
since there is only one processor.

28

MISD Computers
N processors, each with its own control unit,
share a common memory.

Data
stream

Memory

Control 1

Control 2

Control N

Processor 1

Processor 2

Processor N

Instruction
streams

1

2

N

29

MISD Computers (continued)

• There are N streams of instructions
(algorithms/programs) and one stream of data.
Parallelism is achieved by letting the processors
do different things at the same time to the same
data.

• MISD machines are useful in computations where
the same input is to be subjected to several
different operations.

30

MISD Example
• Checking whether a number Z is prime. A simple

solution is to try all possible divisions of Z.
Assume the number of processors is N=Z-2. All
processors take Z as input and each tries to divide
it by its associated divisor. So it is possible in one
step to check if Z is prime. More realistically, if
N<Z-2 then a subset of divisors is assigned to each
processor.

• For most applications MISD computers are very
awkward to use and no commercial machines exist
with this design.

31

SIMD Computers
• All N identical processors operate under the

control of a single instruction stream issued by a
central control unit.

• There are N data streams, one per processor, so
different data can be used in each processor.

Processor 2 Processor N

Control

Shared memory or interconnection network

Processor 1

Data
streams

1 2 N

Instruction stream

32

Notes on SIMD Computers

• The processors operate synchronously and a global
clock is used to ensure lockstep operation, i.e., at
each step (global clock tick) all processors execute
the same instruction, each on a different datum.

• Array processors such as the ICL DAP,
Connection Machine CM-200, and MasPar are
SIMD computers.

• SIMD machines are particularly useful at
exploiting data parallelism to solve problems
having a regular structure in which the same
instructions are applied to subsets of data.

33

SIMD Example

The same instruction is issued to all 4 processors
(add two numbers), and all processors execute the
instructions simultaneously. It takes one step to add
the matrices, compared with 4 steps on a SISD
machine.

a11 a12

a21 a22

b11 b12

b21 b22

c11 c12

c21 c22
+ =

Problem: add two 2ä2 matrices on 4 processors.

34

Notes on SIMD Example
• In this example the instruction is simple, but in

general it could be more complex such as merging
two lists of numbers.

• The data may be simple (one number) or complex
(several numbers).

• Sometimes it may be necessary to have only a
subset of the processors execute an instruction, i.e.,
only some data needs to be operated on for that
instruction. This information can be encoded in the
instruction itself indicating whether
– the processor is active (execute the instruction)
– the processor is inactive (wait for the next instruction)

35

MIMD Computers

This is the most general and most powerful of our
classification. We have N processors, N streams of
instructions, and N streams of data.

Processor 2 Processor N

Control 1

Shared memory or interconnection network

Processor 1

Data
streams

1 2 N

Instruction
streams

Control 2 Control N
1 2 N

36

Notes on MIMD Computers

• The processors can operate asynchronously,
i.e., they can do different things on different
data at the same time.

• As with SIMD computers, communication
of data or results between processors can be
via shared memory or an interconnection
network.

37

Notes on SIMD and MIMD
• In most problems to be solved on SIMD and MIMD

computers it is useful for the processors to be able to
communicate with each other to exchange data or results.
This can be done in two ways
– by using a shared memory and shared variables, or
– using an interconnection network and message passing

(distributed memory)
• MIMD computers with shared memory are known as

multiprocessors. An example is the Onyx 300 produced by
Silicon Graphics Inc.

• MIMD computers with an interconnection network are
known as multicomputers. An example is the E6500
produced by Sun Microsystems.

• Clusters are multicomputers composed of off-the-shelf
components

38

Potential of the 4 Classes

SISD

SIMD

+
A B

+
A B
C D

A+B

A+B
C+D MIMD

MISD
+
*

A B

+
*

A B
C D

A+B

A+B

A*B

C*D

39

Single Program Multiple Data

• An MIMD computer is said to be running in SPMD mode if
the same program is executing on each process.

• SPMD is not a hardware paradigm, so it is not included in our
4 classifications.

• It is a software paradigm for MIMD machines.
• Each processor executes an SPMD program on different data

so it is possible that different branches are taken, leading to
asynchronous parallelism. The processors no longer do the
same thing (or nothing) in lockstep as they do on an SIMD
machine. They execute different instructions within the same
program.

40

SPMD Example

• Suppose X is 0 on processor 1, and 1 on processor
2. Consider

• Then processor 1 executes S1 at the same time that
processor 2 executes S2.

• This could not happen on an SIMD machine.

IF X = 0
THEN S1
ELSE S2

41

Interprocessor Communication

• Usually a parallel program needs to have some
means of sharing data and results processed by
different processors. There are two main ways of
doing this

1. Shared Memory
2. Message passing

• Shared memory consists of a global address
space. All processors can read from and write
into this global address space.

42

Global Shared Memory

GLOBAL
MEMORY

PROCESSOR

PROCESSOR

PROCESSOR

PROCESSOR

PROCESSOR

PROCESSOR

43

Shared Memory Conflicts

The shared memory approach is simple but can lead
to problems when processors simultaneously access
the same location in memory.
Example:
Suppose the shared memory initially holds a variable
x with value 0. Processor 1 adds 1 to x and processor
2 adds 2 to x. What is the final value of x?

You should have met this problem before when
studying locks and critical sections in the operating
systems module.

44

Shared Memory Conflicts 2

The following outcomes are possible
1. If P1 executes and completes x=x+1 before P2 reads the value of x

from memory then x is 3. Similarly, if P2 executes and completes
x=x+2 before P1 reads the value of x from memory then x is 3.

2. If P1 or P2 reads x from memory before the other has written back its
result, then the final value of x depends on which finishes last.

– if P1 finishes last the value of x is 1
– if P2 finishes last the value of x is 2

Shared memory
X = 0

Processor 1
X = X + 1

Processor 2
X = X + 2

This is an example
of non-determinism
or non-determinancy

45

Non-Determinancy
• Non-determinancy is caused by race conditions.
• A race condition occurs when two statements in

concurrent tasks access the same memory location,
at least one of which is a write, and there is no
guaranteed execution ordering between accesses.

• The problem of non-determinancy can be solved
by synchronising the use of shared data. That is if
x=x+1 and x=x+2 were mutually exclusive then
the final value of x would always be 3.

• Portions of a parallel program that require
synchronisation to avoid non-determinancy are
called critical sections.

46

Locks and Mutual Exclusion

In shared memory programs locks can be used
to give mutually exclusive access.

Processor 1:
LOCK (X)

X = X + 1
UNLOCK (X)

Processor 2:
LOCK (X)

X = X + 2
UNLOCK (X)

47

Classifying Shared Memory
Computers

Shared memory computers can be classified as follows
depending on whether two or more processors can gain access
to the same memory simultaneously.

1. Exclusive Read, Exclusive Write (EREW)
• Access to memory locations is exclusive, i.e., no 2 processors are

allowed to simultaneously read from or write into the same location.
2. Concurrent Read, Exclusive Write (CREW)

• Multiple processors are allowed to read from the same location, but
write is still exclusive, i.e., no 2 processors are allowed to write into
the same location simultaneously.

3. Exclusive Read, Concurrent Write (ERCW)
• Multiple processors are allowed to write into the same location, but

read access remains exclusive.
4. Concurrent Read, Concurrent Write (CRCW)

• Both multiple read and write privileges are allowed.

48

Notes on Shared Memory 1

• Allowing concurrent read access to the same
address should pose no problems in the sense
that such an operation is well-defined.
Conceptually each processor makes a copy of the
contents of the memory location and stores it in
its own register.

• Problems arise with concurrent write access,
because if several processors write
simultaneously to the same address, which
should “succeed?”

49

Notes on Shared Memory 2

• There are several ways of deterministically
specifying the contents of a memory location after
a concurrent write
1. Assign priorities to processors and store value from

processor with highest priority.
2. All the processors are allowed to write, provided all the

values they are attempting to store are the same.
3. The max, min, sum, or average of the values is stored

(for numeric data).

50

Notes on Shared Memory 3

• SIMD machines usually have 1000's of very
simple processors. Shared memory SIMD
machines are unrealistic because of the cost and
difficulty in arranging for efficient access to
shared memory for so many processors. There are
no commercial shared memory SIMD machines.

• MIMD machines use more powerful processors
and shared memory machines exist for small
numbers of processors (up to about 100).

51

Examples of Shared Memory

To show how the 4 subclasses of shared
memory machines behave, consider the
following example.
Problem:
We have N processors to search a list S = {L1,
L2, …,Lm} for the index of a given element x.
Assume x may appear several times, and any
index will do. 1< N≤m.

52

The Algorithm
procedure SM_search (S, x, k)

STEP 1: for i=1 to N do in parallel
read x

end for
STEP 2: for i=1 to N do in parallel

Si = {L((i-1)m/N+1), ...,L(im/N)}

perform sequential search on sublist Si

(return Ki= -1 if not in list, otherwise index)

end for
STEP 3: for i=1 to N do in parallel

if Ki > 0 then k=Ki end if
end for

end procedure

53

Time Complexity for EREW

If the sequential search step takes O(m/N) time, what
is the time complexity for each of the 4 subclasses of
shared memory computer?

•EREW
 Step 1 takes O(N) (N reads, one at a time).
 Step 2 takes O(m/N) time.
 Step 3 takes O(N) time.
 Total time is O(N)+O(m/N).

54

Time Complexity for ERCW

• ERCW
 Step 1 takes O(N) time.
 Step 2 takes O(m/N) time.
 Step 3 takes constant time.
 Total time is O(N)+O(m/N).

55

Time Complexity for CREW

• CREW
 Step 1 takes constant time.
 Step 2 takes O(m/N) time.
 Step 3 takes O(N) time
 Total time is O(N)+O(m/N).

56

Time Complexity for CRCW

• CRCW
 Step 1 takes constant time.
 Step 2 takes O(m/N) time.
 Step 3 takes constant time.
 Total time is O(m/N).

57

Limits on Shared Memory

• Shared memory computers are often implemented by
incorporating a fast bus to connect processors to memory.

• However, because the bus has a finite bandwidth, i.e., it can
carry only a certain maximum amount of data at any one
time, then as the number of processors increase the
contention for the bus becomes a problem. So it is feasible to
build shared memory machines with up to only about 100
processors.

Shared Memory

Bus

Processor Processor Processor

58

Quick Overview of OpenMP

• OpenMP can be used to represent task and data
parallelism.

• In case of data parallelism, OpenMP is used to
split loop iterations over multiple threads.

• Threads can execute different code but share the
same address space.

• OpenMP is most often used on machines with
support for a global address space.

59

OpenMP Fork/Join Model

60

OpenMP and Loops
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main () {

int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{

#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++) c[i] = a[i] + b[i];

}
/* end of parallel section */ }

61

Number of Threads
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000
main () {

int i, chunk;
float a[N], b[N], c[N];

/* Some initializations */
for (i=0; i < N; i++) a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i) num_threads(4)
{

#pragma omp for schedule(dynamic,chunk) nowait
for (i=0; i < N; i++) c[i] = a[i] + b[i];

}
/* end of parallel section */ }

62

Reduction Operations
#include <omp.h>
main () {

int i, n, chunk;
float a[100], b[100], result;

/* Some initializations */
n = 100;
chunk = 10;
result = 0.0;
for (i=0; i < n; i++) {

a[i] = i * 1.0;
b[i] = i * 2.0;

}
#pragma omp parallel for default(shared) private(i) schedule(static,chunk) reduction(+:result)
for (i=0; i < n; i++)

result = result + (a[i] * b[i]);
printf("Final result= %f\n",result);

}

63

Interconnection Networks and
Message Passing

In this case each processor has its own private (local)
memory and there is no global, shared memory. The
processors need to be connected in some way to allow
them to communicate data.

Interconnection
Network

Processor
+ memory

Processor
+ memory

Processor
+ memory

Processor
+ memory

Processor
+ memory

64

Message Passing

• If a processor requires data contained on a
different processor then it must be explicitly
passed by using communication
instructions, e.g., send and receive.

• The value x is explicitly passed from P2 to P1.
This is known as message passing.

P1 P2

receive (x, P2) send (x, P1)

65

Hybrid Computers
• In addition to the cases of

shared memory and
distributed memory there
are possibilities for hybrid
designs that incorporate
features of both.

• Clusters of processors are
connected via a high speed
bus for communication
within a cluster, and
communicate between
clusters via an
interconnection network.

Bus

Interconnection
network

66

Comparison of Shared and
Distributed Memory

Distributed memory Shared memory

Large number of processors
(100’s to 1000’s)

Moderate number of
processor (10’s to 100)

High peak performance Modest peak performance

Unlimited expansion Limited expansion

Difficult to fully utilise Relatively easy to fully utilise

Revolutionary parallel
computing

Evolutionary parallel
computing

67

Memory Hierarchy 1

• In general, certain memory locations have a greater affinity for
certain processes.

• Parallel programming language may make distinction between
“near” and “far” memory, but will not fully represent the
memory hierarchy.

P0 P1
Registers
Cache(s)

Main memory
Faster
access

More
memory

Data sharing between processes

68

Typical Quad-Core Chip

L1 cache

Instruction cache

CPU

L1 cache

Instruction cache

CPU

L2 cache

L1 cache

Instruction cache

CPU

L1 cache

Instruction cache

CPU

L2 cache

Shared Memory

69

Summing m Numbers
Example: summing m numbers

On a sequential computer we have,
sum = a[0];
for (i=1;i<m;i++) {

sum = sum + a[i];
}

Would expect the running time be be roughly
proportional to m. We say that the running time is Q(m).

70

Summing m Numbers in Parallel

• What if we have N processors, with each
calculating the m/N numbers assigned to it?

• We must add these partial sums together to
get the total sum.

71

Summing Using Shared Memory
The m numbers, and the global sum, are held in global shared
memory.

global_sum = 0;
for (each processor){

local_sum = 0;
calculate local sum of m/N numbers
LOCK

global_sum = global_sum + local_sum;
UNLOCK

}

72

Notes on Shared Memory
Algorithm

• Since global_sum is a shared variable each
processor must have mutually exclusive access to
it – otherwise the final answer may be incorrect.

• The running time (or algorithm time complexity) is
 Q(m/N)+ Q (N)

• where
– m/N comes from finding the local sums in parallel
– N comes from adding N numbers in sequence

73

Summing Using Distributed
Memory

P11 P13P12

P21 P23P22

P31 P33P32

j

i

Suppose we have a square mesh of N processors.

The algorithm is as follows:

1. Each processor finds the local
sum of its m/N numbers

2. Each processor passes its local
sum to another processor in a
coordinated way

3. The global sum is finally in
processor P11.

74

Distributed Memory Algorithm
The algorithm proceeds as follows:
1. Each processor finds its local sum.
2. Sum along rows:

a) If the processor is in the rightmost column it sends its local sum to the left.
b) If the processor is not in the rightmost or leftmost column it receives the

number form the processor on its right, adds it to its local, and send the
result to the processor to the left.

c) If the processor is in the leftmost column it receives the number from the
processor on its right and adds it to it local sum to give the row sum.

3. Leftmost column only – sum up the leftmost column:
a) If the processor is in the last row send the row sum to the processor above
b) If the processor is not in the last or first row receive the number from the

processor below, add it to the row sum, and send result to processor above
c) If the processor is in the first row receive the number from the processor

below. This is the global sum.

75

Summing Example
There are ◊N-1 additions and ◊N-1 communications
in each direction, so the total time complexity is

Q(m/N) + Q (◊N) + C

where C is the time spent communicating.

10 12 7
6 9 17
9 11 18

9910 19
6 26
9 29

29
70

29
32
38

Initially Shift left
and sum

Shift left
and sum

Shift up
and sum

Shift up
and sum

76

Interconnection Networks

• Parallel computers with many processors do not
use shared memory hardware.

• Instead each processor has its own local memory
and data communication takes place via message
passing over an interconnection network.

• The characteristics of the interconnection network
are important in determining the performance of a
multicomputer.

• If network is too slow for an application,
processors may have to wait for data to arrive.

77

Examples of Networks

Important networks include:
• fully connected or all-to-all
• mesh
• ring
• hypercube
• shuffle-exchange
• butterfly
• cube-connected cycles

78

Network Metrics
A number of metrics can be used to evaluate
and compare interconnection networks.

• Network connectivity is the minimum number of
nodes or links that must fail to partition the network
into two or more disjoint networks.

• Network connectivity measures the resiliency of a
network, and its ability to continue operation
despite disabled components. When components
fail we would like the network to continue
operation with reduced capacity.

79

Network Metrics 2
• Bisection width is the minimum number of links

that must be cut to partition the network into two
equal halves (to within one). The bisection
bandwidth is the bisection width multiplied by the
data transfer rate of each link.

• Network diameter is the maximum internode
distance, i.e., the maximum number of links that
must be traversed to send a message to any node
along the shortest path. The lower the network
diameter the shorter the time to send messages to
distant nodes.

80

Network Metrics 3
Network narrowness measures congestion in
a network.

• Partition the network into two
groups A and B, containing
NA and NB nodes,
respectively, with NB < NA.

• Let I be the number on
connections between nodes in
A and nodes in B. The
narrowness of the network is
the maximum value of NB/I
for all partitionings of the
network.

Group A

Group B

I connections

• If the narrowness is high
(NB>I) then if the group B
nodes want to communicate
with the group A nodes
congestion in the network
will be high.

81

Network Metrics 4
• Network Expansion Increment is the minimum

number of nodes by which the network can be
expanded.
– A network should be expandable to create larger and

more powerful parallel systems by simply adding more
nodes to the network.

– For reasons of cost it is better to have the option of
small increments since this allows you to upgrade your
machine to the required size.

• Number of edges per node. If this is independent
of the size of the network then it is easier to
expand the system.

82

Fully Connected Network
• In the fully connected, or all-to-all, network each

node is connected directly to all other nodes.
• This is the most general and powerful

interconnection network, but it can be
implemented for only a small number of nodes.

83

Fully Connected Network 2

For n even:
• Network connectivity = n - 1
• Network diameter = 1
• Network narrowness = 2/n
• Bisection width = n2/4
• Expansion Increment = 1
• Edges per node = n - 1

84

Mesh Networks
• In a mesh network nodes are arranged as a q-

dimensional lattice, and communication is allowed
only between neighboring nodes.

• In a periodic mesh, nodes on the edge of the mesh
have wrap-around connections to nodes on the other
side. This is sometimes called a toroidal mesh.

85

Mesh Metrics

For a q-dimensional non-periodic lattice with
kq nodes:

• Network connectivity = q
• Network diameter = q(k-1)
• Network narrowness = k/2
• Bisection width = kq-1

• Expansion Increment = kq-1

• Edges per node = 2q

86

Ring Networks

A simple ring network is just a 1D periodic mesh.
• Network connectivity = 2
• Network diameter = n/2
• Network narrowness = n/4
• Bisection width = 2
• Expansion Increment = 1
• Edges per node = 2
The problem for a simple ring is its large diameter.

87

Chordal Ring Networks

• A chordal ring uses extra chordal links to reduce
the diameter.

• For a ring with extra diametric links we have (for
n even)
– Network connectivity = 3
– Network diameter = ceiling(n/4)
– Network narrowness = n/(n+4)
– Bisection width = 2+n/2
– Expansion Increment = 2
– Edges per node = 3

88

Examples of Ring Networks

• Here are a simple ring and a chordal ring
with diametric links, each of size 6 nodes.

89

Hypercube Networks
• A hypercube network consists of n=2k nodes

arranged as a k-dimensional hypercube.
Sometimes called a binary n-cube.

• Nodes are numbered 0, 1,…,n-1, and two nodes
are connected if their node numbers differ in
exactly one bit.
– Network connectivity = k
– Network diameter = k
– Network narrowness = 1
– Bisection width = 2k-1

– Expansion increment = 2k

– Edges per node = k

90

Examples of Hypercubes

1D 2D 3D

4D

91

Mapping Grids to Hypercubes
• In the example in which we summed a set of numbers

over a square mesh of processors each processor needs
to know where it is in the mesh.

• We need to be able to map node numbers to locations
in the process mesh
– Given node number k what is its location (i,j) in the

processor mesh?
– Given a location (i,j) in the processor mesh what is the node

number, k, of the processor at that location?
– We want to choose a mapping such that neighbouring

processes in the mesh are also neighbours in the hypercube.
This ensures that when neighbouring processes in the mesh
communicate, this entails communication between
neighbouring processes in the hypercube.

92

Binary Gray Codes

• Consider just one dimension – a periodic
processor mesh in this case is just a ring.

• Let G(i) be the node number of the processor at
position i in the ring, where 0 § i < n. The
mapping G must satisfy the following,
– It must be unique, i.e., G(i) = G(j) fl i = j.
– G(i) and G(i-1) must differ in exactly one bit for all i, 0

§ i < n-1.
– G(n-1) and G(0) must differ in exactly one bit.

93

Binary Gray Codes 2

• A class of mappings known as binary Gray
codes satisfy these requirements. There are
several n-bit Gray codes. Binary Gray codes
can be defined recursively as follows:
 Given a d-bit Gray code, a (d+1)-bit Gray code

can be constructed by listing the d-bit Gray
code with the prefix 0, followed by the d-bit
Gray code in reverse order with prefix 1.

94

Example of a Gray Code
• Start with the Gray code G(0)=0, G(1)=1.
• Then the 2-bit Gray code is given in Table 1,

and the 3-bit Gray code is given in Table 2.

i [G(i)]2 G(i)
0 00 0
1 01 1
2 11 3
3 10 2

Table 1: A 2-bit Gray code

95

Example of a Gray Code 2
i [G(i)]2 G(i)
0 000 0
1 001 1
2 011 3
3 010 2
4 110 6
5 111 7
6 101 5
7 100 4

Table 2: A 3-bit Gray code

96

Example of a Gray Code 3

• A ring can be embedded in a hypercube as
follows:

0

1

2

3

4

5

6

7

97

Multi-Dimensional Gray Codes

• To map a multidimensional mesh of
processors to a hypercube we require that
the number of processors in each direction
of the mesh be a power of 2. So
 2dr-1 ä 2dr-2 ä … ä 2d0

 is an r-dimensional mesh and if d is the
hypercube dimension then:
 d0 + d1 +… + dr-1= d

98

Multi-Dimensional Gray Codes 2

• We partition the bits of node number and
assign them to each dimension of the mesh.
The first d0 go to dimension 0, the next d1
bits go to dimension 1, and so on. Then we
apply separate inverse Gray code mappings
to each group of bits.

99

Mapping a 2ä4 Mesh to a
Hypercube

K [k1]2,[k0]2 [G-1(k1)]2,[G-1(k0)]2 (i,j)
0 0, 00 0, 00 (0,0)
1 0, 01 0, 01 (0,1)
2 0, 10 0, 11 (0,3)
3 0, 11 0, 10 (0,2)
4 1, 00 1, 00 (1,0)
5 1, 01 1, 01 (1,1)
6 1, 10 1, 11 (1,3)
7 1, 11 1, 10 (1,2)

100

Mapping a 2ä4 Mesh to a
Hypercube 2

• A 2 ä 4 mesh is embedded into a 3D
hypercube as follows:

0 1 3 2

4 5 7 6

101

Shuffle-Exchange Networks

• A shuffle-exchange network consists of
n=2k nodes, and two kinds of connections.
– Exchange connections links nodes whose

numbers differ in their lowest bit.
– Perfect shuffle connections link node i with

node 2i mod(n-1), except for node n-1 which is
connected to itself.

102

8-Node Shuffle-Exchange
Network

• Below is an 8-node shuffle-exchange
network, in which shuffle links are shown
with solid lines, and exchange links with
dashed lines.

0 2 3 4 5 6 71

103

Shuffle-Exchange Networks

• What is the origin of the name “shuffle-
exchange”?

• Consider a deck of 8 cards numbered 0, 1, 2,…,7.
The deck is divided into two halves and shuffled
perfectly, giving the order:
 0, 4, 1, 5, 2, 6, 3, 7

• The final position of a card i can be found by
following the shuffle link of node i in a shuffle-
exchange network.

104

Shuffle-Exchange Networks
• Let ak-1, ak-2,…, a1, a0 be the address of a node in a

shuffle-exchange network in binary.
• A datum at this node will be at node number

 ak-2,…, a1, a0, ak-1

 after a shuffle operation.
• This corresponds to a cyclic leftward shift in the

binary address.
• After k shuffle operations we get back to the node

we started with, and nodes through which we pass
are called a necklace.

105

Butterfly Network
• A butterfly network consists of (k+1)2k nodes

divided into k+1 rows, or ranks.
• Let node (i,j) refer to the jth node in the ith rank.

Then for i > 0 node (i,j) is connected to 2 nodes in
rank i-1, node (i-1,j) and node (i-1,m), where m is
the integer found by inverting the ith most
significant bit of j.

• Note that if node (i,j) is connected to node (i-1,m),
then node (i,m) is connected to node (i-1,j). This
forms a butterfly pattern.
– Network diameter = 2k
– Bisection width = 2k

106

Example of a Butterfly Network

Here is a butterfly network for k = 3.

Rank 0

Rank 1

Rank 2

Rank 3

(0,2) (0,6)

(1,0) (1,2) (1,6)

(2,0) (2,2) (2,3)

(3,2) (3,3)

i = 1, j = 2 = (010)2, j£ = (110)2 = 6

i = 2, j = 2 = (010)2, j£ = (000)2 = 0

i = 3, j = 2 = (010)2, j£ = (011)2 = 3

107

Cube-Connected Cycles Network
• A cube-connected cycles network is a k-

dimensional hypercube whose 2k vertices are
actually cycles of k nodes.

• The advantage compared with the hypercube is
that the number of edges per node is a constant, 3.

• Disadvantages are that network diameter is twice
that of a hypercube, and the bisection width is
lower.

• For a cube-connected cycle network of size k2k,
– Network diameter = 2k
– Bisection width = 2k-1

– Edges per node = 3

108

Example of a Cube-Connected
Cycles Network

A cube-connected cycles network with k = 3
looks like this:

109

Complete Binary Tree Network
• Tree-based networks use switches to

connect processors. An example is the
binary tree network.

•This has a bisection width of 1, and a
connectivity of 1. The low bisection width
can result in congestion in the upper levels of
the network.

110

Fat Tree Network
• The fat tree network seeks to reduce the

congestion in the upper levels of the network by
adding extra links.

•The connectivity is still 1, but if there are 2d

processing nodes the bisection width is 2d-1.

•This type of network was used in the CM-5.

111

Classifying Parallel Algorithms

• Parallel algorithms for MIMD machines can
be divided into 3 categories
– Pipelined algorithms
– Data parallel, or partitioned, algorithms
– Asynchronous, or relaxed, algorithms

112

Pipelined Algorithms

• A pipelined algorithm involves an ordered set of
processes in which the output from one process is
the input for the next.

• The input for the first process is the input for the
algorithm.

• The output from the last process is the output of
the algorithm.

• Data flows through the pipeline, being operated on
by each process in turn.

113

Pipelines Algorithms 2

• Example: Suppose it takes 3 steps, A, B, and C, to
assemble a widget, and each step takes one unit of
time.

• In the sequential case it takes 3 time units to
assemble each widget.

• Thus it takes 3n time units to produce n widgets.

A B C W2 W1

114

Example of Pipelined Algorithm

• In the pipelined case the following happens
– Time step 1: A operates on W1
– Time step 2: A operates on W2, B operates on W1
– Time step 3: A operates on W3, B operates on W2, C

completes W1
– Time step 4: A operates on W4, B operates on W3, C

completes W2

• After 3 time units, a new widget is produced every
time step.

115

Pipelined Algorithm

• If the pipeline is n processes long, a new widget is
produced every time step from the nth time step
onwards. We then say the pipeline is full.

• The pipeline start-up time is n-1.
• This sort of parallelism is sometimes called

algorithmic parallelism.

A B C W5W4W3W2W1A B C

116

Performance of Pipelining

If
• N is the number of steps to be performed
• T is the time for each step
• M is the number of items (widgets)
then

Sequential time = NTM

Pipelined time = (N+M-1)T

117

Pipeline Performance Example

If T = 1, N = 100, and M = 106, then
• Sequential time = 108

• Pipelined time = 1000099

The speed-up Tseq/Tpipe º 100.

118

Data Parallelism

• Often there is a natural way of decomposing the
data into smaller parts, which are then allocated to
different processors.

• This way of exploiting parallelism is called data
parallelism or geometric parallelism.

• In general the processors can do different things to
their data, but often they do the same thing.

• Processors combine the solutions to their sub-
problems to form the complete solution. This may
involve communication between processors.

119

Data Parallelism Example
Data parallelism can be exploited in the
widget example. For 3-way data parallelism
we have:

A B C W4 W1

A B C W5 W2

A B C W6 W3

120

Relaxed Parallelism

• Relaxed parallelism arises when there is no
explicit dependency between processes.

• Relaxed algorithms never wait for input –
they use the most recently available data.

121

Relaxed Parallelism Example

Suppose we have 2 processors, A and B.
• A produces a sequence of numbers, ai,

i=1,2,….
• B inputs ai and performs some calculation

on it to produce Fi.
• Say B runs much faster than A.

122

Synchronous Operation

• A produces a1, passes it to B, which
calculates F1

• A produces a2, passes it to B, which
calculates F2

• and so on…..

123

Asynchronous Operation

1. A produces a1, passes it to B, which calculates F1
2. A is in the process of computing a2, but B does

not wait – it uses a1 to calculate F2, i.e., F1=F2.

• Asynchronous algorithms keep processors busy.
Drawbacks of asynchronous algorithms are

– they are difficult to analyse
– an algorithm that is known to converge in

synchronous mode
– may not converge in asynchronous mode.

124

Example of Asynchronous
Algorithm

• The Newton-Raphson method is an iterative
algorithm for solving non-linear equations
f(x)=0.

xn+1 = xn- f(xn) / f '(xn)

• generates a sequence of approximations to
the root, starting with some initial value x0.

125

Example of Asynchronous
Algorithm 2

Suppose we have 3 processors
• P1: given x, P1 calculates f(x) in t1, and sends it to P3.
• P2: given y, P2 calculates f '(y) in t2, and sends it to P3.
• P3: given a, b, and c, P3 calculates d = a - b/c.

If |d - a| > e then d is sent to P1 and P2; otherwise it is
output.

xn

f(xn)

f £(xn)
f £(xn)
f(xn)xn -

P1

P2

P3

126

Serial Mode Time Complexity

Serial mode
• P1 computes f(xn), then P2 computes f £(xn),

then P3 computes xn+1.
• Serial time is t1+ t2+t3 per iteration.
• If k iterations are needed, total time is

k(t1+ t2+t3)

127

Synchronous Parallel Mode

• P1 and P2 compute f(xn) and f £(xn)
simultaneously, and when both have
finished the values of f(xn) and f £(xn) are
used by P3 to find xn+1.

• Time per iteration is max(t1,t2) + t3.
• k iterations are necessary so the total time

is, k(max(t1,t2) + t3).

128

Asynchronous Parallel Mode

• P1 and P2 begin computing as soon as they
receive a new input value from P3.

• P3 computes a new value as soon as it
receives a new input value from either P1
or P2.

129

Asynchronous Parallel Mode
Example Time P1 P2

• For example, if
t1=2, t2=3 and
t3=1.

• Ci indicates
processor is
using xi in its
calculation.

• Cannot predict
number of
iterations.

P3
1 C0 C0 –
2 f(x0) C0 –
3 – f£(x0)
4 – – x1= x0- f(x0)/ f£(x0)
5 C1 C1 –
6 f(x1) C1 –
7 – f£(x1) x2= x1- f(x1)/ f£(x0)
8 C2 C2 x3= x2- f(x1)/ f£(x1)
9 f(x2) C2 –
10 C3 f£(x2) x4= x3- f(x2)/ f£(x1)
11 f(x3) C4 x5= x4- f(x2)/ f£(x2)
12 C5 C4 x6= x5- f(x3)/ f£(x2)

130

Speed-up and Efficiency
• We now define some metrics which measure how

effectively an algorithm exploits parallelism.
• Speed-up is the ratio of the time taken to run the

best sequential algorithm on one processor of the
parallel machine divided by the time to run on N
processors of the parallel machine.
 S(N) = Tseq/Tpar(N)

• Efficiency is the speed-up per processor.
 e(N) = S(N)/N=(1/N)(Tseq/Tpar(N))

• Overhead is defined as
 f(N) = 1/ e(N) - 1

131

Example

• Suppose the best known sequential
algorithm takes 8 seconds, and a parallel
algorithm takes 2 seconds on 5 processors.
Then
 Speed-up = 8/2 = 4
 Efficiency = 4/5 = 0.8
 Overhead = 1/0.8 – 1 = 0.25

132

Self Speed-up and Linear Speed-up

• Self speed-up is defined using the parallel
algorithm running on one processor.

• If the speed-up using N processors is N then
the algorithm is said to exhibit linear speed-
up.

133

Factors That Limit Speed-up
1. Software Overhead

Even when the sequential and parallel
algorithms perform the same computations,
software overhead may be present in the
parallel algorithm. This includes additional
index calculations necessitated by how the
data were decomposed and assigned to
processors, and other sorts of “bookkeeping”
required by the parallel algorithm but not the
sequential algorithm.

134

Factors That Limit Speed-up
2. Load Imbalance

Each processor should be assigned the same
amount of work to do between
synchronisation points. Otherwise some
processors may be idle while waiting for
others to catch up. This is known as load
imbalance. The speedup is limited by the
slowest processor.

135

Factors That Limit Speed-up
3. Communication Overhead

Assuming that communication and calculation
cannot be overlapped, then any time spent
communicating data between processors
reduces the speed-up.

136

Grain Size

The grain size or granularity is the amount of
work done between communication phases of
an algorithm. We want the grain size to be
large so the relative impact of communication
is less.

137

Definition of Load Imbalance
• Suppose the work done by processor i between two

successive synchronisation points is Wi
• If the number of processors is N, then the average

workload is:

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛=

1

0

1 N

i
iW

N
W

• The amount of load imbalance is then given by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
W

WWL imax

where the maximum is taken over all processors.

138

Analysis of Summing Example

P11 P13P12

P21 P23P22

P31 P33P32

j

i

The algorithm proceeds as follows

1. Each processor finds the local
sum of its m/N numbers

2. Each processor passes its local
sum to another processor in a
coordinated way

3. The global sum is finally in
processor P11.

Recall the example of summing m numbers on a square
mesh of N processors.

139

Analysis of Summing Example 2
• Time for best sequential algorithm is

 Tseq = (m-1)tcalc

 where tcalc is time to perform one floating-point
operation.

• Time for each phase of parallel algorithm
– Form local sums T1 = (m/N-1) tcalc

– Sum along processor rows T2 = (◊N - 1)(tcalc + tcomm)

– where tcomm is time to communicate one floating-point
number between neighbouring processors.

– Sum up first column of processors T3 = (◊N - 1)(tcalc + tcomm)

140

Analysis of Summing Example 3

• Total time for the parallel algorithm is:
 Tpar = (m/N + 2 ◊N - 3)tcalc + 2(◊N - 1) tcomm

• So the speed-up for the summing example is:

(m/N + 2 ◊N - 3)tcalc + 2(◊N - 1) tcomm

(m-1)tcalcS(N) =

1 + (N/m)(2 ◊N - 3) + 2(N/m)(◊N - 1) t
N(1-1/m)=

where t = tcomm/ tcalc

141

Analysis of Summing Example 4

• In this algorithm a good measure of the grain size,
g, is the number of elements per processor, m/N.
We can write S as:

1 + (N/m)(2 ◊N - 3) + 2(N/m)(◊N - 1) t
N(1-1/m)S(g,N) =

• As g Ø ¶ with N constant, S Ø N.
• As N Ø ¶ with g constant, S º g◊N/(2(1+t)).
• As N Ø ¶ with m constant, S Ø 0.

142

Analysis of Summing Example 5

• If m à 1 and N à 1,

1 + 2 ◊N(1+t)/g
NS(g,N) =

1 + 2 ◊N(1+t)/g
1

e(g,N) =

2 ◊N(1+t)/gf(g,N) =

143

Scalable Algorithms
• Scalability is a measure of how effectively an algorithm

makes use of additional processors.
• An algorithm is said to be scalable if it is possible to keep

the efficiency constant by increasing the problem size as
the number of processors increases.

• An algorithm is said to be perfectly scalable if the
efficiency remains constant when the problem size and the
number of processors increase by the same factor.

• An algorithm is said to be highly scalable if the efficiency
depends only weakly on the number of processors when
the problem size and the number of processors increase by
the same factor.

144

Scalability of the Summing
Example

• The summing algorithm is scalable since we
can take g ∂ ◊N.

• The summing algorithm is not perfectly
scalable, but it is highly scalable.

• “Problem size” may be either:
– the work performed, or
– the size of the data.

145

Amdahl’s Law
• Amdahl's Law states that the maximum speedup of

an algorithm is limited by the relative number of
operations that must be performed sequentially,
i.e., by its serial fraction.

• If a is the serial fraction, n is the number of
operations in the sequential algorithm, and N the
number of processors, then the time for the parallel
algorithm is:

Tpar(N) = (an + (1-a)n/N)t + C(n,N)
where C(n,N) is the time for overhead due to
communication, load balancing, etc., and t is the
time for one operation.

146

Derivation of Amdahl’s Law

• The speed-up satisfies:
 S(N) = Tseq/Tpar(N) = nt/[(an + (1-a)n/N)t + C(n,N)]

 = 1/[(a + (1-a)/N) + C(n,N)/(nt)]
 < 1/(a + (1-a)/N)

• Note that as NØ¶, then S(N)Ø1/a, so the
speed-up is always limited to a maximum of
1/a no matter how many processors are
used.

147

Examples of Amdahl’s Law

a

0

S(N)

10

0 0.01 0.03 0.1

S(N) < 1/(a + (1-a)/N)

0.06

5.26

6.49

9.17

7.87

Consider the effect of Amdahl's Law on speed-up as a
function of serial fraction, a, for N=10 processors.

148

Examples of Amdahl’s Law 2
Consider the effect of Amdahl's Law on speed-up as a
function of serial fraction, a, for N=1000 processors.

a

0

S(N)

1000

0 0.01 0.03 0.1

S(N) < 1/(a + (1-a)/N)

0.06

9.9116.4190.99 32.29

If 1% of a parallel
program involves serial
code, the maximum
speed-up is 9 on a 10-
processor machine, but
only 91 on a 1000-
processor machine.

149

Implications of Amdahl’s Law

• Amdahl's Law says that the serial fraction puts a
severe constraint on the speed-up that can be
achieved as the number of processors increases.

• Amdahl's Law suggests that it is not cost effective
to build systems with large numbers of processors
because sufficient speed-up will not be achieved.

• It turns out that most important applications that
need to be parallelised contain very small serial
fractions, so large machines are justified.

150

Speed-Up for Large Problems

• Speed-up is the ratio between how long the best
sequential algorithm takes on a single processor
and how long it takes to run on multiple
processors.

• To measure the speed-up the problem must be
small enough to fit into the memory of one
processor.

• This limits us to measuring the speed-up of only
small problems.

151

Speed-Up for Large Problems 2

• In finding the speedup we can estimate the time to
run on one processor, so much larger problems
can be considered.

• In general overhead costs increase with problem
size, but at a slower rate than the amount of
computational work (measured by the grain size).
Thus, speed-up is an increasing function of
problem size, and so this approach to speed-up
allows us to measure larger speed-ups.

152

Speed-Up and Problem Size

0
0

Ideal speed-up
Slope = 1

Increasing M

S(N)

Number of processors, N

For a given number of processors, speed-up usually increases
with problem size, M.

153

Semantics of Message Sends

• Suppose one node sends a message to
another node:
 send (data, count, datatype, destination)

• There are two possible behaviours:
– Blocking send
– Non-blocking send

154

Semantics of Blocking Send

• The send does not return until the data to be
sent has “left” the application.

• This usually means that the message has
been copied by the message passing system,
or it has been delivered to the destination
process.

• On return from the send() routine the data
buffer can be reused without corrupting the
message.

155

Semantics of Non-Blocking Send

• Upon return from the send() routine the data
buffer is volatile.

• This means that the data to be sent is not
guaranteed to have left the application, and if the
data buffer is changed the message may be
corrupted. The idea here is for the send() routine
to return as quickly as possible so the sending
process can get on with other useful work.

• A subsequent call is used to check for completion
of the send.

156

Semantics of Message Receives

• Suppose one node receives a message from
another node:

 receive (data, count, datatype, source)

• There are two possible behaviours:
– Blocking receive
– Non-blocking receive

157

Semantics of Blocking Receive

• The receive does not return until the data to
be received has “entered” the application.

• This means that the message has been
copied into the data buffer and can be used
by the application on the receiving
processor.

158

Semantics of Non-Blocking
Receive

• Upon return from the receive() routine the status of
the data buffer is undetermined.

• This means that it is not guaranteed that the
message has yet been received into the data buffer.

• We say that a receive has been posted for the
message.

• The idea here is for the receive() routine to return
as quickly as possible so the receiving process can
get on with other useful work. A subsequent call is
used to check for completion of the receive.

159

Message Passing Protocols

• Suppose one node sends a message and another
receives it:

 SOURCE: send (data, count, datatype, destination)
 DEST: receive (data, count, datatype, source)

• Two important message passing protocols are
– Synchronous send protocol
– Asynchronous send protocol

160

Message Passing Protocols 2

• Synchronous: The send and receive routines
overlap in time. The send does not return
until the receive has started. This is also
known as a rendezvous protocol.

• Asynchronous: The send and receive
routines do not necessarily overlap in time.
The send can return regardless of whether
the receive has been initiated.

161

MPI Point-to-Point Communication

• MPI is a widely-used standard for message
passing on distributed memory concurrent
computers.

• Communication between pairs of processes is
called point-to-point communication.

• There are several Java versions of MPI, but we
shall use mpiJava.

• In mpiJava point-to-point communication is
provided through the methods of the Comm class.

162

mpiJava API
• The class MPI only has static members.
• It acts as a module containing global services, such as

initialisation, and many global constants including the
default communicator COMM_WORLD.

• The most important class in the package is the
communicator class Comm.

• All communication functions in mpiJava are
members of Comm or its subclasses.

• Another very important class is the Datatype class.
• The Datatype class describes the type of elements

in the message buffers to send and receive.

163

Class hierarchy
MPI

Group

Comm

Datatype

Status

Request

Package mpi

Intracomm

Intercomm

Prequest

Cartcomm

Graphcomm

164

Basic Datatypes
MPI Datatype Java Datatype
MPI.BYTE byte
MPI.CHAR char
MPI.SHORT short
MPI.BOOLEAN boolean
MPI.INT int
MPI.LONG long
MPI.FLOAT float
MPI.DOUBLE double
MPI.OBJECT object

165

mpiJava send()/recv()
• Send and receive members of Comm:
void Send(Object buf, int offset, int
count, Datatype type, int dst, int
tag);

Status Recv(Object buf, int offset,
int count, Datatype type, int src, int
tag);

• buf must be an array.
• offset is the element where message starts.
• Datatype class describes type of elements.

166

Communicators

• A communicator defines which processes may be
involved in the communication. In most
elementary applications the MPI-supplied
communicator MPI.COMM_WORLD is used.

• Two processes can communicate only if they use
the same communicator.

• User-defined datatypes can be used, but mostly the
standard MPI-supplied datatypes are used, such as
MPI.INT and MPI.FLOAT.

167

Process ranks
• When an MPI program is started the number of

processes ,N, is supplied to the program from the
invoking environment. The number of processes in
use can be determined from within the MPI
program with the Size() method.
 int Comm.Size()

• Each of the N processes is identified by a unique
integer in the range 0 to N-1. This is called the
process rank. A processcan determine its rank with
the Rank() method.
 int Comm.Rank()

168

Message Tags

• The message tag can be used to distinguish
between different types of message. The tag
specified by the receiver must match that of the
sender.

• In a Recv() routine the message source and tag
arguments can have the values
MPI.ANY_SOURCE and MPI.ANY_TAG. These
are called wildcards and indicate that the
requirement for an exact match does not apply.

169

Return Status Objects

• If the message source and/or tag are/is
wildcarded, then the actual source and tag can
be found from the publicly accessible
source and tag fields of the status object
returned by recv().

• The number of items received can be found
using:
 int Status.Get_count(Datatype datatype)

170

Communication Completion

• A communication operation is locally complete on
a process if the process has completed its part in
the operation.

• A communication operation is globally complete if
all processes involved have completed their part in
the operation.

• A communication operation is globally complete
if and only if it is locally complete for all
processes.

171

Summary of Point-to-Point
Communication

• Message selectivity on the receiver is by rank and
message tag.

• Rank and tag are interpreted relative to the scope
of the communication.

• The scope is specified by the communicator.
• Source rank and tag may be wildcarded on the

receiver.
• Communicators must match on sender and

receiver.

172

Minimal mpiJava Program
import mpi.*

class Hello {
static public void main(String[] args) {
MPI.Init(args) ;
int myrank = MPI.COMM_WORLD.Rank();
if(myrank == 0) {
char[] data = new char [20];
MPI.COMM_WORLD.Recv(data, 0, 20, MPI.CHAR, 1, 99);
System.out.println(“received:” + new String(data) + “:”);

} else if (myrank==1){
char[] data = “Hello, there”.toCharArray();
MPI.COMM_WORLD.Send(data, 0, data.length, MPI.CHAR, 0, 99);

}
MPI.Finalize();

}
}

173

Another MPI Example
import mpi.*

class HelloAll {
static public void main(String[] args) {
MPI.Init(args) ;
int myrank = MPI.COMM_WORLD.Rank();
int nprocs = MPI.COMM_WORLD.Size();
int[] irecv = new int[1];
if(myrank == 0) {

for(int i=1;i<nprocs;i++){
MPI.COMM_WORLD.Recv(irecv, 0, irecv.length, MPI.INT,

MPI.ANY_SOURCE, 99);
System.out.println(“Hello from process:” + irecv[0]);

}
} else {
irecv[0] = myrank;
MPI.COMM_WORLD.Send(irecv, 0, 1, MPI.INT, 0, 99);

}
MPI.Finalize();

}
}

174

Notes on Example

• All MPI calls must come between the calls
to MPI.Init() and MPI.Finalize().

• The information from the processes is not
necessarily output in ascending order
because the program does not specify the
order in which process 0 receives messages.

• We could have each process output its rank
instead of sending it to process 0.

175

Collective Communication
• The send and receive style of communication

between pairs of processors is known as point-to-
point communication. This is distinct from
collective communication in which several
processors are involved in a coordinated
communication task.

• Examples include:
– Broadcasting data. One processor, known as the root,

sends the same data to all processors.
– Data reduction. Data from all processors is combined

using a reduction function to produce a single result.
The result may reside on a single processor or on all
processors.

176

Broadcast
• A common form of broadcast algorithm is

based upon a broadcast tree.
• Suppose node 0 is the root of the broadcast.

Consider the following tree.
0

3 5

2 4

6

7

1

177

Broadcast Algorithm 1

• Send on all links simultaneously
1) Node 0 sends to nodes 1, 2, and 4
2) Node 1 sends to nodes 3 and 5; node 2 sends to node 6
3) Node 3 sends to node 7

0

3 5

2 4

6

7

1
On a hypercube this broadcast
algorithm uses only physical
links in the interconnect that
directly connect nodes.

178

Broadcast Algorithm 2

• Send on one link at a time:
1) Node 0 sends to node 1.
2) Node 0 sends to node 2, and node 1 sends to node 3.
3) Node 0 sends to node 4, node 1 sends to node 5, node 2 sends to

node 6, and node 3 sends to node 7

0

3 5

2 4

6

7

1
On a hypercube this broadcast
algorithm uses only physical
links in the interconnect that
directly connect nodes.

179

Reduction

• Reduction can also be represented by a tree
algorithm. For example, if we want to sum
numbers on all nodes to one node:

10 15

25

25 13

38

63

8 4

12

7 3

10

22

85

0 1 2 3 4 5 6 7

180

Reduction To All Nodes

• If we want to perform the sum so that all
nodes end up with the result:

85858585858585

22 22 22

1012

10 15

25

25 13

38

63

8 4

12

7 3

10

22

85

0 1 2 3 4 5 6 7

25 38

63 63 63

181

Collective Routines

• Other forms of reduction include finding the maximum
or minimum of a set of numbers over all processes.

• These reduction and broadcast algorithms are
logarithmic in number of nodes, i.e., number of steps
is approximately proportional to log2(n).

• On hypercubes the logarithmic algorithms involve
communication between only neighbouring processes.

• Other algorithms may be better for other network
topologies.

• MPI provides routines for broadcasting and reduction.

182

MPI Integration Example
Want to find:

Û sin(x) dx
• Initialisation

– initialise MPI
– communicate problem parameters

• Compute
– each process computes its contribution
– reduction operation sums process contributions

• Output
– Process with rank 0 outputs the result

• Tidy Up
– All processes call MPI.Finalize()

p

0

183

MPI Integration Code: Outline
import mpi.*;

class Integrate {
static public void main(String[] args) {
int npts;
MPI.Init(args) ;
int myrank = MPI.COMM_WORLD.Rank();
int nprocs = MPI.COMM_WORLD.Size();
int[] irecv = new int[1];
if(myrank == 0) {

npts = 100; irecv[0] = npts;
}
MPI.COMM_WORLD.Bcast(irecv, 0, 1, MPI.INT, 0);
npts = irecv[0];

∂
∂

MPI.Finalize();
}

}

See next slide for what
goes here

184

MPI Integration Code:
Computation

npts = irecv[0];
int nlocal = (npts-1)/nprocs + 1;
int nbeg = myrank*nlocal +1;
int nend = Math.min(nbeg+nlocal-1,npts);
double delta = Math.PI/npts;
double psum = 0.0;
for(int i=nbeg;i<=nend;i++){

psum += (Math.sin((i-0.5)*delta))*delta;
}
double [] dval = new double[2];
dval[0] = psum;
MPI.COMM_WORLD.Reduce(dval,0,dval,1,1,MPI.DOUBLE,MPI.SUM,0);
if (myrank==0){

System.out.println(“The integral = ” + dval[1]);
}

185

Application Topologies

• In many applications, processes are arranged with
a particular topology, e.g., a regular grid.

• MPI supports general application topologies by a
graph in which communicating processes are
connected by an arc.

• MPI also provides explicit support for Cartesian
grid topologies. Mostly this involves mapping
between a process rank and a position in the
topology.

186

Cartesian Application Topologies

 Cartcomm Intracomm.Create_cart (int [] dims,
boolean [] period, boolean reorder)

• Periodicity in each grid direction may be specified.
• Inquiry routines transform between rank in group

and location in topology
• For Cartesian topologies, row-major ordering is

used for processes, i.e., (i,j) means row i, column j.

187

Topological Inquiries

• Can get information about a Cartesian topology:
 CartParms Cartcomm.Get()

 This returns an object containing information about a
Cartesian topology:
 public class CartParms{
 int [] dims; // number of processes in each dimension
 boolean [] period; // periodicity of each dimension
 int [] coords; // coordinates of calling process
 }

188

Mapping Between Rank and
Position

• The rank of a process at a given location:
 int Cartcomm.Rank(int [] coords)

• The location of a process of a given rank:
 int [] Cartcomm.Coords(int rank)

189

Uses of Topologies

• Knowledge of application topology can be used to
efficiently assign processes to processors.

• Cartesian grids can be divided into hyperplanes by
removing specified dimensions.

• MPI provides support for shifting data along a
specified dimension of a Cartesian grid.

• MPI provides support for performing collective
communication operations along a specified grid
direction.

190

Topologies and Data Shifts

• Circular shift by J. Data in process K is sent
to process mod((J+K),N)

• End-off shift by J. Data in process K is sent
to process J+K if this is between 0 and N-1.
Otherwise, no data are sent.

Consider the following two types of shift for a
group of N processes:

191

Topologies and Data Shifts 2
• Topological shifts are performed using

 Status Comm.Sendrecv(…)
• The ranks of the processes that a process must send

to and receive from when performing a shift on a
topological group are returned by:
 ShiftParms Cartcomm.Shift(int direction, int disp)
where the ShiftParms class is:

public ShiftParms{
public int rankSource;
public int rankDest;

}

192

Send/Receive Operations

• In many applications, processes send to one
process while receiving from another.

• Deadlock may arise if care is not taken.
• MPI provides routines for such send/receive

operations.
• For distinct send/receive buffers:

 Status Comm.Sendrecv(…)
• For identical send/receive buffers:

 Status Comm.Sendrecv_replace(…)

193

Vibrating String Problem

• Introduce coordinate x so that one end of the string is at x=0 and the
other end is at x=L.

• Denote the displacement of the string at position x and time t by Y(x,t).
• We want to know Y(x,t).

We shall now study the vibration of waves on a string, and
design a parallel MPI program to solve the partial differential
equation that describes the problem mathematically.

Problem

A string of length L and fixed at each end is initially given a
known displacement. What is the displacement at later times?

194

The Wave Equation
• Mathematically the vibrating string problem is

described by the wave equation.
• We shall solve this problem numerically by

approximating the solution at a number of equally-
spaced values of x.

Displacement

x = 0 x = L

195

Method of Solution
• We find the solution at a series of time steps, t0,

t1, t2, etc.
• At each time step we find the displacement at the

points x0, x1,…, xn-1, where x0=0 and xn-1=L
• At t0 = 0 we assume the string has a known

shape, i.e., we know Y(x,0).
• Given the solution at position xi at time tj, the

value there at the next time step depends on the
current and previous values at that point, and on
current values at the neighbouring points.

196

Data Distribution
• Give each process a block of points on the string.
• Each process should have approximately the same

number of points to ensure good load balance.

Displacement

x = 0 x = L

0 1 2 3

197

Communication Requirements
• Given the solution at position xi at time tj, the value

there at the next time step depends on the current and
previous values at that point, and on current values at
the neighbouring points.

• So to update a point we need to know the displacement
at neighbouring points. This entails communication.

• Each process needs to communicate the displacement
values for its first and last points before updating its
points

0 1 2 3

198

Outline of Parallel Code
• Initialise data distribution

– Find position of each process to determine which block of
points it handles.

– Find out the node numbers of processes to left and right.
• Initialise arrays

– Determine how many points each process handles and the
index of the first point in each.

– Set the psi and oldpsi arrays.
• Perform Update

– Communicate end points.
– Do update locally.

• Output results

199

Displacement Arrays

• Each process needs to store the endpoint values
received from the neighbouring processes. These
are stored at the 0 and nlocal+1 positions in the
displacement arrays.

• Thus, the displacement arrays need two “extra”
entries at each end.

0 1 2 3 54 6

nlocal = 5

200

Outline MPI Code
import mpi.*

class VibratingString {
static public void main(String[] args) {
MPI.Init(args) ;

MPI.Finalize();
}

}

Code for initialising data distribution
goes here

Code for initialising arrays goes here

Code for update loop goes here

Code for output phase goes here

201

Initialising the Data Distribution
boolean [] periods = new boolean[1];
boolean reorder = false;
int myrank = MPI.COMM_WORLD.Rank();
int nprocs = MPI.COMM_WORLD.Size();
int [] dims = new int[1];
dims[0] = nprocs;
periods[0] = false;
Cartcomm comm1d = MPI.COMM_WORLD.Create_cart(dims, periods,

reorder);
int [] coords = new int[1];
coords = comm1d.Coords(myrank);
ShiftParms shift1d = comm1d.Shift(0, 1);
int left = shift1d.rankSource;
int right = shift1d.rankDest;

• comm1d is a new communicator with a 1D Cartesian topology.
• coords array gives the position of a process in the topology.
• Shift() allows us to find the left and right neighbours of a process.

202

Initialising the Arrays
int npoints = 100;
double psi = new double[102];
double oldpsi = new double[102];
double newpsi = new double[102];
int nlocal = npoints/nprocs;
int nstart = coords[0]*nlocal;
double x;
for(int i=0;i<nlocal;i++){

x = 2.0*Math.PI*(double)(nstart+i)/(double)(npoints-1);
x = Math.sin(x);
psi[i+1] = oldpsi[i+1] = x;

}

• nlocal is the number of points updated by each process.
• nstart is the index of the first point in each process, i.e., it is the

global index corresponding to local index 1.
• We initialise the arrays for indices 1 up to nlocal. Indices 0 and

nlocal+1 will be used later to store values received from
neighbouring processes.

203

Update Loop
double tau = 0.05;
int start = 1;
if (coords[0]==0) start = 2;
int end = nlocal;
if (coords[0]==nprocs-1) end = nlocal-1;
Status s;
for(int j=0;j<500;j++){

s = MPI.COMM_WORLD.Sendrecv(psi,1,1,MPI.DOUBLE,left,99,
psi,nlocal+1,1,MPI.DOUBLE,right,99);

s = MPI.COMM_WORLD.Sendrecv(psi,nlocal,1,MPI.DOUBLE,right,99,
psi,0,1,MPI.DOUBLE,left,99);

for(int i=start;i<=end;i++){
newpsi[i] = 2.0*psi[i]-oldpsi[i]+

tau*tau*(psi[i-1]-2.0*psi[i]+psi[i+1]);
}
for(int i=1;i<=nlocal;i++){

oldpsi[i] = psi[i];
psi[i] = newpsi[i];

}
}

204

Notes on Update Loop

The update phase has 3 main parts:
1. Communicate endpoints between

neighbours
2. Update points locally
3. Copy arrays ready for next update step

205

Communication Code: Left Shift

• All processes send psi[1] to the process to the
left, and receive data from the process to the
right, storing it in psi[nlocal+1].

s = MPI.COMM_WORLD.Sendrecv(psi,1,1,MPI.DOUBLE,left,99,
psi,nlocal+1,1,MPI.DOUBLE,right,99);

206

Communication Code: Right Shift

• All processes send psi[nlocal] to the process to
the right, and receive data from the process to
the left, storing it in psi[0].

s = MPI.COMM_WORLD.Sendrecv(psi,nlocal,1,MPI.DOUBLE,right,99,
psi,0,1,MPI.DOUBLE,left,99);

207

Output Phase

• We assume the results are output to a file
and/or a visualisation device.

• We won’t look at this as its mostly a Java
coding issue.

• One parallel computing issue that arises is
whether all processes have access to the file
system. Usually they do, but this is not
required by MPI.

208

Performance Analysis

• To analyse the performance of the parallel wave
equation code we just look at the update phase.

• To update each point requires 6 floating-point
operations in the parallel and sequential codes.

• In the parallel code each process sends and
receives two floating-point numbers in each
update step.

• We ignore the time to copy to the arrays old_psi
and psi.

209

Performance Analysis 2

The speed-up is:

(6n/N)tcalc + 2tcomm

6ntcalcS(N) =
t/(3g)= 1 +

where N is the number of processes, n is the
number of points, g = n/N is the grain size, and
t = tcomm/tcalc.

N

210

Performance Analysis 3

1 + t/(3g)
1e(N) =

The efficiency is

so the overhead is f(N) = t/(3g).

Since the efficiency depends on g but not
independently on N the parallel algorithm is perfectly
scalable.

211

Laplace Equation Problem
• The next problem we shall look at

may be used to determine the
electric field around a conducting
object held at a fixed electrical
potential inside a box also at a fixed
electrical potential.

• As with the vibrating string
problem, this problem can also be
expressed mathematically as a
partial differential equation, known
as the Laplace equation.

• We shall design a parallel MPI
program to solve the partial
differential equation.

Potential = 0

Potential = 1

212

Laplace Equation 2

• This is a 2-D problem whereas the
vibrating string was a 1-D
problem.

• We divide the problem domain
into a regular grid of points, and
find an approximation to the
solution at each of these points.

• We start with an initial guess at the solution, and
perform a series of iterations that get progressively
closer to the solution.

213

Data Distribution

• Give each process a 2D block of points.
• Each process should have approximately the

same number of points to ensure good load
balance.

• Use a MPI's topology routines to map each
block of points to a process.

214

Data Distribution 2
0

0

1

2

3

31 2

215

Communication Requirements

• The update formula replaces the solution at
a point by the average of the 4 neighbouring
points from the previous iteration.

• Points lying along the boundary of a process
need data from neighbouring processes.

• Each process needs to communicate the
points lying along its boundary before
performing an update.

216

Communication Requirements 2

• To update a red
point we need to
know the values of
the points in the
shaded region.

• For points on the
edge this requires
communication

217

Outline of Parallel Code
• Initialise data distribution

– Find position of each process to determine which
block of points it handles.

– Find out the node numbers of processes in the left,
right, up, and down directions.

• Initialise arrays
– Determine how many points each process handles.
– Set the phi and mask arrays.

• Perform update
– Copy phi array to oldphi array.
– Communicate boundary points.
– Do update locally.

• Output results

218

Array Declarations
• Each process needs to be able to store the

boundary values received from its neighbours.
• These are stored in rows 0 and nlocaly+1 and in

columns 0 and nlocalx+1 of the phi array.
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

nlocalx = 4
nlocaly = 4

219

Array Initialisation
There are 3 arrays:
• phi : the current values of the solution
• oldphi : the values of the solution for the previous

iteration.
• mask : equals false on boundaries and true

elsewhere.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

phi

F T T T T T T F
F T T T T T T F
F T T F F T T F
F T T F F T T F
F T T T T T T F
F T T T T T T F
F F F F F F F F

F F F F F F F F

mask

220

Outline MPI Code
import mpi.*;

class LaplaceEquation {
static public void main(String[] args) {
MPI.Init(args) ;

MPI.Finalize();
}

}

Code for initialising data distribution
goes here

Code for initialising arrays goes here

Code for update loop goes here

Code for output phase goes here

221

Initialising the Data Distribution
boolean [] periods = new boolean[2];
boolean reorder = false;
int myrank = MPI.COMM_WORLD.Rank();
int nprocs = MPI.COMM_WORLD.Size();
int [] dims = new int[2];
MPI.COMM_WORLD.Dims_create(nprocs, dims);
periods[0] = periods[1] = true;
Cartcomm comm2d = MPI.COMM_WORLD.Create_cart(dims, periods,

reorder);
int [] coords = new int[2];
coords = comm2d.Coords(myrank);
ShiftParms vshift = comm2d.Shift(0, 1);
int up = vshift.rankSource;
int down = vshift.rankDest;
ShiftParms hshift = comm2d.Shift(1, 1);
int left = hshift.rankSource;
int right = hshift.rankDest;

222

Initialising the Data Distribution 2

• dims[0] and dims[1] are the number of processes
in the process grid in each direction. We make the
grid as square as possible using Create_dims().

• This time we set up a 2D communicator, comm2d.
• The Coords() method gives the position in the

topology of each process.
• Calls to Shift() give the ranks of the neighbouring

processes in the four directions.

223

Initialising phi and mask Arrays
• Set all of phi to 0, and all of mask to true.
• For processes in row 0 of the process mesh we must set

row 1 of the mask array to false.
• For processes in the last row of the process mesh we must

set row nlocaly of the mask array to false.
• For processes in column 0 of the process mesh we must set

column 1 of the mask array to false.
• For processes in the last column of the process mesh we

must set column nlocalx of the mask array to false.
• For the 4 points in the centre we must set the phi and mask

entries to 1 and false, respectively, in the processes
containing them.

224

Initialisation of Arrays
int nlocalx = 100;
int nlocaly = 100;
double [] phi = new double[102][102];
double [] oldphi = new double[102][102];
boolean [] mask = new boolean[102][102];
double [] sendbuf = new double[102];
double [] recvbuf = new double[102];

for (int j=0;j<=nlocaly+1;j++){
for (int i=0;i<=nlocalx+1;i++){

phi[j][i] = 0.0;
mask[j][i] = true;

}
}

225

Initialisation of Arrays 2
if (coords[0]==0){

for(int i=0;i<=nlocalx+1;i++){
mask[1][i] = false;

}
}
if (coords[0]==dims[0]-1){

for(int i=0;i<=nlocalx+1;i++){
mask[nlocaly][i] = false;

}
}
if (coords[1]==0){

for(int j=0;j<=nlocaly+1;j++){
mask[j][1] = false;

}
}
if (coords[1]==dims[1]-1){

for(int j=0;j<=nlocaly+1;j++){
mask[j][nlocalx] = false;

}
}

226

Initialisation of Arrays 3
if (coords[0]==dims[0]/2-1 && coords[1]==dims[1]/2-1){

phi[nlocaly][nlocalx] = 1.0;
mask[nlocaly][nlocalx] = false;

}
if (coords[0]==dims[0]/2-1 && coords[1]==dims[1]/2){

phi[nlocaly][1] = 1.0;
mask[nlocaly][1] = false;

}
if (coords[0]==dims[0]/2 && coords[1]==dims[1]/2-1){

phi[1][nlocalx] = 1.0;
mask[1][nlocalx] = false;

}
if (coords[0]==dims[0]/2 && coords[1]==dims[1]/2){

phi[1][1] = 1.0;
mask[1][1] = false;

}

227

Update Phase

The update phase has three main parts.
• Copy phi to oldphi array.
• Communicate boundary data.
• Update points locally.

228

Update Phase 2
for(int k=0;k<500;k++){

for(int j=1;j<=nlocaly;j++){
for(int i=1;i<=nlocalx;i++){

oldphi[j][i]=phi[j][i];
}

}

for(int j=1;j<=nlocaly;j++){
for(int i=1;i<=nlocalx;i++){

if (mask[j][i]){
phi[j][i]=0.25*(oldphi[j-1][i]+oldphi[j+1][i]+

oldphi[j][i-1]+oldphi[j][i+1]);
}

}
}

Shift up

Shift down

Shift right

Shift left

229

Communication

• Communication takes place by shifting data
in each of the four directions (left, right, up,
and down).

• Before communicating in any direction we
must explicitly buffer the data to be sent,
and unpack it when it is received.

230

Shift Up
Status s;
for(int i=1;i<=nlocalx;i++){

sendbuf[i] = phi[1][i];
}
s = MPI.COMM_WORLD.Sendrecv(sendbuf,1,nlocalx,MPI.DOUBLE,up,99,

recvbuf,1,102,MPI.DOUBLE,down,99);
for(int i=1;i<=nlocalx;i++){

oldphi[nlocaly+1][i] = recvbuf[i];
}

231

Shift Down
Status s;
for(int i=1;i<=nlocalx;i++){

sendbuf[i] = phi[nlocaly][i];
}
s = MPI.COMM_WORLD.Sendrecv(sendbuf,1,nlocalx,MPI.DOUBLE,down,

99,recvbuf,1,102,MPI.DOUBLE,up,99);
for(int i=1;i<=nlocalx;i++){

oldphi[0][i] = recvbuf[i];
}

232

Shift Right
Status s;
for(int j=1;j<=nlocaly;j++){

sendbuf[j] = phi[j][nlocalx];
}
s = MPI.COMM_WORLD.Sendrecv(sendbuf,1,nlocaly,MPI.DOUBLE,right,

99,recvbuf,1,102,MPI.DOUBLE,left,99);
for(int j=1;j<=nlocaly;j++){

oldphi[j][0] = recvbuf[j];
}

233

Shift Left
Status s;
for(int j=1;j<=nlocaly;j++){

sendbuf[j] = phi[j][1];
}
s = MPI.COMM_WORLD.Sendrecv(sendbuf,1,nlocaly,MPI.DOUBLE,left,

99,recvbuf,1,102,MPI.DOUBLE,right,99);
for(int j=1;j<=nlocaly;j++){

oldphi[j][nlocalx+1] = recvbuf[j];
}

234

Performance Analysis

• The update formula requires 4 floating-point
operations per grid point.

• The number of grid points per processor shifted in
the left/right direction is n/P, where nμn is the size
of the grid and P is the number of processors in
one column of the processor mesh.

• The number of grid points per processor shifted in
the up/down direction is n/Q, where Q is the
number of processors in one row of the processor
mesh.

235

Speed Up
The speed-up is:

(4n2/N)tcalc + (2n/Q)tshift + (2n/P)tshift

4n2tcalcS(N) =

1 + (P+Q) t/(2n)
N=

1 + (Q/n)(1+a)t/2
N=

where M=nμn is the size of the grid, PμQ is the
processor mesh, P=aQ, and t=tshift/tcalc.

236

1 + (1+a)/(2◊a)(t/◊g)

Efficiency and Overhead

• Since N=PQ=aQ2 and M=n2 is the number
of points, the efficiency is given by:

1
e (N) =

where g = M/N is the grain size.

• Since the efficiency depends only on g, and
not independently on n and N, the algorithm
is perfectly scalable.

237

Irregular Communication

• In the wave equation and Laplace equation
problems the communication is very regular. Once
we set the number of processes and the size of the
problem the communication requirements of the
algorithm are fully determined.

• We shall now consider a parallel molecular
dynamics simulation. In this simulation we know
that data may need to be communicated between
processes at a particular point in the program, but
we do not know which data it will be. In this
example the communication is slightly irregular.

238

Molecular Dynamics Simulations

• We have n particles in a periodic square domain.
• The particles interact in a known pairwise way.

Each particle exerts a force on the other particles
so that
– if the particles are close enough they repel each other
– if the particles are far enough apart they are attracted to

each other
– if the particles are more than some distance, r0, apart

they do not influence each other.

239

Molecular Dynamics Simulations 2

• This sort of interaction is typical of many
molecules.

• Given initial positions and velocities for the
particles, we follow the movement of the
particles at a series of discrete time steps.

• Usually we are interested in the
macroscopic properties of such particle
systems, such as temperature, energy, etc.

240

Cut-Off Distance
• We could find the force on particle i by summing

over all the other particles,

S
j=0

n-1
fijFi =

where fij is the force exerted by particle j on particle i.
This results in an O(n2) algorithm.

• We can improve the running time if we make use of
the fact that the force fij is zero for particles more than
distance r0 apart.

241

Cut-Off Distance 2
If we divide the
domain of the problem
into cells of size r0μr0
each particle only
interacts with the
particles in its own cell
and the 8 neighbouring
cells.

242

Data Structures
• The particle data structure contains a

particle’s position , velocity, and other data
such as particle type, etc.

• Particles can be stored in an array.
• The cell data structure contains a list of the

particles it contains, i.e., a list of the array
index for each of its particles.

• The cell data can be stored as a linked list.
• There is a 2D array of cells.

243

Cell Data Structure
• We can use a linked list to keep track of the particles in

each cell.
• We can use Java’s LinkedList class.

0 1 2 3 4 765 8 particle array

linked list for
one cell

• Each cell has its own list. The starts of the lists are stored
in a 2D array.

• A particle can find out which cell it is in from its position.

244

Data Distribution
•The particles are
distributed to processes by
assigning a rectangular
block of cells to each
process.

•We find out the node
number, location in the
process mesh, and the node
numbers of the
neighbouring processes as
in the Laplace equation
problem.

245

Data Dependencies
•Particles in cells along the
boundary of a process need
toknow about particles in
other processes in order to
evaluate the force on them.

•Each process needs particle
data from 8 neighbouring
processes

246

Communication Requirements

• Each particle needs information about the particles
in the neighbouring cells in order to determine the
force on it. So we need to communicate particles
lying in cells along the boundary of each process

• When particles move they may travel from the set
of cells owned by one process to those of another
process. This is called particle migration and
requires communication.

247

Array Declarations
• We maintain a 2D array of linked lists – one for each cell

in a process.
• When we receive particle information from cells lying

along the boundary of adjacent processes we store the data
at the end of the particle array.

• Pointers to the particles received are placed into cell lists.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

localcellx = 4, localcelly = 4

particles received

particles in this process2D array
of cells

particle array

248

Outline of Parallel Code
• Initialise data distribution

– Find position of each process to determine which block
of cells it handles.

– Find out the node numbers of processes in the left, right,
up, and down directions.

• Initialise particle arrays and cell lists
– Generate or input initial particle positions and velocities .
– Insert particles into cell lists.

• Perform update
– Communicate boundary cell data.
– Do update locally.
– Communicate particles that have migrated

• Output results

249

Outline MPI Code
import mpi.*

class MolecularDynamics {
static public void main(String[] args) {
MPI.Init(args) ;

MPI.Finalize();
}

}

Code for initialising data distribution
goes here

Code for initialising arrays and lists
goes here

Code for update loop goes here

Code for output phase goes here

250

Initialising the Data Distribution
boolean [] periods = new boolean[2];
boolean reorder = false;
int myrank = MPI.COMM_WORLD.Rank();
int nprocs = MPI.COMM_WORLD.Size();
int [] dims = new int[2];
MPI.COMM_WORLD.Dims_create(nprocs, dims);
periods[0] = periods[1] = true;
Cartcomm comm2d = MPI.COMM_WORLD.Create_cart(dims, periods,

reorder);
int [] coords = new int[2];
coords = comm2d.Coords(myrank);
ShiftParms vshift = comm2d.Shift(0, 1);
int up = vshift.rankSource;
int down = vshift.rankDest;
ShiftParms hshift = comm2d.Shift(1, 1);
int left = hshift.rankSource;
int right = hshift.rankDest;

251

Parallel Update Loop
for (each time step){

communicate particle data for boundary cells
for (each particle, p, in this process){

find out the location (i,j) of cell p is in
force[p] = 0;
for (cell (i,j) and the 8 neighbouring cells){

for (each particle q in cell){
add force of q on p to force[p]

}
}

}
for (each particle, p)

update velocity and position of p using force[p]
}
migrate particles

}

252

Communication of Boundary
Cell Data

• The communication is similar to that for the
Laplace equation problem except
– We have to look in the cell lists to see which particles

have to be sent and pack this information into a send
buffer.

– The receiving process does not know beforehand how
many particles it is going to receive.

– We have to communicate between diagonally adjacent
processes.

253

Communicating Corner Data
We need to communicate particles in corner
cells to diagonally adjacent processes. This
can be done be done in 4 shift operations.

A a a a A
a
a
a

a
a
a

A a a a A

B b b b B
b
b
b

b
b
b

B b b b B

C c c c C
c
c
c

c
c
c

C c c c C

D d d d D
d
d
d

d
d
d

D d d d D

Initial state for 2μ2
mesh of processes

254

Left Shift

a a a A
a
a
a

A
a
a
a
A a a a A

b b b B
b
b
b

B
b
b
b
B b b b B

c c c C
c
c
c

C
c
c
c
C c c c C

d d d D
d
d
d

D
d
d
d
D d d d D

B
b
b
b
B

A
a
a
a
A

C
c
c
c
C

D
d
d
d
D

255

Right Shift

a a a A
a
a
a

A
a
a
a
A a a a A

b b b B
b
b
b

B
b
b
b
B b b b B

c c c C
c
c
c

C
c
c
c
C c c c C

d d d D
d
d
d

D
d
d
d
D d d d D

B
b
b
b
B

A
a
a
a
A

C
c
c
c
C

D
d
d
d
D

A
a
a
a
A

B
b
b
b
B

D
d
d
d
D

C
c
c
c
C

256

Up Shift

a
a
a

a
a
a
A a a a A

b
b
b

b
b
b
B b b b B

c
c
c

c
c
c
C c c c C

d
d
d

d
d
d
D d d d D

B
b
b
b
B

a
a
a
A

c
c
c
C

d
d
d
D

a
a
a
A

b
b
b
B

d
d
d
D

b b b BB AAa a a AAB

c c c CC DD d d d DD CC
c
c
c
C

c c c CC DD d d c DD CC

a a a AA BB b b b BB AA

257

Down Shift

a
a
a

a
a
a
A a a a A

b
b
b

b
b
b
B b b b B

c
c
c

c
c
c
C c c c C

d
d
d

d
d
d
D d d d D

B
b
b
b
B

a
a
a
A

c
c
c
C

d
d
d
D

a
a
a
A

b
b
b
B

d
d
d
D

b b b BB AAa a a AAB

c c c CC DD d d d DD CC
c
c
c
C

c c c CC DD d d c DD CC

a a a AA BB b b b BB AA

c c c CC DD d d c DD CC

a a a AA BB b b b BB AA

258

Pseudocode for Left Shift
nsend = 0
for (i=1 to localcelly){

for (each particle, p, in cell (i,1))
pack position of p into sendbuf
nsend = nsend + 2;

}
}
Status s = MPI.COMM_WORLD.Sendrecv (

sendbuf, 1, nsend, MPI_DOUBLE, left, 99,
recvbuf, 1, recvbuf.length(), MPI_DOUBLE, right, 99);

int nrecv = s.Get_count (MPI_DOUBLE);
for (i=1 to nrecv in steps of 2){

take next 2 numbers from recvbuf, store in x and y
set position of particle npart+i-1 to (x,y)
find out which cell (x,y) is in
add particle npart+i-1 to list for that cell

}

259

Pseudocode for Up Shift
nsend = 0
for (i=0 to localcellx+1){

for (each particle, p, in cell (1,i))
pack position of p into sendbuf
nsend = nsend + 2;

}
}
Status s = MPI.COMM_WORLD.Sendrecv (

sendbuf, 1, nsend, MPI_DOUBLE, up, 99,
recvbuf, 1, recvbuf.length(), MPI_DOUBLE, down, 99);

int nrecv = s.Get_count (MPI_DOUBLE);
for (i=1 to nrecv in steps of 2){

take next 2 numbers from recvbuf, store in x and y
set position of particle npart+i-1 to (x,y)
find out which cell (x,y) is in
add particle npart+i-1 to list for that cell

}

260

Particle Migration

• We assume that a particle stays in the same
cell or moves to one of the 8 adjacent cells.

• This may involve moving to a cell in
another process.

• We have to be able to handle the case where
particles move to diagonally adjacent
processes.

261

Pseudocode for Particle Migration 1
for (each particle, p){

update position and velocity
determine which cell p is in
if (p has moved to new cell){

delete p from list of old cell
if (p has moved to different process){

put p into appropriate communication buffer
remove p from particle array

}
else{

add p to list of new cell
}

}
}
shift left
shift right
shift up
shift down

262

Pseudocode for Particle Migration 2

Status s = MPI.COMM_WORLD.Sendrecv(
leftbuf, 1, nsendleft, MPI_DOUBLE, left, 99,
recvbuf, 1, recvbuf.length(), MPI_DOUBLE, right, 99);

int nrecv = s.Get_count(MPI_DOUBLE);
for (i=1 to nrecv in steps of 4){

get next 4 numbers from recvbuf, store in x, y, vx, vy
if (particle belongs in this process){

add particle to end of particle array
find out what cell particle is in
add particle to list for that cell

}
else{

put particle in appropriate communication buffer
}

}

After receiving particle data from another process, a process
must determine if the particle belongs to it, or if it has to be
passed on to another process. For left shift:

263

Notes on Parallel Molecular
Dynamics Simulations

• As in previous examples we need to exchange
“boundary” data between processes.

• Need to communicate with diagonally adjacent
processes. This can be done with four shift operations.

• We do not know beforehand how many particles will
be communicated between processes in the boundary
data exchange or migration steps. The receiving
process determines this with the Get_count() method.

• In general each process holds a different number of
particles and this changes over time. However, we
don't expect load imbalance to be too bad because
particles tend to be evenly distributed in space.

264

WaTor – a Dynamical System
• We shall now look at a very dynamic simulation

called WaTor. WaTor is a periodic 2D ocean
(hence, Watery Torus) in which predators (sharks)
and prey (fish) compete and survive.

• The parallel implementation of WaTor has a
number of interesting features:
– A very inhomogeneous and dynamic load distribution.
– The need for irregular communication.
– The possibility of conflicts between updates performed

by different processes (data inconsistency).
• Other advanced parallel applications share some

of these features.

265

The Rules of WaTor

• WaTor takes place on a periodic grid. Each grid
cell either contains a fish, a shark, or is empty.

• The grid is initially populated by a specified
number of fish and sharks, placed at random.

• The populations then evolve in a series of discrete
time steps according to certain rules that govern
how the fish and sharks move, breed, eat, and die.

266

Fish Rules
Moving:
• In each time step, each fish notes which of the 4

neighbouring sites are empty. One of these empty sites is
chosen at random and the fish moves there. If there are no
empty neighbouring sites the fish stays where it is.

Breeding:
• If a fish is past the fish breeding age, then when it moves it

breeds, leaving a fish of age zero at its previous location. A
fish cannot breed if it doesn't move.

Eating
• Fish eat plankton available throughout the ocean. Fish

never starve.

267

Shark Rules
Moving
• In each time step, each shark notes which of the 4 neighbouring sites

are occupied by fish. One of these sites is chosen at random and the
shark moves there, eating the fish. If there are no neighbouring sites
containing fish the shark notes which of the 4 neighbouring sites are
empty and moves to one of these sites at random. If all 4 neighbouring
sites are already occupied by sharks, the shark stays where it is.

Breeding
• If a shark is past the shark breeding age, then when it moves it breeds,

leaving a shark of age zero at its previous location. A shark cannot
breed if it doesn't move.

Eating
• Sharks eat only fish. If a shark does not eat for more than a certain

number of time steps (known as the shark starvation age) then it dies.

268

WaTor Inputs

The inputs to the simulation are:
• The size of the grid.
• The initial number of sharks and fish (these

are placed at random).
• The shark and fish breeding ages.
• The shark starvation age.

269

WaTor Data Structures

• The two fundamental data structures are the 2D
grid of cells and a list of sharks and fish.

• Each cell in the grid is an object with an
occupation status (empty, occupied by fish, or
occupied by shark), and a reference to the fish or
shark object it contains (if not empty).

• Each shark/fish object contains its type, age, cell
location, and time since it last ate (if shark).

270

Update Order

• The order of updating fish and sharks is not
specified in the WaTor rules.

• Could update by looping over ocean cell locations.
This is inefficient if a significant fraction of the
ocean is empty.

• Alternative approach is to process the fish/shark
list. In this case only active objects are processed.

• Must ensure that newly-born fish/sharks or not
processed until the next time step.

271

Outline of Sequential Code
Initialise
• Initialise ocean array by placing fish and sharks at

random grid locations.
• Initialise fish/shark list.
Update
• In each time step, we process the fish and sharks

in the order in which they appear in the list.
• We may also update the display, or perform some

other output, in each time step.
Finalise
• Output final state, statistics, etc.

272

Data Distribution

• Initially we shall use a simple 2D block data
distribution, just the same as in the Laplace
equation problem and the molecular dynamics
simulation.

• Each process looks after a block of the ocean and
all the fish and sharks in it.

• We need to know the process number (rank),
location in the process mesh, and the process
numbers of the neighbouring processes.

273

Data Distribution 2

S
S

F
F

F
FF

FF
SS

S

S

S

S
S S

S S
S

S

S
S

S

S

SS
S

S

S

S
S

S

S
S

S

S
S

S

F
FFF

FFF

FF

FF
F

FF

274

Data Dependencies
•Fish and sharks lying
along the boundary of a
process need to know
about the grid cells lying
along the boundary of
other processes in order to
follow the WaTor rules

•Each process needs data
from 4 neighbouring
processes.

S

S

F

F

275

Array Declarations
• When we receive fishes and sharks from ocean

cells lying along the boundary of adjacent
processes we store them in the fish/shark list and
update the local ocean cell to indicate that is is
occupied.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

localcellx = 4, localcelly = 4

2D array
of cells

276

Potential for Data Inconsistency

• In the course of an update a fish or shark may
move into a “border” grid cell. Thus, unlike in the
Laplace and molecular dynamics problems, the
border cells in a process may change in an update.

• These changes must be communicated back to the
process that originally send that border strip, to be
re-integrated into its data structures.

• However, the process owning those grid cells may
also have updated them, and these updates may be
in conflict.

277

Example of Data Inconsistency

SS

F
F

F

F

F

Time T

S

F
F

FS

F

F

Time T+1

F
F

F S

F

F

• Here we show
two adjacent
processes at
successive time
steps.

• Two sharks try
to eat the same
fish!

278

Inconsistency and Non-
Determinism

• On a shared memory parallel computer this
type of data conflict would indicate a non-
deterministic algorithm.

• On a distributed memory machine using
message passing the communication
operations determine the update order for a
memory location, so the algorithm is still
deterministic – but we would still like to
avoid data conflicts.

279

Rollback

One way to resolve conflicts is called rollback,
and works as follows:
1. Return the fish or shark that crossed the process

boundary back to its original process, and place it
back in its original position.

2. If that position has been occupied by another fish
or shark, then that fish or shark must be rolled
back.

3. This rollback process continues until until every
fish and shark has a place to go.

280

Rollback 2

• Rollback requires us to remember the
previous position of each fish and shark.

• Rollback can result in complicated
communication requirements if a sequence
of rollbacks traverses multiple processes.

• Rollback has been used in certain event-
driven simulations, such as battlefields
simulations.

281

Isolating Boundary Updates

• We could perform updates by looping over the
ocean cells instead of by processing the fish/shark
list.

• Then we can update all the interior (i.e., non-
boundary) cells.

• Next we do a left shift of the lefthand boundary
fish/sharks, and update the righthand boundary.

• This is repeated to update the lefthand, upper, and
lower boundaries.

282

Sub-Partitioning

• A third way to avoid data inconsistencies is to
partition the part of the ocean assigned to each
process into 4 parts.

• A process has a separate fish/shark list for each of
these 4 sub-partitions.

• Each of the 4 sub-partitions is updated in turn.
• This avoids adjacent ocean cells being updated

concurrently.

283

Sub-Partitioning Algorithm

1. Divide the ocean array of each process into 4
smaller sub-grids, labelled 1, 2, 3, and 4.

2. Exchange the parts of sub-grids 2 and 3 that have
data along their boundaries needed to update sub-
grid 1 in adjacent processes.

3. Update sub-grid 1 in each process.
4. Return boundary information to original owner

and update data structures.
5. Repeat steps 2, 3, and 4 for each of the other sub-

grids in turn.

284

Update Cycle for Sub-Partition 1

3

1

Right shift, down shift

2

4

Update fish and sharks in
list for sub-partition 1

3

1

Left shift, up shift

2

4

Step 1 Step 2 Step 3

285

Communication Phases

• To update sub-partition 1: shift right and down
before update, then shift left and up after update.

• To update sub-partition 2: shift left and down
before update, then shift right and up after update.

• To update sub-partition 3: shift right and up before
update, then shift left and down after update.

• To update sub-partition 4: shift left and up before
update, then shift right and down after update.

286

Outline of Parallel Code

for (each time step){
for (each sub-partition, i=1,2,3,4){

shift boundary data across 2 edges of sub-partition i
store data received in border of ocean and in

fish/shark list
update fish and sharks in sub-partition i
shift boundary data back across the 2 edges,

overwriting original data with updated data
}

}

The update loop of the parallel version of
WaTor using sub-grids is as follows:

287

Load Imbalance in WaTor

• Load balance is an important consideration in
WaTor and many other applications.

• In WaTor the workload if generally not evenly
distributed over the ocean, so distributing the data
in contiguous blocks means that some processes
have less work than others at certain times.

• Load balance in WaTor changes with time as the
fish and sharks move.

288

Example of WaTor Output

•White = empty

•Light grey = fish

•Dark grey = sharks

289

Dynamic Load Imbalance
• In dealing with dynamic load imbalance the

following two approaches are important:
• Use of a dynamic load balancer so that the

distribution of the ocean among the processes
changes as the fish and shark system evolves.
When dealing with grids some form of recursive
bisection is often used.

• Use of a cyclic, or scattered, data distribution. The
parts of the grid assigned to one process do not
form a contiguous block but are scattered in a
regular way over the whole domain. The aim in
this case is to achieve statistical load balance.

290

Orthogonal Recursive Bisection
• Orthogonal Recursive Bisection (ORB) first

divides the domain orthogonal to the x-direction
so there are equal numbers of items in each of the
two subdomains.

• Then each of these 2 subdomains is independently
divided orthogonal to the y-direction, to give 4
subdomains each with approximately the same
number of items in each

• This process of bisection continues, alternating
between the x and y directions, until there is one
subdomain for each process.

291

Example of ORB 1

ORB is not used
when the items are
distributed
uniformly over the
domain - in this
case the
subdomains would
come out about the
same size and
shape.

292

Example of ORB 2

If the items are
distributed unevenly
over the domain, ORB
can give rise to a
variety of different
shaped process
subdomains.

293

Notes on ORB

Using a dynamic load balance scheme such as
ORB adds to the complexity of the software,
particularly in deciding which boundary data
must be communicated with which processes.

294

Hierarchical Recursive Bisection

• HRB is a variation of ORB in which we first make
all the cuts in one direction, and then all the cuts in
the second direction, rather than alternating
directions.

• HRB allows the data distribution to be adjusted
over just one direction, rather than both.

• ORB and HRB can easily be extended to 3 or
more dimensions.

295

Example of HRB

296

Cyclic Data Distributions

• In a cyclic data distribution the data assigned to
each process is scattered in a regular way over the
domain of the problem.

• The figure on the next slide shows how a grid
might be cyclically distributed over a 4μ4 mesh of
processes.

• The cyclic distribution is a simple way to improve
load balance but can result in more
communication as it increases the amount of
boundary data in a process.

297

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

298

Cyclic Data Distributions

This is known as a cyclic[1] data distribution,
and can be regarded as mapping a global
index, m, to a process location, p, and a local
index, i.

Consider a one-dimensional cyclic data
distribution of an array, such as:

0 321 0 3210 3210 321

299

Cyclic[1] Data Mappings
• The global index, m, maps to a process

location, p, and a local index, i.
m # (p,i)

where p and i are given by:
p = m (mod N)
i = floor(m/N)

and N is the number of processes. The
inverse mapping is:

m = iN + p

300

Cyclic[k] Data Mappings

•If we arrange array entries in groups of size k and
cyclically distribute these we get a cyclic[k] data
distribution.
•For example, the following shows a cyclic[2] data
distribution.

0 110 2 3320 1102 332

301

Cyclic[k] Data Mappings 2
Global index m is mapped to process location

p, local block index b, and local index i within
the block, as follows:

p = B (mod N)

b = floor(B/N)

i = m (mod k)

where B=floor(m/k) is the global block index.
The inverse mapping is:

m=(bN+p)k + i

302

Block Data Distributions
•For a one-dimensional block data distribution the
mapping of global index, m, to a process location, p,
and a local index, i, is

p = floor(m/T)
i = m (mod T)

where T=ceil(M/N), M is the number of items, and
N the number of processes.

0 000 2 3221 2210 111 3 333

The inverse mapping is:

m = pT + i

303

Communication and Load
Imbalance Tradeoff

• A block cyclic data distribution can be used to
improve load balance when data is distributed
inhomogeneously across the problem domain.

• However, a smaller block size results in more
boundary data and hence gives rise to increased
communication.

• There is, therefore, a tradeoff between load
imbalance and communication cost.

• It is important to choose the correct block size so
that the total overhead is minimised.

304

Example

• Assume that the amount of communication
associated with a block is proportional to its
perimeter.

• Suppose we have a 2-D block cyclic
distribution with block size k1 by k2.

• Now we reduce the block size by a factor of
2 in each direction, so each block in the
original data distribution is split into 4
blocks, each of size k1/2 by k2 /2.

305

Example (continued)

Perimeter = 2(k1+k2)
Perimeter = 2(k1/2+k2/2) = k1+k2

• The perimeter of the original block is 2(k1+k2).
• After it is split into 4 smaller blocks the total perimeter of these

blocks is 4(k1+k2).
• So, for a 2D problem, we expect the communication cost to

double when the block size is halved in each direction

306

Multi-Dimensional Data
Distributions

• Multi-dimensional arrays are distributed by
applying the desired data distribution separately to
each array index.

• Thus, for a two-dimensional data distribution the
global index (m,n) is mapped so that m#(p,i) and
n #(q,j), where (p,q) is location on a PμQ process
mesh, and (i,j) is the index into the local 2D array.

• Different data distributions can be applied over
each array dimension.

307

Multi-Dimensional Data
Distributions 2

• For a 2D (cyclic[1],cyclic[1]) data distribution
we would have:

m#(p,i) = (m(mod P), floor(m/P))
n#(q,j) = (n(mod Q), floor(n/Q))

308

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

309

Load Balancing Issues in a Parallel
Cellular Automata Application

• This looks at an application that
uses a cyclic data distribution to
achieve static load balance.

• As in WaTor, data inconsistency in
how updates are performed is an
issue

310

CA for Surface Reactions

• A cellular automaton is used to model the
reaction of carbon monoxide and oxygen to
form carbon dioxide

CO + O G CO2

• Reactions take place on surface of a crystal
which serves as a catalyst.

311

The Problem Domain

• The problem domain is a periodic square
lattice representing the crystal surface.

• CO and O2 are adsorbed onto the crystal
surface from the gas phase.

• Parameter y is the fraction of CO and 1-y is
the fraction of O2.

312

Interaction Rules
• Choose a lattice site at random and attempt to place a

CO or an O2 there with probabilities y and 1-y,
respectively.

• If site is occupied then the CO or O2 bounces off, and
a new trial begins.

• O2 disassociates so we have to find 2 adjacent sites
for these.

• The following rules determine what happens next.

313

Interaction Rules for CO

oxygen
CO

1. CO adsorbed

3. CO and O react
4. CO2 desorbs

2. Check 4 neighbors for O

314

Interaction Rules for O
1. O2 adsorbed
2. O2 disassociates
3. Check 6 neighbors for CO
4. O and CO react
5. CO2 desorbs

oxygen
CO
O2

315

Parallel Version of Code

• As simulation evolves the distribution of
molecules may become very uneven.

• This results in load imbalance.
• Use a 2-D block cyclic data distribution for

the lattice.
• This will give statistical load balance, but

smaller block sizes will result in more
communication.

316

Steady State Reaction

For y1<y<y2 we get
a steady state.

y1 @ 0.39
y2 @ 0.53

317

CO Poisoning: y > y2

318

Oxygen Poisoning: y < y1

319

Main Issues

• MPI used – user-defined datatypes were
important in performing communication.

• There is a trade-off between load imbalance
and communication.

• A block-cyclic data distribution is used.
• Performance can be modelled.

320

Block-Cyclic Data Distribution

Block-cyclic data
distribution improves
load balance by scattering
processes over the lattice
in a regular way.

Block size is kr x kc

321

Parallel Implementation

• Processes need to communicate their
boundary data to neighboring processes.

• Sites within two sites from the boundary
must be communicated.

• Each process can generate random numbers
independently.

322

A Communication Strategy

• Do a left shift: send leftmost 2 columns left
while receiving from the right.

• Do a right shift: send rightmost 2 columns
right while receiving from the left.

• Similarly for up shifts and down shifts.
• After these 4 shifts have been done each

process can update all its lattice sites.

323

Communication Shifts

1. Left shift.
2. Right shift.
3. Up shift.
4. Down shift.

324

Update Conflicts

• Two adjacent processes can concurrently
update the same lattice site close to their
common boundary.

• This is an update conflict.
• Avoid conflicts by never updating adjacent

areas in processes concurrently.
• Use sub-partitioning to do this.

325

Sub-partitioning
• First each process updates A,

then B, C, and D.
• Before updating a sub-partition

communication is needed to
ensure each process has all the
data to update its points.

• After updating a sub-partition the
data is sent back to the process it
came from.

326

Communication Before Update

327

Load Imbalance

Load imbalance is
smaller for smaller
block sizes.

Load imbalance is
large as CO
poisoning occurs.

512x512 lattice
y = 0.53

2μ2 process mesh
used.

328

Maximum Work Load
Maximum work
load is similar
for different
block size, except
after step 700.

Not much work
available at this
time.

Load imbalance
not very
important!

329

Communication Time

For given problem
communication is
smaller for more
processes - less
data per process.

Smaller blocks
require more
communication.

512x512 lattice,
y = 0.53

Process mesh

330

Performance Model

• Amount of communication and computation
both depend linearly on problem size.

• Speed-up is independent of problem size
and is given by:

S = N

1 + A t (kr+kc)/(kr kc)

331

Self Speed-Up

128x128
480x480As expected,

speed-up is
independent of
problem size
(except at 8!)

332

Scaled Speed-Up

128x128

480x480

Fixed problem size
per process

333

Summary

• It turns out that load imbalance is not very
important in this problem.

• Load imbalance will be important in
cellular automata with more complex
geometries.

• Easy to modify code for other CA
problems.

• Speed-up independent of problem size.

	Parallel Processing�CM0323
	Syllabus: Part 1
	Syllabus: Part2
	Books
	Web Sites
	What is Parallelism?
	Types of Parallelism 1
	Types of Parallelism 2
	Scheduling Example
	A Better Schedule
	Notes on Scheduling Example
	Parallelism Between Job Phases
	Program Level Parallelism
	Robot Example
	Notes on Robot Example
	Domain Decomposition
	Data Parallelism
	Domain Decomposition
	Why Use Parallelism?
	Parallelism and Memory
	Parallelism and Supercomputing
	Uses of Parallel Supercomputers
	More Uses of Parallelism
	Classification of Parallel Machines
	Classification of Parallel Machines
	SISD Computers
	MISD Computers
	MISD Computers (continued)
	MISD Example
	SIMD Computers
	Notes on SIMD Computers
	SIMD Example
	Notes on SIMD Example
	MIMD Computers
	Notes on MIMD Computers
	Notes on SIMD and MIMD
	Potential of the 4 Classes
	Single Program Multiple Data
	SPMD Example
	Interprocessor Communication
	Global Shared Memory
	Shared Memory Conflicts
	Shared Memory Conflicts 2
	Non-Determinancy
	Locks and Mutual Exclusion
	Classifying Shared Memory Computers
	Notes on Shared Memory 1
	Notes on Shared Memory 2
	Notes on Shared Memory 3
	Examples of Shared Memory
	The Algorithm
	Time Complexity for EREW
	Time Complexity for ERCW
	Time Complexity for CREW
	Time Complexity for CRCW
	Limits on Shared Memory
	Quick Overview of OpenMP
	OpenMP Fork/Join Model
	OpenMP and Loops
	Number of Threads
	Reduction Operations
	Interconnection Networks and Message Passing
	Message Passing
	Hybrid Computers
	Comparison of Shared and Distributed Memory
	Memory Hierarchy 1
	Typical Quad-Core Chip
	Summing m Numbers
	Summing m Numbers in Parallel
	Summing Using Shared Memory
	Notes on Shared Memory Algorithm
	Summing Using Distributed Memory
	Distributed Memory Algorithm
	Summing Example
	Interconnection Networks
	Examples of Networks
	Network Metrics
	Network Metrics 2
	Network Metrics 3
	Network Metrics 4
	Fully Connected Network
	Fully Connected Network 2
	Mesh Networks
	Mesh Metrics
	Ring Networks
	Chordal Ring Networks
	Examples of Ring Networks
	Hypercube Networks
	Examples of Hypercubes
	Mapping Grids to Hypercubes
	Binary Gray Codes
	Binary Gray Codes 2
	Example of a Gray Code
	Example of a Gray Code 2
	Example of a Gray Code 3
	Multi-Dimensional Gray Codes
	Multi-Dimensional Gray Codes 2
	Mapping a 24 Mesh to a Hypercube
	Mapping a 24 Mesh to a Hypercube 2
	Shuffle-Exchange Networks
	8-Node Shuffle-Exchange Network
	Shuffle-Exchange Networks
	Shuffle-Exchange Networks
	Butterfly Network
	Example of a Butterfly Network
	Cube-Connected Cycles Network
	Example of a Cube-Connected Cycles Network
	Complete Binary Tree Network
	Fat Tree Network
	Classifying Parallel Algorithms
	Pipelined Algorithms
	Pipelines Algorithms 2
	Example of Pipelined Algorithm
	Pipelined Algorithm
	Performance of Pipelining
	Pipeline Performance Example
	Data Parallelism
	Data Parallelism Example
	Relaxed Parallelism
	Relaxed Parallelism Example
	Synchronous Operation
	Asynchronous Operation
	Example of Asynchronous Algorithm
	Example of Asynchronous Algorithm 2
	Serial Mode Time Complexity
	Synchronous Parallel Mode
	Asynchronous Parallel Mode
	Asynchronous Parallel Mode Example
	Speed-up and Efficiency
	Example
	Self Speed-up and Linear Speed-up
	Factors That Limit Speed-up�1. Software Overhead
	Factors That Limit Speed-up�2. Load Imbalance
	Factors That Limit Speed-up�3. Communication Overhead
	Grain Size
	Definition of Load Imbalance
	Analysis of Summing Example
	Analysis of Summing Example 2
	Analysis of Summing Example 3
	Analysis of Summing Example 4
	Analysis of Summing Example 5
	Scalable Algorithms
	Scalability of the Summing Example
	Amdahl’s Law
	Derivation of Amdahl’s Law
	Examples of Amdahl’s Law
	Examples of Amdahl’s Law 2
	Implications of Amdahl’s Law
	Speed-Up for Large Problems
	Speed-Up for Large Problems 2
	Speed-Up and Problem Size
	Semantics of Message Sends
	Semantics of Blocking Send
	Semantics of Non-Blocking Send
	Semantics of Message Receives
	Semantics of Blocking Receive
	Semantics of Non-Blocking Receive
	Message Passing Protocols
	Message Passing Protocols 2
	MPI Point-to-Point Communication
	mpiJava API
	Class hierarchy
	Basic Datatypes
	mpiJava send()/recv()
	Communicators
	Process ranks
	Message Tags
	Return Status Objects
	Communication Completion
	Summary of Point-to-Point Communication
	Minimal mpiJava Program
	Another MPI Example
	Notes on Example
	Collective Communication
	Broadcast
	Broadcast Algorithm 1
	Broadcast Algorithm 2
	Reduction
	Reduction To All Nodes
	Collective Routines
	MPI Integration Example
	MPI Integration Code: Outline
	MPI Integration Code: Computation
	Application Topologies
	Cartesian Application Topologies
	Topological Inquiries
	Mapping Between Rank and Position
	Uses of Topologies
	Topologies and Data Shifts
	Topologies and Data Shifts 2
	Send/Receive Operations
	Vibrating String Problem
	The Wave Equation
	Method of Solution
	Data Distribution
	Communication Requirements
	Outline of Parallel Code
	Displacement Arrays
	Outline MPI Code
	Initialising the Data Distribution
	Initialising the Arrays
	Update Loop
	Notes on Update Loop
	Communication Code: Left Shift
	Communication Code: Right Shift
	Output Phase
	Performance Analysis
	Performance Analysis 2
	Performance Analysis 3
	Laplace Equation Problem
	Laplace Equation 2
	Data Distribution
	Data Distribution 2
	Communication Requirements
	Communication Requirements 2
	Outline of Parallel Code
	Array Declarations
	Array Initialisation
	Outline MPI Code
	Initialising the Data Distribution
	Initialising the Data Distribution 2
	Initialising phi and mask Arrays
	Initialisation of Arrays
	Initialisation of Arrays 2
	Initialisation of Arrays 3
	Update Phase
	Update Phase 2
	Communication
	Shift Up
	Shift Down
	Shift Right
	Shift Left
	Performance Analysis
	Speed Up
	Efficiency and Overhead
	Irregular Communication
	Molecular Dynamics Simulations
	Molecular Dynamics Simulations 2
	Cut-Off Distance
	Cut-Off Distance 2
	Data Structures
	Cell Data Structure
	Data Distribution
	Data Dependencies
	Communication Requirements
	Array Declarations
	Outline of Parallel Code
	Outline MPI Code
	Initialising the Data Distribution
	Parallel Update Loop
	Communication of Boundary Cell Data�
	Communicating Corner Data
	Left Shift
	Right Shift
	Up Shift
	Down Shift
	Pseudocode for Left Shift
	Pseudocode for Up Shift
	Particle Migration
	Pseudocode for Particle Migration 1
	Pseudocode for Particle Migration 2
	Notes on Parallel Molecular Dynamics Simulations
	WaTor – a Dynamical System
	The Rules of WaTor
	Fish Rules
	Shark Rules
	WaTor Inputs
	WaTor Data Structures
	Update Order
	Outline of Sequential Code
	Data Distribution
	Data Distribution 2
	Data Dependencies
	Array Declarations
	Potential for Data Inconsistency
	Example of Data Inconsistency
	Inconsistency and Non-Determinism
	Rollback
	Rollback 2
	Isolating Boundary Updates
	Sub-Partitioning
	Sub-Partitioning Algorithm
	Update Cycle for Sub-Partition 1
	Communication Phases
	Outline of Parallel Code
	Load Imbalance in WaTor
	Example of WaTor Output
	Dynamic Load Imbalance
	Orthogonal Recursive Bisection
	Example of ORB 1
	Example of ORB 2
	Notes on ORB
	Hierarchical Recursive Bisection
	Example of HRB
	Cyclic Data Distributions
	Cyclic Data Distributions
	Cyclic[1] Data Mappings
	Cyclic[k] Data Mappings
	Cyclic[k] Data Mappings 2
	Block Data Distributions
	Communication and Load Imbalance Tradeoff
	Example
	Example (continued)
	Multi-Dimensional Data Distributions
	Multi-Dimensional Data Distributions 2
	 Load Balancing Issues in a Parallel Cellular Automata Application�
	CA for Surface Reactions
	The Problem Domain
	Interaction Rules
	Interaction Rules for CO
	Interaction Rules for O
	Parallel Version of Code
	Steady State Reaction
	CO Poisoning: y > y2
	Oxygen Poisoning: y < y1
	Main Issues
	Block-Cyclic Data Distribution
	Parallel Implementation
	A Communication Strategy
	Communication Shifts
	Update Conflicts
	Sub-partitioning
	Communication Before Update
	Load Imbalance
	Maximum Work Load
	Communication Time
	Performance Model
	Self Speed-Up
	Scaled Speed-Up
	Summary

